1 //=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file lowers exception-related instructions and setjmp/longjmp function 11 /// calls to use Emscripten's library functions. The pass uses JavaScript's try 12 /// and catch mechanism in case of Emscripten EH/SjLj and Wasm EH intrinsics in 13 /// case of Emscripten SjLJ. 14 /// 15 /// * Emscripten exception handling 16 /// This pass lowers invokes and landingpads into library functions in JS glue 17 /// code. Invokes are lowered into function wrappers called invoke wrappers that 18 /// exist in JS side, which wraps the original function call with JS try-catch. 19 /// If an exception occurred, cxa_throw() function in JS side sets some 20 /// variables (see below) so we can check whether an exception occurred from 21 /// wasm code and handle it appropriately. 22 /// 23 /// * Emscripten setjmp-longjmp handling 24 /// This pass lowers setjmp to a reasonably-performant approach for emscripten. 25 /// The idea is that each block with a setjmp is broken up into two parts: the 26 /// part containing setjmp and the part right after the setjmp. The latter part 27 /// is either reached from the setjmp, or later from a longjmp. To handle the 28 /// longjmp, all calls that might longjmp are also called using invoke wrappers 29 /// and thus JS / try-catch. JS longjmp() function also sets some variables so 30 /// we can check / whether a longjmp occurred from wasm code. Each block with a 31 /// function call that might longjmp is also split up after the longjmp call. 32 /// After the longjmp call, we check whether a longjmp occurred, and if it did, 33 /// which setjmp it corresponds to, and jump to the right post-setjmp block. 34 /// We assume setjmp-longjmp handling always run after EH handling, which means 35 /// we don't expect any exception-related instructions when SjLj runs. 36 /// FIXME Currently this scheme does not support indirect call of setjmp, 37 /// because of the limitation of the scheme itself. fastcomp does not support it 38 /// either. 39 /// 40 /// In detail, this pass does following things: 41 /// 42 /// 1) Assumes the existence of global variables: __THREW__, __threwValue 43 /// __THREW__ and __threwValue are defined in compiler-rt in Emscripten. 44 /// These variables are used for both exceptions and setjmp/longjmps. 45 /// __THREW__ indicates whether an exception or a longjmp occurred or not. 0 46 /// means nothing occurred, 1 means an exception occurred, and other numbers 47 /// mean a longjmp occurred. In the case of longjmp, __THREW__ variable 48 /// indicates the corresponding setjmp buffer the longjmp corresponds to. 49 /// __threwValue is 0 for exceptions, and the argument to longjmp in case of 50 /// longjmp. 51 /// 52 /// * Emscripten exception handling 53 /// 54 /// 2) We assume the existence of setThrew and setTempRet0/getTempRet0 functions 55 /// at link time. setThrew exists in Emscripten's compiler-rt: 56 /// 57 /// void setThrew(uintptr_t threw, int value) { 58 /// if (__THREW__ == 0) { 59 /// __THREW__ = threw; 60 /// __threwValue = value; 61 /// } 62 /// } 63 // 64 /// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code. 65 /// In exception handling, getTempRet0 indicates the type of an exception 66 /// caught, and in setjmp/longjmp, it means the second argument to longjmp 67 /// function. 68 /// 69 /// 3) Lower 70 /// invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad 71 /// into 72 /// __THREW__ = 0; 73 /// call @__invoke_SIG(func, arg1, arg2) 74 /// %__THREW__.val = __THREW__; 75 /// __THREW__ = 0; 76 /// if (%__THREW__.val == 1) 77 /// goto %lpad 78 /// else 79 /// goto %invoke.cont 80 /// SIG is a mangled string generated based on the LLVM IR-level function 81 /// signature. After LLVM IR types are lowered to the target wasm types, 82 /// the names for these wrappers will change based on wasm types as well, 83 /// as in invoke_vi (function takes an int and returns void). The bodies of 84 /// these wrappers will be generated in JS glue code, and inside those 85 /// wrappers we use JS try-catch to generate actual exception effects. It 86 /// also calls the original callee function. An example wrapper in JS code 87 /// would look like this: 88 /// function invoke_vi(index,a1) { 89 /// try { 90 /// Module["dynCall_vi"](index,a1); // This calls original callee 91 /// } catch(e) { 92 /// if (typeof e !== 'number' && e !== 'longjmp') throw e; 93 /// _setThrew(1, 0); // setThrew is called here 94 /// } 95 /// } 96 /// If an exception is thrown, __THREW__ will be set to true in a wrapper, 97 /// so we can jump to the right BB based on this value. 98 /// 99 /// 4) Lower 100 /// %val = landingpad catch c1 catch c2 catch c3 ... 101 /// ... use %val ... 102 /// into 103 /// %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...) 104 /// %val = {%fmc, getTempRet0()} 105 /// ... use %val ... 106 /// Here N is a number calculated based on the number of clauses. 107 /// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code. 108 /// 109 /// 5) Lower 110 /// resume {%a, %b} 111 /// into 112 /// call @__resumeException(%a) 113 /// where __resumeException() is a function in JS glue code. 114 /// 115 /// 6) Lower 116 /// call @llvm.eh.typeid.for(type) (intrinsic) 117 /// into 118 /// call @llvm_eh_typeid_for(type) 119 /// llvm_eh_typeid_for function will be generated in JS glue code. 120 /// 121 /// * Emscripten setjmp / longjmp handling 122 /// 123 /// If there are calls to longjmp() 124 /// 125 /// 1) Lower 126 /// longjmp(env, val) 127 /// into 128 /// emscripten_longjmp(env, val) 129 /// 130 /// If there are calls to setjmp() 131 /// 132 /// 2) In the function entry that calls setjmp, initialize setjmpTable and 133 /// sejmpTableSize as follows: 134 /// setjmpTableSize = 4; 135 /// setjmpTable = (int *) malloc(40); 136 /// setjmpTable[0] = 0; 137 /// setjmpTable and setjmpTableSize are used to call saveSetjmp() function in 138 /// Emscripten compiler-rt. 139 /// 140 /// 3) Lower 141 /// setjmp(env) 142 /// into 143 /// setjmpTable = saveSetjmp(env, label, setjmpTable, setjmpTableSize); 144 /// setjmpTableSize = getTempRet0(); 145 /// For each dynamic setjmp call, setjmpTable stores its ID (a number which 146 /// is incrementally assigned from 0) and its label (a unique number that 147 /// represents each callsite of setjmp). When we need more entries in 148 /// setjmpTable, it is reallocated in saveSetjmp() in Emscripten's 149 /// compiler-rt and it will return the new table address, and assign the new 150 /// table size in setTempRet0(). saveSetjmp also stores the setjmp's ID into 151 /// the buffer 'env'. A BB with setjmp is split into two after setjmp call in 152 /// order to make the post-setjmp BB the possible destination of longjmp BB. 153 /// 154 /// 4) Lower every call that might longjmp into 155 /// __THREW__ = 0; 156 /// call @__invoke_SIG(func, arg1, arg2) 157 /// %__THREW__.val = __THREW__; 158 /// __THREW__ = 0; 159 /// %__threwValue.val = __threwValue; 160 /// if (%__THREW__.val != 0 & %__threwValue.val != 0) { 161 /// %label = testSetjmp(mem[%__THREW__.val], setjmpTable, 162 /// setjmpTableSize); 163 /// if (%label == 0) 164 /// emscripten_longjmp(%__THREW__.val, %__threwValue.val); 165 /// setTempRet0(%__threwValue.val); 166 /// } else { 167 /// %label = -1; 168 /// } 169 /// longjmp_result = getTempRet0(); 170 /// switch %label { 171 /// label 1: goto post-setjmp BB 1 172 /// label 2: goto post-setjmp BB 2 173 /// ... 174 /// default: goto splitted next BB 175 /// } 176 /// testSetjmp examines setjmpTable to see if there is a matching setjmp 177 /// call. After calling an invoke wrapper, if a longjmp occurred, __THREW__ 178 /// will be the address of matching jmp_buf buffer and __threwValue be the 179 /// second argument to longjmp. mem[%__THREW__.val] is a setjmp ID that is 180 /// stored in saveSetjmp. testSetjmp returns a setjmp label, a unique ID to 181 /// each setjmp callsite. Label 0 means this longjmp buffer does not 182 /// correspond to one of the setjmp callsites in this function, so in this 183 /// case we just chain the longjmp to the caller. Label -1 means no longjmp 184 /// occurred. Otherwise we jump to the right post-setjmp BB based on the 185 /// label. 186 /// 187 /// * Wasm setjmp / longjmp handling 188 /// This mode still uses some Emscripten library functions but not JavaScript's 189 /// try-catch mechanism. It instead uses Wasm exception handling intrinsics, 190 /// which will be lowered to exception handling instructions. 191 /// 192 /// If there are calls to longjmp() 193 /// 194 /// 1) Lower 195 /// longjmp(env, val) 196 /// into 197 /// __wasm_longjmp(env, val) 198 /// 199 /// If there are calls to setjmp() 200 /// 201 /// 2) and 3): The same as 2) and 3) in Emscripten SjLj. 202 /// (setjmpTable/setjmpTableSize initialization + setjmp callsite 203 /// transformation) 204 /// 205 /// 4) Create a catchpad with a wasm.catch() intrinsic, which returns the value 206 /// thrown by __wasm_longjmp function. In Emscripten library, we have this 207 /// struct: 208 /// 209 /// struct __WasmLongjmpArgs { 210 /// void *env; 211 /// int val; 212 /// }; 213 /// struct __WasmLongjmpArgs __wasm_longjmp_args; 214 /// 215 /// The thrown value here is a pointer to __wasm_longjmp_args struct object. We 216 /// use this struct to transfer two values by throwing a single value. Wasm 217 /// throw and catch instructions are capable of throwing and catching multiple 218 /// values, but it also requires multivalue support that is currently not very 219 /// reliable. 