1 //=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file lowers exception-related instructions and setjmp/longjmp function
11 /// calls to use Emscripten's library functions. The pass uses JavaScript's try
12 /// and catch mechanism in case of Emscripten EH/SjLj and Wasm EH intrinsics in
13 /// case of Emscripten SjLJ.
14 ///
15 /// * Emscripten exception handling
16 /// This pass lowers invokes and landingpads into library functions in JS glue
17 /// code. Invokes are lowered into function wrappers called invoke wrappers that
18 /// exist in JS side, which wraps the original function call with JS try-catch.
19 /// If an exception occurred, cxa_throw() function in JS side sets some
20 /// variables (see below) so we can check whether an exception occurred from
21 /// wasm code and handle it appropriately.
22 ///
23 /// * Emscripten setjmp-longjmp handling
24 /// This pass lowers setjmp to a reasonably-performant approach for emscripten.
25 /// The idea is that each block with a setjmp is broken up into two parts: the
26 /// part containing setjmp and the part right after the setjmp. The latter part
27 /// is either reached from the setjmp, or later from a longjmp. To handle the
28 /// longjmp, all calls that might longjmp are also called using invoke wrappers
29 /// and thus JS / try-catch. JS longjmp() function also sets some variables so
30 /// we can check / whether a longjmp occurred from wasm code. Each block with a
31 /// function call that might longjmp is also split up after the longjmp call.
32 /// After the longjmp call, we check whether a longjmp occurred, and if it did,
33 /// which setjmp it corresponds to, and jump to the right post-setjmp block.
34 /// We assume setjmp-longjmp handling always run after EH handling, which means
35 /// we don't expect any exception-related instructions when SjLj runs.
36 /// FIXME Currently this scheme does not support indirect call of setjmp,
37 /// because of the limitation of the scheme itself. fastcomp does not support it
38 /// either.
39 ///
40 /// In detail, this pass does following things:
41 ///
42 /// 1) Assumes the existence of global variables: __THREW__, __threwValue
43 ///    __THREW__ and __threwValue are defined in compiler-rt in Emscripten.
44 ///    These variables are used for both exceptions and setjmp/longjmps.
45 ///    __THREW__ indicates whether an exception or a longjmp occurred or not. 0
46 ///    means nothing occurred, 1 means an exception occurred, and other numbers
47 ///    mean a longjmp occurred. In the case of longjmp, __THREW__ variable
48 ///    indicates the corresponding setjmp buffer the longjmp corresponds to.
49 ///    __threwValue is 0 for exceptions, and the argument to longjmp in case of
50 ///    longjmp.
51 ///
52 /// * Emscripten exception handling
53 ///
54 /// 2) We assume the existence of setThrew and setTempRet0/getTempRet0 functions
55 ///    at link time. setThrew exists in Emscripten's compiler-rt:
56 ///
57 ///    void setThrew(uintptr_t threw, int value) {
58 ///      if (__THREW__ == 0) {
59 ///        __THREW__ = threw;
60 ///        __threwValue = value;
61 ///      }
62 ///    }
63 //
64 ///    setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
65 ///    In exception handling, getTempRet0 indicates the type of an exception
66 ///    caught, and in setjmp/longjmp, it means the second argument to longjmp
67 ///    function.
68 ///
69 /// 3) Lower
70 ///      invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad
71 ///    into
72 ///      __THREW__ = 0;
73 ///      call @__invoke_SIG(func, arg1, arg2)
74 ///      %__THREW__.val = __THREW__;
75 ///      __THREW__ = 0;
76 ///      if (%__THREW__.val == 1)
77 ///        goto %lpad
78 ///      else
79 ///         goto %invoke.cont
80 ///    SIG is a mangled string generated based on the LLVM IR-level function
81 ///    signature. After LLVM IR types are lowered to the target wasm types,
82 ///    the names for these wrappers will change based on wasm types as well,
83 ///    as in invoke_vi (function takes an int and returns void). The bodies of
84 ///    these wrappers will be generated in JS glue code, and inside those
85 ///    wrappers we use JS try-catch to generate actual exception effects. It
86 ///    also calls the original callee function. An example wrapper in JS code
87 ///    would look like this:
88 ///      function invoke_vi(index,a1) {
89 ///        try {
90 ///          Module["dynCall_vi"](index,a1); // This calls original callee
91 ///        } catch(e) {
92 ///          if (typeof e !== 'number' && e !== 'longjmp') throw e;
93 ///          _setThrew(1, 0); // setThrew is called here
94 ///        }
95 ///      }
96 ///    If an exception is thrown, __THREW__ will be set to true in a wrapper,
97 ///    so we can jump to the right BB based on this value.
98 ///
99 /// 4) Lower
100 ///      %val = landingpad catch c1 catch c2 catch c3 ...
101 ///      ... use %val ...
102 ///    into
103 ///      %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...)
104 ///      %val = {%fmc, getTempRet0()}
105 ///      ... use %val ...
106 ///    Here N is a number calculated based on the number of clauses.
107 ///    setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
108 ///
109 /// 5) Lower
110 ///      resume {%a, %b}
111 ///    into
112 ///      call @__resumeException(%a)
113 ///    where __resumeException() is a function in JS glue code.
114 ///
115 /// 6) Lower
116 ///      call @llvm.eh.typeid.for(type) (intrinsic)
117 ///    into
118 ///      call @llvm_eh_typeid_for(type)
119 ///    llvm_eh_typeid_for function will be generated in JS glue code.
120 ///
121 /// * Emscripten setjmp / longjmp handling
122 ///
123 /// If there are calls to longjmp()
124 ///
125 /// 1) Lower
126 ///      longjmp(env, val)
127 ///    into
128 ///      emscripten_longjmp(env, val)
129 ///
130 /// If there are calls to setjmp()
131 ///
132 /// 2) In the function entry that calls setjmp, initialize setjmpTable and
133 ///    sejmpTableSize as follows:
134 ///      setjmpTableSize = 4;
135 ///      setjmpTable = (int *) malloc(40);
136 ///      setjmpTable[0] = 0;
137 ///    setjmpTable and setjmpTableSize are used to call saveSetjmp() function in
138 ///    Emscripten compiler-rt.
139 ///
140 /// 3) Lower
141 ///      setjmp(env)
142 ///    into
143 ///      setjmpTable = saveSetjmp(env, label, setjmpTable, setjmpTableSize);
144 ///      setjmpTableSize = getTempRet0();
145 ///    For each dynamic setjmp call, setjmpTable stores its ID (a number which
146 ///    is incrementally assigned from 0) and its label (a unique number that
147 ///    represents each callsite of setjmp). When we need more entries in
148 ///    setjmpTable, it is reallocated in saveSetjmp() in Emscripten's
149 ///    compiler-rt and it will return the new table address, and assign the new
150 ///    table size in setTempRet0(). saveSetjmp also stores the setjmp's ID into
151 ///    the buffer 'env'. A BB with setjmp is split into two after setjmp call in
152 ///    order to make the post-setjmp BB the possible destination of longjmp BB.
153 ///
154 /// 4) Lower every call that might longjmp into
155 ///      __THREW__ = 0;
156 ///      call @__invoke_SIG(func, arg1, arg2)
157 ///      %__THREW__.val = __THREW__;
158 ///      __THREW__ = 0;
159 ///      %__threwValue.val = __threwValue;
160 ///      if (%__THREW__.val != 0 & %__threwValue.val != 0) {
161 ///        %label = testSetjmp(mem[%__THREW__.val], setjmpTable,
162 ///                            setjmpTableSize);
163 ///        if (%label == 0)
164 ///          emscripten_longjmp(%__THREW__.val, %__threwValue.val);
165 ///        setTempRet0(%__threwValue.val);
166 ///      } else {
167 ///        %label = -1;
168 ///      }
169 ///      longjmp_result = getTempRet0();
170 ///      switch %label {
171 ///        label 1: goto post-setjmp BB 1
172 ///        label 2: goto post-setjmp BB 2
173 ///        ...
174 ///        default: goto splitted next BB
175 ///      }
176 ///    testSetjmp examines setjmpTable to see if there is a matching setjmp
177 ///    call. After calling an invoke wrapper, if a longjmp occurred, __THREW__
178 ///    will be the address of matching jmp_buf buffer and __threwValue be the
179 ///    second argument to longjmp. mem[%__THREW__.val] is a setjmp ID that is
180 ///    stored in saveSetjmp. testSetjmp returns a setjmp label, a unique ID to
181 ///    each setjmp callsite. Label 0 means this longjmp buffer does not
182 ///    correspond to one of the setjmp callsites in this function, so in this
183 ///    case we just chain the longjmp to the caller. Label -1 means no longjmp
184 ///    occurred. Otherwise we jump to the right post-setjmp BB based on the
185 ///    label.
186 ///
187 /// * Wasm setjmp / longjmp handling
188 /// This mode still uses some Emscripten library functions but not JavaScript's
189 /// try-catch mechanism. It instead uses Wasm exception handling intrinsics,
190 /// which will be lowered to exception handling instructions.
191 ///
192 /// If there are calls to longjmp()
193 ///
194 /// 1) Lower
195 ///      longjmp(env, val)
196 ///    into
197 ///      __wasm_longjmp(env, val)
198 ///
199 /// If there are calls to setjmp()
200 ///
201 /// 2) and 3): The same as 2) and 3) in Emscripten SjLj.
202 /// (setjmpTable/setjmpTableSize initialization + setjmp callsite
203 /// transformation)
204 ///
205 /// 4) Create a catchpad with a wasm.catch() intrinsic, which returns the value
206 /// thrown by __wasm_longjmp function. In Emscripten library, we have this
207 /// struct:
208 ///
209 /// struct __WasmLongjmpArgs {
210 ///   void *env;
211 ///   int val;
212 /// };
213 /// struct __WasmLongjmpArgs __wasm_longjmp_args;
214 ///
215 /// The thrown value here is a pointer to __wasm_longjmp_args struct object. We
216 /// use this struct to transfer two values by throwing a single value. Wasm
217 /// throw and catch instructions are capable of throwing and catching multiple
218 /// values, but it also requires multivalue support that is currently not very
219 /// reliable.
220 /// TODO Switch to throwing and catching two values without using the struct
221 ///
222 /// All longjmpable function calls will be converted to an invoke that will
223 /// unwind to this catchpad in case a longjmp occurs. Within the catchpad, we
224 /// test the thrown values using testSetjmp function as we do for Emscripten
225 /// SjLj. The main difference is, in Emscripten SjLj, we need to transform every
226 /// longjmpable callsite into a sequence of code including testSetjmp() call; in
227 /// Wasm SjLj we do the testing in only one place, in this catchpad.
