1 //=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file lowers exception-related instructions and setjmp/longjmp function
11 /// calls to use Emscripten's library functions. The pass uses JavaScript's try
12 /// and catch mechanism in case of Emscripten EH/SjLj and Wasm EH intrinsics in
13 /// case of Emscripten SjLJ.
14 ///
15 /// * Emscripten exception handling
16 /// This pass lowers invokes and landingpads into library functions in JS glue
17 /// code. Invokes are lowered into function wrappers called invoke wrappers that
18 /// exist in JS side, which wraps the original function call with JS try-catch.
19 /// If an exception occurred, cxa_throw() function in JS side sets some
20 /// variables (see below) so we can check whether an exception occurred from
21 /// wasm code and handle it appropriately.
22 ///
23 /// * Emscripten setjmp-longjmp handling
24 /// This pass lowers setjmp to a reasonably-performant approach for emscripten.
25 /// The idea is that each block with a setjmp is broken up into two parts: the
26 /// part containing setjmp and the part right after the setjmp. The latter part
27 /// is either reached from the setjmp, or later from a longjmp. To handle the
28 /// longjmp, all calls that might longjmp are also called using invoke wrappers
29 /// and thus JS / try-catch. JS longjmp() function also sets some variables so
30 /// we can check / whether a longjmp occurred from wasm code. Each block with a
31 /// function call that might longjmp is also split up after the longjmp call.
32 /// After the longjmp call, we check whether a longjmp occurred, and if it did,
33 /// which setjmp it corresponds to, and jump to the right post-setjmp block.
34 /// We assume setjmp-longjmp handling always run after EH handling, which means
35 /// we don't expect any exception-related instructions when SjLj runs.
36 /// FIXME Currently this scheme does not support indirect call of setjmp,
37 /// because of the limitation of the scheme itself. fastcomp does not support it
38 /// either.
39 ///
40 /// In detail, this pass does following things:
41 ///
42 /// 1) Assumes the existence of global variables: __THREW__, __threwValue
43 ///    __THREW__ and __threwValue are defined in compiler-rt in Emscripten.
44 ///    These variables are used for both exceptions and setjmp/longjmps.
45 ///    __THREW__ indicates whether an exception or a longjmp occurred or not. 0
46 ///    means nothing occurred, 1 means an exception occurred, and other numbers
47 ///    mean a longjmp occurred. In the case of longjmp, __THREW__ variable
48 ///    indicates the corresponding setjmp buffer the longjmp corresponds to.
49 ///    __threwValue is 0 for exceptions, and the argument to longjmp in case of
50 ///    longjmp.
51 ///
52 /// * Emscripten exception handling
53 ///
54 /// 2) We assume the existence of setThrew and setTempRet0/getTempRet0 functions
55 ///    at link time. setThrew exists in Emscripten's compiler-rt:
56 ///
57 ///    void setThrew(uintptr_t threw, int value) {
58 ///      if (__THREW__ == 0) {
59 ///        __THREW__ = threw;
60 ///        __threwValue = value;
61 ///      }
62 ///    }
63 //
64 ///    setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
65 ///    In exception handling, getTempRet0 indicates the type of an exception
66 ///    caught, and in setjmp/longjmp, it means the second argument to longjmp
67 ///    function.
68 ///
69 /// 3) Lower
70 ///      invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad
71 ///    into
72 ///      __THREW__ = 0;
73 ///      call @__invoke_SIG(func, arg1, arg2)
74 ///      %__THREW__.val = __THREW__;
75 ///      __THREW__ = 0;
76 ///      if (%__THREW__.val == 1)
77 ///        goto %lpad
78 ///      else
79 ///         goto %invoke.cont
80 ///    SIG is a mangled string generated based on the LLVM IR-level function
81 ///    signature. After LLVM IR types are lowered to the target wasm types,
82 ///    the names for these wrappers will change based on wasm types as well,
83 ///    as in invoke_vi (function takes an int and returns void). The bodies of
84 ///    these wrappers will be generated in JS glue code, and inside those
85 ///    wrappers we use JS try-catch to generate actual exception effects. It
86 ///    also calls the original callee function. An example wrapper in JS code
87 ///    would look like this:
88 ///      function invoke_vi(index,a1) {
89 ///        try {
90 ///          Module["dynCall_vi"](index,a1); // This calls original callee
91 ///        } catch(e) {
92 ///          if (typeof e !== 'number' && e !== 'longjmp') throw e;
93 ///          _setThrew(1, 0); // setThrew is called here
94 ///        }
95 ///      }
96 ///    If an exception is thrown, __THREW__ will be set to true in a wrapper,
97 ///    so we can jump to the right BB based on this value.
98 ///
99 /// 4) Lower
100 ///      %val = landingpad catch c1 catch c2 catch c3 ...
101 ///      ... use %val ...
102 ///    into
103 ///      %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...)
104 ///      %val = {%fmc, getTempRet0()}
105 ///      ... use %val ...
106 ///    Here N is a number calculated based on the number of clauses.
107 ///    setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
108 ///
109 /// 5) Lower
110 ///      resume {%a, %b}
111 ///    into
112 ///      call @__resumeException(%a)
113 ///    where __resumeException() is a function in JS glue code.
114 ///
115 /// 6) Lower
116 ///      call @llvm.eh.typeid.for(type) (intrinsic)
117 ///    into
118 ///      call @llvm_eh_typeid_for(type)
119 ///    llvm_eh_typeid_for function will be generated in JS glue code.
120 ///
121 /// * Emscripten setjmp / longjmp handling
122 ///
123 /// If there are calls to longjmp()
124 ///
125 /// 1) Lower
126 ///      longjmp(env, val)
127 ///    into
128 ///      emscripten_longjmp(env, val)
129 ///
130 /// If there are calls to setjmp()
131 ///
132 /// 2) In the function entry that calls setjmp, initialize setjmpTable and
133 ///    sejmpTableSize as follows:
134 ///      setjmpTableSize = 4;
135 ///      setjmpTable = (int *) malloc(40);
136 ///      setjmpTable[0] = 0;
137 ///    setjmpTable and setjmpTableSize are used to call saveSetjmp() function in
138 ///    Emscripten compiler-rt.
139 ///
140 /// 3) Lower
141 ///      setjmp(env)
142 ///    into
143 ///      setjmpTable = saveSetjmp(env, label, setjmpTable, setjmpTableSize);
144 ///      setjmpTableSize = getTempRet0();
145 ///    For each dynamic setjmp call, setjmpTable stores its ID (a number which
146 ///    is incrementally assigned from 0) and its label (a unique number that
147 ///    represents each callsite of setjmp). When we need more entries in
148 ///    setjmpTable, it is reallocated in saveSetjmp() in Emscripten's
149 ///    compiler-rt and it will return the new table address, and assign the new
150 ///    table size in setTempRet0(). saveSetjmp also stores the setjmp's ID into
151 ///    the buffer 'env'. A BB with setjmp is split into two after setjmp call in
152 ///    order to make the post-setjmp BB the possible destination of longjmp BB.
153 ///
154 /// 4) Lower every call that might longjmp into
155 ///      __THREW__ = 0;
156 ///      call @__invoke_SIG(func, arg1, arg2)
157 ///      %__THREW__.val = __THREW__;
158 ///      __THREW__ = 0;
159 ///      %__threwValue.val = __threwValue;
160 ///      if (%__THREW__.val != 0 & %__threwValue.val != 0) {
161 ///        %label = testSetjmp(mem[%__THREW__.val], setjmpTable,
162 ///                            setjmpTableSize);
163 ///        if (%label == 0)
164 ///          emscripten_longjmp(%__THREW__.val, %__threwValue.val);
165 ///        setTempRet0(%__threwValue.val);
166 ///      } else {
167 ///        %label = -1;
168 ///      }
169 ///      longjmp_result = getTempRet0();
170 ///      switch %label {
171 ///        label 1: goto post-setjmp BB 1
172 ///        label 2: goto post-setjmp BB 2
173 ///        ...
174 ///        default: goto splitted next BB
175 ///      }
176 ///    testSetjmp examines setjmpTable to see if there is a matching setjmp
177 ///    call. After calling an invoke wrapper, if a longjmp occurred, __THREW__
178 ///    will be the address of matching jmp_buf buffer and __threwValue be the
179 ///    second argument to longjmp. mem[%__THREW__.val] is a setjmp ID that is
180 ///    stored in saveSetjmp. testSetjmp returns a setjmp label, a unique ID to
181 ///    each setjmp callsite. Label 0 means this longjmp buffer does not
182 ///    correspond to one of the setjmp callsites in this function, so in this
183 ///    case we just chain the longjmp to the caller. Label -1 means no longjmp
184 ///    occurred. Otherwise we jump to the right post-setjmp BB based on the
185 ///    label.
186 ///
187 /// * Wasm setjmp / longjmp handling
188 /// This mode still uses some Emscripten library functions but not JavaScript's
189 /// try-catch mechanism. It instead uses Wasm exception handling intrinsics,
190 /// which will be lowered to exception handling instructions.
191 ///
192 /// If there are calls to longjmp()
193 ///
194 /// 1) Lower
195 ///      longjmp(env, val)
196 ///    into
197 ///      __wasm_longjmp(env, val)
198 ///
199 /// If there are calls to setjmp()
200 ///
201 /// 2) and 3): The same as 2) and 3) in Emscripten SjLj.
202 /// (setjmpTable/setjmpTableSize initialization + setjmp callsite
203 /// transformation)
204 ///
205 /// 4) Create a catchpad with a wasm.catch() intrinsic, which returns the value
206 /// thrown by __wasm_longjmp function. In Emscripten library, we have this
207 /// struct:
208 ///
209 /// struct __WasmLongjmpArgs {
210 ///   void *env;
211 ///   int val;
212 /// };
213 /// struct __WasmLongjmpArgs __wasm_longjmp_args;
214 ///
215 /// The thrown value here is a pointer to __wasm_longjmp_args struct object. We
216 /// use this struct to transfer two values by throwing a single value. Wasm
217 /// throw and catch instructions are capable of throwing and catching multiple
218 /// values, but it also requires multivalue support that is currently not very
219 /// reliable.
220 /// TODO Switch to throwing and catching two values without using the struct
221 ///
222 /// All longjmpable function calls will be converted to an invoke that will
223 /// unwind to this catchpad in case a longjmp occurs. Within the catchpad, we
224 /// test the thrown values using testSetjmp function as we do for Emscripten
225 /// SjLj. The main difference is, in Emscripten SjLj, we need to transform every
226 /// longjmpable callsite into a sequence of code including testSetjmp() call; in
227 /// Wasm SjLj we do the testing in only one place, in this catchpad.
