1 //=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// 10 /// \file 11 /// \brief This file lowers exception-related instructions and setjmp/longjmp 12 /// function calls in order to use Emscripten's JavaScript try and catch 13 /// mechanism. 14 /// 15 /// To handle exceptions and setjmp/longjmps, this scheme relies on JavaScript's 16 /// try and catch syntax and relevant exception-related libraries implemented 17 /// in JavaScript glue code that will be produced by Emscripten. This is similar 18 /// to the current Emscripten asm.js exception handling in fastcomp. For 19 /// fastcomp's EH / SjLj scheme, see these files in fastcomp LLVM branch: 20 /// (Location: https://github.com/kripken/emscripten-fastcomp) 21 /// lib/Target/JSBackend/NaCl/LowerEmExceptionsPass.cpp 22 /// lib/Target/JSBackend/NaCl/LowerEmSetjmp.cpp 23 /// lib/Target/JSBackend/JSBackend.cpp 24 /// lib/Target/JSBackend/CallHandlers.h 25 /// 26 /// * Exception handling 27 /// This pass lowers invokes and landingpads into library functions in JS glue 28 /// code. Invokes are lowered into function wrappers called invoke wrappers that 29 /// exist in JS side, which wraps the original function call with JS try-catch. 30 /// If an exception occurred, cxa_throw() function in JS side sets some 31 /// variables (see below) so we can check whether an exception occurred from 32 /// wasm code and handle it appropriately. 33 /// 34 /// * Setjmp-longjmp handling 35 /// This pass lowers setjmp to a reasonably-performant approach for emscripten. 36 /// The idea is that each block with a setjmp is broken up into two parts: the 37 /// part containing setjmp and the part right after the setjmp. The latter part 38 /// is either reached from the setjmp, or later from a longjmp. To handle the 39 /// longjmp, all calls that might longjmp are also called using invoke wrappers 40 /// and thus JS / try-catch. JS longjmp() function also sets some variables so 41 /// we can check / whether a longjmp occurred from wasm code. Each block with a 42 /// function call that might longjmp is also split up after the longjmp call. 43 /// After the longjmp call, we check whether a longjmp occurred, and if it did, 44 /// which setjmp it corresponds to, and jump to the right post-setjmp block. 45 /// We assume setjmp-longjmp handling always run after EH handling, which means 46 /// we don't expect any exception-related instructions when SjLj runs. 47 /// FIXME Currently this scheme does not support indirect call of setjmp, 48 /// because of the limitation of the scheme itself. fastcomp does not support it 49 /// either. 50 /// 51 /// In detail, this pass does following things: 52 /// 53 /// 1) Create three global variables: __THREW__, __threwValue, and __tempRet0. 54 /// __tempRet0 will be set within __cxa_find_matching_catch() function in 55 /// JS library, and __THREW__ and __threwValue will be set in invoke wrappers 56 /// in JS glue code. For what invoke wrappers are, refer to 3). These 57 /// variables are used for both exceptions and setjmp/longjmps. 58 /// __THREW__ indicates whether an exception or a longjmp occurred or not. 0 59 /// means nothing occurred, 1 means an exception occurred, and other numbers 60 /// mean a longjmp occurred. In the case of longjmp, __threwValue variable 61 /// indicates the corresponding setjmp buffer the longjmp corresponds to. 62 /// In exception handling, __tempRet0 indicates the type of an exception 63 /// caught, and in setjmp/longjmp, it means the second argument to longjmp 64 /// function. 65 /// 66 /// * Exception handling 67 /// 68 /// 2) Create setThrew and setTempRet0 functions. 69 /// The global variables created in 1) will exist in wasm address space, 70 /// but their values should be set in JS code, so we provide these functions 71 /// as interfaces to JS glue code. These functions are equivalent to the 72 /// following JS functions, which actually exist in asm.js version of JS 73 /// library. 74 /// 75 /// function setThrew(threw, value) { 76 /// if (__THREW__ == 0) { 77 /// __THREW__ = threw; 78 /// __threwValue = value; 79 /// } 80 /// } 81 /// 82 /// function setTempRet0(value) { 83 /// __tempRet0 = value; 84 /// } 85 /// 86 /// 3) Lower 87 /// invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad 88 /// into 89 /// __THREW__ = 0; 90 /// call @__invoke_SIG(func, arg1, arg2) 91 /// %__THREW__.val = __THREW__; 92 /// __THREW__ = 0; 93 /// if (%__THREW__.val == 1) 94 /// goto %lpad 95 /// else 96 /// goto %invoke.cont 97 /// SIG is a mangled string generated based on the LLVM IR-level function 98 /// signature. After LLVM IR types are lowered to the target wasm types, 99 /// the names for these wrappers will change based on wasm types as well, 100 /// as in invoke_vi (function takes an int and returns void). The bodies of 101 /// these wrappers will be generated in JS glue code, and inside those 102 /// wrappers we use JS try-catch to generate actual exception effects. It 103 /// also calls the original callee function. An example wrapper in JS code 104 /// would look like this: 105 /// function invoke_vi(index,a1) { 106 /// try { 107 /// Module["dynCall_vi"](index,a1); // This calls original callee 108 /// } catch(e) { 109 /// if (typeof e !== 'number' && e !== 'longjmp') throw e; 110 /// asm["setThrew"](1, 0); // setThrew is called here 111 /// } 112 /// } 113 /// If an exception is thrown, __THREW__ will be set to true in a wrapper, 114 /// so we can jump to the right BB based on this value. 115 /// 116 /// 4) Lower 117 /// %val = landingpad catch c1 catch c2 catch c3 ... 118 /// ... use %val ... 119 /// into 120 /// %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...) 121 /// %val = {%fmc, __tempRet0} 122 /// ... use %val ... 123 /// Here N is a number calculated based on the number of clauses. 