228 ///
229 /// After testing calling testSetjmp(), if the longjmp does not correspond to
230 /// one of the setjmps within the current function, it rethrows the longjmp
231 /// by calling __wasm_longjmp(). If it corresponds to one of setjmps in the
232 /// function, we jump to the beginning of the function, which contains a switch
233 /// to each post-setjmp BB. Again, in Emscripten SjLj, this switch is added for
234 /// every longjmpable callsite; in Wasm SjLj we do this only once at the top of
235 /// the function. (after setjmpTable/setjmpTableSize initialization)
236 ///
237 /// The below is the pseudocode for what we have described
238 ///
239 /// entry:
240 ///   Initialize setjmpTable and setjmpTableSize
241 ///
242 /// setjmp.dispatch:
243 ///    switch %label {
244 ///      label 1: goto post-setjmp BB 1
245 ///      label 2: goto post-setjmp BB 2
246 ///      ...
247 ///      default: goto splitted next BB
248 ///    }
249 /// ...
250 ///
251 /// bb:
252 ///   invoke void @foo() ;; foo is a longjmpable function
253 ///     to label %next unwind label %catch.dispatch.longjmp
254 /// ...
255 ///
256 /// catch.dispatch.longjmp:
257 ///   %0 = catchswitch within none [label %catch.longjmp] unwind to caller
258 ///
259 /// catch.longjmp:
260 ///   %longjmp.args = wasm.catch() ;; struct __WasmLongjmpArgs
261 ///   %env = load 'env' field from __WasmLongjmpArgs
262 ///   %val = load 'val' field from __WasmLongjmpArgs
263 ///   %label = testSetjmp(mem[%env], setjmpTable, setjmpTableSize);
264 ///   if (%label == 0)
265 ///     __wasm_longjmp(%env, %val)
266 ///   catchret to %setjmp.dispatch
267 ///
268 ///===----------------------------------------------------------------------===//
269 
270 #include "WebAssembly.h"
271 #include "WebAssemblyTargetMachine.h"
272 #include "llvm/ADT/StringExtras.h"
273 #include "llvm/CodeGen/TargetPassConfig.h"
274 #include "llvm/CodeGen/WasmEHFuncInfo.h"
275 #include "llvm/IR/DebugInfoMetadata.h"
276 #include "llvm/IR/Dominators.h"
277 #include "llvm/IR/IRBuilder.h"
278 #include "llvm/IR/IntrinsicsWebAssembly.h"
279 #include "llvm/Support/CommandLine.h"
280 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
281 #include "llvm/Transforms/Utils/SSAUpdater.h"
282 #include "llvm/Transforms/Utils/SSAUpdaterBulk.h"
283 
284 using namespace llvm;
285 
286 #define DEBUG_TYPE "wasm-lower-em-ehsjlj"
287 
288 // Emscripten's asm.js-style exception handling
289 extern cl::opt<bool> WasmEnableEmEH;
290 // Emscripten's asm.js-style setjmp/longjmp handling
291 extern cl::opt<bool> WasmEnableEmSjLj;
292 // Wasm setjmp/longjmp handling using wasm EH instructions
293 extern cl::opt<bool> WasmEnableSjLj;
294 
295 static cl::list<std::string>
296     EHAllowlist("emscripten-cxx-exceptions-allowed",
297                 cl::desc("The list of function names in which Emscripten-style "
298                          "exception handling is enabled (see emscripten "
299                          "EMSCRIPTEN_CATCHING_ALLOWED options)"),
300                 cl::CommaSeparated);
301 
302 namespace {
303 class WebAssemblyLowerEmscriptenEHSjLj final : public ModulePass {
304   bool EnableEmEH;     // Enable Emscripten exception handling
305   bool EnableEmSjLj;   // Enable Emscripten setjmp/longjmp handling
306   bool EnableWasmSjLj; // Enable Wasm setjmp/longjmp handling
307   bool DoSjLj;         // Whether we actually perform setjmp/longjmp handling
308 
309   GlobalVariable *ThrewGV = nullptr;      // __THREW__ (Emscripten)
310   GlobalVariable *ThrewValueGV = nullptr; // __threwValue (Emscripten)
311   Function *GetTempRet0F = nullptr;       // getTempRet0() (Emscripten)
312   Function *SetTempRet0F = nullptr;       // setTempRet0() (Emscripten)
313   Function *ResumeF = nullptr;            // __resumeException() (Emscripten)
314   Function *EHTypeIDF = nullptr;          // llvm.eh.typeid.for() (intrinsic)
315   Function *EmLongjmpF = nullptr;         // emscripten_longjmp() (Emscripten)
316   Function *SaveSetjmpF = nullptr;        // saveSetjmp() (Emscripten)
317   Function *TestSetjmpF = nullptr;        // testSetjmp() (Emscripten)
318   Function *WasmLongjmpF = nullptr;       // __wasm_longjmp() (Emscripten)
319   Function *CatchF = nullptr;             // wasm.catch() (intrinsic)
320 
321   // type of 'struct __WasmLongjmpArgs' defined in emscripten
322   Type *LongjmpArgsTy = nullptr;
323 
324   // __cxa_find_matching_catch_N functions.
325   // Indexed by the number of clauses in an original landingpad instruction.
326   DenseMap<int, Function *> FindMatchingCatches;
327   // Map of <function signature string, invoke_ wrappers>
328   StringMap<Function *> InvokeWrappers;
329   // Set of allowed function names for exception handling
330   std::set<std::string> EHAllowlistSet;
331   // Functions that contains calls to setjmp
332   SmallPtrSet<Function *, 8> SetjmpUsers;
333 
334   StringRef getPassName() const override {
335     return "WebAssembly Lower Emscripten Exceptions";
336   }
337 
338   using InstVector = SmallVectorImpl<Instruction *>;
339   bool runEHOnFunction(Function &F);
340   bool runSjLjOnFunction(Function &F);
341   void handleLongjmpableCallsForEmscriptenSjLj(
342       Function &F, InstVector &SetjmpTableInsts,
343       InstVector &SetjmpTableSizeInsts,
344       SmallVectorImpl<PHINode *> &SetjmpRetPHIs);
345   void
346   handleLongjmpableCallsForWasmSjLj(Function &F, InstVector &SetjmpTableInsts,
347                                     InstVector &SetjmpTableSizeInsts,
348                                     SmallVectorImpl<PHINode *> &SetjmpRetPHIs);
349   Function *getFindMatchingCatch(Module &M, unsigned NumClauses);
350 
351   Value *wrapInvoke(CallBase *CI);
352   void wrapTestSetjmp(BasicBlock *BB, DebugLoc DL, Value *Threw,
353                       Value *SetjmpTable, Value *SetjmpTableSize, Value *&Label,
354                       Value *&LongjmpResult, BasicBlock *&CallEmLongjmpBB,
355                       PHINode *&CallEmLongjmpBBThrewPHI,
356                       PHINode *&CallEmLongjmpBBThrewValuePHI,
357                       BasicBlock *&EndBB);
358   Function *getInvokeWrapper(CallBase *CI);
359 
360   bool areAllExceptionsAllowed() const { return EHAllowlistSet.empty(); }
361   bool supportsException(const Function *F) const {
362     return EnableEmEH && (areAllExceptionsAllowed() ||
363                           EHAllowlistSet.count(std::string(F->getName())));
364   }
365   void replaceLongjmpWith(Function *LongjmpF, Function *NewF);
366 
367   void rebuildSSA(Function &F);
368 
369 public:
370   static char ID;
371 
372   WebAssemblyLowerEmscriptenEHSjLj()
373       : ModulePass(ID), EnableEmEH(WasmEnableEmEH),
374         EnableEmSjLj(WasmEnableEmSjLj), EnableWasmSjLj(WasmEnableSjLj) {
375     assert(!(EnableEmSjLj && EnableWasmSjLj) &&
376            "Two SjLj modes cannot be turned on at the same time");
377     assert(!(EnableEmEH && EnableWasmSjLj) &&
378            "Wasm SjLj should be only used with Wasm EH");
379     EHAllowlistSet.insert(EHAllowlist.begin(), EHAllowlist.end());
380   }
381   bool runOnModule(Module &M) override;
382 
383   void getAnalysisUsage(AnalysisUsage &AU) const override {
384     AU.addRequired<DominatorTreeWrapperPass>();
385   }
386 };
387 } // End anonymous namespace
388 
389 char WebAssemblyLowerEmscriptenEHSjLj::ID = 0;
390 INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj, DEBUG_TYPE,
391                 "WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp",
392                 false, false)
393 
394 ModulePass *llvm::createWebAssemblyLowerEmscriptenEHSjLj() {
395   return new WebAssemblyLowerEmscriptenEHSjLj();
396 }
397 
398 static bool canThrow(const Value *V) {
399   if (const auto *F = dyn_cast<const Function>(V)) {
400     // Intrinsics cannot throw
401     if (F->isIntrinsic())
402       return false;
403     StringRef Name = F->getName();
404     // leave setjmp and longjmp (mostly) alone, we process them properly later
405     if (Name == "setjmp" || Name == "longjmp" || Name == "emscripten_longjmp")
406       return false;
407     return !F->doesNotThrow();
408   }
409   // not a function, so an indirect call - can throw, we can't tell
410   return true;
411 }
412 
413 // Get a global variable with the given name. If it doesn't exist declare it,
414 // which will generate an import and assume that it will exist at link time.
415 static GlobalVariable *getGlobalVariable(Module &M, Type *Ty,
416                                          WebAssemblyTargetMachine &TM,
417                                          const char *Name) {
418   auto *GV = dyn_cast<GlobalVariable>(M.getOrInsertGlobal(Name, Ty));
419   if (!GV)
420     report_fatal_error(Twine("unable to create global: ") + Name);
421 
422   // If the target supports TLS, make this variable thread-local. We can't just
423   // unconditionally make it thread-local and depend on
424   // CoalesceFeaturesAndStripAtomics to downgrade it, because stripping TLS has
425   // the side effect of disallowing the object from being linked into a
426   // shared-memory module, which we don't want to be responsible for.
427   auto *Subtarget = TM.getSubtargetImpl();
428   auto TLS = Subtarget->hasAtomics() && Subtarget->hasBulkMemory()
429                  ? GlobalValue::LocalExecTLSModel
430                  : GlobalValue::NotThreadLocal;
431   GV->setThreadLocalMode(TLS);
432   return GV;
433 }
434 
435 // Simple function name mangler.
436 // This function simply takes LLVM's string representation of parameter types
437 // and concatenate them with '_'. There are non-alphanumeric characters but llc
438 // is ok with it, and we need to postprocess these names after the lowering
439 // phase anyway.
440 static std::string getSignature(FunctionType *FTy) {
441   std::string Sig;
442   raw_string_ostream OS(Sig);
443   OS << *FTy->getReturnType();
444   for (Type *ParamTy : FTy->params())
445     OS << "_" << *ParamTy;
446   if (FTy->isVarArg())
447     OS << "_...";
448   Sig = OS.str();
449   erase_if(Sig, isSpace);
450   // When s2wasm parses .s file, a comma means the end of an argument. So a
451   // mangled function name can contain any character but a comma.
452   std::replace(Sig.begin(), Sig.end(), ',', '.');
453   return Sig;
454 }
455 
456 static Function *getEmscriptenFunction(FunctionType *Ty, const Twine &Name,
457                                        Module *M) {
458   Function* F = Function::Create(Ty, GlobalValue::ExternalLinkage, Name, M);
459   // Tell the linker that this function is expected to be imported from the
460   // 'env' module.
