1 //=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file lowers exception-related instructions and setjmp/longjmp function 11 /// calls to use Emscripten's library functions. The pass uses JavaScript's try 12 /// and catch mechanism in case of Emscripten EH/SjLj and Wasm EH intrinsics in 13 /// case of Emscripten SjLJ. 14 /// 15 /// * Emscripten exception handling 16 /// This pass lowers invokes and landingpads into library functions in JS glue 17 /// code. Invokes are lowered into function wrappers called invoke wrappers that 18 /// exist in JS side, which wraps the original function call with JS try-catch. 19 /// If an exception occurred, cxa_throw() function in JS side sets some 20 /// variables (see below) so we can check whether an exception occurred from 21 /// wasm code and handle it appropriately. 22 /// 23 /// * Emscripten setjmp-longjmp handling 24 /// This pass lowers setjmp to a reasonably-performant approach for emscripten. 25 /// The idea is that each block with a setjmp is broken up into two parts: the 26 /// part containing setjmp and the part right after the setjmp. The latter part 27 /// is either reached from the setjmp, or later from a longjmp. To handle the 28 /// longjmp, all calls that might longjmp are also called using invoke wrappers 29 /// and thus JS / try-catch. JS longjmp() function also sets some variables so 30 /// we can check / whether a longjmp occurred from wasm code. Each block with a 31 /// function call that might longjmp is also split up after the longjmp call. 32 /// After the longjmp call, we check whether a longjmp occurred, and if it did, 33 /// which setjmp it corresponds to, and jump to the right post-setjmp block. 34 /// We assume setjmp-longjmp handling always run after EH handling, which means 35 /// we don't expect any exception-related instructions when SjLj runs. 36 /// FIXME Currently this scheme does not support indirect call of setjmp, 37 /// because of the limitation of the scheme itself. fastcomp does not support it 38 /// either. 39 /// 40 /// In detail, this pass does following things: 41 /// 42 /// 1) Assumes the existence of global variables: __THREW__, __threwValue 43 /// __THREW__ and __threwValue are defined in compiler-rt in Emscripten. 44 /// These variables are used for both exceptions and setjmp/longjmps. 45 /// __THREW__ indicates whether an exception or a longjmp occurred or not. 0 46 /// means nothing occurred, 1 means an exception occurred, and other numbers 47 /// mean a longjmp occurred. In the case of longjmp, __THREW__ variable 48 /// indicates the corresponding setjmp buffer the longjmp corresponds to. 49 /// __threwValue is 0 for exceptions, and the argument to longjmp in case of 50 /// longjmp. 51 /// 52 /// * Emscripten exception handling 53 /// 54 /// 2) We assume the existence of setThrew and setTempRet0/getTempRet0 functions 55 /// at link time. setThrew exists in Emscripten's compiler-rt: 56 /// 57 /// void setThrew(uintptr_t threw, int value) { 58 /// if (__THREW__ == 0) { 59 /// __THREW__ = threw; 60 /// __threwValue = value; 61 /// } 62 /// } 63 // 64 /// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code. 65 /// In exception handling, getTempRet0 indicates the type of an exception 66 /// caught, and in setjmp/longjmp, it means the second argument to longjmp 67 /// function. 68 /// 69 /// 3) Lower 70 /// invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad 71 /// into 72 /// __THREW__ = 0; 73 /// call @__invoke_SIG(func, arg1, arg2) 74 /// %__THREW__.val = __THREW__; 75 /// __THREW__ = 0; 76 /// if (%__THREW__.val == 1) 77 /// goto %lpad 78 /// else 79 /// goto %invoke.cont 80 /// SIG is a mangled string generated based on the LLVM IR-level function 81 /// signature. After LLVM IR types are lowered to the target wasm types, 82 /// the names for these wrappers will change based on wasm types as well, 83 /// as in invoke_vi (function takes an int and returns void). The bodies of 84 /// these wrappers will be generated in JS glue code, and inside those 85 /// wrappers we use JS try-catch to generate actual exception effects. It 86 /// also calls the original callee function. An example wrapper in JS code 87 /// would look like this: 88 /// function invoke_vi(index,a1) { 89 /// try { 90 /// Module["dynCall_vi"](index,a1); // This calls original callee 91 /// } catch(e) { 92 /// if (typeof e !== 'number' && e !== 'longjmp') throw e; 93 /// _setThrew(1, 0); // setThrew is called here 94 /// } 95 /// } 96 /// If an exception is thrown, __THREW__ will be set to true in a wrapper, 97 /// so we can jump to the right BB based on this value. 98 /// 99 /// 4) Lower 100 /// %val = landingpad catch c1 catch c2 catch c3 ... 101 /// ... use %val ... 102 /// into 103 /// %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...) 104 /// %val = {%fmc, getTempRet0()} 105 /// ... use %val ... 106 /// Here N is a number calculated based on the number of clauses. 107 /// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code. 108 /// 109 /// 5) Lower 110 /// resume {%a, %b} 111 /// into 112 /// call @__resumeException(%a) 113 /// where __resumeException() is a function in JS glue code. 114 /// 115 /// 6) Lower 116 /// call @llvm.eh.typeid.for(type) (intrinsic) 117 /// into 118 /// call @llvm_eh_typeid_for(type) 119 /// llvm_eh_typeid_for function will be generated in JS glue code. 120 /// 121 /// * Emscripten setjmp / longjmp handling 122 /// 123 /// If there are calls to longjmp() 124 /// 125 /// 1) Lower 126 /// longjmp(env, val) 127 /// into 128 /// emscripten_longjmp(env, val) 129 /// 130 /// If there are calls to setjmp() 131 /// 132 /// 2) In the function entry that calls setjmp, initialize setjmpTable and 133 /// sejmpTableSize as follows: 134 /// setjmpTableSize = 4; 135 /// setjmpTable = (int *) malloc(40); 136 /// setjmpTable[0] = 0; 137 /// setjmpTable and setjmpTableSize are used to call saveSetjmp() function in 138 /// Emscripten compiler-rt. 139 /// 140 /// 3) Lower 141 /// setjmp(env) 142 /// into 143 /// setjmpTable = saveSetjmp(env, label, setjmpTable, setjmpTableSize); 144 /// setjmpTableSize = getTempRet0(); 145 /// For each dynamic setjmp call, setjmpTable stores its ID (a number which 146 /// is incrementally assigned from 0) and its label (a unique number that 147 /// represents each callsite of setjmp). When we need more entries in 148 /// setjmpTable, it is reallocated in saveSetjmp() in Emscripten's 149 /// compiler-rt and it will return the new table address, and assign the new 150 /// table size in setTempRet0(). saveSetjmp also stores the setjmp's ID into 151 /// the buffer 'env'. A BB with setjmp is split into two after setjmp call in 152 /// order to make the post-setjmp BB the possible destination of longjmp BB. 153 /// 154 /// 4) Lower every call that might longjmp into 155 /// __THREW__ = 0; 156 /// call @__invoke_SIG(func, arg1, arg2) 157 /// %__THREW__.val = __THREW__; 158 /// __THREW__ = 0; 159 /// %__threwValue.val = __threwValue; 160 /// if (%__THREW__.val != 0 & %__threwValue.val != 0) { 161 /// %label = testSetjmp(mem[%__THREW__.val], setjmpTable, 162 /// setjmpTableSize); 163 /// if (%label == 0) 164 /// emscripten_longjmp(%__THREW__.val, %__threwValue.val); 165 /// setTempRet0(%__threwValue.val); 166 /// } else { 167 /// %label = -1; 168 /// } 169 /// longjmp_result = getTempRet0(); 170 /// switch %label { 171 /// label 1: goto post-setjmp BB 1 172 /// label 2: goto post-setjmp BB 2 173 /// ... 174 /// default: goto splitted next BB 175 /// } 176 /// testSetjmp examines setjmpTable to see if there is a matching setjmp 177 /// call. After calling an invoke wrapper, if a longjmp occurred, __THREW__ 178 /// will be the address of matching jmp_buf buffer and __threwValue be the 179 /// second argument to longjmp. mem[%__THREW__.val] is a setjmp ID that is 180 /// stored in saveSetjmp. testSetjmp returns a setjmp label, a unique ID to 181 /// each setjmp callsite. Label 0 means this longjmp buffer does not 182 /// correspond to one of the setjmp callsites in this function, so in this 183 /// case we just chain the longjmp to the caller. Label -1 means no longjmp 184 /// occurred. Otherwise we jump to the right post-setjmp BB based on the 185 /// label. 186 /// 187 /// * Wasm setjmp / longjmp handling 188 /// This mode still uses some Emscripten library functions but not JavaScript's 189 /// try-catch mechanism. It instead uses Wasm exception handling intrinsics, 190 /// which will be lowered to exception handling instructions. 