220 /// TODO Switch to throwing and catching two values without using the struct 221 /// 222 /// All longjmpable function calls will be converted to an invoke that will 223 /// unwind to this catchpad in case a longjmp occurs. Within the catchpad, we 224 /// test the thrown values using testSetjmp function as we do for Emscripten 225 /// SjLj. The main difference is, in Emscripten SjLj, we need to transform every 226 /// longjmpable callsite into a sequence of code including testSetjmp() call; in 227 /// Wasm SjLj we do the testing in only one place, in this catchpad. 228 /// 229 /// After testing calling testSetjmp(), if the longjmp does not correspond to 230 /// one of the setjmps within the current function, it rethrows the longjmp 231 /// by calling __wasm_longjmp(). If it corresponds to one of setjmps in the 232 /// function, we jump to the beginning of the function, which contains a switch 233 /// to each post-setjmp BB. Again, in Emscripten SjLj, this switch is added for 234 /// every longjmpable callsite; in Wasm SjLj we do this only once at the top of 235 /// the function. (after setjmpTable/setjmpTableSize initialization) 236 /// 237 /// The below is the pseudocode for what we have described 238 /// 239 /// entry: 240 /// Initialize setjmpTable and setjmpTableSize 241 /// 242 /// setjmp.dispatch: 243 /// switch %label { 244 /// label 1: goto post-setjmp BB 1 245 /// label 2: goto post-setjmp BB 2 246 /// ... 247 /// default: goto splitted next BB 248 /// } 249 /// ... 250 /// 251 /// bb: 252 /// invoke void @foo() ;; foo is a longjmpable function 253 /// to label %next unwind label %catch.dispatch.longjmp 254 /// ... 255 /// 256 /// catch.dispatch.longjmp: 257 /// %0 = catchswitch within none [label %catch.longjmp] unwind to caller 258 /// 259 /// catch.longjmp: 260 /// %longjmp.args = wasm.catch() ;; struct __WasmLongjmpArgs 261 /// %env = load 'env' field from __WasmLongjmpArgs 262 /// %val = load 'val' field from __WasmLongjmpArgs 263 /// %label = testSetjmp(mem[%env], setjmpTable, setjmpTableSize); 264 /// if (%label == 0) 265 /// __wasm_longjmp(%env, %val) 266 /// catchret to %setjmp.dispatch 267 /// 268 ///===----------------------------------------------------------------------===// 269 270 #include "Utils/WebAssemblyUtilities.h" 271 #include "WebAssembly.h" 272 #include "WebAssemblyTargetMachine.h" 273 #include "llvm/ADT/StringExtras.h" 274 #include "llvm/CodeGen/TargetPassConfig.h" 275 #include "llvm/CodeGen/WasmEHFuncInfo.h" 276 #include "llvm/IR/DebugInfoMetadata.h" 277 #include "llvm/IR/Dominators.h" 278 #include "llvm/IR/IRBuilder.h" 279 #include "llvm/IR/IntrinsicsWebAssembly.h" 280 #include "llvm/Support/CommandLine.h" 281 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 282 #include "llvm/Transforms/Utils/Local.h" 283 #include "llvm/Transforms/Utils/SSAUpdater.h" 284 #include "llvm/Transforms/Utils/SSAUpdaterBulk.h" 285 286 using namespace llvm; 287 288 #define DEBUG_TYPE "wasm-lower-em-ehsjlj" 289 290 static cl::list<std::string> 291 EHAllowlist("emscripten-cxx-exceptions-allowed", 292 cl::desc("The list of function names in which Emscripten-style " 293 "exception handling is enabled (see emscripten " 294 "EMSCRIPTEN_CATCHING_ALLOWED options)"), 295 cl::CommaSeparated); 296 297 namespace { 298 class WebAssemblyLowerEmscriptenEHSjLj final : public ModulePass { 299 bool EnableEmEH; // Enable Emscripten exception handling 300 bool EnableEmSjLj; // Enable Emscripten setjmp/longjmp handling 301 bool EnableWasmSjLj; // Enable Wasm setjmp/longjmp handling 302 bool DoSjLj; // Whether we actually perform setjmp/longjmp handling 303 304 GlobalVariable *ThrewGV = nullptr; // __THREW__ (Emscripten) 305 GlobalVariable *ThrewValueGV = nullptr; // __threwValue (Emscripten) 306 Function *GetTempRet0F = nullptr; // getTempRet0() (Emscripten) 307 Function *SetTempRet0F = nullptr; // setTempRet0() (Emscripten) 308 Function *ResumeF = nullptr; // __resumeException() (Emscripten) 309 Function *EHTypeIDF = nullptr; // llvm.eh.typeid.for() (intrinsic) 310 Function *EmLongjmpF = nullptr; // emscripten_longjmp() (Emscripten) 311 Function *SaveSetjmpF = nullptr; // saveSetjmp() (Emscripten) 312 Function *TestSetjmpF = nullptr; // testSetjmp() (Emscripten) 313 Function *WasmLongjmpF = nullptr; // __wasm_longjmp() (Emscripten) 314 Function *CatchF = nullptr; // wasm.catch() (intrinsic) 315 316 // type of 'struct __WasmLongjmpArgs' defined in emscripten 317 Type *LongjmpArgsTy = nullptr; 318 319 // __cxa_find_matching_catch_N functions. 320 // Indexed by the number of clauses in an original landingpad instruction. 321 DenseMap<int, Function *> FindMatchingCatches; 322 // Map of <function signature string, invoke_ wrappers> 323 StringMap<Function *> InvokeWrappers; 324 // Set of allowed function names for exception handling 325 std::set<std::string> EHAllowlistSet; 326 // Functions that contains calls to setjmp 327 SmallPtrSet<Function *, 8> SetjmpUsers; 328 329 StringRef getPassName() const override { 330 return "WebAssembly Lower Emscripten Exceptions"; 331 } 332 333 using InstVector = SmallVectorImpl<Instruction *>; 334 bool runEHOnFunction(Function &F); 335 bool runSjLjOnFunction(Function &F); 336 void handleLongjmpableCallsForEmscriptenSjLj( 337 Function &F, InstVector &SetjmpTableInsts, 338 InstVector &SetjmpTableSizeInsts, 339 SmallVectorImpl<PHINode *> &SetjmpRetPHIs); 340 void 341 handleLongjmpableCallsForWasmSjLj(Function &F, InstVector &SetjmpTableInsts, 342 InstVector &SetjmpTableSizeInsts, 343 SmallVectorImpl<PHINode *> &SetjmpRetPHIs); 344 Function *getFindMatchingCatch(Module &M, unsigned NumClauses); 345 346 Value *wrapInvoke(CallBase *CI); 347 void wrapTestSetjmp(BasicBlock *BB, DebugLoc DL, Value *Threw, 348 Value *SetjmpTable, Value *SetjmpTableSize, Value *&Label, 349 Value *&LongjmpResult, BasicBlock *&CallEmLongjmpBB, 350 PHINode *&CallEmLongjmpBBThrewPHI, 351 PHINode *&CallEmLongjmpBBThrewValuePHI, 352 BasicBlock *&EndBB); 353 Function *getInvokeWrapper(CallBase *CI); 354 355 bool areAllExceptionsAllowed() const { return EHAllowlistSet.empty(); } 356 bool supportsException(const Function *F) const { 357 return EnableEmEH && (areAllExceptionsAllowed() || 358 EHAllowlistSet.count(std::string(F->getName()))); 359 } 360 void replaceLongjmpWith(Function *LongjmpF, Function *NewF); 361 362 void rebuildSSA(Function &F); 363 364 public: 365 static char ID; 366 367 WebAssemblyLowerEmscriptenEHSjLj() 368 : ModulePass(ID), EnableEmEH(WebAssembly::WasmEnableEmEH), 369 EnableEmSjLj(WebAssembly::WasmEnableEmSjLj), 370 EnableWasmSjLj(WebAssembly::WasmEnableSjLj) { 371 assert(!(EnableEmSjLj && EnableWasmSjLj) && 372 "Two SjLj modes cannot be turned on at the same time"); 373 assert(!(EnableEmEH && EnableWasmSjLj) && 374 "Wasm SjLj should be only used with Wasm EH"); 375 EHAllowlistSet.insert(EHAllowlist.begin(), EHAllowlist.end()); 376 } 377 bool runOnModule(Module &M) override; 378 379 void getAnalysisUsage(AnalysisUsage &AU) const override { 380 AU.addRequired<DominatorTreeWrapperPass>(); 381 } 382 }; 383 } // End anonymous namespace 384 385 char WebAssemblyLowerEmscriptenEHSjLj::ID = 0; 386 INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj, DEBUG_TYPE, 387 "WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp", 388 false, false) 389 390 ModulePass *llvm::createWebAssemblyLowerEmscriptenEHSjLj() { 391 return new WebAssemblyLowerEmscriptenEHSjLj(); 392 } 393 394 static bool canThrow(const Value *V) { 395 if (const auto *F = dyn_cast<const Function>(V)) { 396 // Intrinsics cannot throw 397 if (F->isIntrinsic()) 398 return false; 399 StringRef Name = F->getName(); 400 // leave setjmp and longjmp (mostly) alone, we process them properly later 401 if (Name == "setjmp" || Name == "longjmp" || Name == "emscripten_longjmp") 402 return false; 403 return !F->doesNotThrow(); 404 } 405 // not a function, so an indirect call - can throw, we can't tell 406 return true; 407 } 408 409 // Get a global variable with the given name. If it doesn't exist declare it, 410 // which will generate an import and assume that it will exist at link time. 411 static GlobalVariable *getGlobalVariable(Module &M, Type *Ty, 412 WebAssemblyTargetMachine &TM, 413 const char *Name) { 414 auto *GV = dyn_cast<GlobalVariable>(M.getOrInsertGlobal(Name, Ty)); 415 if (!GV) 416 report_fatal_error(Twine("unable to create global: ") + Name); 417 418 // If the target supports TLS, make this variable thread-local. We can't just 419 // unconditionally make it thread-local and depend on 420 // CoalesceFeaturesAndStripAtomics to downgrade it, because stripping TLS has 421 // the side effect of disallowing the object from being linked into a 422 // shared-memory module, which we don't want to be responsible for. 423 auto *Subtarget = TM.getSubtargetImpl(); 424 auto TLS = Subtarget->hasAtomics() && Subtarget->hasBulkMemory() 425 ? GlobalValue::LocalExecTLSModel 426 : GlobalValue::NotThreadLocal; 427 GV->setThreadLocalMode(TLS); 428 return GV; 429 } 430 431 // Simple function name mangler. 432 // This function simply takes LLVM's string representation of parameter types 433 // and concatenate them with '_'. There are non-alphanumeric characters but llc 434 // is ok with it, and we need to postprocess these names after the lowering 435 // phase anyway. 436 static std::string getSignature(FunctionType *FTy) { 437 std::string Sig; 438 raw_string_ostream OS(Sig); 439 OS << *FTy->getReturnType(); 440 for (Type *ParamTy : FTy->params()) 441 OS << "_" << *ParamTy; 442 if (FTy->isVarArg()) 443 OS << "_..."; 444 Sig = OS.str(); 445 erase_if(Sig, isSpace); 446 // When s2wasm parses .s file, a comma means the end of an argument. So a 447 // mangled function name can contain any character but a comma. 