461   if (!F->hasFnAttribute("wasm-import-module")) {
462     llvm::AttrBuilder B;
463     B.addAttribute("wasm-import-module", "env");
464     F->addFnAttrs(B);
465   }
466   if (!F->hasFnAttribute("wasm-import-name")) {
467     llvm::AttrBuilder B;
468     B.addAttribute("wasm-import-name", F->getName());
469     F->addFnAttrs(B);
470   }
471   return F;
472 }
473 
474 // Returns an integer type for the target architecture's address space.
475 // i32 for wasm32 and i64 for wasm64.
476 static Type *getAddrIntType(Module *M) {
477   IRBuilder<> IRB(M->getContext());
478   return IRB.getIntNTy(M->getDataLayout().getPointerSizeInBits());
479 }
480 
481 // Returns an integer pointer type for the target architecture's address space.
482 // i32* for wasm32 and i64* for wasm64.
483 static Type *getAddrPtrType(Module *M) {
484   return Type::getIntNPtrTy(M->getContext(),
485                             M->getDataLayout().getPointerSizeInBits());
486 }
487 
488 // Returns an integer whose type is the integer type for the target's address
489 // space. Returns (i32 C) for wasm32 and (i64 C) for wasm64, when C is the
490 // integer.
491 static Value *getAddrSizeInt(Module *M, uint64_t C) {
492   IRBuilder<> IRB(M->getContext());
493   return IRB.getIntN(M->getDataLayout().getPointerSizeInBits(), C);
494 }
495 
496 // Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2.
497 // This is because a landingpad instruction contains two more arguments, a
498 // personality function and a cleanup bit, and __cxa_find_matching_catch_N
499 // functions are named after the number of arguments in the original landingpad
500 // instruction.
501 Function *
502 WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module &M,
503                                                        unsigned NumClauses) {
504   if (FindMatchingCatches.count(NumClauses))
505     return FindMatchingCatches[NumClauses];
506   PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext());
507   SmallVector<Type *, 16> Args(NumClauses, Int8PtrTy);
508   FunctionType *FTy = FunctionType::get(Int8PtrTy, Args, false);
509   Function *F = getEmscriptenFunction(
510       FTy, "__cxa_find_matching_catch_" + Twine(NumClauses + 2), &M);
511   FindMatchingCatches[NumClauses] = F;
512   return F;
513 }
514 
515 // Generate invoke wrapper seqence with preamble and postamble
516 // Preamble:
517 // __THREW__ = 0;
518 // Postamble:
519 // %__THREW__.val = __THREW__; __THREW__ = 0;
520 // Returns %__THREW__.val, which indicates whether an exception is thrown (or
521 // whether longjmp occurred), for future use.
522 Value *WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallBase *CI) {
523   Module *M = CI->getModule();
524   LLVMContext &C = M->getContext();
525 
526   IRBuilder<> IRB(C);
527   IRB.SetInsertPoint(CI);
528 
529   // Pre-invoke
530   // __THREW__ = 0;
531   IRB.CreateStore(getAddrSizeInt(M, 0), ThrewGV);
532 
533   // Invoke function wrapper in JavaScript
534   SmallVector<Value *, 16> Args;
535   // Put the pointer to the callee as first argument, so it can be called
536   // within the invoke wrapper later
537   Args.push_back(CI->getCalledOperand());
538   Args.append(CI->arg_begin(), CI->arg_end());
539   CallInst *NewCall = IRB.CreateCall(getInvokeWrapper(CI), Args);
540   NewCall->takeName(CI);
541   NewCall->setCallingConv(CallingConv::WASM_EmscriptenInvoke);
542   NewCall->setDebugLoc(CI->getDebugLoc());
543 
544   // Because we added the pointer to the callee as first argument, all
545   // argument attribute indices have to be incremented by one.
546   SmallVector<AttributeSet, 8> ArgAttributes;
547   const AttributeList &InvokeAL = CI->getAttributes();
548 
549   // No attributes for the callee pointer.
550   ArgAttributes.push_back(AttributeSet());
551   // Copy the argument attributes from the original
552   for (unsigned I = 0, E = CI->getNumArgOperands(); I < E; ++I)
553     ArgAttributes.push_back(InvokeAL.getParamAttrs(I));
554 
555   AttrBuilder FnAttrs(InvokeAL.getFnAttrs());
556   if (FnAttrs.contains(Attribute::AllocSize)) {
557     // The allocsize attribute (if any) referes to parameters by index and needs
558     // to be adjusted.
559     unsigned SizeArg;
560     Optional<unsigned> NEltArg;
561     std::tie(SizeArg, NEltArg) = FnAttrs.getAllocSizeArgs();
562     SizeArg += 1;
563     if (NEltArg.hasValue())
564       NEltArg = NEltArg.getValue() + 1;
565     FnAttrs.addAllocSizeAttr(SizeArg, NEltArg);
566   }
567 
568   // Reconstruct the AttributesList based on the vector we constructed.
569   AttributeList NewCallAL = AttributeList::get(
570       C, AttributeSet::get(C, FnAttrs), InvokeAL.getRetAttrs(), ArgAttributes);
571   NewCall->setAttributes(NewCallAL);
572 
573   CI->replaceAllUsesWith(NewCall);
574 
575   // Post-invoke
576   // %__THREW__.val = __THREW__; __THREW__ = 0;
577   Value *Threw =
578       IRB.CreateLoad(getAddrIntType(M), ThrewGV, ThrewGV->getName() + ".val");
579   IRB.CreateStore(getAddrSizeInt(M, 0), ThrewGV);
580   return Threw;
581 }
582 
583 // Get matching invoke wrapper based on callee signature
584 Function *WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallBase *CI) {
585   Module *M = CI->getModule();
586   SmallVector<Type *, 16> ArgTys;
587   FunctionType *CalleeFTy = CI->getFunctionType();
588 
589   std::string Sig = getSignature(CalleeFTy);
590   if (InvokeWrappers.find(Sig) != InvokeWrappers.end())
591     return InvokeWrappers[Sig];
592 
593   // Put the pointer to the callee as first argument
594   ArgTys.push_back(PointerType::getUnqual(CalleeFTy));
595   // Add argument types
596   ArgTys.append(CalleeFTy->param_begin(), CalleeFTy->param_end());
597 
598   FunctionType *FTy = FunctionType::get(CalleeFTy->getReturnType(), ArgTys,
599                                         CalleeFTy->isVarArg());
600   Function *F = getEmscriptenFunction(FTy, "__invoke_" + Sig, M);
601   InvokeWrappers[Sig] = F;
602   return F;
603 }
604 
605 static bool canLongjmp(const Value *Callee) {
606   if (auto *CalleeF = dyn_cast<Function>(Callee))
607     if (CalleeF->isIntrinsic())
608       return false;
609 
610   // Attempting to transform inline assembly will result in something like:
611   //     call void @__invoke_void(void ()* asm ...)
612   // which is invalid because inline assembly blocks do not have addresses
613   // and can't be passed by pointer. The result is a crash with illegal IR.
614   if (isa<InlineAsm>(Callee))
615     return false;
616   StringRef CalleeName = Callee->getName();
617 
618   // The reason we include malloc/free here is to exclude the malloc/free
619   // calls generated in setjmp prep / cleanup routines.
620   if (CalleeName == "setjmp" || CalleeName == "malloc" || CalleeName == "free")
621     return false;
622 
623   // There are functions in Emscripten's JS glue code or compiler-rt
624   if (CalleeName == "__resumeException" || CalleeName == "llvm_eh_typeid_for" ||
625       CalleeName == "saveSetjmp" || CalleeName == "testSetjmp" ||
626       CalleeName == "getTempRet0" || CalleeName == "setTempRet0")
627     return false;
628 
629   // __cxa_find_matching_catch_N functions cannot longjmp
630   if (Callee->getName().startswith("__cxa_find_matching_catch_"))
631     return false;
632 
633   // Exception-catching related functions
634   if (CalleeName == "__cxa_begin_catch" || CalleeName == "__cxa_end_catch" ||
635       CalleeName == "__cxa_allocate_exception" || CalleeName == "__cxa_throw" ||
636       CalleeName == "__clang_call_terminate")
637     return false;
638 
639   // Otherwise we don't know
640   return true;
641 }
642 
643 static bool isEmAsmCall(const Value *Callee) {
644   StringRef CalleeName = Callee->getName();
645   // This is an exhaustive list from Emscripten's <emscripten/em_asm.h>.
646   return CalleeName == "emscripten_asm_const_int" ||
647          CalleeName == "emscripten_asm_const_double" ||
648          CalleeName == "emscripten_asm_const_int_sync_on_main_thread" ||
649          CalleeName == "emscripten_asm_const_double_sync_on_main_thread" ||
650          CalleeName == "emscripten_asm_const_async_on_main_thread";
651 }
652 
653 // Generate testSetjmp function call seqence with preamble and postamble.
654 // The code this generates is equivalent to the following JavaScript code:
655 // %__threwValue.val = __threwValue;
656 // if (%__THREW__.val != 0 & %__threwValue.val != 0) {
657 //   %label = testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize);
658 //   if (%label == 0)
659 //     emscripten_longjmp(%__THREW__.val, %__threwValue.val);
660 //   setTempRet0(%__threwValue.val);
661 // } else {
662 //   %label = -1;
663 // }
664 // %longjmp_result = getTempRet0();
665 //
666 // As output parameters. returns %label, %longjmp_result, and the BB the last
667 // instruction (%longjmp_result = ...) is in.