228 ///
229 /// After testing calling testSetjmp(), if the longjmp does not correspond to
230 /// one of the setjmps within the current function, it rethrows the longjmp
231 /// by calling __wasm_longjmp(). If it corresponds to one of setjmps in the
232 /// function, we jump to the beginning of the function, which contains a switch
233 /// to each post-setjmp BB. Again, in Emscripten SjLj, this switch is added for
234 /// every longjmpable callsite; in Wasm SjLj we do this only once at the top of
235 /// the function. (after setjmpTable/setjmpTableSize initialization)
236 ///
237 /// The below is the pseudocode for what we have described
238 ///
239 /// entry:
240 ///   Initialize setjmpTable and setjmpTableSize
241 ///
242 /// setjmp.dispatch:
243 ///    switch %label {
244 ///      label 1: goto post-setjmp BB 1
245 ///      label 2: goto post-setjmp BB 2
246 ///      ...
247 ///      default: goto splitted next BB
248 ///    }
249 /// ...
250 ///
251 /// bb:
252 ///   invoke void @foo() ;; foo is a longjmpable function
253 ///     to label %next unwind label %catch.dispatch.longjmp
254 /// ...
255 ///
256 /// catch.dispatch.longjmp:
257 ///   %0 = catchswitch within none [label %catch.longjmp] unwind to caller
258 ///
259 /// catch.longjmp:
260 ///   %longjmp.args = wasm.catch() ;; struct __WasmLongjmpArgs
261 ///   %env = load 'env' field from __WasmLongjmpArgs
262 ///   %val = load 'val' field from __WasmLongjmpArgs
263 ///   %label = testSetjmp(mem[%env], setjmpTable, setjmpTableSize);
264 ///   if (%label == 0)
265 ///     __wasm_longjmp(%env, %val)
266 ///   catchret to %setjmp.dispatch
267 ///
268 ///===----------------------------------------------------------------------===//
269 
270 #include "WebAssembly.h"
271 #include "WebAssemblyTargetMachine.h"
272 #include "llvm/ADT/StringExtras.h"
273 #include "llvm/CodeGen/TargetPassConfig.h"
274 #include "llvm/CodeGen/WasmEHFuncInfo.h"
275 #include "llvm/IR/DebugInfoMetadata.h"
276 #include "llvm/IR/Dominators.h"
277 #include "llvm/IR/IRBuilder.h"
278 #include "llvm/IR/IntrinsicsWebAssembly.h"
279 #include "llvm/Support/CommandLine.h"
280 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
281 #include "llvm/Transforms/Utils/SSAUpdater.h"
282 #include "llvm/Transforms/Utils/SSAUpdaterBulk.h"
283 
284 using namespace llvm;
285 
286 #define DEBUG_TYPE "wasm-lower-em-ehsjlj"
287 
288 // Emscripten's asm.js-style exception handling
289 extern cl::opt<bool> WasmEnableEmEH;
290 // Emscripten's asm.js-style setjmp/longjmp handling
291 extern cl::opt<bool> WasmEnableEmSjLj;
292 // Wasm setjmp/longjmp handling using wasm EH instructions
293 extern cl::opt<bool> WasmEnableSjLj;
294 
295 static cl::list<std::string>
296     EHAllowlist("emscripten-cxx-exceptions-allowed",
297                 cl::desc("The list of function names in which Emscripten-style "
298                          "exception handling is enabled (see emscripten "
299                          "EMSCRIPTEN_CATCHING_ALLOWED options)"),
300                 cl::CommaSeparated);
301 
302 namespace {
303 class WebAssemblyLowerEmscriptenEHSjLj final : public ModulePass {
304   bool EnableEmEH;     // Enable Emscripten exception handling
305   bool EnableEmSjLj;   // Enable Emscripten setjmp/longjmp handling
306   bool EnableWasmSjLj; // Enable Wasm setjmp/longjmp handling
307   bool DoSjLj;         // Whether we actually perform setjmp/longjmp handling
308 
309   GlobalVariable *ThrewGV = nullptr;      // __THREW__ (Emscripten)
310   GlobalVariable *ThrewValueGV = nullptr; // __threwValue (Emscripten)
311   Function *GetTempRet0F = nullptr;       // getTempRet0() (Emscripten)
312   Function *SetTempRet0F = nullptr;       // setTempRet0() (Emscripten)
313   Function *ResumeF = nullptr;            // __resumeException() (Emscripten)
314   Function *EHTypeIDF = nullptr;          // llvm.eh.typeid.for() (intrinsic)
315   Function *EmLongjmpF = nullptr;         // emscripten_longjmp() (Emscripten)
316   Function *SaveSetjmpF = nullptr;        // saveSetjmp() (Emscripten)
317   Function *TestSetjmpF = nullptr;        // testSetjmp() (Emscripten)
318   Function *WasmLongjmpF = nullptr;       // __wasm_longjmp() (Emscripten)
319   Function *CatchF = nullptr;             // wasm.catch() (intrinsic)
320 
321   // type of 'struct __WasmLongjmpArgs' defined in emscripten
322   Type *LongjmpArgsTy = nullptr;
323 
324   // __cxa_find_matching_catch_N functions.
325   // Indexed by the number of clauses in an original landingpad instruction.
326   DenseMap<int, Function *> FindMatchingCatches;
327   // Map of <function signature string, invoke_ wrappers>
328   StringMap<Function *> InvokeWrappers;
329   // Set of allowed function names for exception handling
330   std::set<std::string> EHAllowlistSet;
331   // Functions that contains calls to setjmp
332   SmallPtrSet<Function *, 8> SetjmpUsers;
333 
334   StringRef getPassName() const override {
335     return "WebAssembly Lower Emscripten Exceptions";
336   }
337 
338   using InstVector = SmallVectorImpl<Instruction *>;
339   bool runEHOnFunction(Function &F);
340   bool runSjLjOnFunction(Function &F);
341   void handleLongjmpableCallsForEmscriptenSjLj(
342       Function &F, InstVector &SetjmpTableInsts,
343       InstVector &SetjmpTableSizeInsts,
344       SmallVectorImpl<PHINode *> &SetjmpRetPHIs);
345   void
346   handleLongjmpableCallsForWasmSjLj(Function &F, InstVector &SetjmpTableInsts,
347                                     InstVector &SetjmpTableSizeInsts,
348                                     SmallVectorImpl<PHINode *> &SetjmpRetPHIs);
349   Function *getFindMatchingCatch(Module &M, unsigned NumClauses);
350 
351   Value *wrapInvoke(CallBase *CI);
352   void wrapTestSetjmp(BasicBlock *BB, DebugLoc DL, Value *Threw,
353                       Value *SetjmpTable, Value *SetjmpTableSize, Value *&Label,
354                       Value *&LongjmpResult, BasicBlock *&CallEmLongjmpBB,
355                       PHINode *&CallEmLongjmpBBThrewPHI,
356                       PHINode *&CallEmLongjmpBBThrewValuePHI,
357                       BasicBlock *&EndBB);
358   Function *getInvokeWrapper(CallBase *CI);
359 
360   bool areAllExceptionsAllowed() const { return EHAllowlistSet.empty(); }
361   bool supportsException(const Function *F) const {
362     return EnableEmEH && (areAllExceptionsAllowed() ||
363                           EHAllowlistSet.count(std::string(F->getName())));
364   }
365   void replaceLongjmpWith(Function *LongjmpF, Function *NewF);
366 
367   void rebuildSSA(Function &F);
368 
369 public:
370   static char ID;
371 
372   WebAssemblyLowerEmscriptenEHSjLj()
373       : ModulePass(ID), EnableEmEH(WasmEnableEmEH),
374         EnableEmSjLj(WasmEnableEmSjLj), EnableWasmSjLj(WasmEnableSjLj) {
375     assert(!(EnableEmSjLj && EnableWasmSjLj) &&
376            "Two SjLj modes cannot be turned on at the same time");
377     assert(!(EnableEmEH && EnableWasmSjLj) &&
378            "Wasm SjLj should be only used with Wasm EH");
379     EHAllowlistSet.insert(EHAllowlist.begin(), EHAllowlist.end());
380   }
381   bool runOnModule(Module &M) override;
382 
383   void getAnalysisUsage(AnalysisUsage &AU) const override {
384     AU.addRequired<DominatorTreeWrapperPass>();
385   }
386 };
387 } // End anonymous namespace
388 
389 char WebAssemblyLowerEmscriptenEHSjLj::ID = 0;
390 INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj, DEBUG_TYPE,
391                 "WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp",
392                 false, false)
393 
394 ModulePass *llvm::createWebAssemblyLowerEmscriptenEHSjLj() {
395   return new WebAssemblyLowerEmscriptenEHSjLj();
396 }
397 
398 static bool canThrow(const Value *V) {
399   if (const auto *F = dyn_cast<const Function>(V)) {
400     // Intrinsics cannot throw
401     if (F->isIntrinsic())
402       return false;
403     StringRef Name = F->getName();
404     // leave setjmp and longjmp (mostly) alone, we process them properly later
405     if (Name == "setjmp" || Name == "longjmp" || Name == "emscripten_longjmp")
406       return false;
407     return !F->doesNotThrow();
408   }
409   // not a function, so an indirect call - can throw, we can't tell
410   return true;
411 }
412 
413 // Get a global variable with the given name. If it doesn't exist declare it,
414 // which will generate an import and assume that it will exist at link time.
415 static GlobalVariable *getGlobalVariable(Module &M, Type *Ty,
416                                          WebAssemblyTargetMachine &TM,
417                                          const char *Name) {
418   auto *GV = dyn_cast<GlobalVariable>(M.getOrInsertGlobal(Name, Ty));
419   if (!GV)
420     report_fatal_error(Twine("unable to create global: ") + Name);
421 
422   // If the target supports TLS, make this variable thread-local. We can't just
423   // unconditionally make it thread-local and depend on
424   // CoalesceFeaturesAndStripAtomics to downgrade it, because stripping TLS has
425   // the side effect of disallowing the object from being linked into a
426   // shared-memory module, which we don't want to be responsible for.
427   auto *Subtarget = TM.getSubtargetImpl();
428   auto TLS = Subtarget->hasAtomics() && Subtarget->hasBulkMemory()
429                  ? GlobalValue::LocalExecTLSModel
430                  : GlobalValue::NotThreadLocal;
431   GV->setThreadLocalMode(TLS);
432   return GV;
433 }
434 
435 // Simple function name mangler.
436 // This function simply takes LLVM's string representation of parameter types
437 // and concatenate them with '_'. There are non-alphanumeric characters but llc
438 // is ok with it, and we need to postprocess these names after the lowering
439 // phase anyway.
