1 //=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file lowers exception-related instructions and setjmp/longjmp function
11 /// calls to use Emscripten's library functions. The pass uses JavaScript's try
12 /// and catch mechanism in case of Emscripten EH/SjLj and Wasm EH intrinsics in
13 /// case of Emscripten SjLJ.
14 ///
15 /// * Emscripten exception handling
16 /// This pass lowers invokes and landingpads into library functions in JS glue
17 /// code. Invokes are lowered into function wrappers called invoke wrappers that
18 /// exist in JS side, which wraps the original function call with JS try-catch.
19 /// If an exception occurred, cxa_throw() function in JS side sets some
20 /// variables (see below) so we can check whether an exception occurred from
21 /// wasm code and handle it appropriately.
22 ///
23 /// * Emscripten setjmp-longjmp handling
24 /// This pass lowers setjmp to a reasonably-performant approach for emscripten.
25 /// The idea is that each block with a setjmp is broken up into two parts: the
26 /// part containing setjmp and the part right after the setjmp. The latter part
27 /// is either reached from the setjmp, or later from a longjmp. To handle the
28 /// longjmp, all calls that might longjmp are also called using invoke wrappers
29 /// and thus JS / try-catch. JS longjmp() function also sets some variables so
30 /// we can check / whether a longjmp occurred from wasm code. Each block with a
31 /// function call that might longjmp is also split up after the longjmp call.
32 /// After the longjmp call, we check whether a longjmp occurred, and if it did,
33 /// which setjmp it corresponds to, and jump to the right post-setjmp block.
34 /// We assume setjmp-longjmp handling always run after EH handling, which means
35 /// we don't expect any exception-related instructions when SjLj runs.
36 /// FIXME Currently this scheme does not support indirect call of setjmp,
37 /// because of the limitation of the scheme itself. fastcomp does not support it
38 /// either.
39 ///
40 /// In detail, this pass does following things:
41 ///
42 /// 1) Assumes the existence of global variables: __THREW__, __threwValue
43 ///    __THREW__ and __threwValue are defined in compiler-rt in Emscripten.
44 ///    These variables are used for both exceptions and setjmp/longjmps.
45 ///    __THREW__ indicates whether an exception or a longjmp occurred or not. 0
46 ///    means nothing occurred, 1 means an exception occurred, and other numbers
47 ///    mean a longjmp occurred. In the case of longjmp, __THREW__ variable
48 ///    indicates the corresponding setjmp buffer the longjmp corresponds to.
49 ///    __threwValue is 0 for exceptions, and the argument to longjmp in case of
50 ///    longjmp.
51 ///
52 /// * Emscripten exception handling
53 ///
54 /// 2) We assume the existence of setThrew and setTempRet0/getTempRet0 functions
55 ///    at link time. setThrew exists in Emscripten's compiler-rt:
56 ///
57 ///    void setThrew(uintptr_t threw, int value) {
58 ///      if (__THREW__ == 0) {
59 ///        __THREW__ = threw;
60 ///        __threwValue = value;
61 ///      }
62 ///    }
63 //
64 ///    setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
65 ///    In exception handling, getTempRet0 indicates the type of an exception
66 ///    caught, and in setjmp/longjmp, it means the second argument to longjmp
67 ///    function.
68 ///
69 /// 3) Lower
70 ///      invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad
71 ///    into
72 ///      __THREW__ = 0;
73 ///      call @__invoke_SIG(func, arg1, arg2)
74 ///      %__THREW__.val = __THREW__;
75 ///      __THREW__ = 0;
76 ///      if (%__THREW__.val == 1)
77 ///        goto %lpad
78 ///      else
79 ///         goto %invoke.cont
80 ///    SIG is a mangled string generated based on the LLVM IR-level function
81 ///    signature. After LLVM IR types are lowered to the target wasm types,
82 ///    the names for these wrappers will change based on wasm types as well,
83 ///    as in invoke_vi (function takes an int and returns void). The bodies of
84 ///    these wrappers will be generated in JS glue code, and inside those
85 ///    wrappers we use JS try-catch to generate actual exception effects. It
86 ///    also calls the original callee function. An example wrapper in JS code
87 ///    would look like this:
88 ///      function invoke_vi(index,a1) {
89 ///        try {
90 ///          Module["dynCall_vi"](index,a1); // This calls original callee
91 ///        } catch(e) {
92 ///          if (typeof e !== 'number' && e !== 'longjmp') throw e;
93 ///          _setThrew(1, 0); // setThrew is called here
94 ///        }
95 ///      }
96 ///    If an exception is thrown, __THREW__ will be set to true in a wrapper,
97 ///    so we can jump to the right BB based on this value.
98 ///
99 /// 4) Lower
100 ///      %val = landingpad catch c1 catch c2 catch c3 ...
101 ///      ... use %val ...
102 ///    into
103 ///      %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...)
104 ///      %val = {%fmc, getTempRet0()}
105 ///      ... use %val ...
106 ///    Here N is a number calculated based on the number of clauses.
107 ///    setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
108 ///
109 /// 5) Lower
110 ///      resume {%a, %b}
111 ///    into
112 ///      call @__resumeException(%a)
113 ///    where __resumeException() is a function in JS glue code.
114 ///
115 /// 6) Lower
116 ///      call @llvm.eh.typeid.for(type) (intrinsic)
117 ///    into
118 ///      call @llvm_eh_typeid_for(type)
119 ///    llvm_eh_typeid_for function will be generated in JS glue code.
120 ///
121 /// * Emscripten setjmp / longjmp handling
122 ///
123 /// If there are calls to longjmp()
124 ///
125 /// 1) Lower
126 ///      longjmp(env, val)
127 ///    into
128 ///      emscripten_longjmp(env, val)
129 ///
130 /// If there are calls to setjmp()
131 ///
132 /// 2) In the function entry that calls setjmp, initialize setjmpTable and
133 ///    sejmpTableSize as follows:
134 ///      setjmpTableSize = 4;
135 ///      setjmpTable = (int *) malloc(40);
136 ///      setjmpTable[0] = 0;
137 ///    setjmpTable and setjmpTableSize are used to call saveSetjmp() function in
138 ///    Emscripten compiler-rt.
139 ///
140 /// 3) Lower
141 ///      setjmp(env)
142 ///    into
143 ///      setjmpTable = saveSetjmp(env, label, setjmpTable, setjmpTableSize);
144 ///      setjmpTableSize = getTempRet0();
145 ///    For each dynamic setjmp call, setjmpTable stores its ID (a number which
146 ///    is incrementally assigned from 0) and its label (a unique number that
147 ///    represents each callsite of setjmp). When we need more entries in
148 ///    setjmpTable, it is reallocated in saveSetjmp() in Emscripten's
149 ///    compiler-rt and it will return the new table address, and assign the new
150 ///    table size in setTempRet0(). saveSetjmp also stores the setjmp's ID into
151 ///    the buffer 'env'. A BB with setjmp is split into two after setjmp call in
152 ///    order to make the post-setjmp BB the possible destination of longjmp BB.
153 ///
154 /// 4) Lower every call that might longjmp into
155 ///      __THREW__ = 0;
156 ///      call @__invoke_SIG(func, arg1, arg2)
157 ///      %__THREW__.val = __THREW__;
158 ///      __THREW__ = 0;
159 ///      %__threwValue.val = __threwValue;
160 ///      if (%__THREW__.val != 0 & %__threwValue.val != 0) {
161 ///        %label = testSetjmp(mem[%__THREW__.val], setjmpTable,
162 ///                            setjmpTableSize);
163 ///        if (%label == 0)
164 ///          emscripten_longjmp(%__THREW__.val, %__threwValue.val);
165 ///        setTempRet0(%__threwValue.val);
166 ///      } else {
167 ///        %label = -1;
168 ///      }
169 ///      longjmp_result = getTempRet0();
170 ///      switch %label {
171 ///        label 1: goto post-setjmp BB 1
172 ///        label 2: goto post-setjmp BB 2
173 ///        ...
174 ///        default: goto splitted next BB
175 ///      }
176 ///    testSetjmp examines setjmpTable to see if there is a matching setjmp
177 ///    call. After calling an invoke wrapper, if a longjmp occurred, __THREW__
178 ///    will be the address of matching jmp_buf buffer and __threwValue be the
179 ///    second argument to longjmp. mem[%__THREW__.val] is a setjmp ID that is
180 ///    stored in saveSetjmp. testSetjmp returns a setjmp label, a unique ID to
181 ///    each setjmp callsite. Label 0 means this longjmp buffer does not
182 ///    correspond to one of the setjmp callsites in this function, so in this
183 ///    case we just chain the longjmp to the caller. Label -1 means no longjmp
184 ///    occurred. Otherwise we jump to the right post-setjmp BB based on the
185 ///    label.
186 ///
187 /// * Wasm setjmp / longjmp handling
188 /// This mode still uses some Emscripten library functions but not JavaScript's
189 /// try-catch mechanism. It instead uses Wasm exception handling intrinsics,
190 /// which will be lowered to exception handling instructions.
191 ///
192 /// If there are calls to longjmp()
193 ///
194 /// 1) Lower
195 ///      longjmp(env, val)
196 ///    into
197 ///      __wasm_longjmp(env, val)
198 ///
199 /// If there are calls to setjmp()
200 ///
201 /// 2) and 3): The same as 2) and 3) in Emscripten SjLj.