124 /// Global variable __tempRet0 is set within __cxa_find_matching_catch() in 125 /// JS glue code. 126 /// 127 /// 5) Lower 128 /// resume {%a, %b} 129 /// into 130 /// call @__resumeException(%a) 131 /// where __resumeException() is a function in JS glue code. 132 /// 133 /// 6) Lower 134 /// call @llvm.eh.typeid.for(type) (intrinsic) 135 /// into 136 /// call @llvm_eh_typeid_for(type) 137 /// llvm_eh_typeid_for function will be generated in JS glue code. 138 /// 139 /// * Setjmp / Longjmp handling 140 /// 141 /// 7) In the function entry that calls setjmp, initialize setjmpTable and 142 /// sejmpTableSize as follows: 143 /// setjmpTableSize = 4; 144 /// setjmpTable = (int *) malloc(40); 145 /// setjmpTable[0] = 0; 146 /// setjmpTable and setjmpTableSize are used in saveSetjmp() function in JS 147 /// code. 148 /// 149 /// 8) Lower 150 /// setjmp(buf) 151 /// into 152 /// setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize); 153 /// setjmpTableSize = __tempRet0; 154 /// For each dynamic setjmp call, setjmpTable stores its ID (a number which 155 /// is incrementally assigned from 0) and its label (a unique number that 156 /// represents each callsite of setjmp). When we need more entries in 157 /// setjmpTable, it is reallocated in saveSetjmp() in JS code and it will 158 /// return the new table address, and assign the new table size in 159 /// __tempRet0. saveSetjmp also stores the setjmp's ID into the buffer buf. 160 /// A BB with setjmp is split into two after setjmp call in order to make the 161 /// post-setjmp BB the possible destination of longjmp BB. 162 /// 163 /// 9) Lower 164 /// longjmp(buf, value) 165 /// into 166 /// emscripten_longjmp_jmpbuf(buf, value) 167 /// emscripten_longjmp_jmpbuf will be lowered to emscripten_longjmp later. 168 /// 169 /// 10) Lower every call that might longjmp into 170 /// __THREW__ = 0; 171 /// call @__invoke_SIG(func, arg1, arg2) 172 /// %__THREW__.val = __THREW__; 173 /// __THREW__ = 0; 174 /// if (%__THREW__.val != 0 & __threwValue != 0) { 175 /// %label = testSetjmp(mem[%__THREW__.val], setjmpTable, 176 /// setjmpTableSize); 177 /// if (%label == 0) 178 /// emscripten_longjmp(%__THREW__.val, __threwValue); 179 /// __tempRet0 = __threwValue; 180 /// } else { 181 /// %label = -1; 182 /// } 183 /// longjmp_result = __tempRet0; 184 /// switch label { 185 /// label 1: goto post-setjmp BB 1 186 /// label 2: goto post-setjmp BB 2 187 /// ... 188 /// default: goto splitted next BB 189 /// } 190 /// testSetjmp examines setjmpTable to see if there is a matching setjmp 191 /// call. After calling an invoke wrapper, if a longjmp occurred, __THREW__ 192 /// will be the address of matching jmp_buf buffer and __threwValue be the 193 /// second argument to longjmp. mem[__THREW__.val] is a setjmp ID that is 194 /// stored in saveSetjmp. testSetjmp returns a setjmp label, a unique ID to 195 /// each setjmp callsite. Label 0 means this longjmp buffer does not 196 /// correspond to one of the setjmp callsites in this function, so in this 197 /// case we just chain the longjmp to the caller. (Here we call 198 /// emscripten_longjmp, which is different from emscripten_longjmp_jmpbuf. 199 /// emscripten_longjmp_jmpbuf takes jmp_buf as its first argument, while 200 /// emscripten_longjmp takes an int. Both of them will eventually be lowered 201 /// to emscripten_longjmp in s2wasm, but here we need two signatures - we 202 /// can't translate an int value to a jmp_buf.) 203 /// Label -1 means no longjmp occurred. Otherwise we jump to the right 204 /// post-setjmp BB based on the label. 205 /// 206 ///===----------------------------------------------------------------------===// 207 208 #include "WebAssembly.h" 209 #include "llvm/IR/CallSite.h" 210 #include "llvm/IR/Dominators.h" 211 #include "llvm/IR/IRBuilder.h" 212 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 213 #include "llvm/Transforms/Utils/SSAUpdater.h" 214 215 using namespace llvm; 216 217 #define DEBUG_TYPE "wasm-lower-em-ehsjlj" 218 219 static cl::list<std::string> 220 EHWhitelist("emscripten-cxx-exceptions-whitelist", 221 cl::desc("The list of function names in which Emscripten-style " 222 "exception handling is enabled (see emscripten " 223 "EMSCRIPTEN_CATCHING_WHITELIST options)"), 224 cl::CommaSeparated); 225 226 namespace { 227 class WebAssemblyLowerEmscriptenEHSjLj final : public ModulePass { 228 static const char *ThrewGVName; 229 static const char *ThrewValueGVName; 230 static const char *TempRet0GVName; 231 static const char *ResumeFName; 232 static const char *EHTypeIDFName; 233 static const char *SetThrewFName; 234 static const char *SetTempRet0FName; 235 static const char *EmLongjmpFName; 236 static const char *EmLongjmpJmpbufFName; 237 static const char *SaveSetjmpFName; 238 static const char *TestSetjmpFName; 239 static const char *FindMatchingCatchPrefix; 240 static const char *InvokePrefix; 241 242 bool EnableEH; // Enable exception handling 243 bool EnableSjLj; // Enable setjmp/longjmp handling 244 245 GlobalVariable *ThrewGV; 246 GlobalVariable *ThrewValueGV; 247 GlobalVariable *TempRet0GV; 248 Function *ResumeF; 249 Function *EHTypeIDF; 250 Function *EmLongjmpF; 251 Function *EmLongjmpJmpbufF; 252 Function *SaveSetjmpF; 253 Function *TestSetjmpF; 254 255 // __cxa_find_matching_catch_N functions. 256 // Indexed by the number of clauses in an original landingpad instruction. 