440 static std::string getSignature(FunctionType *FTy) {
441   std::string Sig;
442   raw_string_ostream OS(Sig);
443   OS << *FTy->getReturnType();
444   for (Type *ParamTy : FTy->params())
445     OS << "_" << *ParamTy;
446   if (FTy->isVarArg())
447     OS << "_...";
448   Sig = OS.str();
449   erase_if(Sig, isSpace);
450   // When s2wasm parses .s file, a comma means the end of an argument. So a
451   // mangled function name can contain any character but a comma.
452   std::replace(Sig.begin(), Sig.end(), ',', '.');
453   return Sig;
454 }
455 
456 static Function *getEmscriptenFunction(FunctionType *Ty, const Twine &Name,
457                                        Module *M) {
458   Function* F = Function::Create(Ty, GlobalValue::ExternalLinkage, Name, M);
459   // Tell the linker that this function is expected to be imported from the
460   // 'env' module.
461   if (!F->hasFnAttribute("wasm-import-module")) {
462     llvm::AttrBuilder B;
463     B.addAttribute("wasm-import-module", "env");
464     F->addFnAttrs(B);
465   }
466   if (!F->hasFnAttribute("wasm-import-name")) {
467     llvm::AttrBuilder B;
468     B.addAttribute("wasm-import-name", F->getName());
469     F->addFnAttrs(B);
470   }
471   return F;
472 }
473 
474 // Returns an integer type for the target architecture's address space.
475 // i32 for wasm32 and i64 for wasm64.
476 static Type *getAddrIntType(Module *M) {
477   IRBuilder<> IRB(M->getContext());
478   return IRB.getIntNTy(M->getDataLayout().getPointerSizeInBits());
479 }
480 
481 // Returns an integer pointer type for the target architecture's address space.
482 // i32* for wasm32 and i64* for wasm64.
483 static Type *getAddrPtrType(Module *M) {
484   return Type::getIntNPtrTy(M->getContext(),
485                             M->getDataLayout().getPointerSizeInBits());
486 }
487 
488 // Returns an integer whose type is the integer type for the target's address
489 // space. Returns (i32 C) for wasm32 and (i64 C) for wasm64, when C is the
490 // integer.
491 static Value *getAddrSizeInt(Module *M, uint64_t C) {
492   IRBuilder<> IRB(M->getContext());
493   return IRB.getIntN(M->getDataLayout().getPointerSizeInBits(), C);
494 }
495 
496 // Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2.
497 // This is because a landingpad instruction contains two more arguments, a
498 // personality function and a cleanup bit, and __cxa_find_matching_catch_N
499 // functions are named after the number of arguments in the original landingpad
500 // instruction.
501 Function *
502 WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module &M,
503                                                        unsigned NumClauses) {
504   if (FindMatchingCatches.count(NumClauses))
505     return FindMatchingCatches[NumClauses];
506   PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext());
507   SmallVector<Type *, 16> Args(NumClauses, Int8PtrTy);
508   FunctionType *FTy = FunctionType::get(Int8PtrTy, Args, false);
509   Function *F = getEmscriptenFunction(
510       FTy, "__cxa_find_matching_catch_" + Twine(NumClauses + 2), &M);
511   FindMatchingCatches[NumClauses] = F;
512   return F;
513 }
514 
515 // Generate invoke wrapper seqence with preamble and postamble
516 // Preamble:
517 // __THREW__ = 0;
518 // Postamble:
519 // %__THREW__.val = __THREW__; __THREW__ = 0;
520 // Returns %__THREW__.val, which indicates whether an exception is thrown (or
521 // whether longjmp occurred), for future use.
522 Value *WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallBase *CI) {
523   Module *M = CI->getModule();
524   LLVMContext &C = M->getContext();
525 
526   IRBuilder<> IRB(C);
527   IRB.SetInsertPoint(CI);
528 
529   // Pre-invoke
530   // __THREW__ = 0;
531   IRB.CreateStore(getAddrSizeInt(M, 0), ThrewGV);
532 
533   // Invoke function wrapper in JavaScript
534   SmallVector<Value *, 16> Args;
535   // Put the pointer to the callee as first argument, so it can be called
536   // within the invoke wrapper later
537   Args.push_back(CI->getCalledOperand());
538   Args.append(CI->arg_begin(), CI->arg_end());
539   CallInst *NewCall = IRB.CreateCall(getInvokeWrapper(CI), Args);
540   NewCall->takeName(CI);
541   NewCall->setCallingConv(CallingConv::WASM_EmscriptenInvoke);
542   NewCall->setDebugLoc(CI->getDebugLoc());
543 
544   // Because we added the pointer to the callee as first argument, all
545   // argument attribute indices have to be incremented by one.
546   SmallVector<AttributeSet, 8> ArgAttributes;
547   const AttributeList &InvokeAL = CI->getAttributes();
548 
549   // No attributes for the callee pointer.
550   ArgAttributes.push_back(AttributeSet());
551   // Copy the argument attributes from the original
552   for (unsigned I = 0, E = CI->getNumArgOperands(); I < E; ++I)
553     ArgAttributes.push_back(InvokeAL.getParamAttrs(I));
554 
555   AttrBuilder FnAttrs(InvokeAL.getFnAttrs());
556   if (FnAttrs.contains(Attribute::AllocSize)) {
557     // The allocsize attribute (if any) referes to parameters by index and needs
558     // to be adjusted.
559     unsigned SizeArg;
560     Optional<unsigned> NEltArg;
561     std::tie(SizeArg, NEltArg) = FnAttrs.getAllocSizeArgs();
562     SizeArg += 1;
563     if (NEltArg.hasValue())
564       NEltArg = NEltArg.getValue() + 1;
565     FnAttrs.addAllocSizeAttr(SizeArg, NEltArg);
566   }
567 
568   // Reconstruct the AttributesList based on the vector we constructed.
569   AttributeList NewCallAL = AttributeList::get(
570       C, AttributeSet::get(C, FnAttrs), InvokeAL.getRetAttrs(), ArgAttributes);
571   NewCall->setAttributes(NewCallAL);
572 
573   CI->replaceAllUsesWith(NewCall);
574 
575   // Post-invoke
576   // %__THREW__.val = __THREW__; __THREW__ = 0;
577   Value *Threw =
578       IRB.CreateLoad(getAddrIntType(M), ThrewGV, ThrewGV->getName() + ".val");
579   IRB.CreateStore(getAddrSizeInt(M, 0), ThrewGV);
580   return Threw;
581 }
582 
583 // Get matching invoke wrapper based on callee signature
584 Function *WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallBase *CI) {
585   Module *M = CI->getModule();
586   SmallVector<Type *, 16> ArgTys;
587   FunctionType *CalleeFTy = CI->getFunctionType();
588 
589   std::string Sig = getSignature(CalleeFTy);
590   if (InvokeWrappers.find(Sig) != InvokeWrappers.end())
591     return InvokeWrappers[Sig];
592 
593   // Put the pointer to the callee as first argument
594   ArgTys.push_back(PointerType::getUnqual(CalleeFTy));
595   // Add argument types
596   ArgTys.append(CalleeFTy->param_begin(), CalleeFTy->param_end());
597 
598   FunctionType *FTy = FunctionType::get(CalleeFTy->getReturnType(), ArgTys,
599                                         CalleeFTy->isVarArg());
600   Function *F = getEmscriptenFunction(FTy, "__invoke_" + Sig, M);
601   InvokeWrappers[Sig] = F;
602   return F;
603 }
604 
605 static bool canLongjmp(const Value *Callee) {
606   if (auto *CalleeF = dyn_cast<Function>(Callee))
607     if (CalleeF->isIntrinsic())
608       return false;
609 
610   // Attempting to transform inline assembly will result in something like:
611   //     call void @__invoke_void(void ()* asm ...)
612   // which is invalid because inline assembly blocks do not have addresses
613   // and can't be passed by pointer. The result is a crash with illegal IR.
614   if (isa<InlineAsm>(Callee))
615     return false;
616   StringRef CalleeName = Callee->getName();
617 
618   // The reason we include malloc/free here is to exclude the malloc/free
619   // calls generated in setjmp prep / cleanup routines.
620   if (CalleeName == "setjmp" || CalleeName == "malloc" || CalleeName == "free")
621     return false;
622 
623   // There are functions in Emscripten's JS glue code or compiler-rt
624   if (CalleeName == "__resumeException" || CalleeName == "llvm_eh_typeid_for" ||
625       CalleeName == "saveSetjmp" || CalleeName == "testSetjmp" ||
626       CalleeName == "getTempRet0" || CalleeName == "setTempRet0")
627     return false;
628 
629   // __cxa_find_matching_catch_N functions cannot longjmp
630   if (Callee->getName().startswith("__cxa_find_matching_catch_"))
631     return false;
632 
633   // Exception-catching related functions
634   if (CalleeName == "__cxa_begin_catch" || CalleeName == "__cxa_end_catch" ||
635       CalleeName == "__cxa_allocate_exception" || CalleeName == "__cxa_throw" ||
636       CalleeName == "__clang_call_terminate")
637     return false;
638 
639   // Otherwise we don't know
640   return true;
641 }
642 
643 static bool isEmAsmCall(const Value *Callee) {
644   StringRef CalleeName = Callee->getName();
645   // This is an exhaustive list from Emscripten's <emscripten/em_asm.h>.
646   return CalleeName == "emscripten_asm_const_int" ||
647          CalleeName == "emscripten_asm_const_double" ||
648          CalleeName == "emscripten_asm_const_int_sync_on_main_thread" ||
649          CalleeName == "emscripten_asm_const_double_sync_on_main_thread" ||
650          CalleeName == "emscripten_asm_const_async_on_main_thread";
651 }
652 
653 // Generate testSetjmp function call seqence with preamble and postamble.
654 // The code this generates is equivalent to the following JavaScript code:
655 // %__threwValue.val = __threwValue;
656 // if (%__THREW__.val != 0 & %__threwValue.val != 0) {
657 //   %label = testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize);
658 //   if (%label == 0)
659 //     emscripten_longjmp(%__THREW__.val, %__threwValue.val);
660 //   setTempRet0(%__threwValue.val);
661 // } else {
662 //   %label = -1;
663 // }
664 // %longjmp_result = getTempRet0();
665 //
666 // As output parameters. returns %label, %longjmp_result, and the BB the last
667 // instruction (%longjmp_result = ...) is in.