202 /// (setjmpTable/setjmpTableSize initialization + setjmp callsite
203 /// transformation)
204 ///
205 /// 4) Create a catchpad with a wasm.catch() intrinsic, which returns the value
206 /// thrown by __wasm_longjmp function. In Emscripten library, we have this
207 /// struct:
208 ///
209 /// struct __WasmLongjmpArgs {
210 ///   void *env;
211 ///   int val;
212 /// };
213 /// struct __WasmLongjmpArgs __wasm_longjmp_args;
214 ///
215 /// The thrown value here is a pointer to __wasm_longjmp_args struct object. We
216 /// use this struct to transfer two values by throwing a single value. Wasm
217 /// throw and catch instructions are capable of throwing and catching multiple
218 /// values, but it also requires multivalue support that is currently not very
219 /// reliable.
220 /// TODO Switch to throwing and catching two values without using the struct
221 ///
222 /// All longjmpable function calls will be converted to an invoke that will
223 /// unwind to this catchpad in case a longjmp occurs. Within the catchpad, we
224 /// test the thrown values using testSetjmp function as we do for Emscripten
225 /// SjLj. The main difference is, in Emscripten SjLj, we need to transform every
226 /// longjmpable callsite into a sequence of code including testSetjmp() call; in
227 /// Wasm SjLj we do the testing in only one place, in this catchpad.
228 ///
229 /// After testing calling testSetjmp(), if the longjmp does not correspond to
230 /// one of the setjmps within the current function, it rethrows the longjmp
231 /// by calling __wasm_longjmp(). If it corresponds to one of setjmps in the
232 /// function, we jump to the beginning of the function, which contains a switch
233 /// to each post-setjmp BB. Again, in Emscripten SjLj, this switch is added for
234 /// every longjmpable callsite; in Wasm SjLj we do this only once at the top of
235 /// the function. (after setjmpTable/setjmpTableSize initialization)
236 ///
237 /// The below is the pseudocode for what we have described
238 ///
239 /// entry:
240 ///   Initialize setjmpTable and setjmpTableSize
241 ///
242 /// setjmp.dispatch:
243 ///    switch %label {
244 ///      label 1: goto post-setjmp BB 1
245 ///      label 2: goto post-setjmp BB 2
246 ///      ...
247 ///      default: goto splitted next BB
248 ///    }
249 /// ...
250 ///
251 /// bb:
252 ///   invoke void @foo() ;; foo is a longjmpable function
253 ///     to label %next unwind label %catch.dispatch.longjmp
254 /// ...
255 ///
256 /// catch.dispatch.longjmp:
257 ///   %0 = catchswitch within none [label %catch.longjmp] unwind to caller
258 ///
259 /// catch.longjmp:
260 ///   %longjmp.args = wasm.catch() ;; struct __WasmLongjmpArgs
261 ///   %env = load 'env' field from __WasmLongjmpArgs
262 ///   %val = load 'val' field from __WasmLongjmpArgs
263 ///   %label = testSetjmp(mem[%env], setjmpTable, setjmpTableSize);
264 ///   if (%label == 0)
265 ///     __wasm_longjmp(%env, %val)
266 ///   catchret to %setjmp.dispatch
267 ///
268 ///===----------------------------------------------------------------------===//
269 
270 #include "Utils/WebAssemblyUtilities.h"
271 #include "WebAssembly.h"
272 #include "WebAssemblyTargetMachine.h"
273 #include "llvm/ADT/StringExtras.h"
274 #include "llvm/CodeGen/TargetPassConfig.h"
275 #include "llvm/CodeGen/WasmEHFuncInfo.h"
276 #include "llvm/IR/DebugInfoMetadata.h"
277 #include "llvm/IR/Dominators.h"
278 #include "llvm/IR/IRBuilder.h"
279 #include "llvm/IR/IntrinsicsWebAssembly.h"
280 #include "llvm/Support/CommandLine.h"
281 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
282 #include "llvm/Transforms/Utils/Local.h"
283 #include "llvm/Transforms/Utils/SSAUpdater.h"
284 #include "llvm/Transforms/Utils/SSAUpdaterBulk.h"
285 
286 using namespace llvm;
287 
288 #define DEBUG_TYPE "wasm-lower-em-ehsjlj"
289 
290 static cl::list<std::string>
291     EHAllowlist("emscripten-cxx-exceptions-allowed",
292                 cl::desc("The list of function names in which Emscripten-style "
293                          "exception handling is enabled (see emscripten "
294                          "EMSCRIPTEN_CATCHING_ALLOWED options)"),
295                 cl::CommaSeparated);
296 
297 namespace {
298 class WebAssemblyLowerEmscriptenEHSjLj final : public ModulePass {
299   bool EnableEmEH;     // Enable Emscripten exception handling
300   bool EnableEmSjLj;   // Enable Emscripten setjmp/longjmp handling
301   bool EnableWasmSjLj; // Enable Wasm setjmp/longjmp handling
302   bool DoSjLj;         // Whether we actually perform setjmp/longjmp handling
303 
304   GlobalVariable *ThrewGV = nullptr;      // __THREW__ (Emscripten)
305   GlobalVariable *ThrewValueGV = nullptr; // __threwValue (Emscripten)
306   Function *GetTempRet0F = nullptr;       // getTempRet0() (Emscripten)
307   Function *SetTempRet0F = nullptr;       // setTempRet0() (Emscripten)
308   Function *ResumeF = nullptr;            // __resumeException() (Emscripten)
309   Function *EHTypeIDF = nullptr;          // llvm.eh.typeid.for() (intrinsic)
310   Function *EmLongjmpF = nullptr;         // emscripten_longjmp() (Emscripten)
311   Function *SaveSetjmpF = nullptr;        // saveSetjmp() (Emscripten)
312   Function *TestSetjmpF = nullptr;        // testSetjmp() (Emscripten)
313   Function *WasmLongjmpF = nullptr;       // __wasm_longjmp() (Emscripten)
314   Function *CatchF = nullptr;             // wasm.catch() (intrinsic)
315 
316   // type of 'struct __WasmLongjmpArgs' defined in emscripten
317   Type *LongjmpArgsTy = nullptr;
318 
319   // __cxa_find_matching_catch_N functions.
320   // Indexed by the number of clauses in an original landingpad instruction.
321   DenseMap<int, Function *> FindMatchingCatches;
322   // Map of <function signature string, invoke_ wrappers>
323   StringMap<Function *> InvokeWrappers;
324   // Set of allowed function names for exception handling
325   std::set<std::string> EHAllowlistSet;
326   // Functions that contains calls to setjmp
327   SmallPtrSet<Function *, 8> SetjmpUsers;
328 
329   StringRef getPassName() const override {
330     return "WebAssembly Lower Emscripten Exceptions";
331   }
332 
333   using InstVector = SmallVectorImpl<Instruction *>;
334   bool runEHOnFunction(Function &F);
335   bool runSjLjOnFunction(Function &F);
336   void handleLongjmpableCallsForEmscriptenSjLj(
337       Function &F, InstVector &SetjmpTableInsts,
338       InstVector &SetjmpTableSizeInsts,
339       SmallVectorImpl<PHINode *> &SetjmpRetPHIs);
340   void
341   handleLongjmpableCallsForWasmSjLj(Function &F, InstVector &SetjmpTableInsts,
342                                     InstVector &SetjmpTableSizeInsts,
343                                     SmallVectorImpl<PHINode *> &SetjmpRetPHIs);
344   Function *getFindMatchingCatch(Module &M, unsigned NumClauses);
345 
346   Value *wrapInvoke(CallBase *CI);
347   void wrapTestSetjmp(BasicBlock *BB, DebugLoc DL, Value *Threw,
348                       Value *SetjmpTable, Value *SetjmpTableSize, Value *&Label,
349                       Value *&LongjmpResult, BasicBlock *&CallEmLongjmpBB,
350                       PHINode *&CallEmLongjmpBBThrewPHI,
351                       PHINode *&CallEmLongjmpBBThrewValuePHI,
352                       BasicBlock *&EndBB);
353   Function *getInvokeWrapper(CallBase *CI);
354 
355   bool areAllExceptionsAllowed() const { return EHAllowlistSet.empty(); }
356   bool supportsException(const Function *F) const {
357     return EnableEmEH && (areAllExceptionsAllowed() ||
358                           EHAllowlistSet.count(std::string(F->getName())));
359   }
360   void replaceLongjmpWith(Function *LongjmpF, Function *NewF);
361 
362   void rebuildSSA(Function &F);
363 
364 public:
365   static char ID;
366 
367   WebAssemblyLowerEmscriptenEHSjLj()
368       : ModulePass(ID), EnableEmEH(WebAssembly::WasmEnableEmEH),
369         EnableEmSjLj(WebAssembly::WasmEnableEmSjLj),
370         EnableWasmSjLj(WebAssembly::WasmEnableSjLj) {
371     assert(!(EnableEmSjLj && EnableWasmSjLj) &&
372            "Two SjLj modes cannot be turned on at the same time");
373     assert(!(EnableEmEH && EnableWasmSjLj) &&
374            "Wasm SjLj should be only used with Wasm EH");
375     EHAllowlistSet.insert(EHAllowlist.begin(), EHAllowlist.end());
376   }
377   bool runOnModule(Module &M) override;
378 
379   void getAnalysisUsage(AnalysisUsage &AU) const override {
380     AU.addRequired<DominatorTreeWrapperPass>();
381   }
382 };
383 } // End anonymous namespace
384 
385 char WebAssemblyLowerEmscriptenEHSjLj::ID = 0;
386 INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj, DEBUG_TYPE,
387                 "WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp",
388                 false, false)
389 
390 ModulePass *llvm::createWebAssemblyLowerEmscriptenEHSjLj() {
391   return new WebAssemblyLowerEmscriptenEHSjLj();
392 }
393 
394 static bool canThrow(const Value *V) {
395   if (const auto *F = dyn_cast<const Function>(V)) {
396     // Intrinsics cannot throw
397     if (F->isIntrinsic())
398       return false;
399     StringRef Name = F->getName();
400     // leave setjmp and longjmp (mostly) alone, we process them properly later
401     if (Name == "setjmp" || Name == "longjmp" || Name == "emscripten_longjmp")
402       return false;
403     return !F->doesNotThrow();
404   }
405   // not a function, so an indirect call - can throw, we can't tell
406   return true;
407 }
408 
409 // Get a global variable with the given name. If it doesn't exist declare it,
410 // which will generate an import and assume that it will exist at link time.