257 DenseMap<int, Function *> FindMatchingCatches; 258 // Map of <function signature string, invoke_ wrappers> 259 StringMap<Function *> InvokeWrappers; 260 // Set of whitelisted function names for exception handling 261 std::set<std::string> EHWhitelistSet; 262 263 StringRef getPassName() const override { 264 return "WebAssembly Lower Emscripten Exceptions"; 265 } 266 267 bool runEHOnFunction(Function &F); 268 bool runSjLjOnFunction(Function &F); 269 Function *getFindMatchingCatch(Module &M, unsigned NumClauses); 270 271 template <typename CallOrInvoke> Value *wrapInvoke(CallOrInvoke *CI); 272 void wrapTestSetjmp(BasicBlock *BB, Instruction *InsertPt, Value *Threw, 273 Value *SetjmpTable, Value *SetjmpTableSize, Value *&Label, 274 Value *&LongjmpResult, BasicBlock *&EndBB); 275 template <typename CallOrInvoke> Function *getInvokeWrapper(CallOrInvoke *CI); 276 277 bool areAllExceptionsAllowed() const { return EHWhitelistSet.empty(); } 278 bool canLongjmp(Module &M, const Value *Callee) const; 279 280 void createSetThrewFunction(Module &M); 281 void createSetTempRet0Function(Module &M); 282 283 void rebuildSSA(Function &F); 284 285 public: 286 static char ID; 287 288 WebAssemblyLowerEmscriptenEHSjLj(bool EnableEH = true, bool EnableSjLj = true) 289 : ModulePass(ID), EnableEH(EnableEH), EnableSjLj(EnableSjLj), 290 ThrewGV(nullptr), ThrewValueGV(nullptr), TempRet0GV(nullptr), 291 ResumeF(nullptr), EHTypeIDF(nullptr), EmLongjmpF(nullptr), 292 EmLongjmpJmpbufF(nullptr), SaveSetjmpF(nullptr), TestSetjmpF(nullptr) { 293 EHWhitelistSet.insert(EHWhitelist.begin(), EHWhitelist.end()); 294 } 295 bool runOnModule(Module &M) override; 296 297 void getAnalysisUsage(AnalysisUsage &AU) const override { 298 AU.addRequired<DominatorTreeWrapperPass>(); 299 } 300 }; 301 } // End anonymous namespace 302 303 const char *WebAssemblyLowerEmscriptenEHSjLj::ThrewGVName = "__THREW__"; 304 const char *WebAssemblyLowerEmscriptenEHSjLj::ThrewValueGVName = "__threwValue"; 305 const char *WebAssemblyLowerEmscriptenEHSjLj::TempRet0GVName = "__tempRet0"; 306 const char *WebAssemblyLowerEmscriptenEHSjLj::ResumeFName = "__resumeException"; 307 const char *WebAssemblyLowerEmscriptenEHSjLj::EHTypeIDFName = 308 "llvm_eh_typeid_for"; 309 const char *WebAssemblyLowerEmscriptenEHSjLj::SetThrewFName = "setThrew"; 310 const char *WebAssemblyLowerEmscriptenEHSjLj::SetTempRet0FName = "setTempRet0"; 311 const char *WebAssemblyLowerEmscriptenEHSjLj::EmLongjmpFName = 312 "emscripten_longjmp"; 313 const char *WebAssemblyLowerEmscriptenEHSjLj::EmLongjmpJmpbufFName = 314 "emscripten_longjmp_jmpbuf"; 315 const char *WebAssemblyLowerEmscriptenEHSjLj::SaveSetjmpFName = "saveSetjmp"; 316 const char *WebAssemblyLowerEmscriptenEHSjLj::TestSetjmpFName = "testSetjmp"; 317 const char *WebAssemblyLowerEmscriptenEHSjLj::FindMatchingCatchPrefix = 318 "__cxa_find_matching_catch_"; 319 const char *WebAssemblyLowerEmscriptenEHSjLj::InvokePrefix = "__invoke_"; 320 321 char WebAssemblyLowerEmscriptenEHSjLj::ID = 0; 322 INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj, DEBUG_TYPE, 323 "WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp", 324 false, false) 325 326 ModulePass *llvm::createWebAssemblyLowerEmscriptenEHSjLj(bool EnableEH, 327 bool EnableSjLj) { 328 return new WebAssemblyLowerEmscriptenEHSjLj(EnableEH, EnableSjLj); 329 } 330 331 static bool canThrow(const Value *V) { 332 if (const auto *F = dyn_cast<const Function>(V)) { 333 // Intrinsics cannot throw 334 if (F->isIntrinsic()) 335 return false; 336 StringRef Name = F->getName(); 337 // leave setjmp and longjmp (mostly) alone, we process them properly later 338 if (Name == "setjmp" || Name == "longjmp") 339 return false; 340 return !F->doesNotThrow(); 341 } 342 // not a function, so an indirect call - can throw, we can't tell 343 return true; 344 } 345 346 // Returns an available name for a global value. 347 // If the proposed name already exists in the module, adds '_' at the end of 348 // the name until the name is available. 349 static inline std::string createGlobalValueName(const Module &M, 350 const std::string &Propose) { 351 std::string Name = Propose; 352 while (M.getNamedGlobal(Name)) 353 Name += "_"; 354 return Name; 355 } 356 357 // Simple function name mangler. 358 // This function simply takes LLVM's string representation of parameter types 359 // and concatenate them with '_'. There are non-alphanumeric characters but llc 360 // is ok with it, and we need to postprocess these names after the lowering 361 // phase anyway. 362 static std::string getSignature(FunctionType *FTy) { 363 std::string Sig; 364 raw_string_ostream OS(Sig); 365 OS << *FTy->getReturnType(); 366 for (Type *ParamTy : FTy->params()) 367 OS << "_" << *ParamTy; 368 if (FTy->isVarArg()) 369 OS << "_..."; 370 Sig = OS.str(); 371 Sig.erase(remove_if(Sig, isspace), Sig.end()); 372 // When s2wasm parses .s file, a comma means the end of an argument. So a 373 // mangled function name can contain any character but a comma. 374 std::replace(Sig.begin(), Sig.end(), ',', '.'); 375 return Sig; 376 } 377 378 // Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2. 379 // This is because a landingpad instruction contains two more arguments, a 380 // personality function and a cleanup bit, and __cxa_find_matching_catch_N 381 // functions are named after the number of arguments in the original landingpad 382 // instruction. 383 Function * 384 WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module &M, 385 unsigned NumClauses) { 386 if (FindMatchingCatches.count(NumClauses)) 387 return FindMatchingCatches[NumClauses]; 388 PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext()); 389 SmallVector<Type *, 16> Args(NumClauses, Int8PtrTy); 390 FunctionType *FTy = FunctionType::get(Int8PtrTy, Args, false); 391 Function *F = 392 Function::Create(FTy, GlobalValue::ExternalLinkage, 393 FindMatchingCatchPrefix + Twine(NumClauses + 2), &M); 394 FindMatchingCatches[NumClauses] = F; 395 return F; 396 } 397 398 // Generate invoke wrapper seqence with preamble and postamble 399 // Preamble: 400 // __THREW__ = 0; 401 // Postamble: 402 // %__THREW__.val = __THREW__; __THREW__ = 0; 403 // Returns %__THREW__.val, which indicates whether an exception is thrown (or 404 // whether longjmp occurred), for future use. 405 template <typename CallOrInvoke> 406 Value *WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallOrInvoke *CI) { 407 LLVMContext &C = CI->getModule()->getContext(); 408 409 // If we are calling a function that is noreturn, we must remove that 410 // attribute. The code we insert here does expect it to return, after we 411 // catch the exception. 