668 void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp(
669     BasicBlock *BB, DebugLoc DL, Value *Threw, Value *SetjmpTable,
670     Value *SetjmpTableSize, Value *&Label, Value *&LongjmpResult,
671     BasicBlock *&CallEmLongjmpBB, PHINode *&CallEmLongjmpBBThrewPHI,
672     PHINode *&CallEmLongjmpBBThrewValuePHI, BasicBlock *&EndBB) {
673   Function *F = BB->getParent();
674   Module *M = F->getParent();
675   LLVMContext &C = M->getContext();
676   IRBuilder<> IRB(C);
677   IRB.SetCurrentDebugLocation(DL);
678 
679   // if (%__THREW__.val != 0 & %__threwValue.val != 0)
680   IRB.SetInsertPoint(BB);
681   BasicBlock *ThenBB1 = BasicBlock::Create(C, "if.then1", F);
682   BasicBlock *ElseBB1 = BasicBlock::Create(C, "if.else1", F);
683   BasicBlock *EndBB1 = BasicBlock::Create(C, "if.end", F);
684   Value *ThrewCmp = IRB.CreateICmpNE(Threw, getAddrSizeInt(M, 0));
685   Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV,
686                                      ThrewValueGV->getName() + ".val");
687   Value *ThrewValueCmp = IRB.CreateICmpNE(ThrewValue, IRB.getInt32(0));
688   Value *Cmp1 = IRB.CreateAnd(ThrewCmp, ThrewValueCmp, "cmp1");
689   IRB.CreateCondBr(Cmp1, ThenBB1, ElseBB1);
690 
691   // Generate call.em.longjmp BB once and share it within the function
692   if (!CallEmLongjmpBB) {
693     // emscripten_longjmp(%__THREW__.val, %__threwValue.val);
694     CallEmLongjmpBB = BasicBlock::Create(C, "call.em.longjmp", F);
695     IRB.SetInsertPoint(CallEmLongjmpBB);
696     CallEmLongjmpBBThrewPHI = IRB.CreatePHI(getAddrIntType(M), 4, "threw.phi");
697     CallEmLongjmpBBThrewValuePHI =
698         IRB.CreatePHI(IRB.getInt32Ty(), 4, "threwvalue.phi");
699     CallEmLongjmpBBThrewPHI->addIncoming(Threw, ThenBB1);
700     CallEmLongjmpBBThrewValuePHI->addIncoming(ThrewValue, ThenBB1);
701     IRB.CreateCall(EmLongjmpF,
702                    {CallEmLongjmpBBThrewPHI, CallEmLongjmpBBThrewValuePHI});
703     IRB.CreateUnreachable();
704   } else {
705     CallEmLongjmpBBThrewPHI->addIncoming(Threw, ThenBB1);
706     CallEmLongjmpBBThrewValuePHI->addIncoming(ThrewValue, ThenBB1);
707   }
708 
709   // %label = testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize);
710   // if (%label == 0)
711   IRB.SetInsertPoint(ThenBB1);
712   BasicBlock *EndBB2 = BasicBlock::Create(C, "if.end2", F);
713   Value *ThrewPtr =
714       IRB.CreateIntToPtr(Threw, getAddrPtrType(M), Threw->getName() + ".p");
715   Value *LoadedThrew = IRB.CreateLoad(getAddrIntType(M), ThrewPtr,
716                                       ThrewPtr->getName() + ".loaded");
717   Value *ThenLabel = IRB.CreateCall(
718       TestSetjmpF, {LoadedThrew, SetjmpTable, SetjmpTableSize}, "label");
719   Value *Cmp2 = IRB.CreateICmpEQ(ThenLabel, IRB.getInt32(0));
720   IRB.CreateCondBr(Cmp2, CallEmLongjmpBB, EndBB2);
721 
722   // setTempRet0(%__threwValue.val);
723   IRB.SetInsertPoint(EndBB2);
724   IRB.CreateCall(SetTempRet0F, ThrewValue);
725   IRB.CreateBr(EndBB1);
726 
727   IRB.SetInsertPoint(ElseBB1);
728   IRB.CreateBr(EndBB1);
729 
730   // longjmp_result = getTempRet0();
731   IRB.SetInsertPoint(EndBB1);
732   PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label");
733   LabelPHI->addIncoming(ThenLabel, EndBB2);
734 
735   LabelPHI->addIncoming(IRB.getInt32(-1), ElseBB1);
736 
737   // Output parameter assignment
738   Label = LabelPHI;
739   EndBB = EndBB1;
740   LongjmpResult = IRB.CreateCall(GetTempRet0F, None, "longjmp_result");
741 }
742 
743 void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function &F) {
744   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
745   DT.recalculate(F); // CFG has been changed
746 
747   SSAUpdaterBulk SSA;
748   for (BasicBlock &BB : F) {
749     for (Instruction &I : BB) {
750       unsigned VarID = SSA.AddVariable(I.getName(), I.getType());
751       // If a value is defined by an invoke instruction, it is only available in
752       // its normal destination and not in its unwind destination.
753       if (auto *II = dyn_cast<InvokeInst>(&I))
754         SSA.AddAvailableValue(VarID, II->getNormalDest(), II);
755       else
756         SSA.AddAvailableValue(VarID, &BB, &I);
757       for (auto &U : I.uses()) {
758         auto *User = cast<Instruction>(U.getUser());
759         if (auto *UserPN = dyn_cast<PHINode>(User))
760           if (UserPN->getIncomingBlock(U) == &BB)
761             continue;
762         if (DT.dominates(&I, User))
763           continue;
764         SSA.AddUse(VarID, &U);
765       }
766     }
767   }
768   SSA.RewriteAllUses(&DT);
769 }
770 
771 // Replace uses of longjmp with a new longjmp function in Emscripten library.
772 // In Emscripten SjLj, the new function is
773 //   void emscripten_longjmp(uintptr_t, i32)
774 // In Wasm SjLj, the new function is
775 //   void __wasm_longjmp(i8*, i32)
776 // Because the original libc longjmp function takes (jmp_buf*, i32), we need a
777 // ptrtoint/bitcast instruction here to make the type match. jmp_buf* will
778 // eventually be lowered to i32/i64 in the wasm backend.
779 void WebAssemblyLowerEmscriptenEHSjLj::replaceLongjmpWith(Function *LongjmpF,
780                                                           Function *NewF) {
781   assert(NewF == EmLongjmpF || NewF == WasmLongjmpF);
782   Module *M = LongjmpF->getParent();
783   SmallVector<CallInst *, 8> ToErase;
784   LLVMContext &C = LongjmpF->getParent()->getContext();
785   IRBuilder<> IRB(C);
786 
787   // For calls to longjmp, replace it with emscripten_longjmp/__wasm_longjmp and
788   // cast its first argument (jmp_buf*) appropriately
789   for (User *U : LongjmpF->users()) {
790     auto *CI = dyn_cast<CallInst>(U);
791     if (CI && CI->getCalledFunction() == LongjmpF) {
792       IRB.SetInsertPoint(CI);
793       Value *Env = nullptr;
794       if (NewF == EmLongjmpF)
795         Env =
796             IRB.CreatePtrToInt(CI->getArgOperand(0), getAddrIntType(M), "env");
797       else // WasmLongjmpF
798         Env =
799             IRB.CreateBitCast(CI->getArgOperand(0), IRB.getInt8PtrTy(), "env");
800       IRB.CreateCall(NewF, {Env, CI->getArgOperand(1)});
801       ToErase.push_back(CI);
802     }
803   }
804   for (auto *I : ToErase)
805     I->eraseFromParent();
806 
807   // If we have any remaining uses of longjmp's function pointer, replace it
808   // with (void(*)(jmp_buf*, int))emscripten_longjmp / __wasm_longjmp.
809   if (!LongjmpF->uses().empty()) {
810     Value *NewLongjmp =
811         IRB.CreateBitCast(NewF, LongjmpF->getType(), "longjmp.cast");
812     LongjmpF->replaceAllUsesWith(NewLongjmp);
813   }
814 }
815 
816 static bool containsLongjmpableCalls(const Function *F) {
817   for (const auto &BB : *F)
818     for (const auto &I : BB)
819       if (const auto *CB = dyn_cast<CallBase>(&I))
820         if (canLongjmp(CB->getCalledOperand()))
821           return true;
822   return false;
823 }
824 
825 bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module &M) {
826   LLVM_DEBUG(dbgs() << "********** Lower Emscripten EH & SjLj **********\n");
827 
828   LLVMContext &C = M.getContext();
829   IRBuilder<> IRB(C);
830 
831   Function *SetjmpF = M.getFunction("setjmp");
832   Function *LongjmpF = M.getFunction("longjmp");
833 
834   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
835   assert(TPC && "Expected a TargetPassConfig");
836   auto &TM = TPC->getTM<WebAssemblyTargetMachine>();
837 
838   // Declare (or get) global variables __THREW__, __threwValue, and
839   // getTempRet0/setTempRet0 function which are used in common for both
840   // exception handling and setjmp/longjmp handling
841   ThrewGV = getGlobalVariable(M, getAddrIntType(&M), TM, "__THREW__");
842   ThrewValueGV = getGlobalVariable(M, IRB.getInt32Ty(), TM, "__threwValue");
843   GetTempRet0F = getEmscriptenFunction(
844       FunctionType::get(IRB.getInt32Ty(), false), "getTempRet0", &M);
845   SetTempRet0F = getEmscriptenFunction(
846       FunctionType::get(IRB.getVoidTy(), IRB.getInt32Ty(), false),
847       "setTempRet0", &M);
848   GetTempRet0F->setDoesNotThrow();
849   SetTempRet0F->setDoesNotThrow();
850 
851   bool Changed = false;
852 
853   // Function registration for exception handling
854   if (EnableEmEH) {
855     // Register __resumeException function
856     FunctionType *ResumeFTy =
857         FunctionType::get(IRB.getVoidTy(), IRB.getInt8PtrTy(), false);
858     ResumeF = getEmscriptenFunction(ResumeFTy, "__resumeException", &M);
859     ResumeF->addFnAttr(Attribute::NoReturn);
860 
861     // Register llvm_eh_typeid_for function
862     FunctionType *EHTypeIDTy =
863         FunctionType::get(IRB.getInt32Ty(), IRB.getInt8PtrTy(), false);
864     EHTypeIDF = getEmscriptenFunction(EHTypeIDTy, "llvm_eh_typeid_for", &M);
865   }
866 
867   if ((EnableEmSjLj || EnableWasmSjLj) && SetjmpF) {
868     // Precompute setjmp users
869     for (User *U : SetjmpF->users()) {
870       if (auto *UI = dyn_cast<Instruction>(U)) {
871         auto *UserF = UI->getFunction();
872         // If a function that calls setjmp does not contain any other calls that
873         // can longjmp, we don't need to do any transformation on that function,
874         // so can ignore it
875         if (containsLongjmpableCalls(UserF))
876           SetjmpUsers.insert(UserF);
877       }
878     }
879   }
880 
881   bool SetjmpUsed = SetjmpF && !SetjmpUsers.empty();
882   bool LongjmpUsed = LongjmpF && !LongjmpF->use_empty();
883   DoSjLj = (EnableEmSjLj | EnableWasmSjLj) && (SetjmpUsed || LongjmpUsed);
884 
885   // Function registration and data pre-gathering for setjmp/longjmp handling
886   if (DoSjLj) {
887     assert(EnableEmSjLj || EnableWasmSjLj);
888     if (EnableEmSjLj) {
889       // Register emscripten_longjmp function
890       FunctionType *FTy = FunctionType::get(
891           IRB.getVoidTy(), {getAddrIntType(&M), IRB.getInt32Ty()}, false);
892       EmLongjmpF = getEmscriptenFunction(FTy, "emscripten_longjmp", &M);
893       EmLongjmpF->addFnAttr(Attribute::NoReturn);
894     } else { // EnableWasmSjLj
895       // Register __wasm_longjmp function, which calls __builtin_wasm_longjmp.