448 std::replace(Sig.begin(), Sig.end(), ',', '.'); 449 return Sig; 450 } 451 452 static Function *getEmscriptenFunction(FunctionType *Ty, const Twine &Name, 453 Module *M) { 454 Function* F = Function::Create(Ty, GlobalValue::ExternalLinkage, Name, M); 455 // Tell the linker that this function is expected to be imported from the 456 // 'env' module. 457 if (!F->hasFnAttribute("wasm-import-module")) { 458 llvm::AttrBuilder B(M->getContext()); 459 B.addAttribute("wasm-import-module", "env"); 460 F->addFnAttrs(B); 461 } 462 if (!F->hasFnAttribute("wasm-import-name")) { 463 llvm::AttrBuilder B(M->getContext()); 464 B.addAttribute("wasm-import-name", F->getName()); 465 F->addFnAttrs(B); 466 } 467 return F; 468 } 469 470 // Returns an integer type for the target architecture's address space. 471 // i32 for wasm32 and i64 for wasm64. 472 static Type *getAddrIntType(Module *M) { 473 IRBuilder<> IRB(M->getContext()); 474 return IRB.getIntNTy(M->getDataLayout().getPointerSizeInBits()); 475 } 476 477 // Returns an integer pointer type for the target architecture's address space. 478 // i32* for wasm32 and i64* for wasm64. 479 static Type *getAddrPtrType(Module *M) { 480 return Type::getIntNPtrTy(M->getContext(), 481 M->getDataLayout().getPointerSizeInBits()); 482 } 483 484 // Returns an integer whose type is the integer type for the target's address 485 // space. Returns (i32 C) for wasm32 and (i64 C) for wasm64, when C is the 486 // integer. 487 static Value *getAddrSizeInt(Module *M, uint64_t C) { 488 IRBuilder<> IRB(M->getContext()); 489 return IRB.getIntN(M->getDataLayout().getPointerSizeInBits(), C); 490 } 491 492 // Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2. 493 // This is because a landingpad instruction contains two more arguments, a 494 // personality function and a cleanup bit, and __cxa_find_matching_catch_N 495 // functions are named after the number of arguments in the original landingpad 496 // instruction. 497 Function * 498 WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module &M, 499 unsigned NumClauses) { 500 if (FindMatchingCatches.count(NumClauses)) 501 return FindMatchingCatches[NumClauses]; 502 PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext()); 503 SmallVector<Type *, 16> Args(NumClauses, Int8PtrTy); 504 FunctionType *FTy = FunctionType::get(Int8PtrTy, Args, false); 505 Function *F = getEmscriptenFunction( 506 FTy, "__cxa_find_matching_catch_" + Twine(NumClauses + 2), &M); 507 FindMatchingCatches[NumClauses] = F; 508 return F; 509 } 510 511 // Generate invoke wrapper seqence with preamble and postamble 512 // Preamble: 513 // __THREW__ = 0; 514 // Postamble: 515 // %__THREW__.val = __THREW__; __THREW__ = 0; 516 // Returns %__THREW__.val, which indicates whether an exception is thrown (or 517 // whether longjmp occurred), for future use. 518 Value *WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallBase *CI) { 519 Module *M = CI->getModule(); 520 LLVMContext &C = M->getContext(); 521 522 IRBuilder<> IRB(C); 523 IRB.SetInsertPoint(CI); 524 525 // Pre-invoke 526 // __THREW__ = 0; 527 IRB.CreateStore(getAddrSizeInt(M, 0), ThrewGV); 528 529 // Invoke function wrapper in JavaScript 530 SmallVector<Value *, 16> Args; 531 // Put the pointer to the callee as first argument, so it can be called 532 // within the invoke wrapper later 533 Args.push_back(CI->getCalledOperand()); 534 Args.append(CI->arg_begin(), CI->arg_end()); 535 CallInst *NewCall = IRB.CreateCall(getInvokeWrapper(CI), Args); 536 NewCall->takeName(CI); 537 NewCall->setCallingConv(CallingConv::WASM_EmscriptenInvoke); 538 NewCall->setDebugLoc(CI->getDebugLoc()); 539 540 // Because we added the pointer to the callee as first argument, all 541 // argument attribute indices have to be incremented by one. 542 SmallVector<AttributeSet, 8> ArgAttributes; 543 const AttributeList &InvokeAL = CI->getAttributes(); 544 545 // No attributes for the callee pointer. 546 ArgAttributes.push_back(AttributeSet()); 547 // Copy the argument attributes from the original 548 for (unsigned I = 0, E = CI->arg_size(); I < E; ++I) 549 ArgAttributes.push_back(InvokeAL.getParamAttrs(I)); 550 551 AttrBuilder FnAttrs(CI->getContext(), InvokeAL.getFnAttrs()); 552 if (FnAttrs.contains(Attribute::AllocSize)) { 553 // The allocsize attribute (if any) referes to parameters by index and needs 554 // to be adjusted. 555 unsigned SizeArg; 556 Optional<unsigned> NEltArg; 557 std::tie(SizeArg, NEltArg) = FnAttrs.getAllocSizeArgs(); 558 SizeArg += 1; 559 if (NEltArg.hasValue()) 560 NEltArg = NEltArg.getValue() + 1; 561 FnAttrs.addAllocSizeAttr(SizeArg, NEltArg); 562 } 563 564 // Reconstruct the AttributesList based on the vector we constructed. 565 AttributeList NewCallAL = AttributeList::get( 566 C, AttributeSet::get(C, FnAttrs), InvokeAL.getRetAttrs(), ArgAttributes); 567 NewCall->setAttributes(NewCallAL); 568 569 CI->replaceAllUsesWith(NewCall); 570 571 // Post-invoke 572 // %__THREW__.val = __THREW__; __THREW__ = 0; 573 Value *Threw = 574 IRB.CreateLoad(getAddrIntType(M), ThrewGV, ThrewGV->getName() + ".val"); 575 IRB.CreateStore(getAddrSizeInt(M, 0), ThrewGV); 576 return Threw; 577 } 578 579 // Get matching invoke wrapper based on callee signature 580 Function *WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallBase *CI) { 581 Module *M = CI->getModule(); 582 SmallVector<Type *, 16> ArgTys; 583 FunctionType *CalleeFTy = CI->getFunctionType(); 584 585 std::string Sig = getSignature(CalleeFTy); 586 if (InvokeWrappers.find(Sig) != InvokeWrappers.end()) 587 return InvokeWrappers[Sig]; 588 589 // Put the pointer to the callee as first argument 590 ArgTys.push_back(PointerType::getUnqual(CalleeFTy)); 591 // Add argument types 592 ArgTys.append(CalleeFTy->param_begin(), CalleeFTy->param_end()); 593 594 FunctionType *FTy = FunctionType::get(CalleeFTy->getReturnType(), ArgTys, 595 CalleeFTy->isVarArg()); 596 Function *F = getEmscriptenFunction(FTy, "__invoke_" + Sig, M); 597 InvokeWrappers[Sig] = F; 598 return F; 599 } 600 601 static bool canLongjmp(const Value *Callee) { 602 if (auto *CalleeF = dyn_cast<Function>(Callee)) 603 if (CalleeF->isIntrinsic()) 604 return false; 605 606 // Attempting to transform inline assembly will result in something like: 607 // call void @__invoke_void(void ()* asm ...) 608 // which is invalid because inline assembly blocks do not have addresses 609 // and can't be passed by pointer. The result is a crash with illegal IR. 610 if (isa<InlineAsm>(Callee)) 611 return false; 612 StringRef CalleeName = Callee->getName(); 613 614 // TODO Include more functions or consider checking with mangled prefixes 615 616 // The reason we include malloc/free here is to exclude the malloc/free 617 // calls generated in setjmp prep / cleanup routines. 618 if (CalleeName == "setjmp" || CalleeName == "malloc" || CalleeName == "free") 619 return false; 620 621 // There are functions in Emscripten's JS glue code or compiler-rt 622 if (CalleeName == "__resumeException" || CalleeName == "llvm_eh_typeid_for" || 623 CalleeName == "saveSetjmp" || CalleeName == "testSetjmp" || 624 CalleeName == "getTempRet0" || CalleeName == "setTempRet0") 625 return false; 626 627 // __cxa_find_matching_catch_N functions cannot longjmp 628 if (Callee->getName().startswith("__cxa_find_matching_catch_")) 629 return false; 630 631 // Exception-catching related functions 632 // 633 // We intentionally treat __cxa_end_catch longjmpable in Wasm SjLj even though 634 // it surely cannot longjmp, in order to maintain the unwind relationship from 635 // all existing catchpads (and calls within them) to catch.dispatch.longjmp. 636 // 637 // In Wasm EH + Wasm SjLj, we 638 // 1. Make all catchswitch and cleanuppad that unwind to caller unwind to 639 // catch.dispatch.longjmp instead 640 // 2. Convert all longjmpable calls to invokes that unwind to 641 // catch.dispatch.longjmp 642 // But catchswitch BBs are removed in isel, so if an EH catchswitch (generated 643 // from an exception)'s catchpad does not contain any calls that are converted 644 // into invokes unwinding to catch.dispatch.longjmp, this unwind relationship 645 // (EH catchswitch BB -> catch.dispatch.longjmp BB) is lost and 646 // catch.dispatch.longjmp BB can be placed before the EH catchswitch BB in 647 // CFGSort. 648 // int ret = setjmp(buf); 649 // try { 650 // foo(); // longjmps 651 // } catch (...) { 652 // } 653 // Then in this code, if 'foo' longjmps, it first unwinds to 'catch (...)' 654 // catchswitch, and is not caught by that catchswitch because it is a longjmp, 655 // then it should next unwind to catch.dispatch.longjmp BB. But if this 'catch 656 // (...)' catchswitch -> catch.dispatch.longjmp unwind relationship is lost, 657 // it will not unwind to catch.dispatch.longjmp, producing an incorrect 658 // result. 659 // 660 // Every catchpad generated by Wasm C++ contains __cxa_end_catch, so we 661 // intentionally treat it as longjmpable to work around this problem. This is 662 // a hacky fix but an easy one. 663 // 664 // The comment block in findWasmUnwindDestinations() in 665 // SelectionDAGBuilder.cpp is addressing a similar problem. 666 if (CalleeName == "__cxa_end_catch") 667 return WebAssembly::WasmEnableSjLj; 668 if (CalleeName == "__cxa_begin_catch" || 669 CalleeName == "__cxa_allocate_exception" || CalleeName == "__cxa_throw" || 670 CalleeName == "__clang_call_terminate") 671 return false; 672 673 // std::terminate, which is generated when another exception occurs while 674 // handling an exception, cannot longjmp. 675 if (CalleeName == "_ZSt9terminatev") 676 return false; 677 678 // Otherwise we don't know 679 return true; 680 } 681 682 static bool isEmAsmCall(const Value *Callee) { 683 StringRef CalleeName = Callee->getName(); 684 // This is an exhaustive list from Emscripten's <emscripten/em_asm.h>. 