191 /// 192 /// If there are calls to longjmp() 193 /// 194 /// 1) Lower 195 /// longjmp(env, val) 196 /// into 197 /// __wasm_longjmp(env, val) 198 /// 199 /// If there are calls to setjmp() 200 /// 201 /// 2) and 3): The same as 2) and 3) in Emscripten SjLj. 202 /// (setjmpTable/setjmpTableSize initialization + setjmp callsite 203 /// transformation) 204 /// 205 /// 4) Create a catchpad with a wasm.catch() intrinsic, which returns the value 206 /// thrown by __wasm_longjmp function. In Emscripten library, we have this 207 /// struct: 208 /// 209 /// struct __WasmLongjmpArgs { 210 /// void *env; 211 /// int val; 212 /// }; 213 /// struct __WasmLongjmpArgs __wasm_longjmp_args; 214 /// 215 /// The thrown value here is a pointer to __wasm_longjmp_args struct object. We 216 /// use this struct to transfer two values by throwing a single value. Wasm 217 /// throw and catch instructions are capable of throwing and catching multiple 218 /// values, but it also requires multivalue support that is currently not very 219 /// reliable. 220 /// TODO Switch to throwing and catching two values without using the struct 221 /// 222 /// All longjmpable function calls will be converted to an invoke that will 223 /// unwind to this catchpad in case a longjmp occurs. Within the catchpad, we 224 /// test the thrown values using testSetjmp function as we do for Emscripten 225 /// SjLj. The main difference is, in Emscripten SjLj, we need to transform every 226 /// longjmpable callsite into a sequence of code including testSetjmp() call; in 227 /// Wasm SjLj we do the testing in only one place, in this catchpad. 228 /// 229 /// After testing calling testSetjmp(), if the longjmp does not correspond to 230 /// one of the setjmps within the current function, it rethrows the longjmp 231 /// by calling __wasm_longjmp(). If it corresponds to one of setjmps in the 232 /// function, we jump to the beginning of the function, which contains a switch 233 /// to each post-setjmp BB. Again, in Emscripten SjLj, this switch is added for 234 /// every longjmpable callsite; in Wasm SjLj we do this only once at the top of 235 /// the function. (after setjmpTable/setjmpTableSize initialization) 236 /// 237 /// The below is the pseudocode for what we have described 238 /// 239 /// entry: 240 /// Initialize setjmpTable and setjmpTableSize 241 /// 242 /// setjmp.dispatch: 243 /// switch %label { 244 /// label 1: goto post-setjmp BB 1 245 /// label 2: goto post-setjmp BB 2 246 /// ... 247 /// default: goto splitted next BB 248 /// } 249 /// ... 250 /// 251 /// bb: 252 /// invoke void @foo() ;; foo is a longjmpable function 253 /// to label %next unwind label %catch.dispatch.longjmp 254 /// ... 255 /// 256 /// catch.dispatch.longjmp: 257 /// %0 = catchswitch within none [label %catch.longjmp] unwind to caller 258 /// 259 /// catch.longjmp: 260 /// %longjmp.args = wasm.catch() ;; struct __WasmLongjmpArgs 261 /// %env = load 'env' field from __WasmLongjmpArgs 262 /// %val = load 'val' field from __WasmLongjmpArgs 263 /// %label = testSetjmp(mem[%env], setjmpTable, setjmpTableSize); 264 /// if (%label == 0) 265 /// __wasm_longjmp(%env, %val) 266 /// catchret to %setjmp.dispatch 267 /// 268 ///===----------------------------------------------------------------------===// 269 270 #include "WebAssembly.h" 271 #include "WebAssemblyTargetMachine.h" 272 #include "llvm/ADT/StringExtras.h" 273 #include "llvm/CodeGen/TargetPassConfig.h" 274 #include "llvm/CodeGen/WasmEHFuncInfo.h" 275 #include "llvm/IR/DebugInfoMetadata.h" 276 #include "llvm/IR/Dominators.h" 277 #include "llvm/IR/IRBuilder.h" 278 #include "llvm/IR/IntrinsicsWebAssembly.h" 279 #include "llvm/Support/CommandLine.h" 280 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 281 #include "llvm/Transforms/Utils/SSAUpdater.h" 282 #include "llvm/Transforms/Utils/SSAUpdaterBulk.h" 283 284 using namespace llvm; 285 286 #define DEBUG_TYPE "wasm-lower-em-ehsjlj" 287 288 // Emscripten's asm.js-style exception handling 289 extern cl::opt<bool> WasmEnableEmEH; 290 // Emscripten's asm.js-style setjmp/longjmp handling 291 extern cl::opt<bool> WasmEnableEmSjLj; 292 // Wasm setjmp/longjmp handling using wasm EH instructions 293 extern cl::opt<bool> WasmEnableSjLj; 294 295 static cl::list<std::string> 296 EHAllowlist("emscripten-cxx-exceptions-allowed", 297 cl::desc("The list of function names in which Emscripten-style " 298 "exception handling is enabled (see emscripten " 299 "EMSCRIPTEN_CATCHING_ALLOWED options)"), 300 cl::CommaSeparated); 301 302 namespace { 303 class WebAssemblyLowerEmscriptenEHSjLj final : public ModulePass { 304 bool EnableEmEH; // Enable Emscripten exception handling 305 bool EnableEmSjLj; // Enable Emscripten setjmp/longjmp handling 306 bool EnableWasmSjLj; // Enable Wasm setjmp/longjmp handling 307 bool DoSjLj; // Whether we actually perform setjmp/longjmp handling 308 309 GlobalVariable *ThrewGV = nullptr; // __THREW__ (Emscripten) 310 GlobalVariable *ThrewValueGV = nullptr; // __threwValue (Emscripten) 311 Function *GetTempRet0F = nullptr; // getTempRet0() (Emscripten) 312 Function *SetTempRet0F = nullptr; // setTempRet0() (Emscripten) 313 Function *ResumeF = nullptr; // __resumeException() (Emscripten) 314 Function *EHTypeIDF = nullptr; // llvm.eh.typeid.for() (intrinsic) 315 Function *EmLongjmpF = nullptr; // emscripten_longjmp() (Emscripten) 316 Function *SaveSetjmpF = nullptr; // saveSetjmp() (Emscripten) 317 Function *TestSetjmpF = nullptr; // testSetjmp() (Emscripten) 318 Function *WasmLongjmpF = nullptr; // __wasm_longjmp() (Emscripten) 319 Function *CatchF = nullptr; // wasm.catch() (intrinsic) 320 321 // type of 'struct __WasmLongjmpArgs' defined in emscripten 322 Type *LongjmpArgsTy = nullptr; 323 324 // __cxa_find_matching_catch_N functions. 325 // Indexed by the number of clauses in an original landingpad instruction. 326 DenseMap<int, Function *> FindMatchingCatches; 327 // Map of <function signature string, invoke_ wrappers> 328 StringMap<Function *> InvokeWrappers; 329 // Set of allowed function names for exception handling 330 std::set<std::string> EHAllowlistSet; 331 // Functions that contains calls to setjmp 332 SmallPtrSet<Function *, 8> SetjmpUsers; 333 334 StringRef getPassName() const override { 335 return "WebAssembly Lower Emscripten Exceptions"; 336 } 337 338 using InstVector = SmallVectorImpl<Instruction *>; 339 bool runEHOnFunction(Function &F); 340 bool runSjLjOnFunction(Function &F); 341 void handleLongjmpableCallsForEmscriptenSjLj( 342 Function &F, InstVector &SetjmpTableInsts, 343 InstVector &SetjmpTableSizeInsts, 344 SmallVectorImpl<PHINode *> &SetjmpRetPHIs); 345 void 346 handleLongjmpableCallsForWasmSjLj(Function &F, InstVector &SetjmpTableInsts, 347 InstVector &SetjmpTableSizeInsts, 348 SmallVectorImpl<PHINode *> &SetjmpRetPHIs); 349 Function *getFindMatchingCatch(Module &M, unsigned NumClauses); 350 351 Value *wrapInvoke(CallBase *CI); 352 void wrapTestSetjmp(BasicBlock *BB, DebugLoc DL, Value *Threw, 353 Value *SetjmpTable, Value *SetjmpTableSize, Value *&Label, 354 Value *&LongjmpResult, BasicBlock *&CallEmLongjmpBB, 355 PHINode *&CallEmLongjmpBBThrewPHI, 356 PHINode *&CallEmLongjmpBBThrewValuePHI, 357 BasicBlock *&EndBB); 358 Function *getInvokeWrapper(CallBase *CI); 359 360 bool areAllExceptionsAllowed() const { return EHAllowlistSet.empty(); } 361 bool supportsException(const Function *F) const { 362 return EnableEmEH && (areAllExceptionsAllowed() || 363 EHAllowlistSet.count(std::string(F->getName()))); 364 } 365 void replaceLongjmpWith(Function *LongjmpF, Function *NewF); 366 367 void rebuildSSA(Function &F); 368 369 public: 370 static char ID; 371 372 WebAssemblyLowerEmscriptenEHSjLj() 373 : ModulePass(ID), EnableEmEH(WasmEnableEmEH), 374 EnableEmSjLj(WasmEnableEmSjLj), EnableWasmSjLj(WasmEnableSjLj) { 375 assert(!(EnableEmSjLj && EnableWasmSjLj) && 376 "Two SjLj modes cannot be turned on at the same time"); 377 assert(!(EnableEmEH && EnableWasmSjLj) && 378 "Wasm SjLj should be only used with Wasm EH"); 379 EHAllowlistSet.insert(EHAllowlist.begin(), EHAllowlist.end()); 380 } 381 bool runOnModule(Module &M) override; 382 383 void getAnalysisUsage(AnalysisUsage &AU) const override { 384 AU.addRequired<DominatorTreeWrapperPass>(); 385 } 386 }; 387 } // End anonymous namespace 388 389 char WebAssemblyLowerEmscriptenEHSjLj::ID = 0; 390 INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj, DEBUG_TYPE, 391 "WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp", 392 false, false) 393 394 ModulePass *llvm::createWebAssemblyLowerEmscriptenEHSjLj() { 395 return new WebAssemblyLowerEmscriptenEHSjLj(); 396 } 397 398 static bool canThrow(const Value *V) { 399 if (const auto *F = dyn_cast<const Function>(V)) { 400 // Intrinsics cannot throw 401 if (F->isIntrinsic()) 402 return false; 403 StringRef Name = F->getName(); 404 // leave setjmp and longjmp (mostly) alone, we process them properly later 405 if (Name == "setjmp" || Name == "longjmp" || Name == "emscripten_longjmp") 406 return false; 407 return !F->doesNotThrow(); 408 } 409 // not a function, so an indirect call - can throw, we can't tell 410 return true; 411 } 412 413 // Get a global variable with the given name. If it doesn't exist declare it, 414 // which will generate an import and assume that it will exist at link time. 415 static GlobalVariable *getGlobalVariable(Module &M, Type *Ty, 416 WebAssemblyTargetMachine &TM, 417 const char *Name) { 418 auto *GV = dyn_cast<GlobalVariable>(M.getOrInsertGlobal(Name, Ty)); 419 if (!GV) 420 report_fatal_error(Twine("unable to create global: ") + Name); 421 422 // If the target supports TLS, make this variable thread-local. We can't just 423 // unconditionally make it thread-local and depend on 424 // CoalesceFeaturesAndStripAtomics to downgrade it, because stripping TLS has 425 // the side effect of disallowing the object from being linked into a 426 // shared-memory module, which we don't want to be responsible for. 427 auto *Subtarget = TM.getSubtargetImpl(); 428 auto TLS = Subtarget->hasAtomics() && Subtarget->hasBulkMemory() 429 ? GlobalValue::LocalExecTLSModel 430 : GlobalValue::NotThreadLocal; 431 GV->setThreadLocalMode(TLS); 432 return GV; 433 } 434 435 // Simple function name mangler. 