412 if (CI->doesNotReturn()) { 413 if (auto *F = dyn_cast<Function>(CI->getCalledValue())) 414 F->removeFnAttr(Attribute::NoReturn); 415 CI->removeAttribute(AttributeList::FunctionIndex, Attribute::NoReturn); 416 } 417 418 IRBuilder<> IRB(C); 419 IRB.SetInsertPoint(CI); 420 421 // Pre-invoke 422 // __THREW__ = 0; 423 IRB.CreateStore(IRB.getInt32(0), ThrewGV); 424 425 // Invoke function wrapper in JavaScript 426 SmallVector<Value *, 16> Args; 427 // Put the pointer to the callee as first argument, so it can be called 428 // within the invoke wrapper later 429 Args.push_back(CI->getCalledValue()); 430 Args.append(CI->arg_begin(), CI->arg_end()); 431 CallInst *NewCall = IRB.CreateCall(getInvokeWrapper(CI), Args); 432 NewCall->takeName(CI); 433 NewCall->setCallingConv(CI->getCallingConv()); 434 NewCall->setDebugLoc(CI->getDebugLoc()); 435 436 // Because we added the pointer to the callee as first argument, all 437 // argument attribute indices have to be incremented by one. 438 SmallVector<AttributeSet, 8> ArgAttributes; 439 const AttributeList &InvokeAL = CI->getAttributes(); 440 441 // No attributes for the callee pointer. 442 ArgAttributes.push_back(AttributeSet()); 443 // Copy the argument attributes from the original 444 for (unsigned i = 0, e = CI->getNumArgOperands(); i < e; ++i) 445 ArgAttributes.push_back(InvokeAL.getParamAttributes(i)); 446 447 // Reconstruct the AttributesList based on the vector we constructed. 448 AttributeList NewCallAL = 449 AttributeList::get(C, InvokeAL.getFnAttributes(), 450 InvokeAL.getRetAttributes(), ArgAttributes); 451 NewCall->setAttributes(NewCallAL); 452 453 CI->replaceAllUsesWith(NewCall); 454 455 // Post-invoke 456 // %__THREW__.val = __THREW__; __THREW__ = 0; 457 Value *Threw = IRB.CreateLoad(ThrewGV, ThrewGV->getName() + ".val"); 458 IRB.CreateStore(IRB.getInt32(0), ThrewGV); 459 return Threw; 460 } 461 462 // Get matching invoke wrapper based on callee signature 463 template <typename CallOrInvoke> 464 Function *WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallOrInvoke *CI) { 465 Module *M = CI->getModule(); 466 SmallVector<Type *, 16> ArgTys; 467 Value *Callee = CI->getCalledValue(); 468 FunctionType *CalleeFTy; 469 if (auto *F = dyn_cast<Function>(Callee)) 470 CalleeFTy = F->getFunctionType(); 471 else { 472 auto *CalleeTy = cast<PointerType>(Callee->getType())->getElementType(); 473 CalleeFTy = dyn_cast<FunctionType>(CalleeTy); 474 } 475 476 std::string Sig = getSignature(CalleeFTy); 477 if (InvokeWrappers.find(Sig) != InvokeWrappers.end()) 478 return InvokeWrappers[Sig]; 479 480 // Put the pointer to the callee as first argument 481 ArgTys.push_back(PointerType::getUnqual(CalleeFTy)); 482 // Add argument types 483 ArgTys.append(CalleeFTy->param_begin(), CalleeFTy->param_end()); 484 485 FunctionType *FTy = FunctionType::get(CalleeFTy->getReturnType(), ArgTys, 486 CalleeFTy->isVarArg()); 487 Function *F = Function::Create(FTy, GlobalValue::ExternalLinkage, 488 InvokePrefix + Sig, M); 489 InvokeWrappers[Sig] = F; 490 return F; 491 } 492 493 bool WebAssemblyLowerEmscriptenEHSjLj::canLongjmp(Module &M, 494 const Value *Callee) const { 495 if (auto *CalleeF = dyn_cast<Function>(Callee)) 496 if (CalleeF->isIntrinsic()) 497 return false; 498 499 // The reason we include malloc/free here is to exclude the malloc/free 500 // calls generated in setjmp prep / cleanup routines. 501 Function *SetjmpF = M.getFunction("setjmp"); 502 Function *MallocF = M.getFunction("malloc"); 503 Function *FreeF = M.getFunction("free"); 504 if (Callee == SetjmpF || Callee == MallocF || Callee == FreeF) 505 return false; 506 507 // There are functions in JS glue code 508 if (Callee == ResumeF || Callee == EHTypeIDF || Callee == SaveSetjmpF || 509 Callee == TestSetjmpF) 510 return false; 511 512 // __cxa_find_matching_catch_N functions cannot longjmp 513 if (Callee->getName().startswith(FindMatchingCatchPrefix)) 514 return false; 515 516 // Exception-catching related functions 517 Function *BeginCatchF = M.getFunction("__cxa_begin_catch"); 518 Function *EndCatchF = M.getFunction("__cxa_end_catch"); 519 Function *AllocExceptionF = M.getFunction("__cxa_allocate_exception"); 520 Function *ThrowF = M.getFunction("__cxa_throw"); 521 Function *TerminateF = M.getFunction("__clang_call_terminate"); 522 if (Callee == BeginCatchF || Callee == EndCatchF || 523 Callee == AllocExceptionF || Callee == ThrowF || Callee == TerminateF) 524 return false; 525 526 // Otherwise we don't know 527 return true; 528 } 529 530 // Generate testSetjmp function call seqence with preamble and postamble. 531 // The code this generates is equivalent to the following JavaScript code: 532 // if (%__THREW__.val != 0 & threwValue != 0) { 533 // %label = _testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize); 534 // if (%label == 0) 535 // emscripten_longjmp(%__THREW__.val, threwValue); 536 // __tempRet0 = threwValue; 537 // } else { 538 // %label = -1; 539 // } 540 // %longjmp_result = __tempRet0; 541 // 542 // As output parameters. returns %label, %longjmp_result, and the BB the last 543 // instruction (%longjmp_result = ...) is in. 544 void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp( 545 BasicBlock *BB, Instruction *InsertPt, Value *Threw, Value *SetjmpTable, 546 Value *SetjmpTableSize, Value *&Label, Value *&LongjmpResult, 547 BasicBlock *&EndBB) { 548 Function *F = BB->getParent(); 549 LLVMContext &C = BB->getModule()->getContext(); 550 IRBuilder<> IRB(C); 551 IRB.SetInsertPoint(InsertPt); 552 553 // if (%__THREW__.val != 0 & threwValue != 0) 554 IRB.SetInsertPoint(BB); 555 BasicBlock *ThenBB1 = BasicBlock::Create(C, "if.then1", F); 