411 static GlobalVariable *getGlobalVariable(Module &M, Type *Ty,
412                                          WebAssemblyTargetMachine &TM,
413                                          const char *Name) {
414   auto *GV = dyn_cast<GlobalVariable>(M.getOrInsertGlobal(Name, Ty));
415   if (!GV)
416     report_fatal_error(Twine("unable to create global: ") + Name);
417 
418   // If the target supports TLS, make this variable thread-local. We can't just
419   // unconditionally make it thread-local and depend on
420   // CoalesceFeaturesAndStripAtomics to downgrade it, because stripping TLS has
421   // the side effect of disallowing the object from being linked into a
422   // shared-memory module, which we don't want to be responsible for.
423   auto *Subtarget = TM.getSubtargetImpl();
424   auto TLS = Subtarget->hasAtomics() && Subtarget->hasBulkMemory()
425                  ? GlobalValue::LocalExecTLSModel
426                  : GlobalValue::NotThreadLocal;
427   GV->setThreadLocalMode(TLS);
428   return GV;
429 }
430 
431 // Simple function name mangler.
432 // This function simply takes LLVM's string representation of parameter types
433 // and concatenate them with '_'. There are non-alphanumeric characters but llc
434 // is ok with it, and we need to postprocess these names after the lowering
435 // phase anyway.
436 static std::string getSignature(FunctionType *FTy) {
437   std::string Sig;
438   raw_string_ostream OS(Sig);
439   OS << *FTy->getReturnType();
440   for (Type *ParamTy : FTy->params())
441     OS << "_" << *ParamTy;
442   if (FTy->isVarArg())
443     OS << "_...";
444   Sig = OS.str();
445   erase_if(Sig, isSpace);
446   // When s2wasm parses .s file, a comma means the end of an argument. So a
447   // mangled function name can contain any character but a comma.
448   std::replace(Sig.begin(), Sig.end(), ',', '.');
449   return Sig;
450 }
451 
452 static Function *getEmscriptenFunction(FunctionType *Ty, const Twine &Name,
453                                        Module *M) {
454   Function* F = Function::Create(Ty, GlobalValue::ExternalLinkage, Name, M);
455   // Tell the linker that this function is expected to be imported from the
456   // 'env' module.
457   if (!F->hasFnAttribute("wasm-import-module")) {
458     llvm::AttrBuilder B(M->getContext());
459     B.addAttribute("wasm-import-module", "env");
460     F->addFnAttrs(B);
461   }
462   if (!F->hasFnAttribute("wasm-import-name")) {
463     llvm::AttrBuilder B(M->getContext());
464     B.addAttribute("wasm-import-name", F->getName());
465     F->addFnAttrs(B);
466   }
467   return F;
468 }
469 
470 // Returns an integer type for the target architecture's address space.
471 // i32 for wasm32 and i64 for wasm64.
472 static Type *getAddrIntType(Module *M) {
473   IRBuilder<> IRB(M->getContext());
474   return IRB.getIntNTy(M->getDataLayout().getPointerSizeInBits());
475 }
476 
477 // Returns an integer pointer type for the target architecture's address space.
478 // i32* for wasm32 and i64* for wasm64.
479 static Type *getAddrPtrType(Module *M) {
480   return Type::getIntNPtrTy(M->getContext(),
481                             M->getDataLayout().getPointerSizeInBits());
482 }
483 
484 // Returns an integer whose type is the integer type for the target's address
485 // space. Returns (i32 C) for wasm32 and (i64 C) for wasm64, when C is the
486 // integer.
487 static Value *getAddrSizeInt(Module *M, uint64_t C) {
488   IRBuilder<> IRB(M->getContext());
489   return IRB.getIntN(M->getDataLayout().getPointerSizeInBits(), C);
490 }
491 
492 // Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2.
493 // This is because a landingpad instruction contains two more arguments, a
494 // personality function and a cleanup bit, and __cxa_find_matching_catch_N
495 // functions are named after the number of arguments in the original landingpad
496 // instruction.
497 Function *
498 WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module &M,
499                                                        unsigned NumClauses) {
500   if (FindMatchingCatches.count(NumClauses))
501     return FindMatchingCatches[NumClauses];
502   PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext());
503   SmallVector<Type *, 16> Args(NumClauses, Int8PtrTy);
504   FunctionType *FTy = FunctionType::get(Int8PtrTy, Args, false);
505   Function *F = getEmscriptenFunction(
506       FTy, "__cxa_find_matching_catch_" + Twine(NumClauses + 2), &M);
507   FindMatchingCatches[NumClauses] = F;
508   return F;
509 }
510 
511 // Generate invoke wrapper seqence with preamble and postamble
512 // Preamble:
513 // __THREW__ = 0;
514 // Postamble:
515 // %__THREW__.val = __THREW__; __THREW__ = 0;
516 // Returns %__THREW__.val, which indicates whether an exception is thrown (or
517 // whether longjmp occurred), for future use.
518 Value *WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallBase *CI) {
519   Module *M = CI->getModule();
520   LLVMContext &C = M->getContext();
521 
522   IRBuilder<> IRB(C);
523   IRB.SetInsertPoint(CI);
524 
525   // Pre-invoke
526   // __THREW__ = 0;
527   IRB.CreateStore(getAddrSizeInt(M, 0), ThrewGV);
528 
529   // Invoke function wrapper in JavaScript
530   SmallVector<Value *, 16> Args;
531   // Put the pointer to the callee as first argument, so it can be called
532   // within the invoke wrapper later
533   Args.push_back(CI->getCalledOperand());
534   Args.append(CI->arg_begin(), CI->arg_end());
535   CallInst *NewCall = IRB.CreateCall(getInvokeWrapper(CI), Args);
536   NewCall->takeName(CI);
537   NewCall->setCallingConv(CallingConv::WASM_EmscriptenInvoke);
538   NewCall->setDebugLoc(CI->getDebugLoc());
539 
540   // Because we added the pointer to the callee as first argument, all
541   // argument attribute indices have to be incremented by one.
542   SmallVector<AttributeSet, 8> ArgAttributes;
543   const AttributeList &InvokeAL = CI->getAttributes();
544 
545   // No attributes for the callee pointer.
546   ArgAttributes.push_back(AttributeSet());
547   // Copy the argument attributes from the original
548   for (unsigned I = 0, E = CI->arg_size(); I < E; ++I)
549     ArgAttributes.push_back(InvokeAL.getParamAttrs(I));
550 
551   AttrBuilder FnAttrs(CI->getContext(), InvokeAL.getFnAttrs());
552   if (FnAttrs.contains(Attribute::AllocSize)) {
553     // The allocsize attribute (if any) referes to parameters by index and needs
554     // to be adjusted.
555     unsigned SizeArg;
556     Optional<unsigned> NEltArg;
557     std::tie(SizeArg, NEltArg) = FnAttrs.getAllocSizeArgs();
558     SizeArg += 1;
559     if (NEltArg.hasValue())
560       NEltArg = NEltArg.getValue() + 1;
561     FnAttrs.addAllocSizeAttr(SizeArg, NEltArg);
562   }
563 
564   // Reconstruct the AttributesList based on the vector we constructed.
565   AttributeList NewCallAL = AttributeList::get(
566       C, AttributeSet::get(C, FnAttrs), InvokeAL.getRetAttrs(), ArgAttributes);
567   NewCall->setAttributes(NewCallAL);
568 
569   CI->replaceAllUsesWith(NewCall);
570 
571   // Post-invoke
572   // %__THREW__.val = __THREW__; __THREW__ = 0;
573   Value *Threw =
574       IRB.CreateLoad(getAddrIntType(M), ThrewGV, ThrewGV->getName() + ".val");
575   IRB.CreateStore(getAddrSizeInt(M, 0), ThrewGV);
576   return Threw;
577 }
578 
579 // Get matching invoke wrapper based on callee signature
580 Function *WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallBase *CI) {
581   Module *M = CI->getModule();
582   SmallVector<Type *, 16> ArgTys;
583   FunctionType *CalleeFTy = CI->getFunctionType();
584 
585   std::string Sig = getSignature(CalleeFTy);
586   if (InvokeWrappers.find(Sig) != InvokeWrappers.end())
587     return InvokeWrappers[Sig];
588 
589   // Put the pointer to the callee as first argument
590   ArgTys.push_back(PointerType::getUnqual(CalleeFTy));
591   // Add argument types
592   ArgTys.append(CalleeFTy->param_begin(), CalleeFTy->param_end());
593 
594   FunctionType *FTy = FunctionType::get(CalleeFTy->getReturnType(), ArgTys,
595                                         CalleeFTy->isVarArg());
596   Function *F = getEmscriptenFunction(FTy, "__invoke_" + Sig, M);
597   InvokeWrappers[Sig] = F;
598   return F;
599 }
600 
601 static bool canLongjmp(const Value *Callee) {
602   if (auto *CalleeF = dyn_cast<Function>(Callee))
603     if (CalleeF->isIntrinsic())
604       return false;
605 
606   // Attempting to transform inline assembly will result in something like:
607   //     call void @__invoke_void(void ()* asm ...)