668 void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp(
669     BasicBlock *BB, DebugLoc DL, Value *Threw, Value *SetjmpTable,
670     Value *SetjmpTableSize, Value *&Label, Value *&LongjmpResult,
671     BasicBlock *&CallEmLongjmpBB, PHINode *&CallEmLongjmpBBThrewPHI,
672     PHINode *&CallEmLongjmpBBThrewValuePHI, BasicBlock *&EndBB) {
673   Function *F = BB->getParent();
674   Module *M = F->getParent();
675   LLVMContext &C = M->getContext();
676   IRBuilder<> IRB(C);
677   IRB.SetCurrentDebugLocation(DL);
678 
679   // if (%__THREW__.val != 0 & %__threwValue.val != 0)
680   IRB.SetInsertPoint(BB);
681   BasicBlock *ThenBB1 = BasicBlock::Create(C, "if.then1", F);
682   BasicBlock *ElseBB1 = BasicBlock::Create(C, "if.else1", F);
683   BasicBlock *EndBB1 = BasicBlock::Create(C, "if.end", F);
684   Value *ThrewCmp = IRB.CreateICmpNE(Threw, getAddrSizeInt(M, 0));
685   Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV,
686                                      ThrewValueGV->getName() + ".val");
687   Value *ThrewValueCmp = IRB.CreateICmpNE(ThrewValue, IRB.getInt32(0));
688   Value *Cmp1 = IRB.CreateAnd(ThrewCmp, ThrewValueCmp, "cmp1");
689   IRB.CreateCondBr(Cmp1, ThenBB1, ElseBB1);
690 
691   // Generate call.em.longjmp BB once and share it within the function
692   if (!CallEmLongjmpBB) {
693     // emscripten_longjmp(%__THREW__.val, %__threwValue.val);
694     CallEmLongjmpBB = BasicBlock::Create(C, "call.em.longjmp", F);
695     IRB.SetInsertPoint(CallEmLongjmpBB);
696     CallEmLongjmpBBThrewPHI = IRB.CreatePHI(getAddrIntType(M), 4, "threw.phi");
697     CallEmLongjmpBBThrewValuePHI =
698         IRB.CreatePHI(IRB.getInt32Ty(), 4, "threwvalue.phi");
699     CallEmLongjmpBBThrewPHI->addIncoming(Threw, ThenBB1);
700     CallEmLongjmpBBThrewValuePHI->addIncoming(ThrewValue, ThenBB1);
701     IRB.CreateCall(EmLongjmpF,
702                    {CallEmLongjmpBBThrewPHI, CallEmLongjmpBBThrewValuePHI});
703     IRB.CreateUnreachable();
704   } else {
705     CallEmLongjmpBBThrewPHI->addIncoming(Threw, ThenBB1);
706     CallEmLongjmpBBThrewValuePHI->addIncoming(ThrewValue, ThenBB1);
707   }
708 
709   // %label = testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize);
710   // if (%label == 0)
711   IRB.SetInsertPoint(ThenBB1);
712   BasicBlock *EndBB2 = BasicBlock::Create(C, "if.end2", F);
713   Value *ThrewPtr =
714       IRB.CreateIntToPtr(Threw, getAddrPtrType(M), Threw->getName() + ".p");
715   Value *LoadedThrew = IRB.CreateLoad(getAddrIntType(M), ThrewPtr,
716                                       ThrewPtr->getName() + ".loaded");
717   Value *ThenLabel = IRB.CreateCall(
718       TestSetjmpF, {LoadedThrew, SetjmpTable, SetjmpTableSize}, "label");
719   Value *Cmp2 = IRB.CreateICmpEQ(ThenLabel, IRB.getInt32(0));
720   IRB.CreateCondBr(Cmp2, CallEmLongjmpBB, EndBB2);
721 
722   // setTempRet0(%__threwValue.val);
723   IRB.SetInsertPoint(EndBB2);
724   IRB.CreateCall(SetTempRet0F, ThrewValue);
725   IRB.CreateBr(EndBB1);
726 
727   IRB.SetInsertPoint(ElseBB1);
728   IRB.CreateBr(EndBB1);
729 
730   // longjmp_result = getTempRet0();
731   IRB.SetInsertPoint(EndBB1);
732   PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label");
733   LabelPHI->addIncoming(ThenLabel, EndBB2);
734 
735   LabelPHI->addIncoming(IRB.getInt32(-1), ElseBB1);
736 
737   // Output parameter assignment
738   Label = LabelPHI;
739   EndBB = EndBB1;
740   LongjmpResult = IRB.CreateCall(GetTempRet0F, None, "longjmp_result");
741 }
742 
743 void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function &F) {
744   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
745   DT.recalculate(F); // CFG has been changed
746 
747   SSAUpdaterBulk SSA;
748   for (BasicBlock &BB : F) {
749     for (Instruction &I : BB) {
750       unsigned VarID = SSA.AddVariable(I.getName(), I.getType());
751       // If a value is defined by an invoke instruction, it is only available in
752       // its normal destination and not in its unwind destination.
753       if (auto *II = dyn_cast<InvokeInst>(&I))
754         SSA.AddAvailableValue(VarID, II->getNormalDest(), II);
755       else
756         SSA.AddAvailableValue(VarID, &BB, &I);
757       for (auto &U : I.uses()) {
758         auto *User = cast<Instruction>(U.getUser());
759         if (auto *UserPN = dyn_cast<PHINode>(User))
760           if (UserPN->getIncomingBlock(U) == &BB)
761             continue;
762         if (DT.dominates(&I, User))
763           continue;
764         SSA.AddUse(VarID, &U);
765       }
766     }
767   }
768   SSA.RewriteAllUses(&DT);
769 }
770 
771 // Replace uses of longjmp with a new longjmp function in Emscripten library.
772 // In Emscripten SjLj, the new function is
773 //   void emscripten_longjmp(uintptr_t, i32)
774 // In Wasm SjLj, the new function is
775 //   void __wasm_longjmp(i8*, i32)
776 // Because the original libc longjmp function takes (jmp_buf*, i32), we need a
777 // ptrtoint/bitcast instruction here to make the type match. jmp_buf* will
778 // eventually be lowered to i32/i64 in the wasm backend.
779 void WebAssemblyLowerEmscriptenEHSjLj::replaceLongjmpWith(Function *LongjmpF,
780                                                           Function *NewF) {
781   assert(NewF == EmLongjmpF || NewF == WasmLongjmpF);
782   Module *M = LongjmpF->getParent();
783   SmallVector<CallInst *, 8> ToErase;
784   LLVMContext &C = LongjmpF->getParent()->getContext();
785   IRBuilder<> IRB(C);
786 
787   // For calls to longjmp, replace it with emscripten_longjmp/__wasm_longjmp and
788   // cast its first argument (jmp_buf*) appropriately
789   for (User *U : LongjmpF->users()) {
790     auto *CI = dyn_cast<CallInst>(U);
791     if (CI && CI->getCalledFunction() == LongjmpF) {
792       IRB.SetInsertPoint(CI);
793       Value *Env = nullptr;
794       if (NewF == EmLongjmpF)
795         Env =
796             IRB.CreatePtrToInt(CI->getArgOperand(0), getAddrIntType(M), "env");
797       else // WasmLongjmpF
798         Env =
799             IRB.CreateBitCast(CI->getArgOperand(0), IRB.getInt8PtrTy(), "env");
800       IRB.CreateCall(NewF, {Env, CI->getArgOperand(1)});
801       ToErase.push_back(CI);
802     }
803   }
804   for (auto *I : ToErase)
805     I->eraseFromParent();
806 
807   // If we have any remaining uses of longjmp's function pointer, replace it
808   // with (void(*)(jmp_buf*, int))emscripten_longjmp / __wasm_longjmp.
809   if (!LongjmpF->uses().empty()) {
810     Value *NewLongjmp =
811         IRB.CreateBitCast(NewF, LongjmpF->getType(), "longjmp.cast");
812     LongjmpF->replaceAllUsesWith(NewLongjmp);
813   }
814 }
815 
816 static bool containsLongjmpableCalls(const Function *F) {
817   for (const auto &BB : *F)
818     for (const auto &I : BB)
819       if (const auto *CB = dyn_cast<CallBase>(&I))
820         if (canLongjmp(CB->getCalledOperand()))
821           return true;
822   return false;
823 }
824 
825 bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module &M) {
826   LLVM_DEBUG(dbgs() << "********** Lower Emscripten EH & SjLj **********\n");
827 
828   LLVMContext &C = M.getContext();
829   IRBuilder<> IRB(C);
830 
831   Function *SetjmpF = M.getFunction("setjmp");
832   Function *LongjmpF = M.getFunction("longjmp");
833 
834   // In some platforms _setjmp and _longjmp are used instead. Change these to
835   // use setjmp/longjmp instead, because we later detect these functions by
836   // their names.
837   Function *SetjmpF2 = M.getFunction("_setjmp");
838   Function *LongjmpF2 = M.getFunction("_longjmp");
839   if (SetjmpF2) {
840     if (SetjmpF) {
841       if (SetjmpF->getFunctionType() != SetjmpF2->getFunctionType())
842         report_fatal_error("setjmp and _setjmp have different function types");
843     } else {
844       SetjmpF = Function::Create(SetjmpF2->getFunctionType(),
845                                  GlobalValue::ExternalLinkage, "setjmp", M);
846     }
847     SetjmpF2->replaceAllUsesWith(SetjmpF);
848   }
849   if (LongjmpF2) {
850     if (LongjmpF) {
851       if (LongjmpF->getFunctionType() != LongjmpF2->getFunctionType())
852         report_fatal_error(
853             "longjmp and _longjmp have different function types");
854     } else {
855       LongjmpF = Function::Create(LongjmpF2->getFunctionType(),
856                                   GlobalValue::ExternalLinkage, "setjmp", M);
857     }
858     LongjmpF2->replaceAllUsesWith(LongjmpF);
859   }
860 
861   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
862   assert(TPC && "Expected a TargetPassConfig");
863   auto &TM = TPC->getTM<WebAssemblyTargetMachine>();
864 
865   // Declare (or get) global variables __THREW__, __threwValue, and
866   // getTempRet0/setTempRet0 function which are used in common for both
867   // exception handling and setjmp/longjmp handling
868   ThrewGV = getGlobalVariable(M, getAddrIntType(&M), TM, "__THREW__");
869   ThrewValueGV = getGlobalVariable(M, IRB.getInt32Ty(), TM, "__threwValue");
870   GetTempRet0F = getEmscriptenFunction(
871       FunctionType::get(IRB.getInt32Ty(), false), "getTempRet0", &M);
872   SetTempRet0F = getEmscriptenFunction(
873       FunctionType::get(IRB.getVoidTy(), IRB.getInt32Ty(), false),
874       "setTempRet0", &M);
875   GetTempRet0F->setDoesNotThrow();
876   SetTempRet0F->setDoesNotThrow();
877 
878   bool Changed = false;
879 
880   // Function registration for exception handling
881   if (EnableEmEH) {
882     // Register __resumeException function
883     FunctionType *ResumeFTy =
884         FunctionType::get(IRB.getVoidTy(), IRB.getInt8PtrTy(), false);
885     ResumeF = getEmscriptenFunction(ResumeFTy, "__resumeException", &M);
886     ResumeF->addFnAttr(Attribute::NoReturn);
887 
888     // Register llvm_eh_typeid_for function
889     FunctionType *EHTypeIDTy =
890         FunctionType::get(IRB.getInt32Ty(), IRB.getInt8PtrTy(), false);
891     EHTypeIDF = getEmscriptenFunction(EHTypeIDTy, "llvm_eh_typeid_for", &M);
892   }
893 
894   if ((EnableEmSjLj || EnableWasmSjLj) && SetjmpF) {
895     // Precompute setjmp users
896     for (User *U : SetjmpF->users()) {
897       if (auto *CB = dyn_cast<CallBase>(U)) {
898         auto *UserF = CB->getFunction();
899         // If a function that calls setjmp does not contain any other calls that
900         // can longjmp, we don't need to do any transformation on that function,
901         // so can ignore it
902         if (containsLongjmpableCalls(UserF))
903           SetjmpUsers.insert(UserF);
904       } else {
905         std::string S;
906         raw_string_ostream SS(S);
907         SS << *U;
908         report_fatal_error(Twine("Indirect use of setjmp is not supported: ") +
909                            SS.str());
910       }
911     }
912   }
913 
914   bool SetjmpUsed = SetjmpF && !SetjmpUsers.empty();
915   bool LongjmpUsed = LongjmpF && !LongjmpF->use_empty();
916   DoSjLj = (EnableEmSjLj | EnableWasmSjLj) && (SetjmpUsed || LongjmpUsed);
917 
918   // Function registration and data pre-gathering for setjmp/longjmp handling
919   if (DoSjLj) {
920     assert(EnableEmSjLj || EnableWasmSjLj);
921     if (EnableEmSjLj) {
922       // Register emscripten_longjmp function
923       FunctionType *FTy = FunctionType::get(
924           IRB.getVoidTy(), {getAddrIntType(&M), IRB.getInt32Ty()}, false);
925       EmLongjmpF = getEmscriptenFunction(FTy, "emscripten_longjmp", &M);
926       EmLongjmpF->addFnAttr(Attribute::NoReturn);
927     } else { // EnableWasmSjLj
928       // Register __wasm_longjmp function, which calls __builtin_wasm_longjmp.