896       FunctionType *FTy = FunctionType::get(
897           IRB.getVoidTy(), {IRB.getInt8PtrTy(), IRB.getInt32Ty()}, false);
898       WasmLongjmpF = getEmscriptenFunction(FTy, "__wasm_longjmp", &M);
899       WasmLongjmpF->addFnAttr(Attribute::NoReturn);
900     }
901 
902     if (SetjmpF) {
903       // Register saveSetjmp function
904       FunctionType *SetjmpFTy = SetjmpF->getFunctionType();
905       FunctionType *FTy =
906           FunctionType::get(Type::getInt32PtrTy(C),
907                             {SetjmpFTy->getParamType(0), IRB.getInt32Ty(),
908                              Type::getInt32PtrTy(C), IRB.getInt32Ty()},
909                             false);
910       SaveSetjmpF = getEmscriptenFunction(FTy, "saveSetjmp", &M);
911 
912       // Register testSetjmp function
913       FTy = FunctionType::get(
914           IRB.getInt32Ty(),
915           {getAddrIntType(&M), Type::getInt32PtrTy(C), IRB.getInt32Ty()},
916           false);
917       TestSetjmpF = getEmscriptenFunction(FTy, "testSetjmp", &M);
918 
919       // wasm.catch() will be lowered down to wasm 'catch' instruction in
920       // instruction selection.
921       CatchF = Intrinsic::getDeclaration(&M, Intrinsic::wasm_catch);
922       // Type for struct __WasmLongjmpArgs
923       LongjmpArgsTy = StructType::get(IRB.getInt8PtrTy(), // env
924                                       IRB.getInt32Ty()    // val
925       );
926     }
927   }
928 
929   // Exception handling transformation
930   if (EnableEmEH) {
931     for (Function &F : M) {
932       if (F.isDeclaration())
933         continue;
934       Changed |= runEHOnFunction(F);
935     }
936   }
937 
938   // Setjmp/longjmp handling transformation
939   if (DoSjLj) {
940     Changed = true; // We have setjmp or longjmp somewhere
941     if (LongjmpF)
942       replaceLongjmpWith(LongjmpF, EnableEmSjLj ? EmLongjmpF : WasmLongjmpF);
943     // Only traverse functions that uses setjmp in order not to insert
944     // unnecessary prep / cleanup code in every function
945     if (SetjmpF)
946       for (Function *F : SetjmpUsers)
947         runSjLjOnFunction(*F);
948   }
949 
950   if (!Changed) {
951     // Delete unused global variables and functions
952     if (ResumeF)
953       ResumeF->eraseFromParent();
954     if (EHTypeIDF)
955       EHTypeIDF->eraseFromParent();
956     if (EmLongjmpF)
957       EmLongjmpF->eraseFromParent();
958     if (SaveSetjmpF)
959       SaveSetjmpF->eraseFromParent();
960     if (TestSetjmpF)
961       TestSetjmpF->eraseFromParent();
962     return false;
963   }
964 
965   return true;
966 }
967 
968 bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function &F) {
969   Module &M = *F.getParent();
970   LLVMContext &C = F.getContext();
971   IRBuilder<> IRB(C);
972   bool Changed = false;
973   SmallVector<Instruction *, 64> ToErase;
974   SmallPtrSet<LandingPadInst *, 32> LandingPads;
975 
976   // rethrow.longjmp BB that will be shared within the function.
977   BasicBlock *RethrowLongjmpBB = nullptr;
978   // PHI node for the loaded value of __THREW__ global variable in
979   // rethrow.longjmp BB
980   PHINode *RethrowLongjmpBBThrewPHI = nullptr;
981 
982   for (BasicBlock &BB : F) {
983     auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
984     if (!II)
985       continue;
986     Changed = true;
987     LandingPads.insert(II->getLandingPadInst());
988     IRB.SetInsertPoint(II);
989 
990     const Value *Callee = II->getCalledOperand();
991     bool NeedInvoke = supportsException(&F) && canThrow(Callee);
992     if (NeedInvoke) {
993       // Wrap invoke with invoke wrapper and generate preamble/postamble
994       Value *Threw = wrapInvoke(II);
995       ToErase.push_back(II);
996 
997       // If setjmp/longjmp handling is enabled, the thrown value can be not an
998       // exception but a longjmp. If the current function contains calls to
999       // setjmp, it will be appropriately handled in runSjLjOnFunction. But even
1000       // if the function does not contain setjmp calls, we shouldn't silently
1001       // ignore longjmps; we should rethrow them so they can be correctly
1002       // handled in somewhere up the call chain where setjmp is. __THREW__'s
1003       // value is 0 when nothing happened, 1 when an exception is thrown, and
1004       // other values when longjmp is thrown.
1005       //
1006       // if (%__THREW__.val == 0 || %__THREW__.val == 1)
1007       //   goto %tail
1008       // else
1009       //   goto %longjmp.rethrow
1010       //
1011       // rethrow.longjmp: ;; This is longjmp. Rethrow it
1012       //   %__threwValue.val = __threwValue
1013       //   emscripten_longjmp(%__THREW__.val, %__threwValue.val);
1014       //
1015       // tail: ;; Nothing happened or an exception is thrown
1016       //   ... Continue exception handling ...
1017       if (DoSjLj && EnableEmSjLj && !SetjmpUsers.count(&F) &&
1018           canLongjmp(Callee)) {
1019         // Create longjmp.rethrow BB once and share it within the function
1020         if (!RethrowLongjmpBB) {
1021           RethrowLongjmpBB = BasicBlock::Create(C, "rethrow.longjmp", &F);
1022           IRB.SetInsertPoint(RethrowLongjmpBB);
1023           RethrowLongjmpBBThrewPHI =
1024               IRB.CreatePHI(getAddrIntType(&M), 4, "threw.phi");
1025           RethrowLongjmpBBThrewPHI->addIncoming(Threw, &BB);
1026           Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV,
1027                                              ThrewValueGV->getName() + ".val");
1028           IRB.CreateCall(EmLongjmpF, {RethrowLongjmpBBThrewPHI, ThrewValue});
1029           IRB.CreateUnreachable();
1030         } else {
1031           RethrowLongjmpBBThrewPHI->addIncoming(Threw, &BB);
1032         }
1033 
1034         IRB.SetInsertPoint(II); // Restore the insert point back
1035         BasicBlock *Tail = BasicBlock::Create(C, "tail", &F);
1036         Value *CmpEqOne =
1037             IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp.eq.one");
1038         Value *CmpEqZero =
1039             IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 0), "cmp.eq.zero");
1040         Value *Or = IRB.CreateOr(CmpEqZero, CmpEqOne, "or");
1041         IRB.CreateCondBr(Or, Tail, RethrowLongjmpBB);
1042         IRB.SetInsertPoint(Tail);
1043         BB.replaceSuccessorsPhiUsesWith(&BB, Tail);
1044       }
1045 
1046       // Insert a branch based on __THREW__ variable
1047       Value *Cmp = IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp");
1048       IRB.CreateCondBr(Cmp, II->getUnwindDest(), II->getNormalDest());
1049 
1050     } else {
1051       // This can't throw, and we don't need this invoke, just replace it with a
1052       // call+branch
1053       SmallVector<Value *, 16> Args(II->args());
1054       CallInst *NewCall =
1055           IRB.CreateCall(II->getFunctionType(), II->getCalledOperand(), Args);
1056       NewCall->takeName(II);
1057       NewCall->setCallingConv(II->getCallingConv());
1058       NewCall->setDebugLoc(II->getDebugLoc());
1059       NewCall->setAttributes(II->getAttributes());
1060       II->replaceAllUsesWith(NewCall);
1061       ToErase.push_back(II);
1062 
1063       IRB.CreateBr(II->getNormalDest());
1064 
1065       // Remove any PHI node entries from the exception destination
1066       II->getUnwindDest()->removePredecessor(&BB);
1067     }
1068   }
1069 
1070   // Process resume instructions
1071   for (BasicBlock &BB : F) {
1072     // Scan the body of the basic block for resumes
1073     for (Instruction &I : BB) {
1074       auto *RI = dyn_cast<ResumeInst>(&I);
1075       if (!RI)
1076         continue;
1077       Changed = true;
1078 
1079       // Split the input into legal values
1080       Value *Input = RI->getValue();
1081       IRB.SetInsertPoint(RI);
1082       Value *Low = IRB.CreateExtractValue(Input, 0, "low");
1083       // Create a call to __resumeException function
1084       IRB.CreateCall(ResumeF, {Low});
1085       // Add a terminator to the block
1086       IRB.CreateUnreachable();
1087       ToErase.push_back(RI);
1088     }
1089   }
1090 
1091   // Process llvm.eh.typeid.for intrinsics
1092   for (BasicBlock &BB : F) {
1093     for (Instruction &I : BB) {
1094       auto *CI = dyn_cast<CallInst>(&I);
1095       if (!CI)
1096         continue;
1097       const Function *Callee = CI->getCalledFunction();
1098       if (!Callee)
1099         continue;
1100       if (Callee->getIntrinsicID() != Intrinsic::eh_typeid_for)
1101         continue;
1102       Changed = true;
1103 
1104       IRB.SetInsertPoint(CI);
1105       CallInst *NewCI =
1106           IRB.CreateCall(EHTypeIDF, CI->getArgOperand(0), "typeid");
1107       CI->replaceAllUsesWith(NewCI);
1108       ToErase.push_back(CI);
1109     }
1110   }
1111 
1112   // Look for orphan landingpads, can occur in blocks with no predecessors
1113   for (BasicBlock &BB : F) {
1114     Instruction *I = BB.getFirstNonPHI();
1115     if (auto *LPI = dyn_cast<LandingPadInst>(I))
1116       LandingPads.insert(LPI);
1117   }
1118   Changed |= !LandingPads.empty();
1119 
1120   // Handle all the landingpad for this function together, as multiple invokes
1121   // may share a single lp
1122   for (LandingPadInst *LPI : LandingPads) {
1123     IRB.SetInsertPoint(LPI);
1124     SmallVector<Value *, 16> FMCArgs;
1125     for (unsigned I = 0, E = LPI->getNumClauses(); I < E; ++I) {
1126       Constant *Clause = LPI->getClause(I);
1127       // TODO Handle filters (= exception specifications).