556 BasicBlock *ElseBB1 = BasicBlock::Create(C, "if.else1", F); 557 BasicBlock *EndBB1 = BasicBlock::Create(C, "if.end", F); 558 Value *ThrewCmp = IRB.CreateICmpNE(Threw, IRB.getInt32(0)); 559 Value *ThrewValue = 560 IRB.CreateLoad(ThrewValueGV, ThrewValueGV->getName() + ".val"); 561 Value *ThrewValueCmp = IRB.CreateICmpNE(ThrewValue, IRB.getInt32(0)); 562 Value *Cmp1 = IRB.CreateAnd(ThrewCmp, ThrewValueCmp, "cmp1"); 563 IRB.CreateCondBr(Cmp1, ThenBB1, ElseBB1); 564 565 // %label = _testSetjmp(mem[%__THREW__.val], _setjmpTable, _setjmpTableSize); 566 // if (%label == 0) 567 IRB.SetInsertPoint(ThenBB1); 568 BasicBlock *ThenBB2 = BasicBlock::Create(C, "if.then2", F); 569 BasicBlock *EndBB2 = BasicBlock::Create(C, "if.end2", F); 570 Value *ThrewInt = IRB.CreateIntToPtr(Threw, Type::getInt32PtrTy(C), 571 Threw->getName() + ".i32p"); 572 Value *LoadedThrew = 573 IRB.CreateLoad(ThrewInt, ThrewInt->getName() + ".loaded"); 574 Value *ThenLabel = IRB.CreateCall( 575 TestSetjmpF, {LoadedThrew, SetjmpTable, SetjmpTableSize}, "label"); 576 Value *Cmp2 = IRB.CreateICmpEQ(ThenLabel, IRB.getInt32(0)); 577 IRB.CreateCondBr(Cmp2, ThenBB2, EndBB2); 578 579 // emscripten_longjmp(%__THREW__.val, threwValue); 580 IRB.SetInsertPoint(ThenBB2); 581 IRB.CreateCall(EmLongjmpF, {Threw, ThrewValue}); 582 IRB.CreateUnreachable(); 583 584 // __tempRet0 = threwValue; 585 IRB.SetInsertPoint(EndBB2); 586 IRB.CreateStore(ThrewValue, TempRet0GV); 587 IRB.CreateBr(EndBB1); 588 589 IRB.SetInsertPoint(ElseBB1); 590 IRB.CreateBr(EndBB1); 591 592 // longjmp_result = __tempRet0; 593 IRB.SetInsertPoint(EndBB1); 594 PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label"); 595 LabelPHI->addIncoming(ThenLabel, EndBB2); 596 597 LabelPHI->addIncoming(IRB.getInt32(-1), ElseBB1); 598 599 // Output parameter assignment 600 Label = LabelPHI; 601 EndBB = EndBB1; 602 LongjmpResult = IRB.CreateLoad(TempRet0GV, "longjmp_result"); 603 } 604 605 // Create setThrew function 606 // function setThrew(threw, value) { 607 // if (__THREW__ == 0) { 608 // __THREW__ = threw; 609 // __threwValue = value; 610 // } 611 // } 612 void WebAssemblyLowerEmscriptenEHSjLj::createSetThrewFunction(Module &M) { 613 LLVMContext &C = M.getContext(); 614 IRBuilder<> IRB(C); 615 616 assert(!M.getNamedGlobal(SetThrewFName) && "setThrew already exists"); 617 Type *Params[] = {IRB.getInt32Ty(), IRB.getInt32Ty()}; 618 FunctionType *FTy = FunctionType::get(IRB.getVoidTy(), Params, false); 619 Function *F = 620 Function::Create(FTy, GlobalValue::ExternalLinkage, SetThrewFName, &M); 621 Argument *Arg1 = &*(F->arg_begin()); 622 Argument *Arg2 = &*std::next(F->arg_begin()); 623 Arg1->setName("threw"); 624 Arg2->setName("value"); 625 BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F); 626 BasicBlock *ThenBB = BasicBlock::Create(C, "if.then", F); 627 BasicBlock *EndBB = BasicBlock::Create(C, "if.end", F); 628 629 IRB.SetInsertPoint(EntryBB); 630 Value *Threw = IRB.CreateLoad(ThrewGV, ThrewGV->getName() + ".val"); 631 Value *Cmp = IRB.CreateICmpEQ(Threw, IRB.getInt32(0), "cmp"); 632 IRB.CreateCondBr(Cmp, ThenBB, EndBB); 633 634 IRB.SetInsertPoint(ThenBB); 635 IRB.CreateStore(Arg1, ThrewGV); 636 IRB.CreateStore(Arg2, ThrewValueGV); 637 IRB.CreateBr(EndBB); 638 639 IRB.SetInsertPoint(EndBB); 640 IRB.CreateRetVoid(); 641 } 642 643 // Create setTempRet0 function 644 // function setTempRet0(value) { 645 // __tempRet0 = value; 646 // } 647 void WebAssemblyLowerEmscriptenEHSjLj::createSetTempRet0Function(Module &M) { 648 LLVMContext &C = M.getContext(); 649 IRBuilder<> IRB(C); 650 651 assert(!M.getNamedGlobal(SetTempRet0FName) && "setTempRet0 already exists"); 652 Type *Params[] = {IRB.getInt32Ty()}; 653 FunctionType *FTy = FunctionType::get(IRB.getVoidTy(), Params, false); 654 Function *F = 655 Function::Create(FTy, GlobalValue::ExternalLinkage, SetTempRet0FName, &M); 656 F->arg_begin()->setName("value"); 657 BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F); 658 IRB.SetInsertPoint(EntryBB); 659 IRB.CreateStore(&*F->arg_begin(), TempRet0GV); 660 IRB.CreateRetVoid(); 661 } 662 663 void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function &F) { 664 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 665 DT.recalculate(F); // CFG has been changed 666 SSAUpdater SSA; 667 for (BasicBlock &BB : F) { 668 for (Instruction &I : BB) { 669 for (auto UI = I.use_begin(), UE = I.use_end(); UI != UE;) { 670 Use &U = *UI; 671 ++UI; 672 SSA.Initialize(I.getType(), I.getName()); 673 SSA.AddAvailableValue(&BB, &I); 674 Instruction *User = cast<Instruction>(U.getUser()); 675 if (User->getParent() == &BB) 676 continue; 677 678 if (PHINode *UserPN = dyn_cast<PHINode>(User)) 679 if (UserPN->getIncomingBlock(U) == &BB) 680 continue; 681 682 if (DT.dominates(&I, User)) 683 continue; 684 SSA.RewriteUseAfterInsertions(U); 685 } 686 } 687 } 688 } 689 690 bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module &M) { 691 LLVMContext &C = M.getContext(); 692 IRBuilder<> IRB(C); 693 694 Function *SetjmpF = M.getFunction("setjmp"); 695 Function *LongjmpF = M.getFunction("longjmp"); 696 bool SetjmpUsed = SetjmpF && !SetjmpF->use_empty(); 697 bool LongjmpUsed = LongjmpF && !LongjmpF->use_empty(); 698 bool DoSjLj = EnableSjLj && (SetjmpUsed || LongjmpUsed); 699 700 // Create global variables __THREW__, threwValue, and __tempRet0, which are 701 // used in common for both exception handling and setjmp/longjmp handling 702 ThrewGV = new GlobalVariable(M, IRB.getInt32Ty(), false, 703 GlobalValue::ExternalLinkage, IRB.getInt32(0), 704 createGlobalValueName(M, ThrewGVName)); 705 ThrewValueGV = new GlobalVariable( 706 M, IRB.getInt32Ty(), false, GlobalValue::ExternalLinkage, IRB.getInt32(0), 707 createGlobalValueName(M, ThrewValueGVName)); 708 TempRet0GV = new GlobalVariable(M, IRB.getInt32Ty(), false, 709 GlobalValue::ExternalLinkage, IRB.getInt32(0), 