685 return CalleeName == "emscripten_asm_const_int" || 686 CalleeName == "emscripten_asm_const_double" || 687 CalleeName == "emscripten_asm_const_int_sync_on_main_thread" || 688 CalleeName == "emscripten_asm_const_double_sync_on_main_thread" || 689 CalleeName == "emscripten_asm_const_async_on_main_thread"; 690 } 691 692 // Generate testSetjmp function call seqence with preamble and postamble. 693 // The code this generates is equivalent to the following JavaScript code: 694 // %__threwValue.val = __threwValue; 695 // if (%__THREW__.val != 0 & %__threwValue.val != 0) { 696 // %label = testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize); 697 // if (%label == 0) 698 // emscripten_longjmp(%__THREW__.val, %__threwValue.val); 699 // setTempRet0(%__threwValue.val); 700 // } else { 701 // %label = -1; 702 // } 703 // %longjmp_result = getTempRet0(); 704 // 705 // As output parameters. returns %label, %longjmp_result, and the BB the last 706 // instruction (%longjmp_result = ...) is in. 707 void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp( 708 BasicBlock *BB, DebugLoc DL, Value *Threw, Value *SetjmpTable, 709 Value *SetjmpTableSize, Value *&Label, Value *&LongjmpResult, 710 BasicBlock *&CallEmLongjmpBB, PHINode *&CallEmLongjmpBBThrewPHI, 711 PHINode *&CallEmLongjmpBBThrewValuePHI, BasicBlock *&EndBB) { 712 Function *F = BB->getParent(); 713 Module *M = F->getParent(); 714 LLVMContext &C = M->getContext(); 715 IRBuilder<> IRB(C); 716 IRB.SetCurrentDebugLocation(DL); 717 718 // if (%__THREW__.val != 0 & %__threwValue.val != 0) 719 IRB.SetInsertPoint(BB); 720 BasicBlock *ThenBB1 = BasicBlock::Create(C, "if.then1", F); 721 BasicBlock *ElseBB1 = BasicBlock::Create(C, "if.else1", F); 722 BasicBlock *EndBB1 = BasicBlock::Create(C, "if.end", F); 723 Value *ThrewCmp = IRB.CreateICmpNE(Threw, getAddrSizeInt(M, 0)); 724 Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV, 725 ThrewValueGV->getName() + ".val"); 726 Value *ThrewValueCmp = IRB.CreateICmpNE(ThrewValue, IRB.getInt32(0)); 727 Value *Cmp1 = IRB.CreateAnd(ThrewCmp, ThrewValueCmp, "cmp1"); 728 IRB.CreateCondBr(Cmp1, ThenBB1, ElseBB1); 729 730 // Generate call.em.longjmp BB once and share it within the function 731 if (!CallEmLongjmpBB) { 732 // emscripten_longjmp(%__THREW__.val, %__threwValue.val); 733 CallEmLongjmpBB = BasicBlock::Create(C, "call.em.longjmp", F); 734 IRB.SetInsertPoint(CallEmLongjmpBB); 735 CallEmLongjmpBBThrewPHI = IRB.CreatePHI(getAddrIntType(M), 4, "threw.phi"); 736 CallEmLongjmpBBThrewValuePHI = 737 IRB.CreatePHI(IRB.getInt32Ty(), 4, "threwvalue.phi"); 738 CallEmLongjmpBBThrewPHI->addIncoming(Threw, ThenBB1); 739 CallEmLongjmpBBThrewValuePHI->addIncoming(ThrewValue, ThenBB1); 740 IRB.CreateCall(EmLongjmpF, 741 {CallEmLongjmpBBThrewPHI, CallEmLongjmpBBThrewValuePHI}); 742 IRB.CreateUnreachable(); 743 } else { 744 CallEmLongjmpBBThrewPHI->addIncoming(Threw, ThenBB1); 745 CallEmLongjmpBBThrewValuePHI->addIncoming(ThrewValue, ThenBB1); 746 } 747 748 // %label = testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize); 749 // if (%label == 0) 750 IRB.SetInsertPoint(ThenBB1); 751 BasicBlock *EndBB2 = BasicBlock::Create(C, "if.end2", F); 752 Value *ThrewPtr = 753 IRB.CreateIntToPtr(Threw, getAddrPtrType(M), Threw->getName() + ".p"); 754 Value *LoadedThrew = IRB.CreateLoad(getAddrIntType(M), ThrewPtr, 755 ThrewPtr->getName() + ".loaded"); 756 Value *ThenLabel = IRB.CreateCall( 757 TestSetjmpF, {LoadedThrew, SetjmpTable, SetjmpTableSize}, "label"); 758 Value *Cmp2 = IRB.CreateICmpEQ(ThenLabel, IRB.getInt32(0)); 759 IRB.CreateCondBr(Cmp2, CallEmLongjmpBB, EndBB2); 760 761 // setTempRet0(%__threwValue.val); 762 IRB.SetInsertPoint(EndBB2); 763 IRB.CreateCall(SetTempRet0F, ThrewValue); 764 IRB.CreateBr(EndBB1); 765 766 IRB.SetInsertPoint(ElseBB1); 767 IRB.CreateBr(EndBB1); 768 769 // longjmp_result = getTempRet0(); 770 IRB.SetInsertPoint(EndBB1); 771 PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label"); 772 LabelPHI->addIncoming(ThenLabel, EndBB2); 773 774 LabelPHI->addIncoming(IRB.getInt32(-1), ElseBB1); 775 776 // Output parameter assignment 777 Label = LabelPHI; 778 EndBB = EndBB1; 779 LongjmpResult = IRB.CreateCall(GetTempRet0F, None, "longjmp_result"); 780 } 781 782 void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function &F) { 783 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 784 DT.recalculate(F); // CFG has been changed 785 786 SSAUpdaterBulk SSA; 787 for (BasicBlock &BB : F) { 788 for (Instruction &I : BB) { 789 unsigned VarID = SSA.AddVariable(I.getName(), I.getType()); 790 // If a value is defined by an invoke instruction, it is only available in 791 // its normal destination and not in its unwind destination. 792 if (auto *II = dyn_cast<InvokeInst>(&I)) 793 SSA.AddAvailableValue(VarID, II->getNormalDest(), II); 794 else 795 SSA.AddAvailableValue(VarID, &BB, &I); 796 for (auto &U : I.uses()) { 797 auto *User = cast<Instruction>(U.getUser()); 798 if (auto *UserPN = dyn_cast<PHINode>(User)) 799 if (UserPN->getIncomingBlock(U) == &BB) 800 continue; 801 if (DT.dominates(&I, User)) 802 continue; 803 SSA.AddUse(VarID, &U); 804 } 805 } 806 } 807 SSA.RewriteAllUses(&DT); 808 } 809 810 // Replace uses of longjmp with a new longjmp function in Emscripten library. 811 // In Emscripten SjLj, the new function is 812 // void emscripten_longjmp(uintptr_t, i32) 813 // In Wasm SjLj, the new function is 814 // void __wasm_longjmp(i8*, i32) 815 // Because the original libc longjmp function takes (jmp_buf*, i32), we need a 816 // ptrtoint/bitcast instruction here to make the type match. jmp_buf* will 817 // eventually be lowered to i32/i64 in the wasm backend. 818 void WebAssemblyLowerEmscriptenEHSjLj::replaceLongjmpWith(Function *LongjmpF, 819 Function *NewF) { 820 assert(NewF == EmLongjmpF || NewF == WasmLongjmpF); 821 Module *M = LongjmpF->getParent(); 822 SmallVector<CallInst *, 8> ToErase; 823 LLVMContext &C = LongjmpF->getParent()->getContext(); 824 IRBuilder<> IRB(C); 825 826 // For calls to longjmp, replace it with emscripten_longjmp/__wasm_longjmp and 827 // cast its first argument (jmp_buf*) appropriately 828 for (User *U : LongjmpF->users()) { 829 auto *CI = dyn_cast<CallInst>(U); 830 if (CI && CI->getCalledFunction() == LongjmpF) { 831 IRB.SetInsertPoint(CI); 832 Value *Env = nullptr; 833 if (NewF == EmLongjmpF) 834 Env = 835 IRB.CreatePtrToInt(CI->getArgOperand(0), getAddrIntType(M), "env"); 836 else // WasmLongjmpF 837 Env = 838 IRB.CreateBitCast(CI->getArgOperand(0), IRB.getInt8PtrTy(), "env"); 839 IRB.CreateCall(NewF, {Env, CI->getArgOperand(1)}); 840 ToErase.push_back(CI); 841 } 842 } 843 for (auto *I : ToErase) 844 I->eraseFromParent(); 845 846 // If we have any remaining uses of longjmp's function pointer, replace it 847 // with (void(*)(jmp_buf*, int))emscripten_longjmp / __wasm_longjmp. 848 if (!LongjmpF->uses().empty()) { 849 Value *NewLongjmp = 850 IRB.CreateBitCast(NewF, LongjmpF->getType(), "longjmp.cast"); 851 LongjmpF->replaceAllUsesWith(NewLongjmp); 852 } 853 } 854 855 static bool containsLongjmpableCalls(const Function *F) { 856 for (const auto &BB : *F) 857 for (const auto &I : BB) 858 if (const auto *CB = dyn_cast<CallBase>(&I)) 859 if (canLongjmp(CB->getCalledOperand())) 860 return true; 861 return false; 862 } 863 864 // When a function contains a setjmp call but not other calls that can longjmp, 865 // we don't do setjmp transformation for that setjmp. But we need to convert the 866 // setjmp calls into "i32 0" so they don't cause link time errors. setjmp always 867 // returns 0 when called directly. 868 static void nullifySetjmp(Function *F) { 869 Module &M = *F->getParent(); 870 IRBuilder<> IRB(M.getContext()); 871 Function *SetjmpF = M.getFunction("setjmp"); 872 SmallVector<Instruction *, 1> ToErase; 873 874 for (User *U : SetjmpF->users()) { 875 auto *CI = dyn_cast<CallInst>(U); 876 // FIXME 'invoke' to setjmp can happen when we use Wasm EH + Wasm SjLj, but 877 // we don't support two being used together yet. 878 if (!CI) 879 report_fatal_error("Wasm EH + Wasm SjLj is not fully supported yet"); 880 BasicBlock *BB = CI->getParent(); 881 if (BB->getParent() != F) // in other function 882 continue; 883 ToErase.push_back(CI); 884 CI->replaceAllUsesWith(IRB.getInt32(0)); 885 } 886 for (auto *I : ToErase) 887 I->eraseFromParent(); 888 } 889 890 bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module &M) { 891 LLVM_DEBUG(dbgs() << "********** Lower Emscripten EH & SjLj **********\n"); 892 893 LLVMContext &C = M.getContext(); 894 IRBuilder<> IRB(C); 895 896 Function *SetjmpF = M.getFunction("setjmp"); 897 Function *LongjmpF = M.getFunction("longjmp"); 898 899 // In some platforms _setjmp and _longjmp are used instead. Change these to 900 // use setjmp/longjmp instead, because we later detect these functions by 901 // their names. 