929       FunctionType *FTy = FunctionType::get(
930           IRB.getVoidTy(), {IRB.getInt8PtrTy(), IRB.getInt32Ty()}, false);
931       WasmLongjmpF = getEmscriptenFunction(FTy, "__wasm_longjmp", &M);
932       WasmLongjmpF->addFnAttr(Attribute::NoReturn);
933     }
934 
935     if (SetjmpF) {
936       // Register saveSetjmp function
937       FunctionType *SetjmpFTy = SetjmpF->getFunctionType();
938       FunctionType *FTy =
939           FunctionType::get(Type::getInt32PtrTy(C),
940                             {SetjmpFTy->getParamType(0), IRB.getInt32Ty(),
941                              Type::getInt32PtrTy(C), IRB.getInt32Ty()},
942                             false);
943       SaveSetjmpF = getEmscriptenFunction(FTy, "saveSetjmp", &M);
944 
945       // Register testSetjmp function
946       FTy = FunctionType::get(
947           IRB.getInt32Ty(),
948           {getAddrIntType(&M), Type::getInt32PtrTy(C), IRB.getInt32Ty()},
949           false);
950       TestSetjmpF = getEmscriptenFunction(FTy, "testSetjmp", &M);
951 
952       // wasm.catch() will be lowered down to wasm 'catch' instruction in
953       // instruction selection.
954       CatchF = Intrinsic::getDeclaration(&M, Intrinsic::wasm_catch);
955       // Type for struct __WasmLongjmpArgs
956       LongjmpArgsTy = StructType::get(IRB.getInt8PtrTy(), // env
957                                       IRB.getInt32Ty()    // val
958       );
959     }
960   }
961 
962   // Above, we registered emscripten_longjmp function only when it SjLj is
963   // actually used. But there is a case we need emscripten_longjmp when we
964   // rethrow longjmps after checking for an Emscripten exception. Refer to
965   // runEHOnFunction for details.
966   if (EnableEmEH && EnableEmSjLj && !EmLongjmpF) {
967     // Register emscripten_longjmp function
968     FunctionType *FTy = FunctionType::get(
969         IRB.getVoidTy(), {getAddrIntType(&M), IRB.getInt32Ty()}, false);
970     EmLongjmpF = getEmscriptenFunction(FTy, "emscripten_longjmp", &M);
971     EmLongjmpF->addFnAttr(Attribute::NoReturn);
972   }
973 
974   // Exception handling transformation
975   if (EnableEmEH) {
976     for (Function &F : M) {
977       if (F.isDeclaration())
978         continue;
979       Changed |= runEHOnFunction(F);
980     }
981   }
982 
983   // Setjmp/longjmp handling transformation
984   if (DoSjLj) {
985     Changed = true; // We have setjmp or longjmp somewhere
986     if (LongjmpF)
987       replaceLongjmpWith(LongjmpF, EnableEmSjLj ? EmLongjmpF : WasmLongjmpF);
988     // Only traverse functions that uses setjmp in order not to insert
989     // unnecessary prep / cleanup code in every function
990     if (SetjmpF)
991       for (Function *F : SetjmpUsers)
992         runSjLjOnFunction(*F);
993   }
994 
995   if (!Changed) {
996     // Delete unused global variables and functions
997     if (ResumeF)
998       ResumeF->eraseFromParent();
999     if (EHTypeIDF)
1000       EHTypeIDF->eraseFromParent();
1001     if (EmLongjmpF)
1002       EmLongjmpF->eraseFromParent();
1003     if (SaveSetjmpF)
1004       SaveSetjmpF->eraseFromParent();
1005     if (TestSetjmpF)
1006       TestSetjmpF->eraseFromParent();
1007     return false;
1008   }
1009 
1010   return true;
1011 }
1012 
1013 bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function &F) {
1014   Module &M = *F.getParent();
1015   LLVMContext &C = F.getContext();
1016   IRBuilder<> IRB(C);
1017   bool Changed = false;
1018   SmallVector<Instruction *, 64> ToErase;
1019   SmallPtrSet<LandingPadInst *, 32> LandingPads;
1020 
1021   // rethrow.longjmp BB that will be shared within the function.
1022   BasicBlock *RethrowLongjmpBB = nullptr;
1023   // PHI node for the loaded value of __THREW__ global variable in
1024   // rethrow.longjmp BB
1025   PHINode *RethrowLongjmpBBThrewPHI = nullptr;
1026 
1027   for (BasicBlock &BB : F) {
1028     auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
1029     if (!II)
1030       continue;
1031     Changed = true;
1032     LandingPads.insert(II->getLandingPadInst());
1033     IRB.SetInsertPoint(II);
1034 
1035     const Value *Callee = II->getCalledOperand();
1036     bool NeedInvoke = supportsException(&F) && canThrow(Callee);
1037     if (NeedInvoke) {
1038       // Wrap invoke with invoke wrapper and generate preamble/postamble
1039       Value *Threw = wrapInvoke(II);
1040       ToErase.push_back(II);
1041 
1042       // If setjmp/longjmp handling is enabled, the thrown value can be not an
1043       // exception but a longjmp. If the current function contains calls to
1044       // setjmp, it will be appropriately handled in runSjLjOnFunction. But even
1045       // if the function does not contain setjmp calls, we shouldn't silently
1046       // ignore longjmps; we should rethrow them so they can be correctly
1047       // handled in somewhere up the call chain where setjmp is. __THREW__'s
1048       // value is 0 when nothing happened, 1 when an exception is thrown, and
1049       // other values when longjmp is thrown.
1050       //
1051       // Note that we do this whenever -enable-emscripten-sjlj is on, regardless
1052       // of whether there is actual usage of setjmp/longjmp within the module.
1053       // Because we use wasm-ld to link files, what we see here is not the whole
1054       // program, and there can be a longjmp call in another file.
1055       //
1056       // if (%__THREW__.val == 0 || %__THREW__.val == 1)
1057       //   goto %tail
1058       // else
1059       //   goto %longjmp.rethrow
1060       //
1061       // rethrow.longjmp: ;; This is longjmp. Rethrow it
1062       //   %__threwValue.val = __threwValue
1063       //   emscripten_longjmp(%__THREW__.val, %__threwValue.val);
1064       //
1065       // tail: ;; Nothing happened or an exception is thrown
1066       //   ... Continue exception handling ...
1067       if (EnableEmSjLj && !SetjmpUsers.count(&F) && canLongjmp(Callee)) {
1068         // Create longjmp.rethrow BB once and share it within the function
1069         if (!RethrowLongjmpBB) {
1070           RethrowLongjmpBB = BasicBlock::Create(C, "rethrow.longjmp", &F);
1071           IRB.SetInsertPoint(RethrowLongjmpBB);
1072           RethrowLongjmpBBThrewPHI =
1073               IRB.CreatePHI(getAddrIntType(&M), 4, "threw.phi");
1074           RethrowLongjmpBBThrewPHI->addIncoming(Threw, &BB);
1075           Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV,
1076                                              ThrewValueGV->getName() + ".val");
1077           IRB.CreateCall(EmLongjmpF, {RethrowLongjmpBBThrewPHI, ThrewValue});
1078           IRB.CreateUnreachable();
1079         } else {
1080           RethrowLongjmpBBThrewPHI->addIncoming(Threw, &BB);
1081         }
1082 
1083         IRB.SetInsertPoint(II); // Restore the insert point back
1084         BasicBlock *Tail = BasicBlock::Create(C, "tail", &F);
1085         Value *CmpEqOne =
1086             IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp.eq.one");
1087         Value *CmpEqZero =
1088             IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 0), "cmp.eq.zero");
1089         Value *Or = IRB.CreateOr(CmpEqZero, CmpEqOne, "or");
1090         IRB.CreateCondBr(Or, Tail, RethrowLongjmpBB);
1091         IRB.SetInsertPoint(Tail);
1092         BB.replaceSuccessorsPhiUsesWith(&BB, Tail);
1093       }
1094 
1095       // Insert a branch based on __THREW__ variable
1096       Value *Cmp = IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp");
1097       IRB.CreateCondBr(Cmp, II->getUnwindDest(), II->getNormalDest());
1098 
1099     } else {
1100       // This can't throw, and we don't need this invoke, just replace it with a
1101       // call+branch
1102       SmallVector<Value *, 16> Args(II->args());
1103       CallInst *NewCall =
1104           IRB.CreateCall(II->getFunctionType(), II->getCalledOperand(), Args);
1105       NewCall->takeName(II);
1106       NewCall->setCallingConv(II->getCallingConv());
1107       NewCall->setDebugLoc(II->getDebugLoc());
1108       NewCall->setAttributes(II->getAttributes());
1109       II->replaceAllUsesWith(NewCall);
1110       ToErase.push_back(II);
1111 
1112       IRB.CreateBr(II->getNormalDest());
1113 
1114       // Remove any PHI node entries from the exception destination
1115       II->getUnwindDest()->removePredecessor(&BB);
1116     }
1117   }
1118 
1119   // Process resume instructions
1120   for (BasicBlock &BB : F) {
1121     // Scan the body of the basic block for resumes
1122     for (Instruction &I : BB) {
1123       auto *RI = dyn_cast<ResumeInst>(&I);
1124       if (!RI)
1125         continue;
1126       Changed = true;
1127 
1128       // Split the input into legal values
1129       Value *Input = RI->getValue();
1130       IRB.SetInsertPoint(RI);
1131       Value *Low = IRB.CreateExtractValue(Input, 0, "low");
1132       // Create a call to __resumeException function
1133       IRB.CreateCall(ResumeF, {Low});
1134       // Add a terminator to the block
1135       IRB.CreateUnreachable();
1136       ToErase.push_back(RI);
1137     }
1138   }
1139 
1140   // Process llvm.eh.typeid.for intrinsics
1141   for (BasicBlock &BB : F) {
1142     for (Instruction &I : BB) {
1143       auto *CI = dyn_cast<CallInst>(&I);
1144       if (!CI)
1145         continue;
1146       const Function *Callee = CI->getCalledFunction();
1147       if (!Callee)
1148         continue;
1149       if (Callee->getIntrinsicID() != Intrinsic::eh_typeid_for)
1150         continue;
1151       Changed = true;
1152 
1153       IRB.SetInsertPoint(CI);
1154       CallInst *NewCI =
1155           IRB.CreateCall(EHTypeIDF, CI->getArgOperand(0), "typeid");
1156       CI->replaceAllUsesWith(NewCI);
1157       ToErase.push_back(CI);
1158     }
1159   }
1160 
1161   // Look for orphan landingpads, can occur in blocks with no predecessors
1162   for (BasicBlock &BB : F) {
1163     Instruction *I = BB.getFirstNonPHI();
1164     if (auto *LPI = dyn_cast<LandingPadInst>(I))
1165       LandingPads.insert(LPI);
1166   }
1167   Changed |= !LandingPads.empty();
1168 
1169   // Handle all the landingpad for this function together, as multiple invokes
1170   // may share a single lp
1171   for (LandingPadInst *LPI : LandingPads) {
1172     IRB.SetInsertPoint(LPI);
1173     SmallVector<Value *, 16> FMCArgs;
1174     for (unsigned I = 0, E = LPI->getNumClauses(); I < E; ++I) {
1175       Constant *Clause = LPI->getClause(I);
1176       // TODO Handle filters (= exception specifications).