710 createGlobalValueName(M, TempRet0GVName)); 711 712 bool Changed = false; 713 714 // Exception handling 715 if (EnableEH) { 716 // Register __resumeException function 717 FunctionType *ResumeFTy = 718 FunctionType::get(IRB.getVoidTy(), IRB.getInt8PtrTy(), false); 719 ResumeF = Function::Create(ResumeFTy, GlobalValue::ExternalLinkage, 720 ResumeFName, &M); 721 722 // Register llvm_eh_typeid_for function 723 FunctionType *EHTypeIDTy = 724 FunctionType::get(IRB.getInt32Ty(), IRB.getInt8PtrTy(), false); 725 EHTypeIDF = Function::Create(EHTypeIDTy, GlobalValue::ExternalLinkage, 726 EHTypeIDFName, &M); 727 728 for (Function &F : M) { 729 if (F.isDeclaration()) 730 continue; 731 Changed |= runEHOnFunction(F); 732 } 733 } 734 735 // Setjmp/longjmp handling 736 if (DoSjLj) { 737 Changed = true; // We have setjmp or longjmp somewhere 738 739 Function *MallocF = M.getFunction("malloc"); 740 Function *FreeF = M.getFunction("free"); 741 if (!MallocF || !FreeF) 742 report_fatal_error( 743 "malloc and free must be linked into the module if setjmp is used"); 744 745 // Register saveSetjmp function 746 FunctionType *SetjmpFTy = SetjmpF->getFunctionType(); 747 SmallVector<Type *, 4> Params = {SetjmpFTy->getParamType(0), 748 IRB.getInt32Ty(), Type::getInt32PtrTy(C), 749 IRB.getInt32Ty()}; 750 FunctionType *FTy = 751 FunctionType::get(Type::getInt32PtrTy(C), Params, false); 752 SaveSetjmpF = Function::Create(FTy, GlobalValue::ExternalLinkage, 753 SaveSetjmpFName, &M); 754 755 // Register testSetjmp function 756 Params = {IRB.getInt32Ty(), Type::getInt32PtrTy(C), IRB.getInt32Ty()}; 757 FTy = FunctionType::get(IRB.getInt32Ty(), Params, false); 758 TestSetjmpF = Function::Create(FTy, GlobalValue::ExternalLinkage, 759 TestSetjmpFName, &M); 760 761 if (LongjmpF) { 762 // Replace all uses of longjmp with emscripten_longjmp_jmpbuf, which is 763 // defined in JS code 764 EmLongjmpJmpbufF = Function::Create(LongjmpF->getFunctionType(), 765 GlobalValue::ExternalLinkage, 766 EmLongjmpJmpbufFName, &M); 767 768 LongjmpF->replaceAllUsesWith(EmLongjmpJmpbufF); 769 } 770 FTy = FunctionType::get(IRB.getVoidTy(), 771 {IRB.getInt32Ty(), IRB.getInt32Ty()}, false); 772 EmLongjmpF = 773 Function::Create(FTy, GlobalValue::ExternalLinkage, EmLongjmpFName, &M); 774 775 // Only traverse functions that uses setjmp in order not to insert 776 // unnecessary prep / cleanup code in every function 777 SmallPtrSet<Function *, 8> SetjmpUsers; 778 for (User *U : SetjmpF->users()) { 779 auto *UI = cast<Instruction>(U); 780 SetjmpUsers.insert(UI->getFunction()); 781 } 782 for (Function *F : SetjmpUsers) 783 runSjLjOnFunction(*F); 784 } 785 786 if (!Changed) { 787 // Delete unused global variables and functions 788 ThrewGV->eraseFromParent(); 789 ThrewValueGV->eraseFromParent(); 790 TempRet0GV->eraseFromParent(); 791 if (ResumeF) 792 ResumeF->eraseFromParent(); 793 if (EHTypeIDF) 794 EHTypeIDF->eraseFromParent(); 795 if (EmLongjmpF) 796 EmLongjmpF->eraseFromParent(); 797 if (SaveSetjmpF) 798 SaveSetjmpF->eraseFromParent(); 799 if (TestSetjmpF) 800 TestSetjmpF->eraseFromParent(); 801 return false; 802 } 803 804 // If we have made any changes while doing exception handling or 805 // setjmp/longjmp handling, we have to create these functions for JavaScript 806 // to call. 807 createSetThrewFunction(M); 808 createSetTempRet0Function(M); 809 810 return true; 811 } 812 813 bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function &F) { 814 Module &M = *F.getParent(); 815 LLVMContext &C = F.getContext(); 816 IRBuilder<> IRB(C); 817 bool Changed = false; 818 SmallVector<Instruction *, 64> ToErase; 819 SmallPtrSet<LandingPadInst *, 32> LandingPads; 820 bool AllowExceptions = 821 areAllExceptionsAllowed() || EHWhitelistSet.count(F.getName()); 822 823 for (BasicBlock &BB : F) { 824 auto *II = dyn_cast<InvokeInst>(BB.getTerminator()); 825 if (!II) 826 continue; 827 Changed = true; 828 LandingPads.insert(II->getLandingPadInst()); 829 IRB.SetInsertPoint(II); 830 831 bool NeedInvoke = AllowExceptions && canThrow(II->getCalledValue()); 832 if (NeedInvoke) { 833 // Wrap invoke with invoke wrapper and generate preamble/postamble 834 Value *Threw = wrapInvoke(II); 835 ToErase.push_back(II); 836 837 // Insert a branch based on __THREW__ variable 838 Value *Cmp = IRB.CreateICmpEQ(Threw, IRB.getInt32(1), "cmp"); 839 IRB.CreateCondBr(Cmp, II->getUnwindDest(), II->getNormalDest()); 840 841 } else { 842 // This can't throw, and we don't need this invoke, just replace it with a 843 // call+branch 844 SmallVector<Value *, 16> Args(II->arg_begin(), II->arg_end()); 845 CallInst *NewCall = IRB.CreateCall(II->getCalledValue(), Args); 846 NewCall->takeName(II); 847 NewCall->setCallingConv(II->getCallingConv()); 848 NewCall->setDebugLoc(II->getDebugLoc()); 849 NewCall->setAttributes(II->getAttributes()); 850 II->replaceAllUsesWith(NewCall); 851 ToErase.push_back(II); 852 853 IRB.CreateBr(II->getNormalDest()); 854 855 // Remove any PHI node entries from the exception destination 856 II->getUnwindDest()->removePredecessor(&BB); 857 } 858 } 859 860 // Process resume instructions 861 for (BasicBlock &BB : F) { 862 // Scan the body of the basic block for resumes 863 for (Instruction &I : BB) { 864 auto *RI = dyn_cast<ResumeInst>(&I); 865 if (!RI) 866 continue; 867 868 // Split the input into legal values 869 Value *Input = RI->getValue(); 870 IRB.SetInsertPoint(RI); 871 Value *Low = IRB.CreateExtractValue(Input, 0, "low"); 872 // Create a call to __resumeException function 873 IRB.CreateCall(ResumeF, {Low}); 874 // Add a terminator to the block 875 IRB.CreateUnreachable(); 876 ToErase.push_back(RI); 877 } 878 } 879 880 // Process llvm.eh.typeid.for intrinsics 881 for (BasicBlock &BB : F) { 882 for (Instruction &I : BB) { 883 auto *CI = dyn_cast<CallInst>(&I); 884 if (!CI) 885 continue; 886 const Function *Callee = CI->getCalledFunction(); 887 if (!Callee) 888 continue; 889 if (Callee->getIntrinsicID() != Intrinsic::eh_typeid_for) 890 continue; 891 892 IRB.SetInsertPoint(CI); 893 CallInst *NewCI = 894 IRB.CreateCall(EHTypeIDF, CI->getArgOperand(0), "typeid"); 895 CI->replaceAllUsesWith(NewCI); 896 ToErase.push_back(CI); 897 } 898 } 899 900 // Look for orphan landingpads, can occur in blocks with no predecessors 901 for (BasicBlock &BB : F) { 902 Instruction *I = BB.getFirstNonPHI(); 903 if (auto *LPI = dyn_cast<LandingPadInst>(I)) 904 LandingPads.insert(LPI); 905 } 906 907 // Handle all the landingpad for this function together, as multiple invokes 908 // may share a single lp 909 for (LandingPadInst *LPI : LandingPads) { 910 IRB.SetInsertPoint(LPI); 911 SmallVector<Value *, 16> FMCArgs; 912 for (unsigned i = 0, e = LPI->getNumClauses(); i < e; ++i) { 913 Constant *Clause = LPI->getClause(i); 914 // As a temporary workaround for the lack of aggregate varargs support 915 // in the interface between JS and wasm, break out filter operands into 916 // their component elements. 917 if (LPI->isFilter(i)) { 918 auto *ATy = cast<ArrayType>(Clause->getType()); 919 for (unsigned j = 0, e = ATy->getNumElements(); j < e; ++j) { 920 Value *EV = IRB.CreateExtractValue(Clause, makeArrayRef(j), "filter"); 921 FMCArgs.push_back(EV); 922 } 923 } else 924 FMCArgs.push_back(Clause); 925 } 926 927 // Create a call to __cxa_find_matching_catch_N function 928 Function *FMCF = getFindMatchingCatch(M, FMCArgs.size()); 929 CallInst *FMCI = IRB.CreateCall(FMCF, FMCArgs, "fmc"); 930 Value *Undef = UndefValue::get(LPI->getType()); 931 Value *Pair0 = IRB.CreateInsertValue(Undef, FMCI, 0, "pair0"); 932 Value *TempRet0 = 933 IRB.CreateLoad(TempRet0GV, TempRet0GV->getName() + ".val"); 934 Value *Pair1 = IRB.CreateInsertValue(Pair0, TempRet0, 1, "pair1"); 935 936 LPI->replaceAllUsesWith(Pair1); 937 ToErase.push_back(LPI); 938 } 939 940 // Erase everything we no longer need in this function 941 for (Instruction *I : ToErase) 942 I->eraseFromParent(); 943 944 return Changed; 945 } 946 947 bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function &F) { 948 Module &M = *F.getParent(); 949 LLVMContext &C = F.getContext(); 950 IRBuilder<> IRB(C); 951 SmallVector<Instruction *, 64> ToErase; 952 // Vector of %setjmpTable values 953 std::vector<Instruction *> SetjmpTableInsts; 954 // Vector of %setjmpTableSize values 955 std::vector<Instruction *> SetjmpTableSizeInsts; 956 957 // Setjmp preparation 958 959 // This instruction effectively means %setjmpTableSize = 4. 960 // We create this as an instruction intentionally, and we don't want to fold 961 // this instruction to a constant 4, because this value will be used in 962 // SSAUpdater.AddAvailableValue(...) later. 963 BasicBlock &EntryBB = F.getEntryBlock(); 964 BinaryOperator *SetjmpTableSize = BinaryOperator::Create( 965 Instruction::Add, IRB.getInt32(4), IRB.getInt32(0), "setjmpTableSize", 966 &*EntryBB.getFirstInsertionPt()); 967 // setjmpTable = (int *) malloc(40); 968 Instruction *SetjmpTable = CallInst::CreateMalloc( 969 SetjmpTableSize, IRB.getInt32Ty(), IRB.getInt32Ty(), IRB.getInt32(40), 970 nullptr, nullptr, "setjmpTable"); 971 // setjmpTable[0] = 0; 972 IRB.SetInsertPoint(SetjmpTableSize); 973 IRB.CreateStore(IRB.getInt32(0), SetjmpTable); 974 SetjmpTableInsts.push_back(SetjmpTable); 975 SetjmpTableSizeInsts.push_back(SetjmpTableSize); 976 977 // Setjmp transformation 978 std::vector<PHINode *> SetjmpRetPHIs; 979 Function *SetjmpF = M.getFunction("setjmp"); 980 for (User *U : SetjmpF->users()) { 981 auto *CI = dyn_cast<CallInst>(U); 982 if (!CI) 983 report_fatal_error("Does not support indirect calls to setjmp"); 984 985 BasicBlock *BB = CI->getParent(); 986 if (BB->getParent() != &F) // in other function 987 continue; 988 989 // The tail is everything right after the call, and will be reached once 990 // when setjmp is called, and later when longjmp returns to the setjmp 991 BasicBlock *Tail = SplitBlock(BB, CI->getNextNode()); 992 // Add a phi to the tail, which will be the output of setjmp, which 993 // indicates if this is the first call or a longjmp back. The phi directly 994 // uses the right value based on where we arrive from 995 IRB.SetInsertPoint(Tail->getFirstNonPHI()); 996 PHINode *SetjmpRet = IRB.CreatePHI(IRB.getInt32Ty(), 2, "setjmp.ret"); 997 998 // setjmp initial call returns 0 999 SetjmpRet->addIncoming(IRB.getInt32(0), BB); 1000 // The proper output is now this, not the setjmp call itself 1001 CI->replaceAllUsesWith(SetjmpRet); 1002 // longjmp returns to the setjmp will add themselves to this phi 1003 SetjmpRetPHIs.push_back(SetjmpRet); 1004 1005 // Fix call target 1006 // Our index in the function is our place in the array + 1 to avoid index 1007 // 0, because index 0 means the longjmp is not ours to handle. 1008 IRB.SetInsertPoint(CI); 1009 Value *Args[] = {CI->getArgOperand(0), IRB.getInt32(SetjmpRetPHIs.size()), 1010 SetjmpTable, SetjmpTableSize}; 1011 Instruction *NewSetjmpTable = 1012 IRB.CreateCall(SaveSetjmpF, Args, "setjmpTable"); 1013 Instruction *NewSetjmpTableSize = 1014 IRB.CreateLoad(TempRet0GV, "setjmpTableSize"); 1015 SetjmpTableInsts.push_back(NewSetjmpTable); 1016 SetjmpTableSizeInsts.push_back(NewSetjmpTableSize); 1017 ToErase.push_back(CI); 1018 } 1019 1020 // Update each call that can longjmp so it can return to a setjmp where 1021 // relevant. 