608   // which is invalid because inline assembly blocks do not have addresses
609   // and can't be passed by pointer. The result is a crash with illegal IR.
610   if (isa<InlineAsm>(Callee))
611     return false;
612   StringRef CalleeName = Callee->getName();
613 
614   // TODO Include more functions or consider checking with mangled prefixes
615 
616   // The reason we include malloc/free here is to exclude the malloc/free
617   // calls generated in setjmp prep / cleanup routines.
618   if (CalleeName == "setjmp" || CalleeName == "malloc" || CalleeName == "free")
619     return false;
620 
621   // There are functions in Emscripten's JS glue code or compiler-rt
622   if (CalleeName == "__resumeException" || CalleeName == "llvm_eh_typeid_for" ||
623       CalleeName == "saveSetjmp" || CalleeName == "testSetjmp" ||
624       CalleeName == "getTempRet0" || CalleeName == "setTempRet0")
625     return false;
626 
627   // __cxa_find_matching_catch_N functions cannot longjmp
628   if (Callee->getName().startswith("__cxa_find_matching_catch_"))
629     return false;
630 
631   // Exception-catching related functions
632   //
633   // We intentionally treat __cxa_end_catch longjmpable in Wasm SjLj even though
634   // it surely cannot longjmp, in order to maintain the unwind relationship from
635   // all existing catchpads (and calls within them) to catch.dispatch.longjmp.
636   //
637   // In Wasm EH + Wasm SjLj, we
638   // 1. Make all catchswitch and cleanuppad that unwind to caller unwind to
639   //    catch.dispatch.longjmp instead
640   // 2. Convert all longjmpable calls to invokes that unwind to
641   //    catch.dispatch.longjmp
642   // But catchswitch BBs are removed in isel, so if an EH catchswitch (generated
643   // from an exception)'s catchpad does not contain any calls that are converted
644   // into invokes unwinding to catch.dispatch.longjmp, this unwind relationship
645   // (EH catchswitch BB -> catch.dispatch.longjmp BB) is lost and
646   // catch.dispatch.longjmp BB can be placed before the EH catchswitch BB in
647   // CFGSort.
648   // int ret = setjmp(buf);
649   // try {
650   //   foo(); // longjmps
651   // } catch (...) {
652   // }
653   // Then in this code, if 'foo' longjmps, it first unwinds to 'catch (...)'
654   // catchswitch, and is not caught by that catchswitch because it is a longjmp,
655   // then it should next unwind to catch.dispatch.longjmp BB. But if this 'catch
656   // (...)' catchswitch -> catch.dispatch.longjmp unwind relationship is lost,
657   // it will not unwind to catch.dispatch.longjmp, producing an incorrect
658   // result.
659   //
660   // Every catchpad generated by Wasm C++ contains __cxa_end_catch, so we
661   // intentionally treat it as longjmpable to work around this problem. This is
662   // a hacky fix but an easy one.
663   //
664   // The comment block in findWasmUnwindDestinations() in
665   // SelectionDAGBuilder.cpp is addressing a similar problem.
666   if (CalleeName == "__cxa_end_catch")
667     return WebAssembly::WasmEnableSjLj;
668   if (CalleeName == "__cxa_begin_catch" ||
669       CalleeName == "__cxa_allocate_exception" || CalleeName == "__cxa_throw" ||
670       CalleeName == "__clang_call_terminate")
671     return false;
672 
673   // std::terminate, which is generated when another exception occurs while
674   // handling an exception, cannot longjmp.
675   if (CalleeName == "_ZSt9terminatev")
676     return false;
677 
678   // Otherwise we don't know
679   return true;
680 }
681 
682 static bool isEmAsmCall(const Value *Callee) {
683   StringRef CalleeName = Callee->getName();
684   // This is an exhaustive list from Emscripten's <emscripten/em_asm.h>.
685   return CalleeName == "emscripten_asm_const_int" ||
686          CalleeName == "emscripten_asm_const_double" ||
687          CalleeName == "emscripten_asm_const_int_sync_on_main_thread" ||
688          CalleeName == "emscripten_asm_const_double_sync_on_main_thread" ||
689          CalleeName == "emscripten_asm_const_async_on_main_thread";
690 }
691 
692 // Generate testSetjmp function call seqence with preamble and postamble.
693 // The code this generates is equivalent to the following JavaScript code:
694 // %__threwValue.val = __threwValue;
695 // if (%__THREW__.val != 0 & %__threwValue.val != 0) {
696 //   %label = testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize);
697 //   if (%label == 0)
698 //     emscripten_longjmp(%__THREW__.val, %__threwValue.val);
699 //   setTempRet0(%__threwValue.val);
700 // } else {
701 //   %label = -1;
702 // }
703 // %longjmp_result = getTempRet0();
704 //
705 // As output parameters. returns %label, %longjmp_result, and the BB the last
706 // instruction (%longjmp_result = ...) is in.
707 void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp(
708     BasicBlock *BB, DebugLoc DL, Value *Threw, Value *SetjmpTable,
709     Value *SetjmpTableSize, Value *&Label, Value *&LongjmpResult,
710     BasicBlock *&CallEmLongjmpBB, PHINode *&CallEmLongjmpBBThrewPHI,
711     PHINode *&CallEmLongjmpBBThrewValuePHI, BasicBlock *&EndBB) {
712   Function *F = BB->getParent();
713   Module *M = F->getParent();
714   LLVMContext &C = M->getContext();
715   IRBuilder<> IRB(C);
716   IRB.SetCurrentDebugLocation(DL);
717 
718   // if (%__THREW__.val != 0 & %__threwValue.val != 0)
719   IRB.SetInsertPoint(BB);
720   BasicBlock *ThenBB1 = BasicBlock::Create(C, "if.then1", F);
721   BasicBlock *ElseBB1 = BasicBlock::Create(C, "if.else1", F);
722   BasicBlock *EndBB1 = BasicBlock::Create(C, "if.end", F);
723   Value *ThrewCmp = IRB.CreateICmpNE(Threw, getAddrSizeInt(M, 0));
724   Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV,
725                                      ThrewValueGV->getName() + ".val");
726   Value *ThrewValueCmp = IRB.CreateICmpNE(ThrewValue, IRB.getInt32(0));
727   Value *Cmp1 = IRB.CreateAnd(ThrewCmp, ThrewValueCmp, "cmp1");
728   IRB.CreateCondBr(Cmp1, ThenBB1, ElseBB1);
729 
730   // Generate call.em.longjmp BB once and share it within the function
731   if (!CallEmLongjmpBB) {
732     // emscripten_longjmp(%__THREW__.val, %__threwValue.val);
733     CallEmLongjmpBB = BasicBlock::Create(C, "call.em.longjmp", F);
734     IRB.SetInsertPoint(CallEmLongjmpBB);
735     CallEmLongjmpBBThrewPHI = IRB.CreatePHI(getAddrIntType(M), 4, "threw.phi");
736     CallEmLongjmpBBThrewValuePHI =
737         IRB.CreatePHI(IRB.getInt32Ty(), 4, "threwvalue.phi");
738     CallEmLongjmpBBThrewPHI->addIncoming(Threw, ThenBB1);
739     CallEmLongjmpBBThrewValuePHI->addIncoming(ThrewValue, ThenBB1);
740     IRB.CreateCall(EmLongjmpF,
741                    {CallEmLongjmpBBThrewPHI, CallEmLongjmpBBThrewValuePHI});
742     IRB.CreateUnreachable();
743   } else {
744     CallEmLongjmpBBThrewPHI->addIncoming(Threw, ThenBB1);
745     CallEmLongjmpBBThrewValuePHI->addIncoming(ThrewValue, ThenBB1);
746   }
747 
748   // %label = testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize);
749   // if (%label == 0)
750   IRB.SetInsertPoint(ThenBB1);
751   BasicBlock *EndBB2 = BasicBlock::Create(C, "if.end2", F);
752   Value *ThrewPtr =
753       IRB.CreateIntToPtr(Threw, getAddrPtrType(M), Threw->getName() + ".p");
754   Value *LoadedThrew = IRB.CreateLoad(getAddrIntType(M), ThrewPtr,
755                                       ThrewPtr->getName() + ".loaded");
756   Value *ThenLabel = IRB.CreateCall(
757       TestSetjmpF, {LoadedThrew, SetjmpTable, SetjmpTableSize}, "label");
758   Value *Cmp2 = IRB.CreateICmpEQ(ThenLabel, IRB.getInt32(0));
759   IRB.CreateCondBr(Cmp2, CallEmLongjmpBB, EndBB2);
760 
761   // setTempRet0(%__threwValue.val);
762   IRB.SetInsertPoint(EndBB2);
763   IRB.CreateCall(SetTempRet0F, ThrewValue);
764   IRB.CreateBr(EndBB1);
765 
766   IRB.SetInsertPoint(ElseBB1);
767   IRB.CreateBr(EndBB1);
768 
769   // longjmp_result = getTempRet0();
770   IRB.SetInsertPoint(EndBB1);
771   PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label");
772   LabelPHI->addIncoming(ThenLabel, EndBB2);
773 
774   LabelPHI->addIncoming(IRB.getInt32(-1), ElseBB1);
775 
776   // Output parameter assignment
777   Label = LabelPHI;
778   EndBB = EndBB1;
779   LongjmpResult = IRB.CreateCall(GetTempRet0F, None, "longjmp_result");
780 }
781 
782 void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function &F) {
783   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
784   DT.recalculate(F); // CFG has been changed
785 
786   SSAUpdaterBulk SSA;
787   for (BasicBlock &BB : F) {
788     for (Instruction &I : BB) {
789       unsigned VarID = SSA.AddVariable(I.getName(), I.getType());
790       // If a value is defined by an invoke instruction, it is only available in
791       // its normal destination and not in its unwind destination.