436 // This function simply takes LLVM's string representation of parameter types 437 // and concatenate them with '_'. There are non-alphanumeric characters but llc 438 // is ok with it, and we need to postprocess these names after the lowering 439 // phase anyway. 440 static std::string getSignature(FunctionType *FTy) { 441 std::string Sig; 442 raw_string_ostream OS(Sig); 443 OS << *FTy->getReturnType(); 444 for (Type *ParamTy : FTy->params()) 445 OS << "_" << *ParamTy; 446 if (FTy->isVarArg()) 447 OS << "_..."; 448 Sig = OS.str(); 449 erase_if(Sig, isSpace); 450 // When s2wasm parses .s file, a comma means the end of an argument. So a 451 // mangled function name can contain any character but a comma. 452 std::replace(Sig.begin(), Sig.end(), ',', '.'); 453 return Sig; 454 } 455 456 static Function *getEmscriptenFunction(FunctionType *Ty, const Twine &Name, 457 Module *M) { 458 Function* F = Function::Create(Ty, GlobalValue::ExternalLinkage, Name, M); 459 // Tell the linker that this function is expected to be imported from the 460 // 'env' module. 461 if (!F->hasFnAttribute("wasm-import-module")) { 462 llvm::AttrBuilder B; 463 B.addAttribute("wasm-import-module", "env"); 464 F->addFnAttrs(B); 465 } 466 if (!F->hasFnAttribute("wasm-import-name")) { 467 llvm::AttrBuilder B; 468 B.addAttribute("wasm-import-name", F->getName()); 469 F->addFnAttrs(B); 470 } 471 return F; 472 } 473 474 // Returns an integer type for the target architecture's address space. 475 // i32 for wasm32 and i64 for wasm64. 476 static Type *getAddrIntType(Module *M) { 477 IRBuilder<> IRB(M->getContext()); 478 return IRB.getIntNTy(M->getDataLayout().getPointerSizeInBits()); 479 } 480 481 // Returns an integer pointer type for the target architecture's address space. 482 // i32* for wasm32 and i64* for wasm64. 483 static Type *getAddrPtrType(Module *M) { 484 return Type::getIntNPtrTy(M->getContext(), 485 M->getDataLayout().getPointerSizeInBits()); 486 } 487 488 // Returns an integer whose type is the integer type for the target's address 489 // space. Returns (i32 C) for wasm32 and (i64 C) for wasm64, when C is the 490 // integer. 491 static Value *getAddrSizeInt(Module *M, uint64_t C) { 492 IRBuilder<> IRB(M->getContext()); 493 return IRB.getIntN(M->getDataLayout().getPointerSizeInBits(), C); 494 } 495 496 // Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2. 497 // This is because a landingpad instruction contains two more arguments, a 498 // personality function and a cleanup bit, and __cxa_find_matching_catch_N 499 // functions are named after the number of arguments in the original landingpad 500 // instruction. 501 Function * 502 WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module &M, 503 unsigned NumClauses) { 504 if (FindMatchingCatches.count(NumClauses)) 505 return FindMatchingCatches[NumClauses]; 506 PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext()); 507 SmallVector<Type *, 16> Args(NumClauses, Int8PtrTy); 508 FunctionType *FTy = FunctionType::get(Int8PtrTy, Args, false); 509 Function *F = getEmscriptenFunction( 510 FTy, "__cxa_find_matching_catch_" + Twine(NumClauses + 2), &M); 511 FindMatchingCatches[NumClauses] = F; 512 return F; 513 } 514 515 // Generate invoke wrapper seqence with preamble and postamble 516 // Preamble: 517 // __THREW__ = 0; 518 // Postamble: 519 // %__THREW__.val = __THREW__; __THREW__ = 0; 520 // Returns %__THREW__.val, which indicates whether an exception is thrown (or 521 // whether longjmp occurred), for future use. 522 Value *WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallBase *CI) { 523 Module *M = CI->getModule(); 524 LLVMContext &C = M->getContext(); 525 526 IRBuilder<> IRB(C); 527 IRB.SetInsertPoint(CI); 528 529 // Pre-invoke 530 // __THREW__ = 0; 531 IRB.CreateStore(getAddrSizeInt(M, 0), ThrewGV); 532 533 // Invoke function wrapper in JavaScript 534 SmallVector<Value *, 16> Args; 535 // Put the pointer to the callee as first argument, so it can be called 536 // within the invoke wrapper later 537 Args.push_back(CI->getCalledOperand()); 538 Args.append(CI->arg_begin(), CI->arg_end()); 539 CallInst *NewCall = IRB.CreateCall(getInvokeWrapper(CI), Args); 540 NewCall->takeName(CI); 541 NewCall->setCallingConv(CallingConv::WASM_EmscriptenInvoke); 542 NewCall->setDebugLoc(CI->getDebugLoc()); 543 544 // Because we added the pointer to the callee as first argument, all 545 // argument attribute indices have to be incremented by one. 546 SmallVector<AttributeSet, 8> ArgAttributes; 547 const AttributeList &InvokeAL = CI->getAttributes(); 548 549 // No attributes for the callee pointer. 550 ArgAttributes.push_back(AttributeSet()); 551 // Copy the argument attributes from the original 552 for (unsigned I = 0, E = CI->getNumArgOperands(); I < E; ++I) 553 ArgAttributes.push_back(InvokeAL.getParamAttrs(I)); 554 555 AttrBuilder FnAttrs(InvokeAL.getFnAttrs()); 556 if (FnAttrs.contains(Attribute::AllocSize)) { 557 // The allocsize attribute (if any) referes to parameters by index and needs 558 // to be adjusted. 559 unsigned SizeArg; 560 Optional<unsigned> NEltArg; 561 std::tie(SizeArg, NEltArg) = FnAttrs.getAllocSizeArgs(); 562 SizeArg += 1; 563 if (NEltArg.hasValue()) 564 NEltArg = NEltArg.getValue() + 1; 565 FnAttrs.addAllocSizeAttr(SizeArg, NEltArg); 566 } 567 568 // Reconstruct the AttributesList based on the vector we constructed. 569 AttributeList NewCallAL = AttributeList::get( 570 C, AttributeSet::get(C, FnAttrs), InvokeAL.getRetAttrs(), ArgAttributes); 571 NewCall->setAttributes(NewCallAL); 572 573 CI->replaceAllUsesWith(NewCall); 574 575 // Post-invoke 576 // %__THREW__.val = __THREW__; __THREW__ = 0; 577 Value *Threw = 578 IRB.CreateLoad(getAddrIntType(M), ThrewGV, ThrewGV->getName() + ".val"); 579 IRB.CreateStore(getAddrSizeInt(M, 0), ThrewGV); 580 return Threw; 581 } 582 583 // Get matching invoke wrapper based on callee signature 584 Function *WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallBase *CI) { 585 Module *M = CI->getModule(); 586 SmallVector<Type *, 16> ArgTys; 587 FunctionType *CalleeFTy = CI->getFunctionType(); 588 589 std::string Sig = getSignature(CalleeFTy); 590 if (InvokeWrappers.find(Sig) != InvokeWrappers.end()) 591 return InvokeWrappers[Sig]; 592 593 // Put the pointer to the callee as first argument 594 ArgTys.push_back(PointerType::getUnqual(CalleeFTy)); 595 // Add argument types 596 ArgTys.append(CalleeFTy->param_begin(), CalleeFTy->param_end()); 597 598 FunctionType *FTy = FunctionType::get(CalleeFTy->getReturnType(), ArgTys, 599 CalleeFTy->isVarArg()); 600 Function *F = getEmscriptenFunction(FTy, "__invoke_" + Sig, M); 601 InvokeWrappers[Sig] = F; 602 return F; 603 } 604 605 static bool canLongjmp(const Value *Callee) { 606 if (auto *CalleeF = dyn_cast<Function>(Callee)) 607 if (CalleeF->isIntrinsic()) 608 return false; 609 610 // Attempting to transform inline assembly will result in something like: 611 // call void @__invoke_void(void ()* asm ...) 612 // which is invalid because inline assembly blocks do not have addresses 613 // and can't be passed by pointer. The result is a crash with illegal IR. 614 if (isa<InlineAsm>(Callee)) 615 return false; 616 StringRef CalleeName = Callee->getName(); 617 618 // The reason we include malloc/free here is to exclude the malloc/free 619 // calls generated in setjmp prep / cleanup routines. 620 if (CalleeName == "setjmp" || CalleeName == "malloc" || CalleeName == "free") 621 return false; 622 623 // There are functions in Emscripten's JS glue code or compiler-rt 624 if (CalleeName == "__resumeException" || CalleeName == "llvm_eh_typeid_for" || 625 CalleeName == "saveSetjmp" || CalleeName == "testSetjmp" || 626 CalleeName == "getTempRet0" || CalleeName == "setTempRet0") 627 return false; 628 629 // __cxa_find_matching_catch_N functions cannot longjmp 630 if (Callee->getName().startswith("__cxa_find_matching_catch_")) 631 return false; 632 633 // Exception-catching related functions 634 if (CalleeName == "__cxa_begin_catch" || CalleeName == "__cxa_end_catch" || 635 CalleeName == "__cxa_allocate_exception" || CalleeName == "__cxa_throw" || 636 CalleeName == "__clang_call_terminate") 637 return false; 638 639 // Otherwise we don't know 640 return true; 641 } 642 643 static bool isEmAsmCall(const Value *Callee) { 644 StringRef CalleeName = Callee->getName(); 645 // This is an exhaustive list from Emscripten's <emscripten/em_asm.h>. 