1128       // https://bugs.llvm.org/show_bug.cgi?id=50396
1129       if (LPI->isCatch(I))
1130         FMCArgs.push_back(Clause);
1131     }
1132 
1133     // Create a call to __cxa_find_matching_catch_N function
1134     Function *FMCF = getFindMatchingCatch(M, FMCArgs.size());
1135     CallInst *FMCI = IRB.CreateCall(FMCF, FMCArgs, "fmc");
1136     Value *Undef = UndefValue::get(LPI->getType());
1137     Value *Pair0 = IRB.CreateInsertValue(Undef, FMCI, 0, "pair0");
1138     Value *TempRet0 = IRB.CreateCall(GetTempRet0F, None, "tempret0");
1139     Value *Pair1 = IRB.CreateInsertValue(Pair0, TempRet0, 1, "pair1");
1140 
1141     LPI->replaceAllUsesWith(Pair1);
1142     ToErase.push_back(LPI);
1143   }
1144 
1145   // Erase everything we no longer need in this function
1146   for (Instruction *I : ToErase)
1147     I->eraseFromParent();
1148 
1149   return Changed;
1150 }
1151 
1152 // This tries to get debug info from the instruction before which a new
1153 // instruction will be inserted, and if there's no debug info in that
1154 // instruction, tries to get the info instead from the previous instruction (if
1155 // any). If none of these has debug info and a DISubprogram is provided, it
1156 // creates a dummy debug info with the first line of the function, because IR
1157 // verifier requires all inlinable callsites should have debug info when both a
1158 // caller and callee have DISubprogram. If none of these conditions are met,
1159 // returns empty info.
1160 static DebugLoc getOrCreateDebugLoc(const Instruction *InsertBefore,
1161                                     DISubprogram *SP) {
1162   assert(InsertBefore);
1163   if (InsertBefore->getDebugLoc())
1164     return InsertBefore->getDebugLoc();
1165   const Instruction *Prev = InsertBefore->getPrevNode();
1166   if (Prev && Prev->getDebugLoc())
1167     return Prev->getDebugLoc();
1168   if (SP)
1169     return DILocation::get(SP->getContext(), SP->getLine(), 1, SP);
1170   return DebugLoc();
1171 }
1172 
1173 bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function &F) {
1174   assert(EnableEmSjLj || EnableWasmSjLj);
1175   Module &M = *F.getParent();
1176   LLVMContext &C = F.getContext();
1177   IRBuilder<> IRB(C);
1178   SmallVector<Instruction *, 64> ToErase;
1179   // Vector of %setjmpTable values
1180   SmallVector<Instruction *, 4> SetjmpTableInsts;
1181   // Vector of %setjmpTableSize values
1182   SmallVector<Instruction *, 4> SetjmpTableSizeInsts;
1183 
1184   // Setjmp preparation
1185 
1186   // This instruction effectively means %setjmpTableSize = 4.
1187   // We create this as an instruction intentionally, and we don't want to fold
1188   // this instruction to a constant 4, because this value will be used in
1189   // SSAUpdater.AddAvailableValue(...) later.
1190   BasicBlock *Entry = &F.getEntryBlock();
1191   DebugLoc FirstDL = getOrCreateDebugLoc(&*Entry->begin(), F.getSubprogram());
1192   SplitBlock(Entry, &*Entry->getFirstInsertionPt());
1193 
1194   BinaryOperator *SetjmpTableSize =
1195       BinaryOperator::Create(Instruction::Add, IRB.getInt32(4), IRB.getInt32(0),
1196                              "setjmpTableSize", Entry->getTerminator());
1197   SetjmpTableSize->setDebugLoc(FirstDL);
1198   // setjmpTable = (int *) malloc(40);
1199   Instruction *SetjmpTable = CallInst::CreateMalloc(
1200       SetjmpTableSize, IRB.getInt32Ty(), IRB.getInt32Ty(), IRB.getInt32(40),
1201       nullptr, nullptr, "setjmpTable");
1202   SetjmpTable->setDebugLoc(FirstDL);
1203   // CallInst::CreateMalloc may return a bitcast instruction if the result types
1204   // mismatch. We need to set the debug loc for the original call too.
1205   auto *MallocCall = SetjmpTable->stripPointerCasts();
1206   if (auto *MallocCallI = dyn_cast<Instruction>(MallocCall)) {
1207     MallocCallI->setDebugLoc(FirstDL);
1208   }
1209   // setjmpTable[0] = 0;
1210   IRB.SetInsertPoint(SetjmpTableSize);
1211   IRB.CreateStore(IRB.getInt32(0), SetjmpTable);
1212   SetjmpTableInsts.push_back(SetjmpTable);
1213   SetjmpTableSizeInsts.push_back(SetjmpTableSize);
1214 
1215   // Setjmp transformation
1216   SmallVector<PHINode *, 4> SetjmpRetPHIs;
1217   Function *SetjmpF = M.getFunction("setjmp");
1218   for (User *U : SetjmpF->users()) {
1219     auto *CI = dyn_cast<CallInst>(U);
1220     if (!CI)
1221       report_fatal_error("Does not support indirect calls to setjmp");
1222 
1223     BasicBlock *BB = CI->getParent();
1224     if (BB->getParent() != &F) // in other function
1225       continue;
1226 
1227     // The tail is everything right after the call, and will be reached once
1228     // when setjmp is called, and later when longjmp returns to the setjmp
1229     BasicBlock *Tail = SplitBlock(BB, CI->getNextNode());
1230     // Add a phi to the tail, which will be the output of setjmp, which
1231     // indicates if this is the first call or a longjmp back. The phi directly
1232     // uses the right value based on where we arrive from
1233     IRB.SetInsertPoint(Tail->getFirstNonPHI());
1234     PHINode *SetjmpRet = IRB.CreatePHI(IRB.getInt32Ty(), 2, "setjmp.ret");
1235 
1236     // setjmp initial call returns 0
1237     SetjmpRet->addIncoming(IRB.getInt32(0), BB);
1238     // The proper output is now this, not the setjmp call itself
1239     CI->replaceAllUsesWith(SetjmpRet);
1240     // longjmp returns to the setjmp will add themselves to this phi
1241     SetjmpRetPHIs.push_back(SetjmpRet);
1242 
1243     // Fix call target
1244     // Our index in the function is our place in the array + 1 to avoid index
1245     // 0, because index 0 means the longjmp is not ours to handle.
1246     IRB.SetInsertPoint(CI);
1247     Value *Args[] = {CI->getArgOperand(0), IRB.getInt32(SetjmpRetPHIs.size()),
1248                      SetjmpTable, SetjmpTableSize};
1249     Instruction *NewSetjmpTable =
1250         IRB.CreateCall(SaveSetjmpF, Args, "setjmpTable");
1251     Instruction *NewSetjmpTableSize =
1252         IRB.CreateCall(GetTempRet0F, None, "setjmpTableSize");
1253     SetjmpTableInsts.push_back(NewSetjmpTable);
1254     SetjmpTableSizeInsts.push_back(NewSetjmpTableSize);
1255     ToErase.push_back(CI);
1256   }
1257 
1258   // Handle longjmpable calls.
1259   if (EnableEmSjLj)
1260     handleLongjmpableCallsForEmscriptenSjLj(
1261         F, SetjmpTableInsts, SetjmpTableSizeInsts, SetjmpRetPHIs);
1262   else // EnableWasmSjLj
1263     handleLongjmpableCallsForWasmSjLj(F, SetjmpTableInsts, SetjmpTableSizeInsts,
1264                                       SetjmpRetPHIs);
1265 
1266   // Erase everything we no longer need in this function
1267   for (Instruction *I : ToErase)
1268     I->eraseFromParent();
1269 
1270   // Free setjmpTable buffer before each return instruction + function-exiting
1271   // call
1272   SmallVector<Instruction *, 16> ExitingInsts;
1273   for (BasicBlock &BB : F) {
1274     Instruction *TI = BB.getTerminator();
1275     if (isa<ReturnInst>(TI))
1276       ExitingInsts.push_back(TI);
1277     // Any 'call' instruction with 'noreturn' attribute exits the function at
1278     // this point. If this throws but unwinds to another EH pad within this
1279     // function instead of exiting, this would have been an 'invoke', which
1280     // happens if we use Wasm EH or Wasm SjLJ.
1281     for (auto &I : BB) {
1282       if (auto *CI = dyn_cast<CallInst>(&I)) {
1283         bool IsNoReturn = CI->hasFnAttr(Attribute::NoReturn);
1284         if (Function *CalleeF = CI->getCalledFunction())
1285           IsNoReturn |= CalleeF->hasFnAttribute(Attribute::NoReturn);
1286         if (IsNoReturn)
1287           ExitingInsts.push_back(&I);
1288       }
1289     }
1290   }
1291   for (auto *I : ExitingInsts) {
1292     DebugLoc DL = getOrCreateDebugLoc(I, F.getSubprogram());
1293     // If this existing instruction is a call within a catchpad, we should add
1294     // it as "funclet" to the operand bundle of 'free' call
1295     SmallVector<OperandBundleDef, 1> Bundles;
1296     if (auto *CB = dyn_cast<CallBase>(I))
1297       if (auto Bundle = CB->getOperandBundle(LLVMContext::OB_funclet))
1298         Bundles.push_back(OperandBundleDef(*Bundle));
1299     auto *Free = CallInst::CreateFree(SetjmpTable, Bundles, I);
1300     Free->setDebugLoc(DL);
1301     // CallInst::CreateFree may create a bitcast instruction if its argument
1302     // types mismatch. We need to set the debug loc for the bitcast too.
1303     if (auto *FreeCallI = dyn_cast<CallInst>(Free)) {
1304       if (auto *BitCastI = dyn_cast<BitCastInst>(FreeCallI->getArgOperand(0)))
1305         BitCastI->setDebugLoc(DL);
1306     }
1307   }
1308 
1309   // Every call to saveSetjmp can change setjmpTable and setjmpTableSize
1310   // (when buffer reallocation occurs)
1311   // entry:
1312   //   setjmpTableSize = 4;
1313   //   setjmpTable = (int *) malloc(40);
1314   //   setjmpTable[0] = 0;
1315   // ...