792       if (auto *II = dyn_cast<InvokeInst>(&I))
793         SSA.AddAvailableValue(VarID, II->getNormalDest(), II);
794       else
795         SSA.AddAvailableValue(VarID, &BB, &I);
796       for (auto &U : I.uses()) {
797         auto *User = cast<Instruction>(U.getUser());
798         if (auto *UserPN = dyn_cast<PHINode>(User))
799           if (UserPN->getIncomingBlock(U) == &BB)
800             continue;
801         if (DT.dominates(&I, User))
802           continue;
803         SSA.AddUse(VarID, &U);
804       }
805     }
806   }
807   SSA.RewriteAllUses(&DT);
808 }
809 
810 // Replace uses of longjmp with a new longjmp function in Emscripten library.
811 // In Emscripten SjLj, the new function is
812 //   void emscripten_longjmp(uintptr_t, i32)
813 // In Wasm SjLj, the new function is
814 //   void __wasm_longjmp(i8*, i32)
815 // Because the original libc longjmp function takes (jmp_buf*, i32), we need a
816 // ptrtoint/bitcast instruction here to make the type match. jmp_buf* will
817 // eventually be lowered to i32/i64 in the wasm backend.
818 void WebAssemblyLowerEmscriptenEHSjLj::replaceLongjmpWith(Function *LongjmpF,
819                                                           Function *NewF) {
820   assert(NewF == EmLongjmpF || NewF == WasmLongjmpF);
821   Module *M = LongjmpF->getParent();
822   SmallVector<CallInst *, 8> ToErase;
823   LLVMContext &C = LongjmpF->getParent()->getContext();
824   IRBuilder<> IRB(C);
825 
826   // For calls to longjmp, replace it with emscripten_longjmp/__wasm_longjmp and
827   // cast its first argument (jmp_buf*) appropriately
828   for (User *U : LongjmpF->users()) {
829     auto *CI = dyn_cast<CallInst>(U);
830     if (CI && CI->getCalledFunction() == LongjmpF) {
831       IRB.SetInsertPoint(CI);
832       Value *Env = nullptr;
833       if (NewF == EmLongjmpF)
834         Env =
835             IRB.CreatePtrToInt(CI->getArgOperand(0), getAddrIntType(M), "env");
836       else // WasmLongjmpF
837         Env =
838             IRB.CreateBitCast(CI->getArgOperand(0), IRB.getInt8PtrTy(), "env");
839       IRB.CreateCall(NewF, {Env, CI->getArgOperand(1)});
840       ToErase.push_back(CI);
841     }
842   }
843   for (auto *I : ToErase)
844     I->eraseFromParent();
845 
846   // If we have any remaining uses of longjmp's function pointer, replace it
847   // with (void(*)(jmp_buf*, int))emscripten_longjmp / __wasm_longjmp.
848   if (!LongjmpF->uses().empty()) {
849     Value *NewLongjmp =
850         IRB.CreateBitCast(NewF, LongjmpF->getType(), "longjmp.cast");
851     LongjmpF->replaceAllUsesWith(NewLongjmp);
852   }
853 }
854 
855 static bool containsLongjmpableCalls(const Function *F) {
856   for (const auto &BB : *F)
857     for (const auto &I : BB)
858       if (const auto *CB = dyn_cast<CallBase>(&I))
859         if (canLongjmp(CB->getCalledOperand()))
860           return true;
861   return false;
862 }
863 
864 // When a function contains a setjmp call but not other calls that can longjmp,
865 // we don't do setjmp transformation for that setjmp. But we need to convert the
866 // setjmp calls into "i32 0" so they don't cause link time errors. setjmp always
867 // returns 0 when called directly.
868 static void nullifySetjmp(Function *F) {
869   Module &M = *F->getParent();
870   IRBuilder<> IRB(M.getContext());
871   Function *SetjmpF = M.getFunction("setjmp");
872   SmallVector<Instruction *, 1> ToErase;
873 
874   for (User *U : SetjmpF->users()) {
875     auto *CI = dyn_cast<CallInst>(U);
876     // FIXME 'invoke' to setjmp can happen when we use Wasm EH + Wasm SjLj, but
877     // we don't support two being used together yet.
878     if (!CI)
879       report_fatal_error("Wasm EH + Wasm SjLj is not fully supported yet");
880     BasicBlock *BB = CI->getParent();
881     if (BB->getParent() != F) // in other function
882       continue;
883     ToErase.push_back(CI);
884     CI->replaceAllUsesWith(IRB.getInt32(0));
885   }
886   for (auto *I : ToErase)
887     I->eraseFromParent();
888 }
889 
890 bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module &M) {
891   LLVM_DEBUG(dbgs() << "********** Lower Emscripten EH & SjLj **********\n");
892 
893   LLVMContext &C = M.getContext();
894   IRBuilder<> IRB(C);
895 
896   Function *SetjmpF = M.getFunction("setjmp");
897   Function *LongjmpF = M.getFunction("longjmp");
898 
899   // In some platforms _setjmp and _longjmp are used instead. Change these to
900   // use setjmp/longjmp instead, because we later detect these functions by
901   // their names.
902   Function *SetjmpF2 = M.getFunction("_setjmp");
903   Function *LongjmpF2 = M.getFunction("_longjmp");
904   if (SetjmpF2) {
905     if (SetjmpF) {
906       if (SetjmpF->getFunctionType() != SetjmpF2->getFunctionType())
907         report_fatal_error("setjmp and _setjmp have different function types");
908     } else {
909       SetjmpF = Function::Create(SetjmpF2->getFunctionType(),
910                                  GlobalValue::ExternalLinkage, "setjmp", M);
911     }
912     SetjmpF2->replaceAllUsesWith(SetjmpF);
913   }
914   if (LongjmpF2) {
915     if (LongjmpF) {
916       if (LongjmpF->getFunctionType() != LongjmpF2->getFunctionType())
917         report_fatal_error(
918             "longjmp and _longjmp have different function types");
919     } else {
920       LongjmpF = Function::Create(LongjmpF2->getFunctionType(),
921                                   GlobalValue::ExternalLinkage, "setjmp", M);
922     }
923     LongjmpF2->replaceAllUsesWith(LongjmpF);
924   }
925 
926   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
927   assert(TPC && "Expected a TargetPassConfig");
928   auto &TM = TPC->getTM<WebAssemblyTargetMachine>();
929 
930   // Declare (or get) global variables __THREW__, __threwValue, and
931   // getTempRet0/setTempRet0 function which are used in common for both
932   // exception handling and setjmp/longjmp handling
933   ThrewGV = getGlobalVariable(M, getAddrIntType(&M), TM, "__THREW__");
934   ThrewValueGV = getGlobalVariable(M, IRB.getInt32Ty(), TM, "__threwValue");
935   GetTempRet0F = getEmscriptenFunction(
936       FunctionType::get(IRB.getInt32Ty(), false), "getTempRet0", &M);
937   SetTempRet0F = getEmscriptenFunction(
938       FunctionType::get(IRB.getVoidTy(), IRB.getInt32Ty(), false),
939       "setTempRet0", &M);
940   GetTempRet0F->setDoesNotThrow();
941   SetTempRet0F->setDoesNotThrow();
942 
943   bool Changed = false;
944 
945   // Function registration for exception handling
946   if (EnableEmEH) {
947     // Register __resumeException function
948     FunctionType *ResumeFTy =
949         FunctionType::get(IRB.getVoidTy(), IRB.getInt8PtrTy(), false);
950     ResumeF = getEmscriptenFunction(ResumeFTy, "__resumeException", &M);
951     ResumeF->addFnAttr(Attribute::NoReturn);
952 
953     // Register llvm_eh_typeid_for function
954     FunctionType *EHTypeIDTy =
955         FunctionType::get(IRB.getInt32Ty(), IRB.getInt8PtrTy(), false);
956     EHTypeIDF = getEmscriptenFunction(EHTypeIDTy, "llvm_eh_typeid_for", &M);
957   }
958 
959   // Functions that contains calls to setjmp but don't have other longjmpable
960   // calls within them.