902 Function *SetjmpF2 = M.getFunction("_setjmp"); 903 Function *LongjmpF2 = M.getFunction("_longjmp"); 904 if (SetjmpF2) { 905 if (SetjmpF) { 906 if (SetjmpF->getFunctionType() != SetjmpF2->getFunctionType()) 907 report_fatal_error("setjmp and _setjmp have different function types"); 908 } else { 909 SetjmpF = Function::Create(SetjmpF2->getFunctionType(), 910 GlobalValue::ExternalLinkage, "setjmp", M); 911 } 912 SetjmpF2->replaceAllUsesWith(SetjmpF); 913 } 914 if (LongjmpF2) { 915 if (LongjmpF) { 916 if (LongjmpF->getFunctionType() != LongjmpF2->getFunctionType()) 917 report_fatal_error( 918 "longjmp and _longjmp have different function types"); 919 } else { 920 LongjmpF = Function::Create(LongjmpF2->getFunctionType(), 921 GlobalValue::ExternalLinkage, "setjmp", M); 922 } 923 LongjmpF2->replaceAllUsesWith(LongjmpF); 924 } 925 926 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 927 assert(TPC && "Expected a TargetPassConfig"); 928 auto &TM = TPC->getTM<WebAssemblyTargetMachine>(); 929 930 // Declare (or get) global variables __THREW__, __threwValue, and 931 // getTempRet0/setTempRet0 function which are used in common for both 932 // exception handling and setjmp/longjmp handling 933 ThrewGV = getGlobalVariable(M, getAddrIntType(&M), TM, "__THREW__"); 934 ThrewValueGV = getGlobalVariable(M, IRB.getInt32Ty(), TM, "__threwValue"); 935 GetTempRet0F = getEmscriptenFunction( 936 FunctionType::get(IRB.getInt32Ty(), false), "getTempRet0", &M); 937 SetTempRet0F = getEmscriptenFunction( 938 FunctionType::get(IRB.getVoidTy(), IRB.getInt32Ty(), false), 939 "setTempRet0", &M); 940 GetTempRet0F->setDoesNotThrow(); 941 SetTempRet0F->setDoesNotThrow(); 942 943 bool Changed = false; 944 945 // Function registration for exception handling 946 if (EnableEmEH) { 947 // Register __resumeException function 948 FunctionType *ResumeFTy = 949 FunctionType::get(IRB.getVoidTy(), IRB.getInt8PtrTy(), false); 950 ResumeF = getEmscriptenFunction(ResumeFTy, "__resumeException", &M); 951 ResumeF->addFnAttr(Attribute::NoReturn); 952 953 // Register llvm_eh_typeid_for function 954 FunctionType *EHTypeIDTy = 955 FunctionType::get(IRB.getInt32Ty(), IRB.getInt8PtrTy(), false); 956 EHTypeIDF = getEmscriptenFunction(EHTypeIDTy, "llvm_eh_typeid_for", &M); 957 } 958 959 // Functions that contains calls to setjmp but don't have other longjmpable 960 // calls within them. 961 SmallPtrSet<Function *, 4> SetjmpUsersToNullify; 962 963 if ((EnableEmSjLj || EnableWasmSjLj) && SetjmpF) { 964 // Precompute setjmp users 965 for (User *U : SetjmpF->users()) { 966 if (auto *CB = dyn_cast<CallBase>(U)) { 967 auto *UserF = CB->getFunction(); 968 // If a function that calls setjmp does not contain any other calls that 969 // can longjmp, we don't need to do any transformation on that function, 970 // so can ignore it 971 if (containsLongjmpableCalls(UserF)) 972 SetjmpUsers.insert(UserF); 973 else 974 SetjmpUsersToNullify.insert(UserF); 975 } else { 976 std::string S; 977 raw_string_ostream SS(S); 978 SS << *U; 979 report_fatal_error(Twine("Indirect use of setjmp is not supported: ") + 980 SS.str()); 981 } 982 } 983 } 984 985 bool SetjmpUsed = SetjmpF && !SetjmpUsers.empty(); 986 bool LongjmpUsed = LongjmpF && !LongjmpF->use_empty(); 987 DoSjLj = (EnableEmSjLj | EnableWasmSjLj) && (SetjmpUsed || LongjmpUsed); 988 989 // Function registration and data pre-gathering for setjmp/longjmp handling 990 if (DoSjLj) { 991 assert(EnableEmSjLj || EnableWasmSjLj); 992 if (EnableEmSjLj) { 993 // Register emscripten_longjmp function 994 FunctionType *FTy = FunctionType::get( 995 IRB.getVoidTy(), {getAddrIntType(&M), IRB.getInt32Ty()}, false); 996 EmLongjmpF = getEmscriptenFunction(FTy, "emscripten_longjmp", &M); 997 EmLongjmpF->addFnAttr(Attribute::NoReturn); 998 } else { // EnableWasmSjLj 999 // Register __wasm_longjmp function, which calls __builtin_wasm_longjmp. 1000 FunctionType *FTy = FunctionType::get( 1001 IRB.getVoidTy(), {IRB.getInt8PtrTy(), IRB.getInt32Ty()}, false); 1002 WasmLongjmpF = getEmscriptenFunction(FTy, "__wasm_longjmp", &M); 1003 WasmLongjmpF->addFnAttr(Attribute::NoReturn); 1004 } 1005 1006 if (SetjmpF) { 1007 // Register saveSetjmp function 1008 FunctionType *SetjmpFTy = SetjmpF->getFunctionType(); 1009 FunctionType *FTy = 1010 FunctionType::get(Type::getInt32PtrTy(C), 1011 {SetjmpFTy->getParamType(0), IRB.getInt32Ty(), 1012 Type::getInt32PtrTy(C), IRB.getInt32Ty()}, 1013 false); 1014 SaveSetjmpF = getEmscriptenFunction(FTy, "saveSetjmp", &M); 1015 1016 // Register testSetjmp function 1017 FTy = FunctionType::get( 1018 IRB.getInt32Ty(), 1019 {getAddrIntType(&M), Type::getInt32PtrTy(C), IRB.getInt32Ty()}, 1020 false); 1021 TestSetjmpF = getEmscriptenFunction(FTy, "testSetjmp", &M); 1022 1023 // wasm.catch() will be lowered down to wasm 'catch' instruction in 1024 // instruction selection. 1025 CatchF = Intrinsic::getDeclaration(&M, Intrinsic::wasm_catch); 1026 // Type for struct __WasmLongjmpArgs 1027 LongjmpArgsTy = StructType::get(IRB.getInt8PtrTy(), // env 1028 IRB.getInt32Ty() // val 1029 ); 1030 } 1031 } 1032 1033 // Exception handling transformation 1034 if (EnableEmEH) { 1035 for (Function &F : M) { 1036 if (F.isDeclaration()) 1037 continue; 1038 Changed |= runEHOnFunction(F); 1039 } 1040 } 1041 1042 // Setjmp/longjmp handling transformation 1043 if (DoSjLj) { 1044 Changed = true; // We have setjmp or longjmp somewhere 1045 if (LongjmpF) 1046 replaceLongjmpWith(LongjmpF, EnableEmSjLj ? EmLongjmpF : WasmLongjmpF); 1047 // Only traverse functions that uses setjmp in order not to insert 1048 // unnecessary prep / cleanup code in every function 1049 if (SetjmpF) 1050 for (Function *F : SetjmpUsers) 1051 runSjLjOnFunction(*F); 1052 } 1053 1054 // Replace unnecessary setjmp calls with 0 1055 if ((EnableEmSjLj || EnableWasmSjLj) && !SetjmpUsersToNullify.empty()) { 1056 Changed = true; 1057 assert(SetjmpF); 1058 for (Function *F : SetjmpUsersToNullify) 1059 nullifySetjmp(F); 1060 } 1061 1062 if (!Changed) { 1063 // Delete unused global variables and functions 1064 if (ResumeF) 1065 ResumeF->eraseFromParent(); 1066 if (EHTypeIDF) 1067 EHTypeIDF->eraseFromParent(); 1068 if (EmLongjmpF) 1069 EmLongjmpF->eraseFromParent(); 1070 if (SaveSetjmpF) 1071 SaveSetjmpF->eraseFromParent(); 1072 if (TestSetjmpF) 1073 TestSetjmpF->eraseFromParent(); 1074 return false; 1075 } 1076 1077 return true; 1078 } 1079 1080 bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function &F) { 1081 Module &M = *F.getParent(); 1082 LLVMContext &C = F.getContext(); 1083 IRBuilder<> IRB(C); 1084 bool Changed = false; 1085 SmallVector<Instruction *, 64> ToErase; 1086 SmallPtrSet<LandingPadInst *, 32> LandingPads; 1087 1088 // rethrow.longjmp BB that will be shared within the function. 1089 BasicBlock *RethrowLongjmpBB = nullptr; 1090 // PHI node for the loaded value of __THREW__ global variable in 1091 // rethrow.longjmp BB 1092 PHINode *RethrowLongjmpBBThrewPHI = nullptr; 1093 1094 for (BasicBlock &BB : F) { 1095 auto *II = dyn_cast<InvokeInst>(BB.getTerminator()); 1096 if (!II) 1097 continue; 1098 Changed = true; 1099 LandingPads.insert(II->getLandingPadInst()); 1100 IRB.SetInsertPoint(II); 1101 1102 const Value *Callee = II->getCalledOperand(); 1103 bool NeedInvoke = supportsException(&F) && canThrow(Callee); 1104 if (NeedInvoke) { 1105 // Wrap invoke with invoke wrapper and generate preamble/postamble 1106 Value *Threw = wrapInvoke(II); 1107 ToErase.push_back(II); 1108 1109 // If setjmp/longjmp handling is enabled, the thrown value can be not an 1110 // exception but a longjmp. If the current function contains calls to 1111 // setjmp, it will be appropriately handled in runSjLjOnFunction. But even 1112 // if the function does not contain setjmp calls, we shouldn't silently 1113 // ignore longjmps; we should rethrow them so they can be correctly 1114 // handled in somewhere up the call chain where setjmp is. __THREW__'s 1115 // value is 0 when nothing happened, 1 when an exception is thrown, and 1116 // other values when longjmp is thrown. 1117 // 1118 // if (%__THREW__.val == 0 || %__THREW__.val == 1) 1119 // goto %tail 1120 // else 1121 // goto %longjmp.rethrow 1122 // 1123 // rethrow.longjmp: ;; This is longjmp. Rethrow it 1124 // %__threwValue.val = __threwValue 1125 // emscripten_longjmp(%__THREW__.val, %__threwValue.val); 1126 // 1127 // tail: ;; Nothing happened or an exception is thrown 1128 // ... Continue exception handling ... 1129 if (DoSjLj && EnableEmSjLj && !SetjmpUsers.count(&F) && 1130 canLongjmp(Callee)) { 1131 // Create longjmp.rethrow BB once and share it within the function 1132 if (!RethrowLongjmpBB) { 1133 RethrowLongjmpBB = BasicBlock::Create(C, "rethrow.longjmp", &F); 1134 IRB.SetInsertPoint(RethrowLongjmpBB); 1135 RethrowLongjmpBBThrewPHI = 1136 IRB.CreatePHI(getAddrIntType(&M), 4, "threw.phi"); 1137 RethrowLongjmpBBThrewPHI->addIncoming(Threw, &BB); 1138 Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV, 1139 ThrewValueGV->getName() + ".val"); 1140 IRB.CreateCall(EmLongjmpF, {RethrowLongjmpBBThrewPHI, ThrewValue}); 1141 IRB.CreateUnreachable(); 1142 } else { 1143 RethrowLongjmpBBThrewPHI->addIncoming(Threw, &BB); 1144 } 1145 1146 IRB.SetInsertPoint(II); // Restore the insert point back 1147 BasicBlock *Tail = BasicBlock::Create(C, "tail", &F); 1148 Value *CmpEqOne = 1149 IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp.eq.one"); 1150 Value *CmpEqZero = 1151 IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 0), "cmp.eq.zero"); 1152 Value *Or = IRB.CreateOr(CmpEqZero, CmpEqOne, "or"); 1153 IRB.CreateCondBr(Or, Tail, RethrowLongjmpBB); 1154 IRB.SetInsertPoint(Tail); 1155 BB.replaceSuccessorsPhiUsesWith(&BB, Tail); 1156 } 1157 1158 // Insert a branch based on __THREW__ variable 1159 Value *Cmp = IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp"); 1160 IRB.CreateCondBr(Cmp, II->getUnwindDest(), II->getNormalDest()); 1161 1162 } else { 1163 // This can't throw, and we don't need this invoke, just replace it with a 1164 // call+branch 1165 changeToCall(II); 1166 } 1167 } 1168 1169 // Process resume instructions 1170 for (BasicBlock &BB : F) { 1171 // Scan the body of the basic block for resumes 1172 for (Instruction &I : BB) { 1173 auto *RI = dyn_cast<ResumeInst>(&I); 1174 if (!RI) 1175 continue; 1176 Changed = true; 1177 1178 // Split the input into legal values 1179 Value *Input = RI->getValue(); 1180 IRB.SetInsertPoint(RI); 1181 Value *Low = IRB.CreateExtractValue(Input, 0, "low"); 1182 // Create a call to __resumeException function 1183 IRB.CreateCall(ResumeF, {Low}); 1184 // Add a terminator to the block 1185 IRB.CreateUnreachable(); 1186 ToErase.push_back(RI); 1187 } 1188 } 1189 1190 // Process llvm.eh.typeid.for intrinsics 1191 for (BasicBlock &BB : F) { 1192 for (Instruction &I : BB) { 1193 auto *CI = dyn_cast<CallInst>(&I); 1194 if (!CI) 1195 continue; 1196 const Function *Callee = CI->getCalledFunction(); 1197 if (!Callee) 1198 continue; 1199 if (Callee->getIntrinsicID() != Intrinsic::eh_typeid_for) 1200 continue; 1201 Changed = true; 1202 1203 IRB.SetInsertPoint(CI); 1204 CallInst *NewCI = 1205 IRB.CreateCall(EHTypeIDF, CI->getArgOperand(0), "typeid"); 1206 CI->replaceAllUsesWith(NewCI); 1207 ToErase.push_back(CI); 1208 } 1209 } 1210 1211 // Look for orphan landingpads, can occur in blocks with no predecessors 1212 for (BasicBlock &BB : F) { 1213 Instruction *I = BB.getFirstNonPHI(); 1214 if (auto *LPI = dyn_cast<LandingPadInst>(I)) 1215 LandingPads.insert(LPI); 1216 } 1217 Changed |= !LandingPads.empty(); 1218 1219 // Handle all the landingpad for this function together, as multiple invokes 1220 // may share a single lp 1221 for (LandingPadInst *LPI : LandingPads) { 1222 IRB.SetInsertPoint(LPI); 1223 SmallVector<Value *, 16> FMCArgs; 1224 for (unsigned I = 0, E = LPI->getNumClauses(); I < E; ++I) { 1225 Constant *Clause = LPI->getClause(I); 1226 // TODO Handle filters (= exception specifications). 