1316   // somebb:
1317   //   setjmpTable = saveSetjmp(env, label, setjmpTable, setjmpTableSize);
1318   //   setjmpTableSize = getTempRet0();
1319   // So we need to make sure the SSA for these variables is valid so that every
1320   // saveSetjmp and testSetjmp calls have the correct arguments.
1321   SSAUpdater SetjmpTableSSA;
1322   SSAUpdater SetjmpTableSizeSSA;
1323   SetjmpTableSSA.Initialize(Type::getInt32PtrTy(C), "setjmpTable");
1324   SetjmpTableSizeSSA.Initialize(Type::getInt32Ty(C), "setjmpTableSize");
1325   for (Instruction *I : SetjmpTableInsts)
1326     SetjmpTableSSA.AddAvailableValue(I->getParent(), I);
1327   for (Instruction *I : SetjmpTableSizeInsts)
1328     SetjmpTableSizeSSA.AddAvailableValue(I->getParent(), I);
1329 
1330   for (auto &U : make_early_inc_range(SetjmpTable->uses()))
1331     if (auto *I = dyn_cast<Instruction>(U.getUser()))
1332       if (I->getParent() != Entry)
1333         SetjmpTableSSA.RewriteUse(U);
1334   for (auto &U : make_early_inc_range(SetjmpTableSize->uses()))
1335     if (auto *I = dyn_cast<Instruction>(U.getUser()))
1336       if (I->getParent() != Entry)
1337         SetjmpTableSizeSSA.RewriteUse(U);
1338 
1339   // Finally, our modifications to the cfg can break dominance of SSA variables.
1340   // For example, in this code,
1341   // if (x()) { .. setjmp() .. }
1342   // if (y()) { .. longjmp() .. }
1343   // We must split the longjmp block, and it can jump into the block splitted
1344   // from setjmp one. But that means that when we split the setjmp block, it's
1345   // first part no longer dominates its second part - there is a theoretically
1346   // possible control flow path where x() is false, then y() is true and we
1347   // reach the second part of the setjmp block, without ever reaching the first
1348   // part. So, we rebuild SSA form here.
1349   rebuildSSA(F);
1350   return true;
1351 }
1352 
1353 // Update each call that can longjmp so it can return to the corresponding
1354 // setjmp. Refer to 4) of "Emscripten setjmp/longjmp handling" section in the
1355 // comments at top of the file for details.
1356 void WebAssemblyLowerEmscriptenEHSjLj::handleLongjmpableCallsForEmscriptenSjLj(
1357     Function &F, InstVector &SetjmpTableInsts, InstVector &SetjmpTableSizeInsts,
1358     SmallVectorImpl<PHINode *> &SetjmpRetPHIs) {
1359   Module &M = *F.getParent();
1360   LLVMContext &C = F.getContext();
1361   IRBuilder<> IRB(C);
1362   SmallVector<Instruction *, 64> ToErase;
1363 
1364   // We need to pass setjmpTable and setjmpTableSize to testSetjmp function.
1365   // These values are defined in the beginning of the function and also in each
1366   // setjmp callsite, but we don't know which values we should use at this
1367   // point. So here we arbitraily use the ones defined in the beginning of the
1368   // function, and SSAUpdater will later update them to the correct values.
1369   Instruction *SetjmpTable = *SetjmpTableInsts.begin();
1370   Instruction *SetjmpTableSize = *SetjmpTableSizeInsts.begin();
1371 
1372   // call.em.longjmp BB that will be shared within the function.
1373   BasicBlock *CallEmLongjmpBB = nullptr;
1374   // PHI node for the loaded value of __THREW__ global variable in
1375   // call.em.longjmp BB
1376   PHINode *CallEmLongjmpBBThrewPHI = nullptr;
1377   // PHI node for the loaded value of __threwValue global variable in
1378   // call.em.longjmp BB
1379   PHINode *CallEmLongjmpBBThrewValuePHI = nullptr;
1380   // rethrow.exn BB that will be shared within the function.
1381   BasicBlock *RethrowExnBB = nullptr;
1382 
1383   // Because we are creating new BBs while processing and don't want to make
1384   // all these newly created BBs candidates again for longjmp processing, we
1385   // first make the vector of candidate BBs.
1386   std::vector<BasicBlock *> BBs;
1387   for (BasicBlock &BB : F)
1388     BBs.push_back(&BB);
1389 
1390   // BBs.size() will change within the loop, so we query it every time
1391   for (unsigned I = 0; I < BBs.size(); I++) {
1392     BasicBlock *BB = BBs[I];
1393     for (Instruction &I : *BB) {
1394       if (isa<InvokeInst>(&I))
1395         report_fatal_error("When using Wasm EH with Emscripten SjLj, there is "
1396                            "a restriction that `setjmp` function call and "
1397                            "exception cannot be used within the same function");
1398       auto *CI = dyn_cast<CallInst>(&I);
1399       if (!CI)
1400         continue;
1401 
1402       const Value *Callee = CI->getCalledOperand();
1403       if (!canLongjmp(Callee))
1404         continue;
1405       if (isEmAsmCall(Callee))
1406         report_fatal_error("Cannot use EM_ASM* alongside setjmp/longjmp in " +
1407                                F.getName() +
1408                                ". Please consider using EM_JS, or move the "
1409                                "EM_ASM into another function.",
1410                            false);
1411 
1412       Value *Threw = nullptr;
1413       BasicBlock *Tail;
1414       if (Callee->getName().startswith("__invoke_")) {
1415         // If invoke wrapper has already been generated for this call in
1416         // previous EH phase, search for the load instruction
1417         // %__THREW__.val = __THREW__;
1418         // in postamble after the invoke wrapper call
1419         LoadInst *ThrewLI = nullptr;
1420         StoreInst *ThrewResetSI = nullptr;
1421         for (auto I = std::next(BasicBlock::iterator(CI)), IE = BB->end();
1422              I != IE; ++I) {
1423           if (auto *LI = dyn_cast<LoadInst>(I))
1424             if (auto *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()))
1425               if (GV == ThrewGV) {
1426                 Threw = ThrewLI = LI;
1427                 break;
1428               }
1429         }
1430         // Search for the store instruction after the load above
1431         // __THREW__ = 0;
1432         for (auto I = std::next(BasicBlock::iterator(ThrewLI)), IE = BB->end();
1433              I != IE; ++I) {
1434           if (auto *SI = dyn_cast<StoreInst>(I)) {
1435             if (auto *GV = dyn_cast<GlobalVariable>(SI->getPointerOperand())) {
1436               if (GV == ThrewGV &&
1437                   SI->getValueOperand() == getAddrSizeInt(&M, 0)) {
1438                 ThrewResetSI = SI;
1439                 break;
1440               }
1441             }
1442           }
1443         }
1444         assert(Threw && ThrewLI && "Cannot find __THREW__ load after invoke");
1445         assert(ThrewResetSI && "Cannot find __THREW__ store after invoke");
1446         Tail = SplitBlock(BB, ThrewResetSI->getNextNode());
1447 
1448       } else {
1449         // Wrap call with invoke wrapper and generate preamble/postamble
1450         Threw = wrapInvoke(CI);
1451         ToErase.push_back(CI);
1452         Tail = SplitBlock(BB, CI->getNextNode());
1453 
1454         // If exception handling is enabled, the thrown value can be not a
1455         // longjmp but an exception, in which case we shouldn't silently ignore
1456         // exceptions; we should rethrow them.
1457         // __THREW__'s value is 0 when nothing happened, 1 when an exception is
1458         // thrown, other values when longjmp is thrown.
1459         //
1460         // if (%__THREW__.val == 1)
1461         //   goto %eh.rethrow
1462         // else
1463         //   goto %normal
1464         //
1465         // eh.rethrow: ;; Rethrow exception
1466         //   %exn = call @__cxa_find_matching_catch_2() ;; Retrieve thrown ptr
1467         //   __resumeException(%exn)
1468         //
1469         // normal:
1470         //   <-- Insertion point. Will insert sjlj handling code from here
1471         //   goto %tail
1472         //
1473         // tail:
1474         //   ...
1475         if (supportsException(&F) && canThrow(Callee)) {
1476           // We will add a new conditional branch. So remove the branch created
1477           // when we split the BB
1478           ToErase.push_back(BB->getTerminator());
1479 
1480           // Generate rethrow.exn BB once and share it within the function
1481           if (!RethrowExnBB) {
1482             RethrowExnBB = BasicBlock::Create(C, "rethrow.exn", &F);
1483             IRB.SetInsertPoint(RethrowExnBB);
1484             CallInst *Exn =
1485                 IRB.CreateCall(getFindMatchingCatch(M, 0), {}, "exn");
1486             IRB.CreateCall(ResumeF, {Exn});
1487             IRB.CreateUnreachable();
1488           }
1489 
1490           IRB.SetInsertPoint(CI);
1491           BasicBlock *NormalBB = BasicBlock::Create(C, "normal", &F);
1492           Value *CmpEqOne =
1493               IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp.eq.one");
1494           IRB.CreateCondBr(CmpEqOne, RethrowExnBB, NormalBB);
1495 
1496           IRB.SetInsertPoint(NormalBB);
1497           IRB.CreateBr(Tail);
1498           BB = NormalBB; // New insertion point to insert testSetjmp()
1499         }
1500       }
1501 
1502       // We need to replace the terminator in Tail - SplitBlock makes BB go
1503       // straight to Tail, we need to check if a longjmp occurred, and go to the
1504       // right setjmp-tail if so
1505       ToErase.push_back(BB->getTerminator());
1506 
1507       // Generate a function call to testSetjmp function and preamble/postamble
1508       // code to figure out (1) whether longjmp occurred (2) if longjmp
1509       // occurred, which setjmp it corresponds to
1510       Value *Label = nullptr;
1511       Value *LongjmpResult = nullptr;
1512       BasicBlock *EndBB = nullptr;
1513       wrapTestSetjmp(BB, CI->getDebugLoc(), Threw, SetjmpTable, SetjmpTableSize,
1514                      Label, LongjmpResult, CallEmLongjmpBB,
1515                      CallEmLongjmpBBThrewPHI, CallEmLongjmpBBThrewValuePHI,
1516                      EndBB);
1517       assert(Label && LongjmpResult && EndBB);
1518 
1519       // Create switch instruction
1520       IRB.SetInsertPoint(EndBB);
1521       IRB.SetCurrentDebugLocation(EndBB->getInstList().back().getDebugLoc());
1522       SwitchInst *SI = IRB.CreateSwitch(Label, Tail, SetjmpRetPHIs.size());
1523       // -1 means no longjmp happened, continue normally (will hit the default
1524       // switch case). 0 means a longjmp that is not ours to handle, needs a
1525       // rethrow. Otherwise the index is the same as the index in P+1 (to avoid
1526       // 0).