961   SmallPtrSet<Function *, 4> SetjmpUsersToNullify;
962 
963   if ((EnableEmSjLj || EnableWasmSjLj) && SetjmpF) {
964     // Precompute setjmp users
965     for (User *U : SetjmpF->users()) {
966       if (auto *CB = dyn_cast<CallBase>(U)) {
967         auto *UserF = CB->getFunction();
968         // If a function that calls setjmp does not contain any other calls that
969         // can longjmp, we don't need to do any transformation on that function,
970         // so can ignore it
971         if (containsLongjmpableCalls(UserF))
972           SetjmpUsers.insert(UserF);
973         else
974           SetjmpUsersToNullify.insert(UserF);
975       } else {
976         std::string S;
977         raw_string_ostream SS(S);
978         SS << *U;
979         report_fatal_error(Twine("Indirect use of setjmp is not supported: ") +
980                            SS.str());
981       }
982     }
983   }
984 
985   bool SetjmpUsed = SetjmpF && !SetjmpUsers.empty();
986   bool LongjmpUsed = LongjmpF && !LongjmpF->use_empty();
987   DoSjLj = (EnableEmSjLj | EnableWasmSjLj) && (SetjmpUsed || LongjmpUsed);
988 
989   // Function registration and data pre-gathering for setjmp/longjmp handling
990   if (DoSjLj) {
991     assert(EnableEmSjLj || EnableWasmSjLj);
992     if (EnableEmSjLj) {
993       // Register emscripten_longjmp function
994       FunctionType *FTy = FunctionType::get(
995           IRB.getVoidTy(), {getAddrIntType(&M), IRB.getInt32Ty()}, false);
996       EmLongjmpF = getEmscriptenFunction(FTy, "emscripten_longjmp", &M);
997       EmLongjmpF->addFnAttr(Attribute::NoReturn);
998     } else { // EnableWasmSjLj
999       // Register __wasm_longjmp function, which calls __builtin_wasm_longjmp.
1000       FunctionType *FTy = FunctionType::get(
1001           IRB.getVoidTy(), {IRB.getInt8PtrTy(), IRB.getInt32Ty()}, false);
1002       WasmLongjmpF = getEmscriptenFunction(FTy, "__wasm_longjmp", &M);
1003       WasmLongjmpF->addFnAttr(Attribute::NoReturn);
1004     }
1005 
1006     if (SetjmpF) {
1007       // Register saveSetjmp function
1008       FunctionType *SetjmpFTy = SetjmpF->getFunctionType();
1009       FunctionType *FTy =
1010           FunctionType::get(Type::getInt32PtrTy(C),
1011                             {SetjmpFTy->getParamType(0), IRB.getInt32Ty(),
1012                              Type::getInt32PtrTy(C), IRB.getInt32Ty()},
1013                             false);
1014       SaveSetjmpF = getEmscriptenFunction(FTy, "saveSetjmp", &M);
1015 
1016       // Register testSetjmp function
1017       FTy = FunctionType::get(
1018           IRB.getInt32Ty(),
1019           {getAddrIntType(&M), Type::getInt32PtrTy(C), IRB.getInt32Ty()},
1020           false);
1021       TestSetjmpF = getEmscriptenFunction(FTy, "testSetjmp", &M);
1022 
1023       // wasm.catch() will be lowered down to wasm 'catch' instruction in
1024       // instruction selection.
1025       CatchF = Intrinsic::getDeclaration(&M, Intrinsic::wasm_catch);
1026       // Type for struct __WasmLongjmpArgs
1027       LongjmpArgsTy = StructType::get(IRB.getInt8PtrTy(), // env
1028                                       IRB.getInt32Ty()    // val
1029       );
1030     }
1031   }
1032 
1033   // Exception handling transformation
1034   if (EnableEmEH) {
1035     for (Function &F : M) {
1036       if (F.isDeclaration())
1037         continue;
1038       Changed |= runEHOnFunction(F);
1039     }
1040   }
1041 
1042   // Setjmp/longjmp handling transformation
1043   if (DoSjLj) {
1044     Changed = true; // We have setjmp or longjmp somewhere
1045     if (LongjmpF)
1046       replaceLongjmpWith(LongjmpF, EnableEmSjLj ? EmLongjmpF : WasmLongjmpF);
1047     // Only traverse functions that uses setjmp in order not to insert
1048     // unnecessary prep / cleanup code in every function
1049     if (SetjmpF)
1050       for (Function *F : SetjmpUsers)
1051         runSjLjOnFunction(*F);
1052   }
1053 
1054   // Replace unnecessary setjmp calls with 0
1055   if ((EnableEmSjLj || EnableWasmSjLj) && !SetjmpUsersToNullify.empty()) {
1056     Changed = true;
1057     assert(SetjmpF);
1058     for (Function *F : SetjmpUsersToNullify)
1059       nullifySetjmp(F);
1060   }
1061 
1062   if (!Changed) {
1063     // Delete unused global variables and functions
1064     if (ResumeF)
1065       ResumeF->eraseFromParent();
1066     if (EHTypeIDF)
1067       EHTypeIDF->eraseFromParent();
1068     if (EmLongjmpF)
1069       EmLongjmpF->eraseFromParent();
1070     if (SaveSetjmpF)
1071       SaveSetjmpF->eraseFromParent();
1072     if (TestSetjmpF)
1073       TestSetjmpF->eraseFromParent();
1074     return false;
1075   }
1076 
1077   return true;
1078 }
1079 
1080 bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function &F) {
1081   Module &M = *F.getParent();
1082   LLVMContext &C = F.getContext();
1083   IRBuilder<> IRB(C);
1084   bool Changed = false;
1085   SmallVector<Instruction *, 64> ToErase;
1086   SmallPtrSet<LandingPadInst *, 32> LandingPads;
1087 
1088   // rethrow.longjmp BB that will be shared within the function.
1089   BasicBlock *RethrowLongjmpBB = nullptr;
1090   // PHI node for the loaded value of __THREW__ global variable in
1091   // rethrow.longjmp BB
1092   PHINode *RethrowLongjmpBBThrewPHI = nullptr;
1093 
1094   for (BasicBlock &BB : F) {
1095     auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
1096     if (!II)
1097       continue;
1098     Changed = true;
1099     LandingPads.insert(II->getLandingPadInst());
1100     IRB.SetInsertPoint(II);
1101 
1102     const Value *Callee = II->getCalledOperand();
1103     bool NeedInvoke = supportsException(&F) && canThrow(Callee);
1104     if (NeedInvoke) {
1105       // Wrap invoke with invoke wrapper and generate preamble/postamble
1106       Value *Threw = wrapInvoke(II);
1107       ToErase.push_back(II);
1108 
1109       // If setjmp/longjmp handling is enabled, the thrown value can be not an
1110       // exception but a longjmp. If the current function contains calls to
1111       // setjmp, it will be appropriately handled in runSjLjOnFunction. But even
1112       // if the function does not contain setjmp calls, we shouldn't silently
1113       // ignore longjmps; we should rethrow them so they can be correctly
1114       // handled in somewhere up the call chain where setjmp is. __THREW__'s
1115       // value is 0 when nothing happened, 1 when an exception is thrown, and
1116       // other values when longjmp is thrown.
1117       //
1118       // if (%__THREW__.val == 0 || %__THREW__.val == 1)
1119       //   goto %tail
1120       // else
1121       //   goto %longjmp.rethrow
1122       //
1123       // rethrow.longjmp: ;; This is longjmp. Rethrow it
1124       //   %__threwValue.val = __threwValue
1125       //   emscripten_longjmp(%__THREW__.val, %__threwValue.val);
1126       //
1127       // tail: ;; Nothing happened or an exception is thrown
1128       //   ... Continue exception handling ...