1227 // https://bugs.llvm.org/show_bug.cgi?id=50396 1228 if (LPI->isCatch(I)) 1229 FMCArgs.push_back(Clause); 1230 } 1231 1232 // Create a call to __cxa_find_matching_catch_N function 1233 Function *FMCF = getFindMatchingCatch(M, FMCArgs.size()); 1234 CallInst *FMCI = IRB.CreateCall(FMCF, FMCArgs, "fmc"); 1235 Value *Undef = UndefValue::get(LPI->getType()); 1236 Value *Pair0 = IRB.CreateInsertValue(Undef, FMCI, 0, "pair0"); 1237 Value *TempRet0 = IRB.CreateCall(GetTempRet0F, None, "tempret0"); 1238 Value *Pair1 = IRB.CreateInsertValue(Pair0, TempRet0, 1, "pair1"); 1239 1240 LPI->replaceAllUsesWith(Pair1); 1241 ToErase.push_back(LPI); 1242 } 1243 1244 // Erase everything we no longer need in this function 1245 for (Instruction *I : ToErase) 1246 I->eraseFromParent(); 1247 1248 return Changed; 1249 } 1250 1251 // This tries to get debug info from the instruction before which a new 1252 // instruction will be inserted, and if there's no debug info in that 1253 // instruction, tries to get the info instead from the previous instruction (if 1254 // any). If none of these has debug info and a DISubprogram is provided, it 1255 // creates a dummy debug info with the first line of the function, because IR 1256 // verifier requires all inlinable callsites should have debug info when both a 1257 // caller and callee have DISubprogram. If none of these conditions are met, 1258 // returns empty info. 1259 static DebugLoc getOrCreateDebugLoc(const Instruction *InsertBefore, 1260 DISubprogram *SP) { 1261 assert(InsertBefore); 1262 if (InsertBefore->getDebugLoc()) 1263 return InsertBefore->getDebugLoc(); 1264 const Instruction *Prev = InsertBefore->getPrevNode(); 1265 if (Prev && Prev->getDebugLoc()) 1266 return Prev->getDebugLoc(); 1267 if (SP) 1268 return DILocation::get(SP->getContext(), SP->getLine(), 1, SP); 1269 return DebugLoc(); 1270 } 1271 1272 bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function &F) { 1273 assert(EnableEmSjLj || EnableWasmSjLj); 1274 Module &M = *F.getParent(); 1275 LLVMContext &C = F.getContext(); 1276 IRBuilder<> IRB(C); 1277 SmallVector<Instruction *, 64> ToErase; 1278 // Vector of %setjmpTable values 1279 SmallVector<Instruction *, 4> SetjmpTableInsts; 1280 // Vector of %setjmpTableSize values 1281 SmallVector<Instruction *, 4> SetjmpTableSizeInsts; 1282 1283 // Setjmp preparation 1284 1285 // This instruction effectively means %setjmpTableSize = 4. 1286 // We create this as an instruction intentionally, and we don't want to fold 1287 // this instruction to a constant 4, because this value will be used in 1288 // SSAUpdater.AddAvailableValue(...) later. 1289 BasicBlock *Entry = &F.getEntryBlock(); 1290 DebugLoc FirstDL = getOrCreateDebugLoc(&*Entry->begin(), F.getSubprogram()); 1291 SplitBlock(Entry, &*Entry->getFirstInsertionPt()); 1292 1293 BinaryOperator *SetjmpTableSize = 1294 BinaryOperator::Create(Instruction::Add, IRB.getInt32(4), IRB.getInt32(0), 1295 "setjmpTableSize", Entry->getTerminator()); 1296 SetjmpTableSize->setDebugLoc(FirstDL); 1297 // setjmpTable = (int *) malloc(40); 1298 Instruction *SetjmpTable = CallInst::CreateMalloc( 1299 SetjmpTableSize, IRB.getInt32Ty(), IRB.getInt32Ty(), IRB.getInt32(40), 1300 nullptr, nullptr, "setjmpTable"); 1301 SetjmpTable->setDebugLoc(FirstDL); 1302 // CallInst::CreateMalloc may return a bitcast instruction if the result types 1303 // mismatch. We need to set the debug loc for the original call too. 1304 auto *MallocCall = SetjmpTable->stripPointerCasts(); 1305 if (auto *MallocCallI = dyn_cast<Instruction>(MallocCall)) { 1306 MallocCallI->setDebugLoc(FirstDL); 1307 } 1308 // setjmpTable[0] = 0; 1309 IRB.SetInsertPoint(SetjmpTableSize); 1310 IRB.CreateStore(IRB.getInt32(0), SetjmpTable); 1311 SetjmpTableInsts.push_back(SetjmpTable); 1312 SetjmpTableSizeInsts.push_back(SetjmpTableSize); 1313 1314 // Setjmp transformation 1315 SmallVector<PHINode *, 4> SetjmpRetPHIs; 1316 Function *SetjmpF = M.getFunction("setjmp"); 1317 for (auto *U : make_early_inc_range(SetjmpF->users())) { 1318 auto *CB = dyn_cast<CallBase>(U); 1319 BasicBlock *BB = CB->getParent(); 1320 if (BB->getParent() != &F) // in other function 1321 continue; 1322 1323 CallInst *CI = nullptr; 1324 // setjmp cannot throw. So if it is an invoke, lower it to a call 1325 if (auto *II = dyn_cast<InvokeInst>(CB)) 1326 CI = llvm::changeToCall(II); 1327 else 1328 CI = cast<CallInst>(CB); 1329 1330 // The tail is everything right after the call, and will be reached once 1331 // when setjmp is called, and later when longjmp returns to the setjmp 1332 BasicBlock *Tail = SplitBlock(BB, CI->getNextNode()); 1333 // Add a phi to the tail, which will be the output of setjmp, which 1334 // indicates if this is the first call or a longjmp back. The phi directly 1335 // uses the right value based on where we arrive from 1336 IRB.SetInsertPoint(Tail->getFirstNonPHI()); 1337 PHINode *SetjmpRet = IRB.CreatePHI(IRB.getInt32Ty(), 2, "setjmp.ret"); 1338 1339 // setjmp initial call returns 0 1340 SetjmpRet->addIncoming(IRB.getInt32(0), BB); 1341 // The proper output is now this, not the setjmp call itself 1342 CI->replaceAllUsesWith(SetjmpRet); 1343 // longjmp returns to the setjmp will add themselves to this phi 1344 SetjmpRetPHIs.push_back(SetjmpRet); 1345 1346 // Fix call target 1347 // Our index in the function is our place in the array + 1 to avoid index 1348 // 0, because index 0 means the longjmp is not ours to handle. 1349 IRB.SetInsertPoint(CI); 1350 Value *Args[] = {CI->getArgOperand(0), IRB.getInt32(SetjmpRetPHIs.size()), 1351 SetjmpTable, SetjmpTableSize}; 1352 Instruction *NewSetjmpTable = 1353 IRB.CreateCall(SaveSetjmpF, Args, "setjmpTable"); 1354 Instruction *NewSetjmpTableSize = 1355 IRB.CreateCall(GetTempRet0F, None, "setjmpTableSize"); 1356 SetjmpTableInsts.push_back(NewSetjmpTable); 1357 SetjmpTableSizeInsts.push_back(NewSetjmpTableSize); 1358 ToErase.push_back(CI); 1359 } 1360 1361 // Handle longjmpable calls. 1362 if (EnableEmSjLj) 1363 handleLongjmpableCallsForEmscriptenSjLj( 1364 F, SetjmpTableInsts, SetjmpTableSizeInsts, SetjmpRetPHIs); 1365 else // EnableWasmSjLj 1366 handleLongjmpableCallsForWasmSjLj(F, SetjmpTableInsts, SetjmpTableSizeInsts, 1367 SetjmpRetPHIs); 1368 1369 // Erase everything we no longer need in this function 1370 for (Instruction *I : ToErase) 1371 I->eraseFromParent(); 1372 1373 // Free setjmpTable buffer before each return instruction + function-exiting 1374 // call 1375 SmallVector<Instruction *, 16> ExitingInsts; 1376 for (BasicBlock &BB : F) { 1377 Instruction *TI = BB.getTerminator(); 1378 if (isa<ReturnInst>(TI)) 1379 ExitingInsts.push_back(TI); 1380 // Any 'call' instruction with 'noreturn' attribute exits the function at 1381 // this point. If this throws but unwinds to another EH pad within this 1382 // function instead of exiting, this would have been an 'invoke', which 1383 // happens if we use Wasm EH or Wasm SjLJ. 1384 for (auto &I : BB) { 1385 if (auto *CI = dyn_cast<CallInst>(&I)) { 1386 bool IsNoReturn = CI->hasFnAttr(Attribute::NoReturn); 1387 if (Function *CalleeF = CI->getCalledFunction()) 1388 IsNoReturn |= CalleeF->hasFnAttribute(Attribute::NoReturn); 1389 if (IsNoReturn) 1390 ExitingInsts.push_back(&I); 1391 } 1392 } 1393 } 1394 for (auto *I : ExitingInsts) { 1395 DebugLoc DL = getOrCreateDebugLoc(I, F.getSubprogram()); 1396 // If this existing instruction is a call within a catchpad, we should add 1397 // it as "funclet" to the operand bundle of 'free' call 1398 SmallVector<OperandBundleDef, 1> Bundles; 1399 if (auto *CB = dyn_cast<CallBase>(I)) 1400 if (auto Bundle = CB->getOperandBundle(LLVMContext::OB_funclet)) 1401 Bundles.push_back(OperandBundleDef(*Bundle)); 1402 auto *Free = CallInst::CreateFree(SetjmpTable, Bundles, I); 1403 Free->setDebugLoc(DL); 1404 // CallInst::CreateFree may create a bitcast instruction if its argument 1405 // types mismatch. We need to set the debug loc for the bitcast too. 1406 if (auto *FreeCallI = dyn_cast<CallInst>(Free)) { 1407 if (auto *BitCastI = dyn_cast<BitCastInst>(FreeCallI->getArgOperand(0))) 1408 BitCastI->setDebugLoc(DL); 1409 } 1410 } 1411 1412 // Every call to saveSetjmp can change setjmpTable and setjmpTableSize 1413 // (when buffer reallocation occurs) 1414 // entry: 1415 // setjmpTableSize = 4; 1416 // setjmpTable = (int *) malloc(40); 1417 // setjmpTable[0] = 0; 1418 // ... 