1177       // https://bugs.llvm.org/show_bug.cgi?id=50396
1178       if (LPI->isCatch(I))
1179         FMCArgs.push_back(Clause);
1180     }
1181 
1182     // Create a call to __cxa_find_matching_catch_N function
1183     Function *FMCF = getFindMatchingCatch(M, FMCArgs.size());
1184     CallInst *FMCI = IRB.CreateCall(FMCF, FMCArgs, "fmc");
1185     Value *Undef = UndefValue::get(LPI->getType());
1186     Value *Pair0 = IRB.CreateInsertValue(Undef, FMCI, 0, "pair0");
1187     Value *TempRet0 = IRB.CreateCall(GetTempRet0F, None, "tempret0");
1188     Value *Pair1 = IRB.CreateInsertValue(Pair0, TempRet0, 1, "pair1");
1189 
1190     LPI->replaceAllUsesWith(Pair1);
1191     ToErase.push_back(LPI);
1192   }
1193 
1194   // Erase everything we no longer need in this function
1195   for (Instruction *I : ToErase)
1196     I->eraseFromParent();
1197 
1198   return Changed;
1199 }
1200 
1201 // This tries to get debug info from the instruction before which a new
1202 // instruction will be inserted, and if there's no debug info in that
1203 // instruction, tries to get the info instead from the previous instruction (if
1204 // any). If none of these has debug info and a DISubprogram is provided, it
1205 // creates a dummy debug info with the first line of the function, because IR
1206 // verifier requires all inlinable callsites should have debug info when both a
1207 // caller and callee have DISubprogram. If none of these conditions are met,
1208 // returns empty info.
1209 static DebugLoc getOrCreateDebugLoc(const Instruction *InsertBefore,
1210                                     DISubprogram *SP) {
1211   assert(InsertBefore);
1212   if (InsertBefore->getDebugLoc())
1213     return InsertBefore->getDebugLoc();
1214   const Instruction *Prev = InsertBefore->getPrevNode();
1215   if (Prev && Prev->getDebugLoc())
1216     return Prev->getDebugLoc();
1217   if (SP)
1218     return DILocation::get(SP->getContext(), SP->getLine(), 1, SP);
1219   return DebugLoc();
1220 }
1221 
1222 bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function &F) {
1223   assert(EnableEmSjLj || EnableWasmSjLj);
1224   Module &M = *F.getParent();
1225   LLVMContext &C = F.getContext();
1226   IRBuilder<> IRB(C);
1227   SmallVector<Instruction *, 64> ToErase;
1228   // Vector of %setjmpTable values
1229   SmallVector<Instruction *, 4> SetjmpTableInsts;
1230   // Vector of %setjmpTableSize values
1231   SmallVector<Instruction *, 4> SetjmpTableSizeInsts;
1232 
1233   // Setjmp preparation
1234 
1235   // This instruction effectively means %setjmpTableSize = 4.
1236   // We create this as an instruction intentionally, and we don't want to fold
1237   // this instruction to a constant 4, because this value will be used in
1238   // SSAUpdater.AddAvailableValue(...) later.
1239   BasicBlock *Entry = &F.getEntryBlock();
1240   DebugLoc FirstDL = getOrCreateDebugLoc(&*Entry->begin(), F.getSubprogram());
1241   SplitBlock(Entry, &*Entry->getFirstInsertionPt());
1242 
1243   BinaryOperator *SetjmpTableSize =
1244       BinaryOperator::Create(Instruction::Add, IRB.getInt32(4), IRB.getInt32(0),
1245                              "setjmpTableSize", Entry->getTerminator());
1246   SetjmpTableSize->setDebugLoc(FirstDL);
1247   // setjmpTable = (int *) malloc(40);
1248   Instruction *SetjmpTable = CallInst::CreateMalloc(
1249       SetjmpTableSize, IRB.getInt32Ty(), IRB.getInt32Ty(), IRB.getInt32(40),
1250       nullptr, nullptr, "setjmpTable");
1251   SetjmpTable->setDebugLoc(FirstDL);
1252   // CallInst::CreateMalloc may return a bitcast instruction if the result types
1253   // mismatch. We need to set the debug loc for the original call too.
1254   auto *MallocCall = SetjmpTable->stripPointerCasts();
1255   if (auto *MallocCallI = dyn_cast<Instruction>(MallocCall)) {
1256     MallocCallI->setDebugLoc(FirstDL);
1257   }
1258   // setjmpTable[0] = 0;
1259   IRB.SetInsertPoint(SetjmpTableSize);
1260   IRB.CreateStore(IRB.getInt32(0), SetjmpTable);
1261   SetjmpTableInsts.push_back(SetjmpTable);
1262   SetjmpTableSizeInsts.push_back(SetjmpTableSize);
1263 
1264   // Setjmp transformation
1265   SmallVector<PHINode *, 4> SetjmpRetPHIs;
1266   Function *SetjmpF = M.getFunction("setjmp");
1267   for (User *U : SetjmpF->users()) {
1268     auto *CI = dyn_cast<CallInst>(U);
1269     // FIXME 'invoke' to setjmp can happen when we use Wasm EH + Wasm SjLj, but
1270     // we don't support two being used together yet.
1271     if (!CI)
1272       report_fatal_error("Wasm EH + Wasm SjLj is not fully supported yet");
1273     BasicBlock *BB = CI->getParent();
1274     if (BB->getParent() != &F) // in other function
1275       continue;
1276 
1277     // The tail is everything right after the call, and will be reached once
1278     // when setjmp is called, and later when longjmp returns to the setjmp
1279     BasicBlock *Tail = SplitBlock(BB, CI->getNextNode());
1280     // Add a phi to the tail, which will be the output of setjmp, which
1281     // indicates if this is the first call or a longjmp back. The phi directly
1282     // uses the right value based on where we arrive from
1283     IRB.SetInsertPoint(Tail->getFirstNonPHI());
1284     PHINode *SetjmpRet = IRB.CreatePHI(IRB.getInt32Ty(), 2, "setjmp.ret");
1285 
1286     // setjmp initial call returns 0
1287     SetjmpRet->addIncoming(IRB.getInt32(0), BB);
1288     // The proper output is now this, not the setjmp call itself
1289     CI->replaceAllUsesWith(SetjmpRet);
1290     // longjmp returns to the setjmp will add themselves to this phi
1291     SetjmpRetPHIs.push_back(SetjmpRet);
1292 
1293     // Fix call target
1294     // Our index in the function is our place in the array + 1 to avoid index
1295     // 0, because index 0 means the longjmp is not ours to handle.
1296     IRB.SetInsertPoint(CI);
1297     Value *Args[] = {CI->getArgOperand(0), IRB.getInt32(SetjmpRetPHIs.size()),
1298                      SetjmpTable, SetjmpTableSize};
1299     Instruction *NewSetjmpTable =
1300         IRB.CreateCall(SaveSetjmpF, Args, "setjmpTable");
1301     Instruction *NewSetjmpTableSize =
1302         IRB.CreateCall(GetTempRet0F, None, "setjmpTableSize");
1303     SetjmpTableInsts.push_back(NewSetjmpTable);
1304     SetjmpTableSizeInsts.push_back(NewSetjmpTableSize);
1305     ToErase.push_back(CI);
1306   }
1307 
1308   // Handle longjmpable calls.
1309   if (EnableEmSjLj)
1310     handleLongjmpableCallsForEmscriptenSjLj(
1311         F, SetjmpTableInsts, SetjmpTableSizeInsts, SetjmpRetPHIs);
1312   else // EnableWasmSjLj
1313     handleLongjmpableCallsForWasmSjLj(F, SetjmpTableInsts, SetjmpTableSizeInsts,
1314                                       SetjmpRetPHIs);
1315 
1316   // Erase everything we no longer need in this function
1317   for (Instruction *I : ToErase)
1318     I->eraseFromParent();
1319 
1320   // Free setjmpTable buffer before each return instruction + function-exiting
1321   // call
1322   SmallVector<Instruction *, 16> ExitingInsts;
1323   for (BasicBlock &BB : F) {
1324     Instruction *TI = BB.getTerminator();
1325     if (isa<ReturnInst>(TI))
1326       ExitingInsts.push_back(TI);
1327     // Any 'call' instruction with 'noreturn' attribute exits the function at
1328     // this point. If this throws but unwinds to another EH pad within this
1329     // function instead of exiting, this would have been an 'invoke', which
1330     // happens if we use Wasm EH or Wasm SjLJ.
1331     for (auto &I : BB) {
1332       if (auto *CI = dyn_cast<CallInst>(&I)) {
1333         bool IsNoReturn = CI->hasFnAttr(Attribute::NoReturn);
1334         if (Function *CalleeF = CI->getCalledFunction())
1335           IsNoReturn |= CalleeF->hasFnAttribute(Attribute::NoReturn);
1336         if (IsNoReturn)
1337           ExitingInsts.push_back(&I);
1338       }
1339     }
1340   }
1341   for (auto *I : ExitingInsts) {
1342     DebugLoc DL = getOrCreateDebugLoc(I, F.getSubprogram());
1343     // If this existing instruction is a call within a catchpad, we should add
1344     // it as "funclet" to the operand bundle of 'free' call
1345     SmallVector<OperandBundleDef, 1> Bundles;
1346     if (auto *CB = dyn_cast<CallBase>(I))
1347       if (auto Bundle = CB->getOperandBundle(LLVMContext::OB_funclet))
1348         Bundles.push_back(OperandBundleDef(*Bundle));
1349     auto *Free = CallInst::CreateFree(SetjmpTable, Bundles, I);
1350     Free->setDebugLoc(DL);
1351     // CallInst::CreateFree may create a bitcast instruction if its argument
1352     // types mismatch. We need to set the debug loc for the bitcast too.