1129       if (DoSjLj && EnableEmSjLj && !SetjmpUsers.count(&F) &&
1130           canLongjmp(Callee)) {
1131         // Create longjmp.rethrow BB once and share it within the function
1132         if (!RethrowLongjmpBB) {
1133           RethrowLongjmpBB = BasicBlock::Create(C, "rethrow.longjmp", &F);
1134           IRB.SetInsertPoint(RethrowLongjmpBB);
1135           RethrowLongjmpBBThrewPHI =
1136               IRB.CreatePHI(getAddrIntType(&M), 4, "threw.phi");
1137           RethrowLongjmpBBThrewPHI->addIncoming(Threw, &BB);
1138           Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV,
1139                                              ThrewValueGV->getName() + ".val");
1140           IRB.CreateCall(EmLongjmpF, {RethrowLongjmpBBThrewPHI, ThrewValue});
1141           IRB.CreateUnreachable();
1142         } else {
1143           RethrowLongjmpBBThrewPHI->addIncoming(Threw, &BB);
1144         }
1145 
1146         IRB.SetInsertPoint(II); // Restore the insert point back
1147         BasicBlock *Tail = BasicBlock::Create(C, "tail", &F);
1148         Value *CmpEqOne =
1149             IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp.eq.one");
1150         Value *CmpEqZero =
1151             IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 0), "cmp.eq.zero");
1152         Value *Or = IRB.CreateOr(CmpEqZero, CmpEqOne, "or");
1153         IRB.CreateCondBr(Or, Tail, RethrowLongjmpBB);
1154         IRB.SetInsertPoint(Tail);
1155         BB.replaceSuccessorsPhiUsesWith(&BB, Tail);
1156       }
1157 
1158       // Insert a branch based on __THREW__ variable
1159       Value *Cmp = IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp");
1160       IRB.CreateCondBr(Cmp, II->getUnwindDest(), II->getNormalDest());
1161 
1162     } else {
1163       // This can't throw, and we don't need this invoke, just replace it with a
1164       // call+branch
1165       changeToCall(II);
1166     }
1167   }
1168 
1169   // Process resume instructions
1170   for (BasicBlock &BB : F) {
1171     // Scan the body of the basic block for resumes
1172     for (Instruction &I : BB) {
1173       auto *RI = dyn_cast<ResumeInst>(&I);
1174       if (!RI)
1175         continue;
1176       Changed = true;
1177 
1178       // Split the input into legal values
1179       Value *Input = RI->getValue();
1180       IRB.SetInsertPoint(RI);
1181       Value *Low = IRB.CreateExtractValue(Input, 0, "low");
1182       // Create a call to __resumeException function
1183       IRB.CreateCall(ResumeF, {Low});
1184       // Add a terminator to the block
1185       IRB.CreateUnreachable();
1186       ToErase.push_back(RI);
1187     }
1188   }
1189 
1190   // Process llvm.eh.typeid.for intrinsics
1191   for (BasicBlock &BB : F) {
1192     for (Instruction &I : BB) {
1193       auto *CI = dyn_cast<CallInst>(&I);
1194       if (!CI)
1195         continue;
1196       const Function *Callee = CI->getCalledFunction();
1197       if (!Callee)
1198         continue;
1199       if (Callee->getIntrinsicID() != Intrinsic::eh_typeid_for)
1200         continue;
1201       Changed = true;
1202 
1203       IRB.SetInsertPoint(CI);
1204       CallInst *NewCI =
1205           IRB.CreateCall(EHTypeIDF, CI->getArgOperand(0), "typeid");
1206       CI->replaceAllUsesWith(NewCI);
1207       ToErase.push_back(CI);
1208     }
1209   }
1210 
1211   // Look for orphan landingpads, can occur in blocks with no predecessors
1212   for (BasicBlock &BB : F) {
1213     Instruction *I = BB.getFirstNonPHI();
1214     if (auto *LPI = dyn_cast<LandingPadInst>(I))
1215       LandingPads.insert(LPI);
1216   }
1217   Changed |= !LandingPads.empty();
1218 
1219   // Handle all the landingpad for this function together, as multiple invokes
1220   // may share a single lp
1221   for (LandingPadInst *LPI : LandingPads) {
1222     IRB.SetInsertPoint(LPI);
1223     SmallVector<Value *, 16> FMCArgs;
1224     for (unsigned I = 0, E = LPI->getNumClauses(); I < E; ++I) {
1225       Constant *Clause = LPI->getClause(I);
1226       // TODO Handle filters (= exception specifications).
1227       // https://bugs.llvm.org/show_bug.cgi?id=50396
1228       if (LPI->isCatch(I))
1229         FMCArgs.push_back(Clause);
1230     }
1231 
1232     // Create a call to __cxa_find_matching_catch_N function
1233     Function *FMCF = getFindMatchingCatch(M, FMCArgs.size());
1234     CallInst *FMCI = IRB.CreateCall(FMCF, FMCArgs, "fmc");
1235     Value *Undef = UndefValue::get(LPI->getType());
1236     Value *Pair0 = IRB.CreateInsertValue(Undef, FMCI, 0, "pair0");
1237     Value *TempRet0 = IRB.CreateCall(GetTempRet0F, None, "tempret0");
1238     Value *Pair1 = IRB.CreateInsertValue(Pair0, TempRet0, 1, "pair1");
1239 
1240     LPI->replaceAllUsesWith(Pair1);
1241     ToErase.push_back(LPI);
1242   }
1243 
1244   // Erase everything we no longer need in this function
1245   for (Instruction *I : ToErase)
1246     I->eraseFromParent();
1247 
1248   return Changed;
1249 }
1250 
1251 // This tries to get debug info from the instruction before which a new
1252 // instruction will be inserted, and if there's no debug info in that
1253 // instruction, tries to get the info instead from the previous instruction (if
1254 // any). If none of these has debug info and a DISubprogram is provided, it
1255 // creates a dummy debug info with the first line of the function, because IR
1256 // verifier requires all inlinable callsites should have debug info when both a
1257 // caller and callee have DISubprogram. If none of these conditions are met,
1258 // returns empty info.
1259 static DebugLoc getOrCreateDebugLoc(const Instruction *InsertBefore,
1260                                     DISubprogram *SP) {
1261   assert(InsertBefore);
1262   if (InsertBefore->getDebugLoc())
1263     return InsertBefore->getDebugLoc();
1264   const Instruction *Prev = InsertBefore->getPrevNode();
1265   if (Prev && Prev->getDebugLoc())
1266     return Prev->getDebugLoc();
1267   if (SP)
1268     return DILocation::get(SP->getContext(), SP->getLine(), 1, SP);
1269   return DebugLoc();
1270 }
1271 
1272 bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function &F) {
1273   assert(EnableEmSjLj || EnableWasmSjLj);
1274   Module &M = *F.getParent();
1275   LLVMContext &C = F.getContext();
1276   IRBuilder<> IRB(C);
1277   SmallVector<Instruction *, 64> ToErase;
1278   // Vector of %setjmpTable values
1279   SmallVector<Instruction *, 4> SetjmpTableInsts;
1280   // Vector of %setjmpTableSize values
1281   SmallVector<Instruction *, 4> SetjmpTableSizeInsts;
1282 
1283   // Setjmp preparation
1284 
1285   // This instruction effectively means %setjmpTableSize = 4.
1286   // We create this as an instruction intentionally, and we don't want to fold
1287   // this instruction to a constant 4, because this value will be used in
1288   // SSAUpdater.AddAvailableValue(...) later.
1289   BasicBlock *Entry = &F.getEntryBlock();
1290   DebugLoc FirstDL = getOrCreateDebugLoc(&*Entry->begin(), F.getSubprogram());
1291   SplitBlock(Entry, &*Entry->getFirstInsertionPt());
1292 
1293   BinaryOperator *SetjmpTableSize =
1294       BinaryOperator::Create(Instruction::Add, IRB.getInt32(4), IRB.getInt32(0),
1295                              "setjmpTableSize", Entry->getTerminator());
1296   SetjmpTableSize->setDebugLoc(FirstDL);
1297   // setjmpTable = (int *) malloc(40);
1298   Instruction *SetjmpTable = CallInst::CreateMalloc(
1299       SetjmpTableSize, IRB.getInt32Ty(), IRB.getInt32Ty(), IRB.getInt32(40),
1300       nullptr, nullptr, "setjmpTable");
1301   SetjmpTable->setDebugLoc(FirstDL);
1302   // CallInst::CreateMalloc may return a bitcast instruction if the result types
1303   // mismatch. We need to set the debug loc for the original call too.
1304   auto *MallocCall = SetjmpTable->stripPointerCasts();
1305   if (auto *MallocCallI = dyn_cast<Instruction>(MallocCall)) {
1306     MallocCallI->setDebugLoc(FirstDL);
1307   }
1308   // setjmpTable[0] = 0;
1309   IRB.SetInsertPoint(SetjmpTableSize);
1310   IRB.CreateStore(IRB.getInt32(0), SetjmpTable);
1311   SetjmpTableInsts.push_back(SetjmpTable);
1312   SetjmpTableSizeInsts.push_back(SetjmpTableSize);
1313 
1314   // Setjmp transformation
1315   SmallVector<PHINode *, 4> SetjmpRetPHIs;
1316   Function *SetjmpF = M.getFunction("setjmp");
1317   for (auto *U : make_early_inc_range(SetjmpF->users())) {
1318     auto *CB = dyn_cast<CallBase>(U);
1319     BasicBlock *BB = CB->getParent();
1320     if (BB->getParent() != &F) // in other function
1321       continue;
1322 
1323     CallInst *CI = nullptr;
1324     // setjmp cannot throw. So if it is an invoke, lower it to a call
1325     if (auto *II = dyn_cast<InvokeInst>(CB))
1326       CI = llvm::changeToCall(II);
1327     else
1328       CI = cast<CallInst>(CB);
1329 
1330     // The tail is everything right after the call, and will be reached once
1331     // when setjmp is called, and later when longjmp returns to the setjmp
1332     BasicBlock *Tail = SplitBlock(BB, CI->getNextNode());
1333     // Add a phi to the tail, which will be the output of setjmp, which
1334     // indicates if this is the first call or a longjmp back. The phi directly
1335     // uses the right value based on where we arrive from
1336     IRB.SetInsertPoint(Tail->getFirstNonPHI());
1337     PHINode *SetjmpRet = IRB.CreatePHI(IRB.getInt32Ty(), 2, "setjmp.ret");
1338 
1339     // setjmp initial call returns 0
1340     SetjmpRet->addIncoming(IRB.getInt32(0), BB);
1341     // The proper output is now this, not the setjmp call itself
1342     CI->replaceAllUsesWith(SetjmpRet);
1343     // longjmp returns to the setjmp will add themselves to this phi
1344     SetjmpRetPHIs.push_back(SetjmpRet);
1345 
1346     // Fix call target
1347     // Our index in the function is our place in the array + 1 to avoid index
1348     // 0, because index 0 means the longjmp is not ours to handle.
1349     IRB.SetInsertPoint(CI);
1350     Value *Args[] = {CI->getArgOperand(0), IRB.getInt32(SetjmpRetPHIs.size()),
1351                      SetjmpTable, SetjmpTableSize};
1352     Instruction *NewSetjmpTable =
1353         IRB.CreateCall(SaveSetjmpF, Args, "setjmpTable");
1354     Instruction *NewSetjmpTableSize =
1355         IRB.CreateCall(GetTempRet0F, None, "setjmpTableSize");
1356     SetjmpTableInsts.push_back(NewSetjmpTable);
1357     SetjmpTableSizeInsts.push_back(NewSetjmpTableSize);
1358     ToErase.push_back(CI);
1359   }
1360 
1361   // Handle longjmpable calls.