1419 // somebb: 1420 // setjmpTable = saveSetjmp(env, label, setjmpTable, setjmpTableSize); 1421 // setjmpTableSize = getTempRet0(); 1422 // So we need to make sure the SSA for these variables is valid so that every 1423 // saveSetjmp and testSetjmp calls have the correct arguments. 1424 SSAUpdater SetjmpTableSSA; 1425 SSAUpdater SetjmpTableSizeSSA; 1426 SetjmpTableSSA.Initialize(Type::getInt32PtrTy(C), "setjmpTable"); 1427 SetjmpTableSizeSSA.Initialize(Type::getInt32Ty(C), "setjmpTableSize"); 1428 for (Instruction *I : SetjmpTableInsts) 1429 SetjmpTableSSA.AddAvailableValue(I->getParent(), I); 1430 for (Instruction *I : SetjmpTableSizeInsts) 1431 SetjmpTableSizeSSA.AddAvailableValue(I->getParent(), I); 1432 1433 for (auto &U : make_early_inc_range(SetjmpTable->uses())) 1434 if (auto *I = dyn_cast<Instruction>(U.getUser())) 1435 if (I->getParent() != Entry) 1436 SetjmpTableSSA.RewriteUse(U); 1437 for (auto &U : make_early_inc_range(SetjmpTableSize->uses())) 1438 if (auto *I = dyn_cast<Instruction>(U.getUser())) 1439 if (I->getParent() != Entry) 1440 SetjmpTableSizeSSA.RewriteUse(U); 1441 1442 // Finally, our modifications to the cfg can break dominance of SSA variables. 1443 // For example, in this code, 1444 // if (x()) { .. setjmp() .. } 1445 // if (y()) { .. longjmp() .. } 1446 // We must split the longjmp block, and it can jump into the block splitted 1447 // from setjmp one. But that means that when we split the setjmp block, it's 1448 // first part no longer dominates its second part - there is a theoretically 1449 // possible control flow path where x() is false, then y() is true and we 1450 // reach the second part of the setjmp block, without ever reaching the first 1451 // part. So, we rebuild SSA form here. 1452 rebuildSSA(F); 1453 return true; 1454 } 1455 1456 // Update each call that can longjmp so it can return to the corresponding 1457 // setjmp. Refer to 4) of "Emscripten setjmp/longjmp handling" section in the 1458 // comments at top of the file for details. 1459 void WebAssemblyLowerEmscriptenEHSjLj::handleLongjmpableCallsForEmscriptenSjLj( 1460 Function &F, InstVector &SetjmpTableInsts, InstVector &SetjmpTableSizeInsts, 1461 SmallVectorImpl<PHINode *> &SetjmpRetPHIs) { 1462 Module &M = *F.getParent(); 1463 LLVMContext &C = F.getContext(); 1464 IRBuilder<> IRB(C); 1465 SmallVector<Instruction *, 64> ToErase; 1466 1467 // We need to pass setjmpTable and setjmpTableSize to testSetjmp function. 1468 // These values are defined in the beginning of the function and also in each 1469 // setjmp callsite, but we don't know which values we should use at this 1470 // point. So here we arbitraily use the ones defined in the beginning of the 1471 // function, and SSAUpdater will later update them to the correct values. 1472 Instruction *SetjmpTable = *SetjmpTableInsts.begin(); 1473 Instruction *SetjmpTableSize = *SetjmpTableSizeInsts.begin(); 1474 1475 // call.em.longjmp BB that will be shared within the function. 1476 BasicBlock *CallEmLongjmpBB = nullptr; 1477 // PHI node for the loaded value of __THREW__ global variable in 1478 // call.em.longjmp BB 1479 PHINode *CallEmLongjmpBBThrewPHI = nullptr; 1480 // PHI node for the loaded value of __threwValue global variable in 1481 // call.em.longjmp BB 1482 PHINode *CallEmLongjmpBBThrewValuePHI = nullptr; 1483 // rethrow.exn BB that will be shared within the function. 1484 BasicBlock *RethrowExnBB = nullptr; 1485 1486 // Because we are creating new BBs while processing and don't want to make 1487 // all these newly created BBs candidates again for longjmp processing, we 1488 // first make the vector of candidate BBs. 1489 std::vector<BasicBlock *> BBs; 1490 for (BasicBlock &BB : F) 1491 BBs.push_back(&BB); 1492 1493 // BBs.size() will change within the loop, so we query it every time 1494 for (unsigned I = 0; I < BBs.size(); I++) { 1495 BasicBlock *BB = BBs[I]; 1496 for (Instruction &I : *BB) { 1497 if (isa<InvokeInst>(&I)) 1498 report_fatal_error("When using Wasm EH with Emscripten SjLj, there is " 1499 "a restriction that `setjmp` function call and " 1500 "exception cannot be used within the same function"); 1501 auto *CI = dyn_cast<CallInst>(&I); 1502 if (!CI) 1503 continue; 1504 1505 const Value *Callee = CI->getCalledOperand(); 1506 if (!canLongjmp(Callee)) 1507 continue; 1508 if (isEmAsmCall(Callee)) 1509 report_fatal_error("Cannot use EM_ASM* alongside setjmp/longjmp in " + 1510 F.getName() + 1511 ". Please consider using EM_JS, or move the " 1512 "EM_ASM into another function.", 1513 false); 1514 1515 Value *Threw = nullptr; 1516 BasicBlock *Tail; 1517 if (Callee->getName().startswith("__invoke_")) { 1518 // If invoke wrapper has already been generated for this call in 1519 // previous EH phase, search for the load instruction 1520 // %__THREW__.val = __THREW__; 1521 // in postamble after the invoke wrapper call 1522 LoadInst *ThrewLI = nullptr; 1523 StoreInst *ThrewResetSI = nullptr; 1524 for (auto I = std::next(BasicBlock::iterator(CI)), IE = BB->end(); 1525 I != IE; ++I) { 1526 if (auto *LI = dyn_cast<LoadInst>(I)) 1527 if (auto *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand())) 1528 if (GV == ThrewGV) { 1529 Threw = ThrewLI = LI; 1530 break; 1531 } 1532 } 1533 // Search for the store instruction after the load above 1534 // __THREW__ = 0; 1535 for (auto I = std::next(BasicBlock::iterator(ThrewLI)), IE = BB->end(); 1536 I != IE; ++I) { 1537 if (auto *SI = dyn_cast<StoreInst>(I)) { 1538 if (auto *GV = dyn_cast<GlobalVariable>(SI->getPointerOperand())) { 1539 if (GV == ThrewGV && 1540 SI->getValueOperand() == getAddrSizeInt(&M, 0)) { 1541 ThrewResetSI = SI; 1542 break; 1543 } 1544 } 1545 } 1546 } 1547 assert(Threw && ThrewLI && "Cannot find __THREW__ load after invoke"); 1548 assert(ThrewResetSI && "Cannot find __THREW__ store after invoke"); 1549 Tail = SplitBlock(BB, ThrewResetSI->getNextNode()); 1550 1551 } else { 1552 // Wrap call with invoke wrapper and generate preamble/postamble 1553 Threw = wrapInvoke(CI); 1554 ToErase.push_back(CI); 1555 Tail = SplitBlock(BB, CI->getNextNode()); 1556 1557 // If exception handling is enabled, the thrown value can be not a 1558 // longjmp but an exception, in which case we shouldn't silently ignore 1559 // exceptions; we should rethrow them. 1560 // __THREW__'s value is 0 when nothing happened, 1 when an exception is 1561 // thrown, other values when longjmp is thrown. 1562 // 1563 // if (%__THREW__.val == 1) 1564 // goto %eh.rethrow 1565 // else 1566 // goto %normal 1567 // 1568 // eh.rethrow: ;; Rethrow exception 1569 // %exn = call @__cxa_find_matching_catch_2() ;; Retrieve thrown ptr 1570 // __resumeException(%exn) 1571 // 1572 // normal: 1573 // <-- Insertion point. Will insert sjlj handling code from here 1574 // goto %tail 1575 // 1576 // tail: 1577 // ... 1578 if (supportsException(&F) && canThrow(Callee)) { 1579 // We will add a new conditional branch. So remove the branch created 1580 // when we split the BB 1581 ToErase.push_back(BB->getTerminator()); 1582 1583 // Generate rethrow.exn BB once and share it within the function 1584 if (!RethrowExnBB) { 1585 RethrowExnBB = BasicBlock::Create(C, "rethrow.exn", &F); 1586 IRB.SetInsertPoint(RethrowExnBB); 1587 CallInst *Exn = 1588 IRB.CreateCall(getFindMatchingCatch(M, 0), {}, "exn"); 1589 IRB.CreateCall(ResumeF, {Exn}); 1590 IRB.CreateUnreachable(); 1591 } 1592 1593 IRB.SetInsertPoint(CI); 1594 BasicBlock *NormalBB = BasicBlock::Create(C, "normal", &F); 1595 Value *CmpEqOne = 1596 IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp.eq.one"); 1597 IRB.CreateCondBr(CmpEqOne, RethrowExnBB, NormalBB); 1598 1599 IRB.SetInsertPoint(NormalBB); 1600 IRB.CreateBr(Tail); 1601 BB = NormalBB; // New insertion point to insert testSetjmp() 1602 } 1603 } 1604 1605 // We need to replace the terminator in Tail - SplitBlock makes BB go 1606 // straight to Tail, we need to check if a longjmp occurred, and go to the 1607 // right setjmp-tail if so 1608 ToErase.push_back(BB->getTerminator()); 1609 1610 // Generate a function call to testSetjmp function and preamble/postamble 1611 // code to figure out (1) whether longjmp occurred (2) if longjmp 1612 // occurred, which setjmp it corresponds to 1613 Value *Label = nullptr; 1614 Value *LongjmpResult = nullptr; 1615 BasicBlock *EndBB = nullptr; 1616 wrapTestSetjmp(BB, CI->getDebugLoc(), Threw, SetjmpTable, SetjmpTableSize, 1617 Label, LongjmpResult, CallEmLongjmpBB, 1618 CallEmLongjmpBBThrewPHI, CallEmLongjmpBBThrewValuePHI, 1619 EndBB); 1620 assert(Label && LongjmpResult && EndBB); 1621 1622 // Create switch instruction 1623 IRB.SetInsertPoint(EndBB); 1624 IRB.SetCurrentDebugLocation(EndBB->getInstList().back().getDebugLoc()); 1625 SwitchInst *SI = IRB.CreateSwitch(Label, Tail, SetjmpRetPHIs.size()); 1626 // -1 means no longjmp happened, continue normally (will hit the default 1627 // switch case). 0 means a longjmp that is not ours to handle, needs a 1628 // rethrow. Otherwise the index is the same as the index in P+1 (to avoid 1629 // 0). 1630 for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) { 1631 SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent()); 1632 SetjmpRetPHIs[I]->addIncoming(LongjmpResult, EndBB); 1633 } 1634 1635 // We are splitting the block here, and must continue to find other calls 1636 // in the block - which is now split. so continue to traverse in the Tail 1637 BBs.push_back(Tail); 1638 } 1639 } 1640 1641 for (Instruction *I : ToErase) 1642 I->eraseFromParent(); 1643 } 1644 1645 static BasicBlock *getCleanupRetUnwindDest(const CleanupPadInst *CPI) { 1646 for (const User *U : CPI->users()) 1647 if (const auto *CRI = dyn_cast<CleanupReturnInst>(U)) 1648 return CRI->getUnwindDest(); 1649 return nullptr; 1650 } 1651 1652 // Create a catchpad in which we catch a longjmp's env and val arguments, test 1653 // if the longjmp corresponds to one of setjmps in the current function, and if 1654 // so, jump to the setjmp dispatch BB from which we go to one of post-setjmp 1655 // BBs. Refer to 4) of "Wasm setjmp/longjmp handling" section in the comments at 1656 // top of the file for details. 