646 return CalleeName == "emscripten_asm_const_int" || 647 CalleeName == "emscripten_asm_const_double" || 648 CalleeName == "emscripten_asm_const_int_sync_on_main_thread" || 649 CalleeName == "emscripten_asm_const_double_sync_on_main_thread" || 650 CalleeName == "emscripten_asm_const_async_on_main_thread"; 651 } 652 653 // Generate testSetjmp function call seqence with preamble and postamble. 654 // The code this generates is equivalent to the following JavaScript code: 655 // %__threwValue.val = __threwValue; 656 // if (%__THREW__.val != 0 & %__threwValue.val != 0) { 657 // %label = testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize); 658 // if (%label == 0) 659 // emscripten_longjmp(%__THREW__.val, %__threwValue.val); 660 // setTempRet0(%__threwValue.val); 661 // } else { 662 // %label = -1; 663 // } 664 // %longjmp_result = getTempRet0(); 665 // 666 // As output parameters. returns %label, %longjmp_result, and the BB the last 667 // instruction (%longjmp_result = ...) is in. 668 void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp( 669 BasicBlock *BB, DebugLoc DL, Value *Threw, Value *SetjmpTable, 670 Value *SetjmpTableSize, Value *&Label, Value *&LongjmpResult, 671 BasicBlock *&CallEmLongjmpBB, PHINode *&CallEmLongjmpBBThrewPHI, 672 PHINode *&CallEmLongjmpBBThrewValuePHI, BasicBlock *&EndBB) { 673 Function *F = BB->getParent(); 674 Module *M = F->getParent(); 675 LLVMContext &C = M->getContext(); 676 IRBuilder<> IRB(C); 677 IRB.SetCurrentDebugLocation(DL); 678 679 // if (%__THREW__.val != 0 & %__threwValue.val != 0) 680 IRB.SetInsertPoint(BB); 681 BasicBlock *ThenBB1 = BasicBlock::Create(C, "if.then1", F); 682 BasicBlock *ElseBB1 = BasicBlock::Create(C, "if.else1", F); 683 BasicBlock *EndBB1 = BasicBlock::Create(C, "if.end", F); 684 Value *ThrewCmp = IRB.CreateICmpNE(Threw, getAddrSizeInt(M, 0)); 685 Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV, 686 ThrewValueGV->getName() + ".val"); 687 Value *ThrewValueCmp = IRB.CreateICmpNE(ThrewValue, IRB.getInt32(0)); 688 Value *Cmp1 = IRB.CreateAnd(ThrewCmp, ThrewValueCmp, "cmp1"); 689 IRB.CreateCondBr(Cmp1, ThenBB1, ElseBB1); 690 691 // Generate call.em.longjmp BB once and share it within the function 692 if (!CallEmLongjmpBB) { 693 // emscripten_longjmp(%__THREW__.val, %__threwValue.val); 694 CallEmLongjmpBB = BasicBlock::Create(C, "call.em.longjmp", F); 695 IRB.SetInsertPoint(CallEmLongjmpBB); 696 CallEmLongjmpBBThrewPHI = IRB.CreatePHI(getAddrIntType(M), 4, "threw.phi"); 697 CallEmLongjmpBBThrewValuePHI = 698 IRB.CreatePHI(IRB.getInt32Ty(), 4, "threwvalue.phi"); 699 CallEmLongjmpBBThrewPHI->addIncoming(Threw, ThenBB1); 700 CallEmLongjmpBBThrewValuePHI->addIncoming(ThrewValue, ThenBB1); 701 IRB.CreateCall(EmLongjmpF, 702 {CallEmLongjmpBBThrewPHI, CallEmLongjmpBBThrewValuePHI}); 703 IRB.CreateUnreachable(); 704 } else { 705 CallEmLongjmpBBThrewPHI->addIncoming(Threw, ThenBB1); 706 CallEmLongjmpBBThrewValuePHI->addIncoming(ThrewValue, ThenBB1); 707 } 708 709 // %label = testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize); 710 // if (%label == 0) 711 IRB.SetInsertPoint(ThenBB1); 712 BasicBlock *EndBB2 = BasicBlock::Create(C, "if.end2", F); 713 Value *ThrewPtr = 714 IRB.CreateIntToPtr(Threw, getAddrPtrType(M), Threw->getName() + ".p"); 715 Value *LoadedThrew = IRB.CreateLoad(getAddrIntType(M), ThrewPtr, 716 ThrewPtr->getName() + ".loaded"); 717 Value *ThenLabel = IRB.CreateCall( 718 TestSetjmpF, {LoadedThrew, SetjmpTable, SetjmpTableSize}, "label"); 719 Value *Cmp2 = IRB.CreateICmpEQ(ThenLabel, IRB.getInt32(0)); 720 IRB.CreateCondBr(Cmp2, CallEmLongjmpBB, EndBB2); 721 722 // setTempRet0(%__threwValue.val); 723 IRB.SetInsertPoint(EndBB2); 724 IRB.CreateCall(SetTempRet0F, ThrewValue); 725 IRB.CreateBr(EndBB1); 726 727 IRB.SetInsertPoint(ElseBB1); 728 IRB.CreateBr(EndBB1); 729 730 // longjmp_result = getTempRet0(); 731 IRB.SetInsertPoint(EndBB1); 732 PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label"); 733 LabelPHI->addIncoming(ThenLabel, EndBB2); 734 735 LabelPHI->addIncoming(IRB.getInt32(-1), ElseBB1); 736 737 // Output parameter assignment 738 Label = LabelPHI; 739 EndBB = EndBB1; 740 LongjmpResult = IRB.CreateCall(GetTempRet0F, None, "longjmp_result"); 741 } 742 743 void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function &F) { 744 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 745 DT.recalculate(F); // CFG has been changed 746 747 SSAUpdaterBulk SSA; 748 for (BasicBlock &BB : F) { 749 for (Instruction &I : BB) { 750 unsigned VarID = SSA.AddVariable(I.getName(), I.getType()); 751 // If a value is defined by an invoke instruction, it is only available in 752 // its normal destination and not in its unwind destination. 753 if (auto *II = dyn_cast<InvokeInst>(&I)) 754 SSA.AddAvailableValue(VarID, II->getNormalDest(), II); 755 else 756 SSA.AddAvailableValue(VarID, &BB, &I); 757 for (auto &U : I.uses()) { 758 auto *User = cast<Instruction>(U.getUser()); 759 if (auto *UserPN = dyn_cast<PHINode>(User)) 760 if (UserPN->getIncomingBlock(U) == &BB) 761 continue; 762 if (DT.dominates(&I, User)) 763 continue; 764 SSA.AddUse(VarID, &U); 765 } 766 } 767 } 768 SSA.RewriteAllUses(&DT); 769 } 770 771 // Replace uses of longjmp with a new longjmp function in Emscripten library. 772 // In Emscripten SjLj, the new function is 773 // void emscripten_longjmp(uintptr_t, i32) 774 // In Wasm SjLj, the new function is 775 // void __wasm_longjmp(i8*, i32) 776 // Because the original libc longjmp function takes (jmp_buf*, i32), we need a 777 // ptrtoint/bitcast instruction here to make the type match. jmp_buf* will 778 // eventually be lowered to i32/i64 in the wasm backend. 779 void WebAssemblyLowerEmscriptenEHSjLj::replaceLongjmpWith(Function *LongjmpF, 780 Function *NewF) { 781 assert(NewF == EmLongjmpF || NewF == WasmLongjmpF); 782 Module *M = LongjmpF->getParent(); 783 SmallVector<CallInst *, 8> ToErase; 784 LLVMContext &C = LongjmpF->getParent()->getContext(); 785 IRBuilder<> IRB(C); 786 787 // For calls to longjmp, replace it with emscripten_longjmp/__wasm_longjmp and 788 // cast its first argument (jmp_buf*) appropriately 789 for (User *U : LongjmpF->users()) { 790 auto *CI = dyn_cast<CallInst>(U); 791 if (CI && CI->getCalledFunction() == LongjmpF) { 792 IRB.SetInsertPoint(CI); 793 Value *Env = nullptr; 794 if (NewF == EmLongjmpF) 795 Env = 796 IRB.CreatePtrToInt(CI->getArgOperand(0), getAddrIntType(M), "env"); 797 else // WasmLongjmpF 798 Env = 799 IRB.CreateBitCast(CI->getArgOperand(0), IRB.getInt8PtrTy(), "env"); 800 IRB.CreateCall(NewF, {Env, CI->getArgOperand(1)}); 801 ToErase.push_back(CI); 802 } 803 } 804 for (auto *I : ToErase) 805 I->eraseFromParent(); 806 807 // If we have any remaining uses of longjmp's function pointer, replace it 808 // with (void(*)(jmp_buf*, int))emscripten_longjmp / __wasm_longjmp. 809 if (!LongjmpF->uses().empty()) { 810 Value *NewLongjmp = 811 IRB.CreateBitCast(NewF, LongjmpF->getType(), "longjmp.cast"); 812 LongjmpF->replaceAllUsesWith(NewLongjmp); 813 } 814 } 815 816 static bool containsLongjmpableCalls(const Function *F) { 817 for (const auto &BB : *F) 818 for (const auto &I : BB) 819 if (const auto *CB = dyn_cast<CallBase>(&I)) 820 if (canLongjmp(CB->getCalledOperand())) 821 return true; 822 return false; 823 } 824 825 bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module &M) { 826 LLVM_DEBUG(dbgs() << "********** Lower Emscripten EH & SjLj **********\n"); 827 828 LLVMContext &C = M.getContext(); 829 IRBuilder<> IRB(C); 830 831 Function *SetjmpF = M.getFunction("setjmp"); 832 Function *LongjmpF = M.getFunction("longjmp"); 833 834 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 835 assert(TPC && "Expected a TargetPassConfig"); 836 auto &TM = TPC->getTM<WebAssemblyTargetMachine>(); 837 838 // Declare (or get) global variables __THREW__, __threwValue, and 839 // getTempRet0/setTempRet0 function which are used in common for both 840 // exception handling and setjmp/longjmp handling 841 ThrewGV = getGlobalVariable(M, getAddrIntType(&M), TM, "__THREW__"); 842 ThrewValueGV = getGlobalVariable(M, IRB.getInt32Ty(), TM, "__threwValue"); 843 GetTempRet0F = getEmscriptenFunction( 844 FunctionType::get(IRB.getInt32Ty(), false), "getTempRet0", &M); 845 SetTempRet0F = getEmscriptenFunction( 846 FunctionType::get(IRB.getVoidTy(), IRB.getInt32Ty(), false), 847 "setTempRet0", &M); 848 GetTempRet0F->setDoesNotThrow(); 849 SetTempRet0F->setDoesNotThrow(); 850 851 bool Changed = false; 852 853 // Function registration for exception handling 854 if (EnableEmEH) { 855 // Register __resumeException function 856 FunctionType *ResumeFTy = 857 FunctionType::get(IRB.getVoidTy(), IRB.getInt8PtrTy(), false); 858 ResumeF = getEmscriptenFunction(ResumeFTy, "__resumeException", &M); 859 ResumeF->addFnAttr(Attribute::NoReturn); 860 861 // Register llvm_eh_typeid_for function 862 FunctionType *EHTypeIDTy = 863 FunctionType::get(IRB.getInt32Ty(), IRB.getInt8PtrTy(), false); 864 EHTypeIDF = getEmscriptenFunction(EHTypeIDTy, "llvm_eh_typeid_for", &M); 865 } 866 867 if ((EnableEmSjLj || EnableWasmSjLj) && SetjmpF) { 868 // Precompute setjmp users 869 for (User *U : SetjmpF->users()) { 870 if (auto *UI = dyn_cast<Instruction>(U)) { 871 auto *UserF = UI->getFunction(); 872 // If a function that calls setjmp does not contain any other calls that 873 // can longjmp, we don't need to do any transformation on that function, 874 // so can ignore it 875 if (containsLongjmpableCalls(UserF)) 876 SetjmpUsers.insert(UserF); 877 } 878 } 879 } 880 881 bool SetjmpUsed = SetjmpF && !SetjmpUsers.empty(); 882 bool LongjmpUsed = LongjmpF && !LongjmpF->use_empty(); 883 DoSjLj = (EnableEmSjLj | EnableWasmSjLj) && (SetjmpUsed || LongjmpUsed); 884 885 // Function registration and data pre-gathering for setjmp/longjmp handling 886 if (DoSjLj) { 887 assert(EnableEmSjLj || EnableWasmSjLj); 888 if (EnableEmSjLj) { 889 // Register emscripten_longjmp function 890 FunctionType *FTy = FunctionType::get( 891 IRB.getVoidTy(), {getAddrIntType(&M), IRB.getInt32Ty()}, false); 892 EmLongjmpF = getEmscriptenFunction(FTy, "emscripten_longjmp", &M); 893 EmLongjmpF->addFnAttr(Attribute::NoReturn); 894 } else { // EnableWasmSjLj 895 // Register __wasm_longjmp function, which calls __builtin_wasm_longjmp. 896 FunctionType *FTy = FunctionType::get( 897 IRB.getVoidTy(), {IRB.getInt8PtrTy(), IRB.getInt32Ty()}, false); 898 WasmLongjmpF = getEmscriptenFunction(FTy, "__wasm_longjmp", &M); 899 WasmLongjmpF->addFnAttr(Attribute::NoReturn); 900 } 901 902 if (SetjmpF) { 903 // Register saveSetjmp function 904 FunctionType *SetjmpFTy = SetjmpF->getFunctionType(); 905 FunctionType *FTy = 906 FunctionType::get(Type::getInt32PtrTy(C), 907 {SetjmpFTy->getParamType(0), IRB.getInt32Ty(), 908 Type::getInt32PtrTy(C), IRB.getInt32Ty()}, 909 false); 910 SaveSetjmpF = getEmscriptenFunction(FTy, "saveSetjmp", &M); 911 912 // Register testSetjmp function 913 FTy = FunctionType::get( 914 IRB.getInt32Ty(), 915 {getAddrIntType(&M), Type::getInt32PtrTy(C), IRB.getInt32Ty()}, 916 false); 917 TestSetjmpF = getEmscriptenFunction(FTy, "testSetjmp", &M); 918 919 // wasm.catch() will be lowered down to wasm 'catch' instruction in 920 // instruction selection. 921 CatchF = Intrinsic::getDeclaration(&M, Intrinsic::wasm_catch); 922 // Type for struct __WasmLongjmpArgs 923 LongjmpArgsTy = StructType::get(IRB.getInt8PtrTy(), // env 924 IRB.getInt32Ty() // val 925 ); 926 } 927 } 928 929 // Exception handling transformation 930 if (EnableEmEH) { 931 for (Function &F : M) { 932 if (F.isDeclaration()) 933 continue; 934 Changed |= runEHOnFunction(F); 935 } 936 } 937 938 // Setjmp/longjmp handling transformation 939 if (DoSjLj) { 940 Changed = true; // We have setjmp or longjmp somewhere 941 if (LongjmpF) 942 replaceLongjmpWith(LongjmpF, EnableEmSjLj ? EmLongjmpF : WasmLongjmpF); 943 // Only traverse functions that uses setjmp in order not to insert 944 // unnecessary prep / cleanup code in every function 945 if (SetjmpF) 946 for (Function *F : SetjmpUsers) 947 runSjLjOnFunction(*F); 948 } 949 950 if (!Changed) { 951 // Delete unused global variables and functions 952 if (ResumeF) 953 ResumeF->eraseFromParent(); 954 if (EHTypeIDF) 955 EHTypeIDF->eraseFromParent(); 956 if (EmLongjmpF) 957 EmLongjmpF->eraseFromParent(); 958 if (SaveSetjmpF) 959 SaveSetjmpF->eraseFromParent(); 960 if (TestSetjmpF) 961 TestSetjmpF->eraseFromParent(); 962 return false; 963 } 964 965 return true; 966 } 967 968 bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function &F) { 969 Module &M = *F.getParent(); 970 LLVMContext &C = F.getContext(); 971 IRBuilder<> IRB(C); 972 bool Changed = false; 973 SmallVector<Instruction *, 64> ToErase; 974 SmallPtrSet<LandingPadInst *, 32> LandingPads; 975 976 // rethrow.longjmp BB that will be shared within the function. 977 BasicBlock *RethrowLongjmpBB = nullptr; 978 // PHI node for the loaded value of __THREW__ global variable in 979 // rethrow.longjmp BB 980 PHINode *RethrowLongjmpBBThrewPHI = nullptr; 981 982 for (BasicBlock &BB : F) { 983 auto *II = dyn_cast<InvokeInst>(BB.getTerminator()); 984 if (!II) 985 continue; 986 Changed = true; 987 LandingPads.insert(II->getLandingPadInst()); 988 IRB.SetInsertPoint(II); 989 990 const Value *Callee = II->getCalledOperand(); 991 bool NeedInvoke = supportsException(&F) && canThrow(Callee); 992 if (NeedInvoke) { 993 // Wrap invoke with invoke wrapper and generate preamble/postamble 994 Value *Threw = wrapInvoke(II); 995 ToErase.push_back(II); 996 997 // If setjmp/longjmp handling is enabled, the thrown value can be not an 998 // exception but a longjmp. If the current function contains calls to 999 // setjmp, it will be appropriately handled in runSjLjOnFunction. But even 1000 // if the function does not contain setjmp calls, we shouldn't silently 1001 // ignore longjmps; we should rethrow them so they can be correctly 1002 // handled in somewhere up the call chain where setjmp is. __THREW__'s 1003 // value is 0 when nothing happened, 1 when an exception is thrown, and 1004 // other values when longjmp is thrown. 1005 // 1006 // if (%__THREW__.val == 0 || %__THREW__.val == 1) 1007 // goto %tail 1008 // else 1009 // goto %longjmp.rethrow 1010 // 1011 // rethrow.longjmp: ;; This is longjmp. Rethrow it 1012 // %__threwValue.val = __threwValue 1013 // emscripten_longjmp(%__THREW__.val, %__threwValue.val); 1014 // 1015 // tail: ;; Nothing happened or an exception is thrown 1016 // ... Continue exception handling ... 1017 if (DoSjLj && EnableEmSjLj && !SetjmpUsers.count(&F) && 1018 canLongjmp(Callee)) { 1019 // Create longjmp.rethrow BB once and share it within the function 1020 if (!RethrowLongjmpBB) { 1021 RethrowLongjmpBB = BasicBlock::Create(C, "rethrow.longjmp", &F); 1022 IRB.SetInsertPoint(RethrowLongjmpBB); 1023 RethrowLongjmpBBThrewPHI = 1024 IRB.CreatePHI(getAddrIntType(&M), 4, "threw.phi"); 1025 RethrowLongjmpBBThrewPHI->addIncoming(Threw, &BB); 1026 Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV, 1027 ThrewValueGV->getName() + ".val"); 1028 IRB.CreateCall(EmLongjmpF, {RethrowLongjmpBBThrewPHI, ThrewValue}); 1029 IRB.CreateUnreachable(); 1030 } else { 1031 RethrowLongjmpBBThrewPHI->addIncoming(Threw, &BB); 1032 } 1033 1034 IRB.SetInsertPoint(II); // Restore the insert point back 1035 BasicBlock *Tail = BasicBlock::Create(C, "tail", &F); 1036 Value *CmpEqOne = 1037 IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp.eq.one"); 1038 Value *CmpEqZero = 1039 IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 0), "cmp.eq.zero"); 1040 Value *Or = IRB.CreateOr(CmpEqZero, CmpEqOne, "or"); 1041 IRB.CreateCondBr(Or, Tail, RethrowLongjmpBB); 1042 IRB.SetInsertPoint(Tail); 1043 BB.replaceSuccessorsPhiUsesWith(&BB, Tail); 1044 } 1045 1046 // Insert a branch based on __THREW__ variable 1047 Value *Cmp = IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp"); 1048 IRB.CreateCondBr(Cmp, II->getUnwindDest(), II->getNormalDest()); 1049 1050 } else { 1051 // This can't throw, and we don't need this invoke, just replace it with a 1052 // call+branch 1053 SmallVector<Value *, 16> Args(II->args()); 1054 CallInst *NewCall = 1055 IRB.CreateCall(II->getFunctionType(), II->getCalledOperand(), Args); 1056 NewCall->takeName(II); 1057 NewCall->setCallingConv(II->getCallingConv()); 1058 NewCall->setDebugLoc(II->getDebugLoc()); 1059 NewCall->setAttributes(II->getAttributes()); 1060 II->replaceAllUsesWith(NewCall); 1061 ToErase.push_back(II); 1062 1063 IRB.CreateBr(II->getNormalDest()); 1064 1065 // Remove any PHI node entries from the exception destination 1066 II->getUnwindDest()->removePredecessor(&BB); 1067 } 1068 } 1069 1070 // Process resume instructions 1071 for (BasicBlock &BB : F) { 1072 // Scan the body of the basic block for resumes 1073 for (Instruction &I : BB) { 1074 auto *RI = dyn_cast<ResumeInst>(&I); 1075 if (!RI) 1076 continue; 1077 Changed = true; 1078 1079 // Split the input into legal values 1080 Value *Input = RI->getValue(); 1081 IRB.SetInsertPoint(RI); 1082 Value *Low = IRB.CreateExtractValue(Input, 0, "low"); 1083 // Create a call to __resumeException function 1084 IRB.CreateCall(ResumeF, {Low}); 1085 // Add a terminator to the block 1086 IRB.CreateUnreachable(); 1087 ToErase.push_back(RI); 1088 } 1089 } 1090 1091 // Process llvm.eh.typeid.for intrinsics 1092 for (BasicBlock &BB : F) { 1093 for (Instruction &I : BB) { 1094 auto *CI = dyn_cast<CallInst>(&I); 1095 if (!CI) 1096 continue; 1097 const Function *Callee = CI->getCalledFunction(); 1098 if (!Callee) 1099 continue; 1100 if (Callee->getIntrinsicID() != Intrinsic::eh_typeid_for) 1101 continue; 1102 Changed = true; 1103 1104 IRB.SetInsertPoint(CI); 1105 CallInst *NewCI = 1106 IRB.CreateCall(EHTypeIDF, CI->getArgOperand(0), "typeid"); 1107 CI->replaceAllUsesWith(NewCI); 1108 ToErase.push_back(CI); 1109 } 1110 } 1111 1112 // Look for orphan landingpads, can occur in blocks with no predecessors 1113 for (BasicBlock &BB : F) { 1114 Instruction *I = BB.getFirstNonPHI(); 1115 if (auto *LPI = dyn_cast<LandingPadInst>(I)) 1116 LandingPads.insert(LPI); 1117 } 1118 Changed |= !LandingPads.empty(); 1119 1120 // Handle all the landingpad for this function together, as multiple invokes 1121 // may share a single lp 1122 for (LandingPadInst *LPI : LandingPads) { 1123 IRB.SetInsertPoint(LPI); 1124 SmallVector<Value *, 16> FMCArgs; 1125 for (unsigned I = 0, E = LPI->getNumClauses(); I < E; ++I) { 1126 Constant *Clause = LPI->getClause(I); 1127 // TODO Handle filters (= exception specifications). 