1353     if (auto *FreeCallI = dyn_cast<CallInst>(Free)) {
1354       if (auto *BitCastI = dyn_cast<BitCastInst>(FreeCallI->getArgOperand(0)))
1355         BitCastI->setDebugLoc(DL);
1356     }
1357   }
1358 
1359   // Every call to saveSetjmp can change setjmpTable and setjmpTableSize
1360   // (when buffer reallocation occurs)
1361   // entry:
1362   //   setjmpTableSize = 4;
1363   //   setjmpTable = (int *) malloc(40);
1364   //   setjmpTable[0] = 0;
1365   // ...
1366   // somebb:
1367   //   setjmpTable = saveSetjmp(env, label, setjmpTable, setjmpTableSize);
1368   //   setjmpTableSize = getTempRet0();
1369   // So we need to make sure the SSA for these variables is valid so that every
1370   // saveSetjmp and testSetjmp calls have the correct arguments.
1371   SSAUpdater SetjmpTableSSA;
1372   SSAUpdater SetjmpTableSizeSSA;
1373   SetjmpTableSSA.Initialize(Type::getInt32PtrTy(C), "setjmpTable");
1374   SetjmpTableSizeSSA.Initialize(Type::getInt32Ty(C), "setjmpTableSize");
1375   for (Instruction *I : SetjmpTableInsts)
1376     SetjmpTableSSA.AddAvailableValue(I->getParent(), I);
1377   for (Instruction *I : SetjmpTableSizeInsts)
1378     SetjmpTableSizeSSA.AddAvailableValue(I->getParent(), I);
1379 
1380   for (auto &U : make_early_inc_range(SetjmpTable->uses()))
1381     if (auto *I = dyn_cast<Instruction>(U.getUser()))
1382       if (I->getParent() != Entry)
1383         SetjmpTableSSA.RewriteUse(U);
1384   for (auto &U : make_early_inc_range(SetjmpTableSize->uses()))
1385     if (auto *I = dyn_cast<Instruction>(U.getUser()))
1386       if (I->getParent() != Entry)
1387         SetjmpTableSizeSSA.RewriteUse(U);
1388 
1389   // Finally, our modifications to the cfg can break dominance of SSA variables.
1390   // For example, in this code,
1391   // if (x()) { .. setjmp() .. }
1392   // if (y()) { .. longjmp() .. }
1393   // We must split the longjmp block, and it can jump into the block splitted
1394   // from setjmp one. But that means that when we split the setjmp block, it's
1395   // first part no longer dominates its second part - there is a theoretically
1396   // possible control flow path where x() is false, then y() is true and we
1397   // reach the second part of the setjmp block, without ever reaching the first
1398   // part. So, we rebuild SSA form here.
1399   rebuildSSA(F);
1400   return true;
1401 }
1402 
1403 // Update each call that can longjmp so it can return to the corresponding
1404 // setjmp. Refer to 4) of "Emscripten setjmp/longjmp handling" section in the
1405 // comments at top of the file for details.
1406 void WebAssemblyLowerEmscriptenEHSjLj::handleLongjmpableCallsForEmscriptenSjLj(
1407     Function &F, InstVector &SetjmpTableInsts, InstVector &SetjmpTableSizeInsts,
1408     SmallVectorImpl<PHINode *> &SetjmpRetPHIs) {
1409   Module &M = *F.getParent();
1410   LLVMContext &C = F.getContext();
1411   IRBuilder<> IRB(C);
1412   SmallVector<Instruction *, 64> ToErase;
1413 
1414   // We need to pass setjmpTable and setjmpTableSize to testSetjmp function.
1415   // These values are defined in the beginning of the function and also in each
1416   // setjmp callsite, but we don't know which values we should use at this
1417   // point. So here we arbitraily use the ones defined in the beginning of the
1418   // function, and SSAUpdater will later update them to the correct values.
1419   Instruction *SetjmpTable = *SetjmpTableInsts.begin();
1420   Instruction *SetjmpTableSize = *SetjmpTableSizeInsts.begin();
1421 
1422   // call.em.longjmp BB that will be shared within the function.
1423   BasicBlock *CallEmLongjmpBB = nullptr;
1424   // PHI node for the loaded value of __THREW__ global variable in
1425   // call.em.longjmp BB
1426   PHINode *CallEmLongjmpBBThrewPHI = nullptr;
1427   // PHI node for the loaded value of __threwValue global variable in
1428   // call.em.longjmp BB
1429   PHINode *CallEmLongjmpBBThrewValuePHI = nullptr;
1430   // rethrow.exn BB that will be shared within the function.
1431   BasicBlock *RethrowExnBB = nullptr;
1432 
1433   // Because we are creating new BBs while processing and don't want to make
1434   // all these newly created BBs candidates again for longjmp processing, we
1435   // first make the vector of candidate BBs.
1436   std::vector<BasicBlock *> BBs;
1437   for (BasicBlock &BB : F)
1438     BBs.push_back(&BB);
1439 
1440   // BBs.size() will change within the loop, so we query it every time
1441   for (unsigned I = 0; I < BBs.size(); I++) {
1442     BasicBlock *BB = BBs[I];
1443     for (Instruction &I : *BB) {
1444       if (isa<InvokeInst>(&I))
1445         report_fatal_error("When using Wasm EH with Emscripten SjLj, there is "
1446                            "a restriction that `setjmp` function call and "
1447                            "exception cannot be used within the same function");
1448       auto *CI = dyn_cast<CallInst>(&I);
1449       if (!CI)
1450         continue;
1451 
1452       const Value *Callee = CI->getCalledOperand();
1453       if (!canLongjmp(Callee))
1454         continue;
1455       if (isEmAsmCall(Callee))
1456         report_fatal_error("Cannot use EM_ASM* alongside setjmp/longjmp in " +
1457                                F.getName() +
1458                                ". Please consider using EM_JS, or move the "
1459                                "EM_ASM into another function.",
1460                            false);
1461 
1462       Value *Threw = nullptr;
1463       BasicBlock *Tail;
1464       if (Callee->getName().startswith("__invoke_")) {
1465         // If invoke wrapper has already been generated for this call in
1466         // previous EH phase, search for the load instruction
1467         // %__THREW__.val = __THREW__;
1468         // in postamble after the invoke wrapper call
1469         LoadInst *ThrewLI = nullptr;
1470         StoreInst *ThrewResetSI = nullptr;
1471         for (auto I = std::next(BasicBlock::iterator(CI)), IE = BB->end();
1472              I != IE; ++I) {
1473           if (auto *LI = dyn_cast<LoadInst>(I))
1474             if (auto *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()))
1475               if (GV == ThrewGV) {
1476                 Threw = ThrewLI = LI;
1477                 break;
1478               }
1479         }
1480         // Search for the store instruction after the load above
1481         // __THREW__ = 0;
1482         for (auto I = std::next(BasicBlock::iterator(ThrewLI)), IE = BB->end();
1483              I != IE; ++I) {
1484           if (auto *SI = dyn_cast<StoreInst>(I)) {
1485             if (auto *GV = dyn_cast<GlobalVariable>(SI->getPointerOperand())) {
1486               if (GV == ThrewGV &&
1487                   SI->getValueOperand() == getAddrSizeInt(&M, 0)) {
1488                 ThrewResetSI = SI;
1489                 break;
1490               }
1491             }
1492           }
1493         }
1494         assert(Threw && ThrewLI && "Cannot find __THREW__ load after invoke");
1495         assert(ThrewResetSI && "Cannot find __THREW__ store after invoke");
1496         Tail = SplitBlock(BB, ThrewResetSI->getNextNode());
1497 
1498       } else {
1499         // Wrap call with invoke wrapper and generate preamble/postamble
1500         Threw = wrapInvoke(CI);
1501         ToErase.push_back(CI);
1502         Tail = SplitBlock(BB, CI->getNextNode());
1503 
1504         // If exception handling is enabled, the thrown value can be not a
1505         // longjmp but an exception, in which case we shouldn't silently ignore
1506         // exceptions; we should rethrow them.
1507         // __THREW__'s value is 0 when nothing happened, 1 when an exception is
1508         // thrown, other values when longjmp is thrown.
1509         //
1510         // if (%__THREW__.val == 1)
1511         //   goto %eh.rethrow
1512         // else
1513         //   goto %normal
1514         //
1515         // eh.rethrow: ;; Rethrow exception
1516         //   %exn = call @__cxa_find_matching_catch_2() ;; Retrieve thrown ptr
1517         //   __resumeException(%exn)
1518         //
1519         // normal:
1520         //   <-- Insertion point. Will insert sjlj handling code from here
1521         //   goto %tail
1522         //
1523         // tail:
1524         //   ...
1525         if (supportsException(&F) && canThrow(Callee)) {
1526           // We will add a new conditional branch. So remove the branch created
1527           // when we split the BB
1528           ToErase.push_back(BB->getTerminator());
1529 
1530           // Generate rethrow.exn BB once and share it within the function
1531           if (!RethrowExnBB) {
1532             RethrowExnBB = BasicBlock::Create(C, "rethrow.exn", &F);
1533             IRB.SetInsertPoint(RethrowExnBB);
1534             CallInst *Exn =
1535                 IRB.CreateCall(getFindMatchingCatch(M, 0), {}, "exn");
1536             IRB.CreateCall(ResumeF, {Exn});
1537             IRB.CreateUnreachable();
1538           }
1539 
1540           IRB.SetInsertPoint(CI);
1541           BasicBlock *NormalBB = BasicBlock::Create(C, "normal", &F);
1542           Value *CmpEqOne =
1543               IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp.eq.one");
1544           IRB.CreateCondBr(CmpEqOne, RethrowExnBB, NormalBB);
1545 
1546           IRB.SetInsertPoint(NormalBB);
1547           IRB.CreateBr(Tail);
1548           BB = NormalBB; // New insertion point to insert testSetjmp()
1549         }
1550       }
1551 
1552       // We need to replace the terminator in Tail - SplitBlock makes BB go
1553       // straight to Tail, we need to check if a longjmp occurred, and go to the
1554       // right setjmp-tail if so
1555       ToErase.push_back(BB->getTerminator());
1556 
1557       // Generate a function call to testSetjmp function and preamble/postamble
1558       // code to figure out (1) whether longjmp occurred (2) if longjmp
1559       // occurred, which setjmp it corresponds to
1560       Value *Label = nullptr;
1561       Value *LongjmpResult = nullptr;
1562       BasicBlock *EndBB = nullptr;
1563       wrapTestSetjmp(BB, CI->getDebugLoc(), Threw, SetjmpTable, SetjmpTableSize,
1564                      Label, LongjmpResult, CallEmLongjmpBB,
1565                      CallEmLongjmpBBThrewPHI, CallEmLongjmpBBThrewValuePHI,
1566                      EndBB);
1567       assert(Label && LongjmpResult && EndBB);
1568 
1569       // Create switch instruction
1570       IRB.SetInsertPoint(EndBB);
1571       IRB.SetCurrentDebugLocation(EndBB->getInstList().back().getDebugLoc());
1572       SwitchInst *SI = IRB.CreateSwitch(Label, Tail, SetjmpRetPHIs.size());
1573       // -1 means no longjmp happened, continue normally (will hit the default
1574       // switch case). 0 means a longjmp that is not ours to handle, needs a
1575       // rethrow. Otherwise the index is the same as the index in P+1 (to avoid
1576       // 0).