1657 void WebAssemblyLowerEmscriptenEHSjLj::handleLongjmpableCallsForWasmSjLj( 1658 Function &F, InstVector &SetjmpTableInsts, InstVector &SetjmpTableSizeInsts, 1659 SmallVectorImpl<PHINode *> &SetjmpRetPHIs) { 1660 Module &M = *F.getParent(); 1661 LLVMContext &C = F.getContext(); 1662 IRBuilder<> IRB(C); 1663 1664 // A function with catchswitch/catchpad instruction should have a personality 1665 // function attached to it. Search for the wasm personality function, and if 1666 // it exists, use it, and if it doesn't, create a dummy personality function. 1667 // (SjLj is not going to call it anyway.) 1668 if (!F.hasPersonalityFn()) { 1669 StringRef PersName = getEHPersonalityName(EHPersonality::Wasm_CXX); 1670 FunctionType *PersType = 1671 FunctionType::get(IRB.getInt32Ty(), /* isVarArg */ true); 1672 Value *PersF = M.getOrInsertFunction(PersName, PersType).getCallee(); 1673 F.setPersonalityFn( 1674 cast<Constant>(IRB.CreateBitCast(PersF, IRB.getInt8PtrTy()))); 1675 } 1676 1677 // Use the entry BB's debugloc as a fallback 1678 BasicBlock *Entry = &F.getEntryBlock(); 1679 DebugLoc FirstDL = getOrCreateDebugLoc(&*Entry->begin(), F.getSubprogram()); 1680 IRB.SetCurrentDebugLocation(FirstDL); 1681 1682 // Arbitrarily use the ones defined in the beginning of the function. 1683 // SSAUpdater will later update them to the correct values. 1684 Instruction *SetjmpTable = *SetjmpTableInsts.begin(); 1685 Instruction *SetjmpTableSize = *SetjmpTableSizeInsts.begin(); 1686 1687 // Add setjmp.dispatch BB right after the entry block. Because we have 1688 // initialized setjmpTable/setjmpTableSize in the entry block and split the 1689 // rest into another BB, here 'OrigEntry' is the function's original entry 1690 // block before the transformation. 1691 // 1692 // entry: 1693 // setjmpTable / setjmpTableSize initialization 1694 // setjmp.dispatch: 1695 // switch will be inserted here later 1696 // entry.split: (OrigEntry) 1697 // the original function starts here 1698 BasicBlock *OrigEntry = Entry->getNextNode(); 1699 BasicBlock *SetjmpDispatchBB = 1700 BasicBlock::Create(C, "setjmp.dispatch", &F, OrigEntry); 1701 cast<BranchInst>(Entry->getTerminator())->setSuccessor(0, SetjmpDispatchBB); 1702 1703 // Create catch.dispatch.longjmp BB and a catchswitch instruction 1704 BasicBlock *CatchDispatchLongjmpBB = 1705 BasicBlock::Create(C, "catch.dispatch.longjmp", &F); 1706 IRB.SetInsertPoint(CatchDispatchLongjmpBB); 1707 CatchSwitchInst *CatchSwitchLongjmp = 1708 IRB.CreateCatchSwitch(ConstantTokenNone::get(C), nullptr, 1); 1709 1710 // Create catch.longjmp BB and a catchpad instruction 1711 BasicBlock *CatchLongjmpBB = BasicBlock::Create(C, "catch.longjmp", &F); 1712 CatchSwitchLongjmp->addHandler(CatchLongjmpBB); 1713 IRB.SetInsertPoint(CatchLongjmpBB); 1714 CatchPadInst *CatchPad = IRB.CreateCatchPad(CatchSwitchLongjmp, {}); 1715 1716 // Wasm throw and catch instructions can throw and catch multiple values, but 1717 // that requires multivalue support in the toolchain, which is currently not 1718 // very reliable. We instead throw and catch a pointer to a struct value of 1719 // type 'struct __WasmLongjmpArgs', which is defined in Emscripten. 1720 Instruction *CatchCI = 1721 IRB.CreateCall(CatchF, {IRB.getInt32(WebAssembly::C_LONGJMP)}, "thrown"); 1722 Value *LongjmpArgs = 1723 IRB.CreateBitCast(CatchCI, LongjmpArgsTy->getPointerTo(), "longjmp.args"); 1724 Value *EnvField = 1725 IRB.CreateConstGEP2_32(LongjmpArgsTy, LongjmpArgs, 0, 0, "env_gep"); 1726 Value *ValField = 1727 IRB.CreateConstGEP2_32(LongjmpArgsTy, LongjmpArgs, 0, 1, "val_gep"); 1728 // void *env = __wasm_longjmp_args.env; 1729 Instruction *Env = IRB.CreateLoad(IRB.getInt8PtrTy(), EnvField, "env"); 1730 // int val = __wasm_longjmp_args.val; 1731 Instruction *Val = IRB.CreateLoad(IRB.getInt32Ty(), ValField, "val"); 1732 1733 // %label = testSetjmp(mem[%env], setjmpTable, setjmpTableSize); 1734 // if (%label == 0) 1735 // __wasm_longjmp(%env, %val) 1736 // catchret to %setjmp.dispatch 1737 BasicBlock *ThenBB = BasicBlock::Create(C, "if.then", &F); 1738 BasicBlock *EndBB = BasicBlock::Create(C, "if.end", &F); 1739 Value *EnvP = IRB.CreateBitCast(Env, getAddrPtrType(&M), "env.p"); 1740 Value *SetjmpID = IRB.CreateLoad(getAddrIntType(&M), EnvP, "setjmp.id"); 1741 Value *Label = 1742 IRB.CreateCall(TestSetjmpF, {SetjmpID, SetjmpTable, SetjmpTableSize}, 1743 OperandBundleDef("funclet", CatchPad), "label"); 1744 Value *Cmp = IRB.CreateICmpEQ(Label, IRB.getInt32(0)); 1745 IRB.CreateCondBr(Cmp, ThenBB, EndBB); 1746 1747 IRB.SetInsertPoint(ThenBB); 1748 CallInst *WasmLongjmpCI = IRB.CreateCall( 1749 WasmLongjmpF, {Env, Val}, OperandBundleDef("funclet", CatchPad)); 1750 IRB.CreateUnreachable(); 1751 1752 IRB.SetInsertPoint(EndBB); 1753 // Jump to setjmp.dispatch block 1754 IRB.CreateCatchRet(CatchPad, SetjmpDispatchBB); 1755 1756 // Go back to setjmp.dispatch BB 1757 // setjmp.dispatch: 1758 // switch %label { 1759 // label 1: goto post-setjmp BB 1 1760 // label 2: goto post-setjmp BB 2 1761 // ... 1762 // default: goto splitted next BB 1763 // } 1764 IRB.SetInsertPoint(SetjmpDispatchBB); 1765 PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label.phi"); 1766 LabelPHI->addIncoming(Label, EndBB); 1767 LabelPHI->addIncoming(IRB.getInt32(-1), Entry); 1768 SwitchInst *SI = IRB.CreateSwitch(LabelPHI, OrigEntry, SetjmpRetPHIs.size()); 1769 // -1 means no longjmp happened, continue normally (will hit the default 1770 // switch case). 0 means a longjmp that is not ours to handle, needs a 1771 // rethrow. Otherwise the index is the same as the index in P+1 (to avoid 1772 // 0). 1773 for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) { 1774 SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent()); 1775 SetjmpRetPHIs[I]->addIncoming(Val, SetjmpDispatchBB); 1776 } 1777 1778 // Convert all longjmpable call instructions to invokes that unwind to the 1779 // newly created catch.dispatch.longjmp BB. 1780 SmallVector<CallInst *, 64> LongjmpableCalls; 1781 for (auto *BB = &*F.begin(); BB; BB = BB->getNextNode()) { 1782 for (auto &I : *BB) { 1783 auto *CI = dyn_cast<CallInst>(&I); 1784 if (!CI) 1785 continue; 1786 const Value *Callee = CI->getCalledOperand(); 1787 if (!canLongjmp(Callee)) 1788 continue; 1789 if (isEmAsmCall(Callee)) 1790 report_fatal_error("Cannot use EM_ASM* alongside setjmp/longjmp in " + 1791 F.getName() + 1792 ". Please consider using EM_JS, or move the " 1793 "EM_ASM into another function.", 1794 false); 1795 // This is __wasm_longjmp() call we inserted in this function, which 1796 // rethrows the longjmp when the longjmp does not correspond to one of 1797 // setjmps in this function. We should not convert this call to an invoke. 1798 if (CI == WasmLongjmpCI) 1799 continue; 1800 LongjmpableCalls.push_back(CI); 1801 } 1802 } 1803 1804 for (auto *CI : LongjmpableCalls) { 1805 // Even if the callee function has attribute 'nounwind', which is true for 1806 // all C functions, it can longjmp, which means it can throw a Wasm 1807 // exception now. 1808 CI->removeFnAttr(Attribute::NoUnwind); 1809 if (Function *CalleeF = CI->getCalledFunction()) 1810 CalleeF->removeFnAttr(Attribute::NoUnwind); 1811 1812 // Change it to an invoke and make it unwind to the catch.dispatch.longjmp 1813 // BB. If the call is enclosed in another catchpad/cleanuppad scope, unwind 1814 // to its parent pad's unwind destination instead to preserve the scope 1815 // structure. It will eventually unwind to the catch.dispatch.longjmp. 1816 SmallVector<OperandBundleDef, 1> Bundles; 1817 BasicBlock *UnwindDest = nullptr; 1818 if (auto Bundle = CI->getOperandBundle(LLVMContext::OB_funclet)) { 1819 Instruction *FromPad = cast<Instruction>(Bundle->Inputs[0]); 1820 while (!UnwindDest && FromPad) { 1821 if (auto *CPI = dyn_cast<CatchPadInst>(FromPad)) { 1822 UnwindDest = CPI->getCatchSwitch()->getUnwindDest(); 1823 FromPad = nullptr; // stop searching 1824 } else if (auto *CPI = dyn_cast<CleanupPadInst>(FromPad)) { 1825 // getCleanupRetUnwindDest() can return nullptr when 1826 // 1. This cleanuppad's matching cleanupret uwninds to caller 1827 // 2. There is no matching cleanupret because it ends with 1828 // unreachable. 1829 // In case of 2, we need to traverse the parent pad chain. 1830 UnwindDest = getCleanupRetUnwindDest(CPI); 1831 FromPad = cast<Instruction>(CPI->getParentPad()); 1832 } 1833 } 1834 } 1835 if (!UnwindDest) 1836 UnwindDest = CatchDispatchLongjmpBB; 1837 changeToInvokeAndSplitBasicBlock(CI, UnwindDest); 1838 } 1839 1840 SmallVector<Instruction *, 16> ToErase; 1841 for (auto &BB : F) { 1842 if (auto *CSI = dyn_cast<CatchSwitchInst>(BB.getFirstNonPHI())) { 1843 if (CSI != CatchSwitchLongjmp && CSI->unwindsToCaller()) { 1844 IRB.SetInsertPoint(CSI); 1845 ToErase.push_back(CSI); 1846 auto *NewCSI = IRB.CreateCatchSwitch(CSI->getParentPad(), 1847 CatchDispatchLongjmpBB, 1); 1848 NewCSI->addHandler(*CSI->handler_begin()); 1849 NewCSI->takeName(CSI); 1850 CSI->replaceAllUsesWith(NewCSI); 1851 } 1852 } 1853 1854 if (auto *CRI = dyn_cast<CleanupReturnInst>(BB.getTerminator())) { 1855 if (CRI->unwindsToCaller()) { 1856 IRB.SetInsertPoint(CRI); 1857 ToErase.push_back(CRI); 1858 IRB.CreateCleanupRet(CRI->getCleanupPad(), CatchDispatchLongjmpBB); 1859 } 1860 } 1861 } 1862 1863 for (Instruction *I : ToErase) 1864 I->eraseFromParent(); 1865 } 1866