1128 // https://bugs.llvm.org/show_bug.cgi?id=50396 1129 if (LPI->isCatch(I)) 1130 FMCArgs.push_back(Clause); 1131 } 1132 1133 // Create a call to __cxa_find_matching_catch_N function 1134 Function *FMCF = getFindMatchingCatch(M, FMCArgs.size()); 1135 CallInst *FMCI = IRB.CreateCall(FMCF, FMCArgs, "fmc"); 1136 Value *Undef = UndefValue::get(LPI->getType()); 1137 Value *Pair0 = IRB.CreateInsertValue(Undef, FMCI, 0, "pair0"); 1138 Value *TempRet0 = IRB.CreateCall(GetTempRet0F, None, "tempret0"); 1139 Value *Pair1 = IRB.CreateInsertValue(Pair0, TempRet0, 1, "pair1"); 1140 1141 LPI->replaceAllUsesWith(Pair1); 1142 ToErase.push_back(LPI); 1143 } 1144 1145 // Erase everything we no longer need in this function 1146 for (Instruction *I : ToErase) 1147 I->eraseFromParent(); 1148 1149 return Changed; 1150 } 1151 1152 // This tries to get debug info from the instruction before which a new 1153 // instruction will be inserted, and if there's no debug info in that 1154 // instruction, tries to get the info instead from the previous instruction (if 1155 // any). If none of these has debug info and a DISubprogram is provided, it 1156 // creates a dummy debug info with the first line of the function, because IR 1157 // verifier requires all inlinable callsites should have debug info when both a 1158 // caller and callee have DISubprogram. If none of these conditions are met, 1159 // returns empty info. 1160 static DebugLoc getOrCreateDebugLoc(const Instruction *InsertBefore, 1161 DISubprogram *SP) { 1162 assert(InsertBefore); 1163 if (InsertBefore->getDebugLoc()) 1164 return InsertBefore->getDebugLoc(); 1165 const Instruction *Prev = InsertBefore->getPrevNode(); 1166 if (Prev && Prev->getDebugLoc()) 1167 return Prev->getDebugLoc(); 1168 if (SP) 1169 return DILocation::get(SP->getContext(), SP->getLine(), 1, SP); 1170 return DebugLoc(); 1171 } 1172 1173 bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function &F) { 1174 assert(EnableEmSjLj || EnableWasmSjLj); 1175 Module &M = *F.getParent(); 1176 LLVMContext &C = F.getContext(); 1177 IRBuilder<> IRB(C); 1178 SmallVector<Instruction *, 64> ToErase; 1179 // Vector of %setjmpTable values 1180 SmallVector<Instruction *, 4> SetjmpTableInsts; 1181 // Vector of %setjmpTableSize values 1182 SmallVector<Instruction *, 4> SetjmpTableSizeInsts; 1183 1184 // Setjmp preparation 1185 1186 // This instruction effectively means %setjmpTableSize = 4. 1187 // We create this as an instruction intentionally, and we don't want to fold 1188 // this instruction to a constant 4, because this value will be used in 1189 // SSAUpdater.AddAvailableValue(...) later. 1190 BasicBlock *Entry = &F.getEntryBlock(); 1191 DebugLoc FirstDL = getOrCreateDebugLoc(&*Entry->begin(), F.getSubprogram()); 1192 SplitBlock(Entry, &*Entry->getFirstInsertionPt()); 1193 1194 BinaryOperator *SetjmpTableSize = 1195 BinaryOperator::Create(Instruction::Add, IRB.getInt32(4), IRB.getInt32(0), 1196 "setjmpTableSize", Entry->getTerminator()); 1197 SetjmpTableSize->setDebugLoc(FirstDL); 1198 // setjmpTable = (int *) malloc(40); 1199 Instruction *SetjmpTable = CallInst::CreateMalloc( 1200 SetjmpTableSize, IRB.getInt32Ty(), IRB.getInt32Ty(), IRB.getInt32(40), 1201 nullptr, nullptr, "setjmpTable"); 1202 SetjmpTable->setDebugLoc(FirstDL); 1203 // CallInst::CreateMalloc may return a bitcast instruction if the result types 1204 // mismatch. We need to set the debug loc for the original call too. 1205 auto *MallocCall = SetjmpTable->stripPointerCasts(); 1206 if (auto *MallocCallI = dyn_cast<Instruction>(MallocCall)) { 1207 MallocCallI->setDebugLoc(FirstDL); 1208 } 1209 // setjmpTable[0] = 0; 1210 IRB.SetInsertPoint(SetjmpTableSize); 1211 IRB.CreateStore(IRB.getInt32(0), SetjmpTable); 1212 SetjmpTableInsts.push_back(SetjmpTable); 1213 SetjmpTableSizeInsts.push_back(SetjmpTableSize); 1214 1215 // Setjmp transformation 1216 SmallVector<PHINode *, 4> SetjmpRetPHIs; 1217 Function *SetjmpF = M.getFunction("setjmp"); 1218 for (User *U : SetjmpF->users()) { 1219 auto *CI = dyn_cast<CallInst>(U); 1220 if (!CI) 1221 report_fatal_error("Does not support indirect calls to setjmp"); 1222 1223 BasicBlock *BB = CI->getParent(); 1224 if (BB->getParent() != &F) // in other function 1225 continue; 1226 1227 // The tail is everything right after the call, and will be reached once 1228 // when setjmp is called, and later when longjmp returns to the setjmp 1229 BasicBlock *Tail = SplitBlock(BB, CI->getNextNode()); 1230 // Add a phi to the tail, which will be the output of setjmp, which 1231 // indicates if this is the first call or a longjmp back. The phi directly 1232 // uses the right value based on where we arrive from 1233 IRB.SetInsertPoint(Tail->getFirstNonPHI()); 1234 PHINode *SetjmpRet = IRB.CreatePHI(IRB.getInt32Ty(), 2, "setjmp.ret"); 1235 1236 // setjmp initial call returns 0 1237 SetjmpRet->addIncoming(IRB.getInt32(0), BB); 1238 // The proper output is now this, not the setjmp call itself 1239 CI->replaceAllUsesWith(SetjmpRet); 1240 // longjmp returns to the setjmp will add themselves to this phi 1241 SetjmpRetPHIs.push_back(SetjmpRet); 1242 1243 // Fix call target 1244 // Our index in the function is our place in the array + 1 to avoid index 1245 // 0, because index 0 means the longjmp is not ours to handle. 1246 IRB.SetInsertPoint(CI); 1247 Value *Args[] = {CI->getArgOperand(0), IRB.getInt32(SetjmpRetPHIs.size()), 1248 SetjmpTable, SetjmpTableSize}; 1249 Instruction *NewSetjmpTable = 1250 IRB.CreateCall(SaveSetjmpF, Args, "setjmpTable"); 1251 Instruction *NewSetjmpTableSize = 1252 IRB.CreateCall(GetTempRet0F, None, "setjmpTableSize"); 1253 SetjmpTableInsts.push_back(NewSetjmpTable); 1254 SetjmpTableSizeInsts.push_back(NewSetjmpTableSize); 1255 ToErase.push_back(CI); 1256 } 1257 1258 // Handle longjmpable calls. 1259 if (EnableEmSjLj) 1260 handleLongjmpableCallsForEmscriptenSjLj( 1261 F, SetjmpTableInsts, SetjmpTableSizeInsts, SetjmpRetPHIs); 1262 else // EnableWasmSjLj 1263 handleLongjmpableCallsForWasmSjLj(F, SetjmpTableInsts, SetjmpTableSizeInsts, 1264 SetjmpRetPHIs); 1265 1266 // Erase everything we no longer need in this function 1267 for (Instruction *I : ToErase) 1268 I->eraseFromParent(); 1269 1270 // Free setjmpTable buffer before each return instruction + function-exiting 1271 // call 1272 SmallVector<Instruction *, 16> ExitingInsts; 1273 for (BasicBlock &BB : F) { 1274 Instruction *TI = BB.getTerminator(); 1275 if (isa<ReturnInst>(TI)) 1276 ExitingInsts.push_back(TI); 1277 // Any 'call' instruction with 'noreturn' attribute exits the function at 1278 // this point. If this throws but unwinds to another EH pad within this 1279 // function instead of exiting, this would have been an 'invoke', which 1280 // happens if we use Wasm EH or Wasm SjLJ. 1281 for (auto &I : BB) { 1282 if (auto *CI = dyn_cast<CallInst>(&I)) { 1283 bool IsNoReturn = CI->hasFnAttr(Attribute::NoReturn); 1284 if (Function *CalleeF = CI->getCalledFunction()) 1285 IsNoReturn |= CalleeF->hasFnAttribute(Attribute::NoReturn); 1286 if (IsNoReturn) 1287 ExitingInsts.push_back(&I); 1288 } 1289 } 1290 } 1291 for (auto *I : ExitingInsts) { 1292 DebugLoc DL = getOrCreateDebugLoc(I, F.getSubprogram()); 1293 // If this existing instruction is a call within a catchpad, we should add 1294 // it as "funclet" to the operand bundle of 'free' call 1295 SmallVector<OperandBundleDef, 1> Bundles; 1296 if (auto *CB = dyn_cast<CallBase>(I)) 1297 if (auto Bundle = CB->getOperandBundle(LLVMContext::OB_funclet)) 1298 Bundles.push_back(OperandBundleDef(*Bundle)); 1299 auto *Free = CallInst::CreateFree(SetjmpTable, Bundles, I); 1300 Free->setDebugLoc(DL); 1301 // CallInst::CreateFree may create a bitcast instruction if its argument 1302 // types mismatch. We need to set the debug loc for the bitcast too. 1303 if (auto *FreeCallI = dyn_cast<CallInst>(Free)) { 1304 if (auto *BitCastI = dyn_cast<BitCastInst>(FreeCallI->getArgOperand(0))) 1305 BitCastI->setDebugLoc(DL); 1306 } 1307 } 1308 1309 // Every call to saveSetjmp can change setjmpTable and setjmpTableSize 1310 // (when buffer reallocation occurs) 1311 // entry: 1312 // setjmpTableSize = 4; 1313 // setjmpTable = (int *) malloc(40); 1314 // setjmpTable[0] = 0; 1315 // ... 