1577       for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) {
1578         SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent());
1579         SetjmpRetPHIs[I]->addIncoming(LongjmpResult, EndBB);
1580       }
1581 
1582       // We are splitting the block here, and must continue to find other calls
1583       // in the block - which is now split. so continue to traverse in the Tail
1584       BBs.push_back(Tail);
1585     }
1586   }
1587 
1588   for (Instruction *I : ToErase)
1589     I->eraseFromParent();
1590 }
1591 
1592 // Create a catchpad in which we catch a longjmp's env and val arguments, test
1593 // if the longjmp corresponds to one of setjmps in the current function, and if
1594 // so, jump to the setjmp dispatch BB from which we go to one of post-setjmp
1595 // BBs. Refer to 4) of "Wasm setjmp/longjmp handling" section in the comments at
1596 // top of the file for details.
1597 void WebAssemblyLowerEmscriptenEHSjLj::handleLongjmpableCallsForWasmSjLj(
1598     Function &F, InstVector &SetjmpTableInsts, InstVector &SetjmpTableSizeInsts,
1599     SmallVectorImpl<PHINode *> &SetjmpRetPHIs) {
1600   Module &M = *F.getParent();
1601   LLVMContext &C = F.getContext();
1602   IRBuilder<> IRB(C);
1603 
1604   // A function with catchswitch/catchpad instruction should have a personality
1605   // function attached to it. Search for the wasm personality function, and if
1606   // it exists, use it, and if it doesn't, create a dummy personality function.
1607   // (SjLj is not going to call it anyway.)
1608   if (!F.hasPersonalityFn()) {
1609     StringRef PersName = getEHPersonalityName(EHPersonality::Wasm_CXX);
1610     FunctionType *PersType =
1611         FunctionType::get(IRB.getInt32Ty(), /* isVarArg */ true);
1612     Value *PersF = M.getOrInsertFunction(PersName, PersType).getCallee();
1613     F.setPersonalityFn(
1614         cast<Constant>(IRB.CreateBitCast(PersF, IRB.getInt8PtrTy())));
1615   }
1616 
1617   // Use the entry BB's debugloc as a fallback
1618   BasicBlock *Entry = &F.getEntryBlock();
1619   DebugLoc FirstDL = getOrCreateDebugLoc(&*Entry->begin(), F.getSubprogram());
1620   IRB.SetCurrentDebugLocation(FirstDL);
1621 
1622   // Arbitrarily use the ones defined in the beginning of the function.
1623   // SSAUpdater will later update them to the correct values.
1624   Instruction *SetjmpTable = *SetjmpTableInsts.begin();
1625   Instruction *SetjmpTableSize = *SetjmpTableSizeInsts.begin();
1626 
1627   // Add setjmp.dispatch BB right after the entry block. Because we have
1628   // initialized setjmpTable/setjmpTableSize in the entry block and split the
1629   // rest into another BB, here 'OrigEntry' is the function's original entry
1630   // block before the transformation.
1631   //
1632   // entry:
1633   //   setjmpTable / setjmpTableSize initialization
1634   // setjmp.dispatch:
1635   //   switch will be inserted here later
1636   // entry.split: (OrigEntry)
1637   //   the original function starts here
1638   BasicBlock *OrigEntry = Entry->getNextNode();
1639   BasicBlock *SetjmpDispatchBB =
1640       BasicBlock::Create(C, "setjmp.dispatch", &F, OrigEntry);
1641   cast<BranchInst>(Entry->getTerminator())->setSuccessor(0, SetjmpDispatchBB);
1642 
1643   // Create catch.dispatch.longjmp BB a catchswitch instruction
1644   BasicBlock *CatchSwitchBB =
1645       BasicBlock::Create(C, "catch.dispatch.longjmp", &F);
1646   IRB.SetInsertPoint(CatchSwitchBB);
1647   CatchSwitchInst *CatchSwitch =
1648       IRB.CreateCatchSwitch(ConstantTokenNone::get(C), nullptr, 1);
1649 
1650   // Create catch.longjmp BB and a catchpad instruction
1651   BasicBlock *CatchLongjmpBB = BasicBlock::Create(C, "catch.longjmp", &F);
1652   CatchSwitch->addHandler(CatchLongjmpBB);
1653   IRB.SetInsertPoint(CatchLongjmpBB);
1654   CatchPadInst *CatchPad = IRB.CreateCatchPad(CatchSwitch, {});
1655 
1656   // Wasm throw and catch instructions can throw and catch multiple values, but
1657   // that requires multivalue support in the toolchain, which is currently not
1658   // very reliable. We instead throw and catch a pointer to a struct value of
1659   // type 'struct __WasmLongjmpArgs', which is defined in Emscripten.
1660   Instruction *CatchCI =
1661       IRB.CreateCall(CatchF, {IRB.getInt32(WebAssembly::C_LONGJMP)}, "thrown");
1662   Value *LongjmpArgs =
1663       IRB.CreateBitCast(CatchCI, LongjmpArgsTy->getPointerTo(), "longjmp.args");
1664   Value *EnvField =
1665       IRB.CreateConstGEP2_32(LongjmpArgsTy, LongjmpArgs, 0, 0, "env_gep");
1666   Value *ValField =
1667       IRB.CreateConstGEP2_32(LongjmpArgsTy, LongjmpArgs, 0, 1, "val_gep");
1668   // void *env = __wasm_longjmp_args.env;
1669   Instruction *Env = IRB.CreateLoad(IRB.getInt8PtrTy(), EnvField, "env");
1670   // int val = __wasm_longjmp_args.val;
1671   Instruction *Val = IRB.CreateLoad(IRB.getInt32Ty(), ValField, "val");
1672 
1673   // %label = testSetjmp(mem[%env], setjmpTable, setjmpTableSize);
1674   // if (%label == 0)
1675   //   __wasm_longjmp(%env, %val)
1676   // catchret to %setjmp.dispatch
1677   BasicBlock *ThenBB = BasicBlock::Create(C, "if.then", &F);
1678   BasicBlock *EndBB = BasicBlock::Create(C, "if.end", &F);
1679   Value *EnvP = IRB.CreateBitCast(Env, getAddrPtrType(&M), "env.p");
1680   Value *SetjmpID = IRB.CreateLoad(getAddrIntType(&M), EnvP, "setjmp.id");
1681   Value *Label =
1682       IRB.CreateCall(TestSetjmpF, {SetjmpID, SetjmpTable, SetjmpTableSize},
1683                      OperandBundleDef("funclet", CatchPad), "label");
1684   Value *Cmp = IRB.CreateICmpEQ(Label, IRB.getInt32(0));
1685   IRB.CreateCondBr(Cmp, ThenBB, EndBB);
1686 
1687   IRB.SetInsertPoint(ThenBB);
1688   CallInst *WasmLongjmpCI = IRB.CreateCall(
1689       WasmLongjmpF, {Env, Val}, OperandBundleDef("funclet", CatchPad));
1690   IRB.CreateUnreachable();
1691 
1692   IRB.SetInsertPoint(EndBB);
1693   // Jump to setjmp.dispatch block
1694   IRB.CreateCatchRet(CatchPad, SetjmpDispatchBB);
1695 
1696   // Go back to setjmp.dispatch BB
1697   // setjmp.dispatch:
1698   //   switch %label {
1699   //     label 1: goto post-setjmp BB 1
1700   //     label 2: goto post-setjmp BB 2
1701   //     ...
1702   //     default: goto splitted next BB
1703   //   }
1704   IRB.SetInsertPoint(SetjmpDispatchBB);
1705   PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label.phi");
1706   LabelPHI->addIncoming(Label, EndBB);
1707   LabelPHI->addIncoming(IRB.getInt32(-1), Entry);
1708   SwitchInst *SI = IRB.CreateSwitch(LabelPHI, OrigEntry, SetjmpRetPHIs.size());
1709   // -1 means no longjmp happened, continue normally (will hit the default
1710   // switch case). 0 means a longjmp that is not ours to handle, needs a
1711   // rethrow. Otherwise the index is the same as the index in P+1 (to avoid
1712   // 0).
1713   for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) {
1714     SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent());
1715     SetjmpRetPHIs[I]->addIncoming(Val, SetjmpDispatchBB);
1716   }
1717 
1718   // Convert all longjmpable call instructions to invokes that unwind to the
1719   // newly created catch.dispatch.longjmp BB.
1720   SmallVector<Instruction *, 64> ToErase;
1721   for (auto *BB = &*F.begin(); BB; BB = BB->getNextNode()) {
1722     for (Instruction &I : *BB) {
1723       auto *CI = dyn_cast<CallInst>(&I);
1724       if (!CI)
1725         continue;
1726       const Value *Callee = CI->getCalledOperand();
1727       if (!canLongjmp(Callee))
1728         continue;
1729       if (isEmAsmCall(Callee))
1730         report_fatal_error("Cannot use EM_ASM* alongside setjmp/longjmp in " +
1731                                F.getName() +
1732                                ". Please consider using EM_JS, or move the "
1733                                "EM_ASM into another function.",
1734                            false);
1735       // This is __wasm_longjmp() call we inserted in this function, which
1736       // rethrows the longjmp when the longjmp does not correspond to one of
1737       // setjmps in this function. We should not convert this call to an invoke.
1738       if (CI == WasmLongjmpCI)
1739         continue;
1740       ToErase.push_back(CI);
1741 
1742       // Even if the callee function has attribute 'nounwind', which is true for
1743       // all C functions, it can longjmp, which means it can throw a Wasm
1744       // exception now.
1745       CI->removeFnAttr(Attribute::NoUnwind);
1746       if (Function *CalleeF = CI->getCalledFunction()) {
1747         CalleeF->removeFnAttr(Attribute::NoUnwind);
1748       }
1749 
1750       IRB.SetInsertPoint(CI);
1751       BasicBlock *Tail = SplitBlock(BB, CI->getNextNode());
1752       // We will add a new invoke. So remove the branch created when we split
1753       // the BB
1754       ToErase.push_back(BB->getTerminator());
1755       SmallVector<Value *, 8> Args(CI->args());
1756       InvokeInst *II =
1757           IRB.CreateInvoke(CI->getFunctionType(), CI->getCalledOperand(), Tail,
1758                            CatchSwitchBB, Args);
1759       II->takeName(CI);
1760       II->setDebugLoc(CI->getDebugLoc());
1761       II->setAttributes(CI->getAttributes());
1762       CI->replaceAllUsesWith(II);
1763     }
1764   }
1765 
1766   for (Instruction *I : ToErase)
1767     I->eraseFromParent();
1768 }
1769