1527       for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) {
1528         SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent());
1529         SetjmpRetPHIs[I]->addIncoming(LongjmpResult, EndBB);
1530       }
1531 
1532       // We are splitting the block here, and must continue to find other calls
1533       // in the block - which is now split. so continue to traverse in the Tail
1534       BBs.push_back(Tail);
1535     }
1536   }
1537 
1538   for (Instruction *I : ToErase)
1539     I->eraseFromParent();
1540 }
1541 
1542 // Create a catchpad in which we catch a longjmp's env and val arguments, test
1543 // if the longjmp corresponds to one of setjmps in the current function, and if
1544 // so, jump to the setjmp dispatch BB from which we go to one of post-setjmp
1545 // BBs. Refer to 4) of "Wasm setjmp/longjmp handling" section in the comments at
1546 // top of the file for details.
1547 void WebAssemblyLowerEmscriptenEHSjLj::handleLongjmpableCallsForWasmSjLj(
1548     Function &F, InstVector &SetjmpTableInsts, InstVector &SetjmpTableSizeInsts,
1549     SmallVectorImpl<PHINode *> &SetjmpRetPHIs) {
1550   Module &M = *F.getParent();
1551   LLVMContext &C = F.getContext();
1552   IRBuilder<> IRB(C);
1553 
1554   // A function with catchswitch/catchpad instruction should have a personality
1555   // function attached to it. Search for the wasm personality function, and if
1556   // it exists, use it, and if it doesn't, create a dummy personality function.
1557   // (SjLj is not going to call it anyway.)
1558   if (!F.hasPersonalityFn()) {
1559     StringRef PersName = getEHPersonalityName(EHPersonality::Wasm_CXX);
1560     FunctionType *PersType =
1561         FunctionType::get(IRB.getInt32Ty(), /* isVarArg */ true);
1562     Value *PersF = M.getOrInsertFunction(PersName, PersType).getCallee();
1563     F.setPersonalityFn(
1564         cast<Constant>(IRB.CreateBitCast(PersF, IRB.getInt8PtrTy())));
1565   }
1566 
1567   // Use the entry BB's debugloc as a fallback
1568   BasicBlock *Entry = &F.getEntryBlock();
1569   DebugLoc FirstDL = getOrCreateDebugLoc(&*Entry->begin(), F.getSubprogram());
1570   IRB.SetCurrentDebugLocation(FirstDL);
1571 
1572   // Arbitrarily use the ones defined in the beginning of the function.
1573   // SSAUpdater will later update them to the correct values.
1574   Instruction *SetjmpTable = *SetjmpTableInsts.begin();
1575   Instruction *SetjmpTableSize = *SetjmpTableSizeInsts.begin();
1576 
1577   // Add setjmp.dispatch BB right after the entry block. Because we have
1578   // initialized setjmpTable/setjmpTableSize in the entry block and split the
1579   // rest into another BB, here 'OrigEntry' is the function's original entry
1580   // block before the transformation.
1581   //
1582   // entry:
1583   //   setjmpTable / setjmpTableSize initialization
1584   // setjmp.dispatch:
1585   //   switch will be inserted here later
1586   // entry.split: (OrigEntry)
1587   //   the original function starts here
1588   BasicBlock *OrigEntry = Entry->getNextNode();
1589   BasicBlock *SetjmpDispatchBB =
1590       BasicBlock::Create(C, "setjmp.dispatch", &F, OrigEntry);
1591   cast<BranchInst>(Entry->getTerminator())->setSuccessor(0, SetjmpDispatchBB);
1592 
1593   // Create catch.dispatch.longjmp BB a catchswitch instruction
1594   BasicBlock *CatchSwitchBB =
1595       BasicBlock::Create(C, "catch.dispatch.longjmp", &F);
1596   IRB.SetInsertPoint(CatchSwitchBB);
1597   CatchSwitchInst *CatchSwitch =
1598       IRB.CreateCatchSwitch(ConstantTokenNone::get(C), nullptr, 1);
1599 
1600   // Create catch.longjmp BB and a catchpad instruction
1601   BasicBlock *CatchLongjmpBB = BasicBlock::Create(C, "catch.longjmp", &F);
1602   CatchSwitch->addHandler(CatchLongjmpBB);
1603   IRB.SetInsertPoint(CatchLongjmpBB);
1604   CatchPadInst *CatchPad = IRB.CreateCatchPad(CatchSwitch, {});
1605 
1606   // Wasm throw and catch instructions can throw and catch multiple values, but
1607   // that requires multivalue support in the toolchain, which is currently not
1608   // very reliable. We instead throw and catch a pointer to a struct value of
1609   // type 'struct __WasmLongjmpArgs', which is defined in Emscripten.
1610   Instruction *CatchCI =
1611       IRB.CreateCall(CatchF, {IRB.getInt32(WebAssembly::C_LONGJMP)}, "thrown");
1612   Value *LongjmpArgs =
1613       IRB.CreateBitCast(CatchCI, LongjmpArgsTy->getPointerTo(), "longjmp.args");
1614   Value *EnvField =
1615       IRB.CreateConstGEP2_32(LongjmpArgsTy, LongjmpArgs, 0, 0, "env_gep");
1616   Value *ValField =
1617       IRB.CreateConstGEP2_32(LongjmpArgsTy, LongjmpArgs, 0, 1, "val_gep");
1618   // void *env = __wasm_longjmp_args.env;
1619   Instruction *Env = IRB.CreateLoad(IRB.getInt8PtrTy(), EnvField, "env");
1620   // int val = __wasm_longjmp_args.val;
1621   Instruction *Val = IRB.CreateLoad(IRB.getInt32Ty(), ValField, "val");
1622 
1623   // %label = testSetjmp(mem[%env], setjmpTable, setjmpTableSize);
1624   // if (%label == 0)
1625   //   __wasm_longjmp(%env, %val)
1626   // catchret to %setjmp.dispatch
1627   BasicBlock *ThenBB = BasicBlock::Create(C, "if.then", &F);
1628   BasicBlock *EndBB = BasicBlock::Create(C, "if.end", &F);
1629   Value *EnvP = IRB.CreateBitCast(Env, getAddrPtrType(&M), "env.p");
1630   Value *SetjmpID = IRB.CreateLoad(getAddrIntType(&M), EnvP, "setjmp.id");
1631   Value *Label =
1632       IRB.CreateCall(TestSetjmpF, {SetjmpID, SetjmpTable, SetjmpTableSize},
1633                      OperandBundleDef("funclet", CatchPad), "label");
1634   Value *Cmp = IRB.CreateICmpEQ(Label, IRB.getInt32(0));
1635   IRB.CreateCondBr(Cmp, ThenBB, EndBB);
1636 
1637   IRB.SetInsertPoint(ThenBB);
1638   CallInst *WasmLongjmpCI = IRB.CreateCall(
1639       WasmLongjmpF, {Env, Val}, OperandBundleDef("funclet", CatchPad));
1640   IRB.CreateUnreachable();
1641 
1642   IRB.SetInsertPoint(EndBB);
1643   // Jump to setjmp.dispatch block
1644   IRB.CreateCatchRet(CatchPad, SetjmpDispatchBB);
1645 
1646   // Go back to setjmp.dispatch BB
1647   // setjmp.dispatch:
1648   //   switch %label {
1649   //     label 1: goto post-setjmp BB 1
1650   //     label 2: goto post-setjmp BB 2
1651   //     ...
1652   //     default: goto splitted next BB
1653   //   }
1654   IRB.SetInsertPoint(SetjmpDispatchBB);
1655   PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label.phi");
1656   LabelPHI->addIncoming(Label, EndBB);
1657   LabelPHI->addIncoming(IRB.getInt32(-1), Entry);
1658   SwitchInst *SI = IRB.CreateSwitch(LabelPHI, OrigEntry, SetjmpRetPHIs.size());
1659   // -1 means no longjmp happened, continue normally (will hit the default
1660   // switch case). 0 means a longjmp that is not ours to handle, needs a
1661   // rethrow. Otherwise the index is the same as the index in P+1 (to avoid
1662   // 0).
1663   for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) {
1664     SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent());
1665     SetjmpRetPHIs[I]->addIncoming(Val, SetjmpDispatchBB);
1666   }
1667 
1668   // Convert all longjmpable call instructions to invokes that unwind to the
1669   // newly created catch.dispatch.longjmp BB.
1670   SmallVector<Instruction *, 64> ToErase;
1671   for (auto *BB = &*F.begin(); BB; BB = BB->getNextNode()) {
1672     for (Instruction &I : *BB) {
1673       auto *CI = dyn_cast<CallInst>(&I);
1674       if (!CI)
1675         continue;
1676       const Value *Callee = CI->getCalledOperand();
1677       if (!canLongjmp(Callee))
1678         continue;
1679       if (isEmAsmCall(Callee))
1680         report_fatal_error("Cannot use EM_ASM* alongside setjmp/longjmp in " +
1681                                F.getName() +
1682                                ". Please consider using EM_JS, or move the "
1683                                "EM_ASM into another function.",
1684                            false);
1685       // This is __wasm_longjmp() call we inserted in this function, which
1686       // rethrows the longjmp when the longjmp does not correspond to one of
1687       // setjmps in this function. We should not convert this call to an invoke.
1688       if (CI == WasmLongjmpCI)
1689         continue;
1690       ToErase.push_back(CI);
1691 
1692       // Even if the callee function has attribute 'nounwind', which is true for
1693       // all C functions, it can longjmp, which means it can throw a Wasm
1694       // exception now.
1695       CI->removeFnAttr(Attribute::NoUnwind);
1696       if (Function *CalleeF = CI->getCalledFunction()) {
1697         CalleeF->removeFnAttr(Attribute::NoUnwind);
1698       }
1699 
1700       IRB.SetInsertPoint(CI);
1701       BasicBlock *Tail = SplitBlock(BB, CI->getNextNode());
1702       // We will add a new invoke. So remove the branch created when we split
1703       // the BB
1704       ToErase.push_back(BB->getTerminator());
1705       SmallVector<Value *, 8> Args(CI->args());
1706       InvokeInst *II =
1707           IRB.CreateInvoke(CI->getFunctionType(), CI->getCalledOperand(), Tail,
1708                            CatchSwitchBB, Args);
1709       II->takeName(CI);
1710       II->setDebugLoc(CI->getDebugLoc());
1711       II->setAttributes(CI->getAttributes());
1712       CI->replaceAllUsesWith(II);
1713     }
1714   }
1715 
1716   for (Instruction *I : ToErase)
1717     I->eraseFromParent();
1718 }
1719