1316 // somebb: 1317 // setjmpTable = saveSetjmp(env, label, setjmpTable, setjmpTableSize); 1318 // setjmpTableSize = getTempRet0(); 1319 // So we need to make sure the SSA for these variables is valid so that every 1320 // saveSetjmp and testSetjmp calls have the correct arguments. 1321 SSAUpdater SetjmpTableSSA; 1322 SSAUpdater SetjmpTableSizeSSA; 1323 SetjmpTableSSA.Initialize(Type::getInt32PtrTy(C), "setjmpTable"); 1324 SetjmpTableSizeSSA.Initialize(Type::getInt32Ty(C), "setjmpTableSize"); 1325 for (Instruction *I : SetjmpTableInsts) 1326 SetjmpTableSSA.AddAvailableValue(I->getParent(), I); 1327 for (Instruction *I : SetjmpTableSizeInsts) 1328 SetjmpTableSizeSSA.AddAvailableValue(I->getParent(), I); 1329 1330 for (auto &U : make_early_inc_range(SetjmpTable->uses())) 1331 if (auto *I = dyn_cast<Instruction>(U.getUser())) 1332 if (I->getParent() != Entry) 1333 SetjmpTableSSA.RewriteUse(U); 1334 for (auto &U : make_early_inc_range(SetjmpTableSize->uses())) 1335 if (auto *I = dyn_cast<Instruction>(U.getUser())) 1336 if (I->getParent() != Entry) 1337 SetjmpTableSizeSSA.RewriteUse(U); 1338 1339 // Finally, our modifications to the cfg can break dominance of SSA variables. 1340 // For example, in this code, 1341 // if (x()) { .. setjmp() .. } 1342 // if (y()) { .. longjmp() .. } 1343 // We must split the longjmp block, and it can jump into the block splitted 1344 // from setjmp one. But that means that when we split the setjmp block, it's 1345 // first part no longer dominates its second part - there is a theoretically 1346 // possible control flow path where x() is false, then y() is true and we 1347 // reach the second part of the setjmp block, without ever reaching the first 1348 // part. So, we rebuild SSA form here. 1349 rebuildSSA(F); 1350 return true; 1351 } 1352 1353 // Update each call that can longjmp so it can return to the corresponding 1354 // setjmp. Refer to 4) of "Emscripten setjmp/longjmp handling" section in the 1355 // comments at top of the file for details. 1356 void WebAssemblyLowerEmscriptenEHSjLj::handleLongjmpableCallsForEmscriptenSjLj( 1357 Function &F, InstVector &SetjmpTableInsts, InstVector &SetjmpTableSizeInsts, 1358 SmallVectorImpl<PHINode *> &SetjmpRetPHIs) { 1359 Module &M = *F.getParent(); 1360 LLVMContext &C = F.getContext(); 1361 IRBuilder<> IRB(C); 1362 SmallVector<Instruction *, 64> ToErase; 1363 1364 // We need to pass setjmpTable and setjmpTableSize to testSetjmp function. 1365 // These values are defined in the beginning of the function and also in each 1366 // setjmp callsite, but we don't know which values we should use at this 1367 // point. So here we arbitraily use the ones defined in the beginning of the 1368 // function, and SSAUpdater will later update them to the correct values. 1369 Instruction *SetjmpTable = *SetjmpTableInsts.begin(); 1370 Instruction *SetjmpTableSize = *SetjmpTableSizeInsts.begin(); 1371 1372 // call.em.longjmp BB that will be shared within the function. 1373 BasicBlock *CallEmLongjmpBB = nullptr; 1374 // PHI node for the loaded value of __THREW__ global variable in 1375 // call.em.longjmp BB 1376 PHINode *CallEmLongjmpBBThrewPHI = nullptr; 1377 // PHI node for the loaded value of __threwValue global variable in 1378 // call.em.longjmp BB 1379 PHINode *CallEmLongjmpBBThrewValuePHI = nullptr; 1380 // rethrow.exn BB that will be shared within the function. 1381 BasicBlock *RethrowExnBB = nullptr; 1382 1383 // Because we are creating new BBs while processing and don't want to make 1384 // all these newly created BBs candidates again for longjmp processing, we 1385 // first make the vector of candidate BBs. 1386 std::vector<BasicBlock *> BBs; 1387 for (BasicBlock &BB : F) 1388 BBs.push_back(&BB); 1389 1390 // BBs.size() will change within the loop, so we query it every time 1391 for (unsigned I = 0; I < BBs.size(); I++) { 1392 BasicBlock *BB = BBs[I]; 1393 for (Instruction &I : *BB) { 1394 if (isa<InvokeInst>(&I)) 1395 report_fatal_error("When using Wasm EH with Emscripten SjLj, there is " 1396 "a restriction that `setjmp` function call and " 1397 "exception cannot be used within the same function"); 1398 auto *CI = dyn_cast<CallInst>(&I); 1399 if (!CI) 1400 continue; 1401 1402 const Value *Callee = CI->getCalledOperand(); 1403 if (!canLongjmp(Callee)) 1404 continue; 1405 if (isEmAsmCall(Callee)) 1406 report_fatal_error("Cannot use EM_ASM* alongside setjmp/longjmp in " + 1407 F.getName() + 1408 ". Please consider using EM_JS, or move the " 1409 "EM_ASM into another function.", 1410 false); 1411 1412 Value *Threw = nullptr; 1413 BasicBlock *Tail; 1414 if (Callee->getName().startswith("__invoke_")) { 1415 // If invoke wrapper has already been generated for this call in 1416 // previous EH phase, search for the load instruction 1417 // %__THREW__.val = __THREW__; 1418 // in postamble after the invoke wrapper call 1419 LoadInst *ThrewLI = nullptr; 1420 StoreInst *ThrewResetSI = nullptr; 1421 for (auto I = std::next(BasicBlock::iterator(CI)), IE = BB->end(); 1422 I != IE; ++I) { 1423 if (auto *LI = dyn_cast<LoadInst>(I)) 1424 if (auto *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand())) 1425 if (GV == ThrewGV) { 1426 Threw = ThrewLI = LI; 1427 break; 1428 } 1429 } 1430 // Search for the store instruction after the load above 1431 // __THREW__ = 0; 1432 for (auto I = std::next(BasicBlock::iterator(ThrewLI)), IE = BB->end(); 1433 I != IE; ++I) { 1434 if (auto *SI = dyn_cast<StoreInst>(I)) { 1435 if (auto *GV = dyn_cast<GlobalVariable>(SI->getPointerOperand())) { 1436 if (GV == ThrewGV && 1437 SI->getValueOperand() == getAddrSizeInt(&M, 0)) { 1438 ThrewResetSI = SI; 1439 break; 1440 } 1441 } 1442 } 1443 } 1444 assert(Threw && ThrewLI && "Cannot find __THREW__ load after invoke"); 1445 assert(ThrewResetSI && "Cannot find __THREW__ store after invoke"); 1446 Tail = SplitBlock(BB, ThrewResetSI->getNextNode()); 1447 1448 } else { 1449 // Wrap call with invoke wrapper and generate preamble/postamble 1450 Threw = wrapInvoke(CI); 1451 ToErase.push_back(CI); 1452 Tail = SplitBlock(BB, CI->getNextNode()); 1453 1454 // If exception handling is enabled, the thrown value can be not a 1455 // longjmp but an exception, in which case we shouldn't silently ignore 1456 // exceptions; we should rethrow them. 1457 // __THREW__'s value is 0 when nothing happened, 1 when an exception is 1458 // thrown, other values when longjmp is thrown. 1459 // 1460 // if (%__THREW__.val == 1) 1461 // goto %eh.rethrow 1462 // else 1463 // goto %normal 1464 // 1465 // eh.rethrow: ;; Rethrow exception 1466 // %exn = call @__cxa_find_matching_catch_2() ;; Retrieve thrown ptr 1467 // __resumeException(%exn) 1468 // 1469 // normal: 1470 // <-- Insertion point. Will insert sjlj handling code from here 1471 // goto %tail 1472 // 1473 // tail: 1474 // ... 1475 if (supportsException(&F) && canThrow(Callee)) { 1476 // We will add a new conditional branch. So remove the branch created 1477 // when we split the BB 1478 ToErase.push_back(BB->getTerminator()); 1479 1480 // Generate rethrow.exn BB once and share it within the function 1481 if (!RethrowExnBB) { 1482 RethrowExnBB = BasicBlock::Create(C, "rethrow.exn", &F); 1483 IRB.SetInsertPoint(RethrowExnBB); 1484 CallInst *Exn = 1485 IRB.CreateCall(getFindMatchingCatch(M, 0), {}, "exn"); 1486 IRB.CreateCall(ResumeF, {Exn}); 1487 IRB.CreateUnreachable(); 1488 } 1489 1490 IRB.SetInsertPoint(CI); 1491 BasicBlock *NormalBB = BasicBlock::Create(C, "normal", &F); 1492 Value *CmpEqOne = 1493 IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp.eq.one"); 1494 IRB.CreateCondBr(CmpEqOne, RethrowExnBB, NormalBB); 1495 1496 IRB.SetInsertPoint(NormalBB); 1497 IRB.CreateBr(Tail); 1498 BB = NormalBB; // New insertion point to insert testSetjmp() 1499 } 1500 } 1501 1502 // We need to replace the terminator in Tail - SplitBlock makes BB go 1503 // straight to Tail, we need to check if a longjmp occurred, and go to the 1504 // right setjmp-tail if so 1505 ToErase.push_back(BB->getTerminator()); 1506 1507 // Generate a function call to testSetjmp function and preamble/postamble 1508 // code to figure out (1) whether longjmp occurred (2) if longjmp 1509 // occurred, which setjmp it corresponds to 1510 Value *Label = nullptr; 1511 Value *LongjmpResult = nullptr; 1512 BasicBlock *EndBB = nullptr; 1513 wrapTestSetjmp(BB, CI->getDebugLoc(), Threw, SetjmpTable, SetjmpTableSize, 1514 Label, LongjmpResult, CallEmLongjmpBB, 1515 CallEmLongjmpBBThrewPHI, CallEmLongjmpBBThrewValuePHI, 1516 EndBB); 1517 assert(Label && LongjmpResult && EndBB); 1518 1519 // Create switch instruction 1520 IRB.SetInsertPoint(EndBB); 1521 IRB.SetCurrentDebugLocation(EndBB->getInstList().back().getDebugLoc()); 1522 SwitchInst *SI = IRB.CreateSwitch(Label, Tail, SetjmpRetPHIs.size()); 1523 // -1 means no longjmp happened, continue normally (will hit the default 1524 // switch case). 