1022 1023 // Because we are creating new BBs while processing and don't want to make 1024 // all these newly created BBs candidates again for longjmp processing, we 1025 // first make the vector of candidate BBs. 1026 std::vector<BasicBlock *> BBs; 1027 for (BasicBlock &BB : F) 1028 BBs.push_back(&BB); 1029 1030 // BBs.size() will change within the loop, so we query it every time 1031 for (unsigned i = 0; i < BBs.size(); i++) { 1032 BasicBlock *BB = BBs[i]; 1033 for (Instruction &I : *BB) { 1034 assert(!isa<InvokeInst>(&I)); 1035 auto *CI = dyn_cast<CallInst>(&I); 1036 if (!CI) 1037 continue; 1038 1039 const Value *Callee = CI->getCalledValue(); 1040 if (!canLongjmp(M, Callee)) 1041 continue; 1042 1043 Value *Threw = nullptr; 1044 BasicBlock *Tail; 1045 if (Callee->getName().startswith(InvokePrefix)) { 1046 // If invoke wrapper has already been generated for this call in 1047 // previous EH phase, search for the load instruction 1048 // %__THREW__.val = __THREW__; 1049 // in postamble after the invoke wrapper call 1050 LoadInst *ThrewLI = nullptr; 1051 StoreInst *ThrewResetSI = nullptr; 1052 for (auto I = std::next(BasicBlock::iterator(CI)), IE = BB->end(); 1053 I != IE; ++I) { 1054 if (auto *LI = dyn_cast<LoadInst>(I)) 1055 if (auto *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand())) 1056 if (GV == ThrewGV) { 1057 Threw = ThrewLI = LI; 1058 break; 1059 } 1060 } 1061 // Search for the store instruction after the load above 1062 // __THREW__ = 0; 1063 for (auto I = std::next(BasicBlock::iterator(ThrewLI)), IE = BB->end(); 1064 I != IE; ++I) { 1065 if (auto *SI = dyn_cast<StoreInst>(I)) 1066 if (auto *GV = dyn_cast<GlobalVariable>(SI->getPointerOperand())) 1067 if (GV == ThrewGV && SI->getValueOperand() == IRB.getInt32(0)) { 1068 ThrewResetSI = SI; 1069 break; 1070 } 1071 } 1072 assert(Threw && ThrewLI && "Cannot find __THREW__ load after invoke"); 1073 assert(ThrewResetSI && "Cannot find __THREW__ store after invoke"); 1074 Tail = SplitBlock(BB, ThrewResetSI->getNextNode()); 1075 1076 } else { 1077 // Wrap call with invoke wrapper and generate preamble/postamble 1078 Threw = wrapInvoke(CI); 1079 ToErase.push_back(CI); 1080 Tail = SplitBlock(BB, CI->getNextNode()); 1081 } 1082 1083 // We need to replace the terminator in Tail - SplitBlock makes BB go 1084 // straight to Tail, we need to check if a longjmp occurred, and go to the 1085 // right setjmp-tail if so 1086 ToErase.push_back(BB->getTerminator()); 1087 1088 // Generate a function call to testSetjmp function and preamble/postamble 1089 // code to figure out (1) whether longjmp occurred (2) if longjmp 1090 // occurred, which setjmp it corresponds to 1091 Value *Label = nullptr; 1092 Value *LongjmpResult = nullptr; 1093 BasicBlock *EndBB = nullptr; 1094 wrapTestSetjmp(BB, CI, Threw, SetjmpTable, SetjmpTableSize, Label, 1095 LongjmpResult, EndBB); 1096 assert(Label && LongjmpResult && EndBB); 1097 1098 // Create switch instruction 1099 IRB.SetInsertPoint(EndBB); 1100 SwitchInst *SI = IRB.CreateSwitch(Label, Tail, SetjmpRetPHIs.size()); 1101 // -1 means no longjmp happened, continue normally (will hit the default 1102 // switch case). 0 means a longjmp that is not ours to handle, needs a 1103 // rethrow. Otherwise the index is the same as the index in P+1 (to avoid 1104 // 0). 1105 for (unsigned i = 0; i < SetjmpRetPHIs.size(); i++) { 1106 SI->addCase(IRB.getInt32(i + 1), SetjmpRetPHIs[i]->getParent()); 1107 SetjmpRetPHIs[i]->addIncoming(LongjmpResult, EndBB); 1108 } 1109 1110 // We are splitting the block here, and must continue to find other calls 1111 // in the block - which is now split. so continue to traverse in the Tail 1112 BBs.push_back(Tail); 1113 } 1114 } 1115 1116 // Erase everything we no longer need in this function 1117 for (Instruction *I : ToErase) 1118 I->eraseFromParent(); 1119 1120 // Free setjmpTable buffer before each return instruction 1121 for (BasicBlock &BB : F) { 1122 TerminatorInst *TI = BB.getTerminator(); 1123 if (isa<ReturnInst>(TI)) 1124 CallInst::CreateFree(SetjmpTable, TI); 1125 } 1126 1127 // Every call to saveSetjmp can change setjmpTable and setjmpTableSize 1128 // (when buffer reallocation occurs) 1129 // entry: 1130 // setjmpTableSize = 4; 1131 // setjmpTable = (int *) malloc(40); 1132 // setjmpTable[0] = 0; 1133 // ... 1134 // somebb: 1135 // setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize); 1136 // setjmpTableSize = __tempRet0; 1137 // So we need to make sure the SSA for these variables is valid so that every 1138 // saveSetjmp and testSetjmp calls have the correct arguments. 1139 SSAUpdater SetjmpTableSSA; 1140 SSAUpdater SetjmpTableSizeSSA; 1141 SetjmpTableSSA.Initialize(Type::getInt32PtrTy(C), "setjmpTable"); 1142 SetjmpTableSizeSSA.Initialize(Type::getInt32Ty(C), "setjmpTableSize"); 1143 for (Instruction *I : SetjmpTableInsts) 1144 SetjmpTableSSA.AddAvailableValue(I->getParent(), I); 1145 for (Instruction *I : SetjmpTableSizeInsts) 1146 SetjmpTableSizeSSA.AddAvailableValue(I->getParent(), I); 1147 1148 for (auto UI = SetjmpTable->use_begin(), UE = SetjmpTable->use_end(); 1149 UI != UE;) { 1150 // Grab the use before incrementing the iterator. 1151 Use &U = *UI; 1152 // Increment the iterator before removing the use from the list. 1153 ++UI; 1154 if (Instruction *I = dyn_cast<Instruction>(U.getUser())) 1155 if (I->getParent() != &EntryBB) 1156 SetjmpTableSSA.RewriteUse(U); 1157 } 1158 for (auto UI = SetjmpTableSize->use_begin(), UE = SetjmpTableSize->use_end(); 1159 UI != UE;) { 1160 Use &U = *UI; 1161 ++UI; 1162 if (Instruction *I = dyn_cast<Instruction>(U.getUser())) 1163 if (I->getParent() != &EntryBB) 1164 SetjmpTableSizeSSA.RewriteUse(U); 1165 } 1166 1167 // Finally, our modifications to the cfg can break dominance of SSA variables. 1168 // For example, in this code, 1169 // if (x()) { .. setjmp() .. } 1170 // if (y()) { .. longjmp() .. } 1171 // We must split the longjmp block, and it can jump into the block splitted 1172 // from setjmp one. But that means that when we split the setjmp block, it's 1173 // first part no longer dominates its second part - there is a theoretically 1174 // possible control flow path where x() is false, then y() is true and we 1175 // reach the second part of the setjmp block, without ever reaching the first 1176 // part. So, we rebuild SSA form here. 1177 rebuildSSA(F); 1178 return true; 1179 } 1180