0 means a longjmp that is not ours to handle, needs a 1525 // rethrow. Otherwise the index is the same as the index in P+1 (to avoid 1526 // 0). 1527 for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) { 1528 SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent()); 1529 SetjmpRetPHIs[I]->addIncoming(LongjmpResult, EndBB); 1530 } 1531 1532 // We are splitting the block here, and must continue to find other calls 1533 // in the block - which is now split. so continue to traverse in the Tail 1534 BBs.push_back(Tail); 1535 } 1536 } 1537 1538 for (Instruction *I : ToErase) 1539 I->eraseFromParent(); 1540 } 1541 1542 // Create a catchpad in which we catch a longjmp's env and val arguments, test 1543 // if the longjmp corresponds to one of setjmps in the current function, and if 1544 // so, jump to the setjmp dispatch BB from which we go to one of post-setjmp 1545 // BBs. Refer to 4) of "Wasm setjmp/longjmp handling" section in the comments at 1546 // top of the file for details. 1547 void WebAssemblyLowerEmscriptenEHSjLj::handleLongjmpableCallsForWasmSjLj( 1548 Function &F, InstVector &SetjmpTableInsts, InstVector &SetjmpTableSizeInsts, 1549 SmallVectorImpl<PHINode *> &SetjmpRetPHIs) { 1550 Module &M = *F.getParent(); 1551 LLVMContext &C = F.getContext(); 1552 IRBuilder<> IRB(C); 1553 1554 // A function with catchswitch/catchpad instruction should have a personality 1555 // function attached to it. Search for the wasm personality function, and if 1556 // it exists, use it, and if it doesn't, create a dummy personality function. 1557 // (SjLj is not going to call it anyway.) 1558 if (!F.hasPersonalityFn()) { 1559 StringRef PersName = getEHPersonalityName(EHPersonality::Wasm_CXX); 1560 FunctionType *PersType = 1561 FunctionType::get(IRB.getInt32Ty(), /* isVarArg */ true); 1562 Value *PersF = M.getOrInsertFunction(PersName, PersType).getCallee(); 1563 F.setPersonalityFn( 1564 cast<Constant>(IRB.CreateBitCast(PersF, IRB.getInt8PtrTy()))); 1565 } 1566 1567 // Use the entry BB's debugloc as a fallback 1568 BasicBlock *Entry = &F.getEntryBlock(); 1569 DebugLoc FirstDL = getOrCreateDebugLoc(&*Entry->begin(), F.getSubprogram()); 1570 IRB.SetCurrentDebugLocation(FirstDL); 1571 1572 // Arbitrarily use the ones defined in the beginning of the function. 1573 // SSAUpdater will later update them to the correct values. 1574 Instruction *SetjmpTable = *SetjmpTableInsts.begin(); 1575 Instruction *SetjmpTableSize = *SetjmpTableSizeInsts.begin(); 1576 1577 // Add setjmp.dispatch BB right after the entry block. Because we have 1578 // initialized setjmpTable/setjmpTableSize in the entry block and split the 1579 // rest into another BB, here 'OrigEntry' is the function's original entry 1580 // block before the transformation. 1581 // 1582 // entry: 1583 // setjmpTable / setjmpTableSize initialization 1584 // setjmp.dispatch: 1585 // switch will be inserted here later 1586 // entry.split: (OrigEntry) 1587 // the original function starts here 1588 BasicBlock *OrigEntry = Entry->getNextNode(); 1589 BasicBlock *SetjmpDispatchBB = 1590 BasicBlock::Create(C, "setjmp.dispatch", &F, OrigEntry); 1591 cast<BranchInst>(Entry->getTerminator())->setSuccessor(0, SetjmpDispatchBB); 1592 1593 // Create catch.dispatch.longjmp BB a catchswitch instruction 1594 BasicBlock *CatchSwitchBB = 1595 BasicBlock::Create(C, "catch.dispatch.longjmp", &F); 1596 IRB.SetInsertPoint(CatchSwitchBB); 1597 CatchSwitchInst *CatchSwitch = 1598 IRB.CreateCatchSwitch(ConstantTokenNone::get(C), nullptr, 1); 1599 1600 // Create catch.longjmp BB and a catchpad instruction 1601 BasicBlock *CatchLongjmpBB = BasicBlock::Create(C, "catch.longjmp", &F); 1602 CatchSwitch->addHandler(CatchLongjmpBB); 1603 IRB.SetInsertPoint(CatchLongjmpBB); 1604 CatchPadInst *CatchPad = IRB.CreateCatchPad(CatchSwitch, {}); 1605 1606 // Wasm throw and catch instructions can throw and catch multiple values, but 1607 // that requires multivalue support in the toolchain, which is currently not 1608 // very reliable. We instead throw and catch a pointer to a struct value of 1609 // type 'struct __WasmLongjmpArgs', which is defined in Emscripten. 1610 Instruction *CatchCI = 1611 IRB.CreateCall(CatchF, {IRB.getInt32(WebAssembly::C_LONGJMP)}, "thrown"); 1612 Value *LongjmpArgs = 1613 IRB.CreateBitCast(CatchCI, LongjmpArgsTy->getPointerTo(), "longjmp.args"); 1614 Value *EnvField = 1615 IRB.CreateConstGEP2_32(LongjmpArgsTy, LongjmpArgs, 0, 0, "env_gep"); 1616 Value *ValField = 1617 IRB.CreateConstGEP2_32(LongjmpArgsTy, LongjmpArgs, 0, 1, "val_gep"); 1618 // void *env = __wasm_longjmp_args.env; 1619 Instruction *Env = IRB.CreateLoad(IRB.getInt8PtrTy(), EnvField, "env"); 1620 // int val = __wasm_longjmp_args.val; 1621 Instruction *Val = IRB.CreateLoad(IRB.getInt32Ty(), ValField, "val"); 1622 1623 // %label = testSetjmp(mem[%env], setjmpTable, setjmpTableSize); 1624 // if (%label == 0) 1625 // __wasm_longjmp(%env, %val) 1626 // catchret to %setjmp.dispatch 1627 BasicBlock *ThenBB = BasicBlock::Create(C, "if.then", &F); 1628 BasicBlock *EndBB = BasicBlock::Create(C, "if.end", &F); 1629 Value *EnvP = IRB.CreateBitCast(Env, getAddrPtrType(&M), "env.p"); 1630 Value *SetjmpID = IRB.CreateLoad(getAddrIntType(&M), EnvP, "setjmp.id"); 1631 Value *Label = 1632 IRB.CreateCall(TestSetjmpF, {SetjmpID, SetjmpTable, SetjmpTableSize}, 1633 OperandBundleDef("funclet", CatchPad), "label"); 1634 Value *Cmp = IRB.CreateICmpEQ(Label, IRB.getInt32(0)); 1635 IRB.CreateCondBr(Cmp, ThenBB, EndBB); 1636 1637 IRB.SetInsertPoint(ThenBB); 1638 CallInst *WasmLongjmpCI = IRB.CreateCall( 1639 WasmLongjmpF, {Env, Val}, OperandBundleDef("funclet", CatchPad)); 1640 IRB.CreateUnreachable(); 1641 1642 IRB.SetInsertPoint(EndBB); 1643 // Jump to setjmp.dispatch block 1644 IRB.CreateCatchRet(CatchPad, SetjmpDispatchBB); 1645 1646 // Go back to setjmp.dispatch BB 1647 // setjmp.dispatch: 1648 // switch %label { 1649 // label 1: goto post-setjmp BB 1 1650 // label 2: goto post-setjmp BB 2 1651 // ... 1652 // default: goto splitted next BB 1653 // } 1654 IRB.SetInsertPoint(SetjmpDispatchBB); 1655 PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label.phi"); 1656 LabelPHI->addIncoming(Label, EndBB); 1657 LabelPHI->addIncoming(IRB.getInt32(-1), Entry); 1658 SwitchInst *SI = IRB.CreateSwitch(LabelPHI, OrigEntry, SetjmpRetPHIs.size()); 1659 // -1 means no longjmp happened, continue normally (will hit the default 1660 // switch case). 0 means a longjmp that is not ours to handle, needs a 1661 // rethrow. Otherwise the index is the same as the index in P+1 (to avoid 1662 // 0). 1663 for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) { 1664 SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent()); 1665 SetjmpRetPHIs[I]->addIncoming(Val, SetjmpDispatchBB); 1666 } 1667 1668 // Convert all longjmpable call instructions to invokes that unwind to the 1669 // newly created catch.dispatch.longjmp BB. 1670 SmallVector<Instruction *, 64> ToErase; 1671 for (auto *BB = &*F.begin(); BB; BB = BB->getNextNode()) { 1672 for (Instruction &I : *BB) { 1673 auto *CI = dyn_cast<CallInst>(&I); 1674 if (!CI) 1675 continue; 1676 const Value *Callee = CI->getCalledOperand(); 1677 if (!canLongjmp(Callee)) 1678 continue; 1679 if (isEmAsmCall(Callee)) 1680 report_fatal_error("Cannot use EM_ASM* alongside setjmp/longjmp in " + 1681 F.getName() + 1682 ". Please consider using EM_JS, or move the " 1683 "EM_ASM into another function.", 1684 false); 1685 // This is __wasm_longjmp() call we inserted in this function, which 1686 // rethrows the longjmp when the longjmp does not correspond to one of 1687 // setjmps in this function. We should not convert this call to an invoke. 1688 if (CI == WasmLongjmpCI) 1689 continue; 1690 ToErase.push_back(CI); 1691 1692 // Even if the callee function has attribute 'nounwind', which is true for 1693 // all C functions, it can longjmp, which means it can throw a Wasm 1694 // exception now. 1695 CI->removeFnAttr(Attribute::NoUnwind); 1696 if (Function *CalleeF = CI->getCalledFunction()) { 1697 CalleeF->removeFnAttr(Attribute::NoUnwind); 1698 } 1699 1700 IRB.SetInsertPoint(CI); 1701 BasicBlock *Tail = SplitBlock(BB, CI->getNextNode()); 1702 // We will add a new invoke. So remove the branch created when we split 1703 // the BB 1704 ToErase.push_back(BB->getTerminator()); 1705 SmallVector<Value *, 8> Args(CI->args()); 1706 InvokeInst *II = 1707 IRB.CreateInvoke(CI->getFunctionType(), CI->getCalledOperand(), Tail, 1708 CatchSwitchBB, Args); 1709 II->takeName(CI); 1710 II->setDebugLoc(CI->getDebugLoc()); 1711 II->setAttributes(CI->getAttributes()); 1712 CI->replaceAllUsesWith(II); 1713 } 1714 } 1715 1716 for (Instruction *I : ToErase) 1717 I->eraseFromParent(); 1718 } 1719