1362   if (EnableEmSjLj)
1363     handleLongjmpableCallsForEmscriptenSjLj(
1364         F, SetjmpTableInsts, SetjmpTableSizeInsts, SetjmpRetPHIs);
1365   else // EnableWasmSjLj
1366     handleLongjmpableCallsForWasmSjLj(F, SetjmpTableInsts, SetjmpTableSizeInsts,
1367                                       SetjmpRetPHIs);
1368 
1369   // Erase everything we no longer need in this function
1370   for (Instruction *I : ToErase)
1371     I->eraseFromParent();
1372 
1373   // Free setjmpTable buffer before each return instruction + function-exiting
1374   // call
1375   SmallVector<Instruction *, 16> ExitingInsts;
1376   for (BasicBlock &BB : F) {
1377     Instruction *TI = BB.getTerminator();
1378     if (isa<ReturnInst>(TI))
1379       ExitingInsts.push_back(TI);
1380     // Any 'call' instruction with 'noreturn' attribute exits the function at
1381     // this point. If this throws but unwinds to another EH pad within this
1382     // function instead of exiting, this would have been an 'invoke', which
1383     // happens if we use Wasm EH or Wasm SjLJ.
1384     for (auto &I : BB) {
1385       if (auto *CI = dyn_cast<CallInst>(&I)) {
1386         bool IsNoReturn = CI->hasFnAttr(Attribute::NoReturn);
1387         if (Function *CalleeF = CI->getCalledFunction())
1388           IsNoReturn |= CalleeF->hasFnAttribute(Attribute::NoReturn);
1389         if (IsNoReturn)
1390           ExitingInsts.push_back(&I);
1391       }
1392     }
1393   }
1394   for (auto *I : ExitingInsts) {
1395     DebugLoc DL = getOrCreateDebugLoc(I, F.getSubprogram());
1396     // If this existing instruction is a call within a catchpad, we should add
1397     // it as "funclet" to the operand bundle of 'free' call
1398     SmallVector<OperandBundleDef, 1> Bundles;
1399     if (auto *CB = dyn_cast<CallBase>(I))
1400       if (auto Bundle = CB->getOperandBundle(LLVMContext::OB_funclet))
1401         Bundles.push_back(OperandBundleDef(*Bundle));
1402     auto *Free = CallInst::CreateFree(SetjmpTable, Bundles, I);
1403     Free->setDebugLoc(DL);
1404     // CallInst::CreateFree may create a bitcast instruction if its argument
1405     // types mismatch. We need to set the debug loc for the bitcast too.
1406     if (auto *FreeCallI = dyn_cast<CallInst>(Free)) {
1407       if (auto *BitCastI = dyn_cast<BitCastInst>(FreeCallI->getArgOperand(0)))
1408         BitCastI->setDebugLoc(DL);
1409     }
1410   }
1411 
1412   // Every call to saveSetjmp can change setjmpTable and setjmpTableSize
1413   // (when buffer reallocation occurs)
1414   // entry:
1415   //   setjmpTableSize = 4;
1416   //   setjmpTable = (int *) malloc(40);
1417   //   setjmpTable[0] = 0;
1418   // ...
1419   // somebb:
1420   //   setjmpTable = saveSetjmp(env, label, setjmpTable, setjmpTableSize);
1421   //   setjmpTableSize = getTempRet0();
1422   // So we need to make sure the SSA for these variables is valid so that every
1423   // saveSetjmp and testSetjmp calls have the correct arguments.
1424   SSAUpdater SetjmpTableSSA;
1425   SSAUpdater SetjmpTableSizeSSA;
1426   SetjmpTableSSA.Initialize(Type::getInt32PtrTy(C), "setjmpTable");
1427   SetjmpTableSizeSSA.Initialize(Type::getInt32Ty(C), "setjmpTableSize");
1428   for (Instruction *I : SetjmpTableInsts)
1429     SetjmpTableSSA.AddAvailableValue(I->getParent(), I);
1430   for (Instruction *I : SetjmpTableSizeInsts)
1431     SetjmpTableSizeSSA.AddAvailableValue(I->getParent(), I);
1432 
1433   for (auto &U : make_early_inc_range(SetjmpTable->uses()))
1434     if (auto *I = dyn_cast<Instruction>(U.getUser()))
1435       if (I->getParent() != Entry)
1436         SetjmpTableSSA.RewriteUse(U);
1437   for (auto &U : make_early_inc_range(SetjmpTableSize->uses()))
1438     if (auto *I = dyn_cast<Instruction>(U.getUser()))
1439       if (I->getParent() != Entry)
1440         SetjmpTableSizeSSA.RewriteUse(U);
1441 
1442   // Finally, our modifications to the cfg can break dominance of SSA variables.
1443   // For example, in this code,
1444   // if (x()) { .. setjmp() .. }
1445   // if (y()) { .. longjmp() .. }
1446   // We must split the longjmp block, and it can jump into the block splitted
1447   // from setjmp one. But that means that when we split the setjmp block, it's
1448   // first part no longer dominates its second part - there is a theoretically
1449   // possible control flow path where x() is false, then y() is true and we
1450   // reach the second part of the setjmp block, without ever reaching the first
1451   // part. So, we rebuild SSA form here.
1452   rebuildSSA(F);
1453   return true;
1454 }
1455 
1456 // Update each call that can longjmp so it can return to the corresponding
1457 // setjmp. Refer to 4) of "Emscripten setjmp/longjmp handling" section in the
1458 // comments at top of the file for details.
1459 void WebAssemblyLowerEmscriptenEHSjLj::handleLongjmpableCallsForEmscriptenSjLj(
1460     Function &F, InstVector &SetjmpTableInsts, InstVector &SetjmpTableSizeInsts,
1461     SmallVectorImpl<PHINode *> &SetjmpRetPHIs) {
1462   Module &M = *F.getParent();
1463   LLVMContext &C = F.getContext();
1464   IRBuilder<> IRB(C);
1465   SmallVector<Instruction *, 64> ToErase;
1466 
1467   // We need to pass setjmpTable and setjmpTableSize to testSetjmp function.
1468   // These values are defined in the beginning of the function and also in each
1469   // setjmp callsite, but we don't know which values we should use at this
1470   // point. So here we arbitraily use the ones defined in the beginning of the
1471   // function, and SSAUpdater will later update them to the correct values.
1472   Instruction *SetjmpTable = *SetjmpTableInsts.begin();
1473   Instruction *SetjmpTableSize = *SetjmpTableSizeInsts.begin();
1474 
1475   // call.em.longjmp BB that will be shared within the function.
1476   BasicBlock *CallEmLongjmpBB = nullptr;
1477   // PHI node for the loaded value of __THREW__ global variable in
1478   // call.em.longjmp BB
1479   PHINode *CallEmLongjmpBBThrewPHI = nullptr;
1480   // PHI node for the loaded value of __threwValue global variable in
1481   // call.em.longjmp BB
1482   PHINode *CallEmLongjmpBBThrewValuePHI = nullptr;
1483   // rethrow.exn BB that will be shared within the function.
1484   BasicBlock *RethrowExnBB = nullptr;
1485 
1486   // Because we are creating new BBs while processing and don't want to make
1487   // all these newly created BBs candidates again for longjmp processing, we
1488   // first make the vector of candidate BBs.
1489   std::vector<BasicBlock *> BBs;
1490   for (BasicBlock &BB : F)
1491     BBs.push_back(&BB);
1492 
1493   // BBs.size() will change within the loop, so we query it every time
1494   for (unsigned I = 0; I < BBs.size(); I++) {
1495     BasicBlock *BB = BBs[I];
1496     for (Instruction &I : *BB) {
1497       if (isa<InvokeInst>(&I))
1498         report_fatal_error("When using Wasm EH with Emscripten SjLj, there is "
1499                            "a restriction that `setjmp` function call and "
1500                            "exception cannot be used within the same function");
1501       auto *CI = dyn_cast<CallInst>(&I);
1502       if (!CI)
1503         continue;
1504 
1505       const Value *Callee = CI->getCalledOperand();
1506       if (!canLongjmp(Callee))
1507         continue;
1508       if (isEmAsmCall(Callee))
1509         report_fatal_error("Cannot use EM_ASM* alongside setjmp/longjmp in " +
1510                                F.getName() +
1511                                ". Please consider using EM_JS, or move the "
1512                                "EM_ASM into another function.",
1513                            false);
1514 
1515       Value *Threw = nullptr;
1516       BasicBlock *Tail;
1517       if (Callee->getName().startswith("__invoke_")) {
1518         // If invoke wrapper has already been generated for this call in
1519         // previous EH phase, search for the load instruction
1520         // %__THREW__.val = __THREW__;
1521         // in postamble after the invoke wrapper call
1522         LoadInst *ThrewLI = nullptr;
1523         StoreInst *ThrewResetSI = nullptr;
1524         for (auto I = std::next(BasicBlock::iterator(CI)), IE = BB->end();
1525              I != IE; ++I) {
1526           if (auto *LI = dyn_cast<LoadInst>(I))
1527             if (auto *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()))
1528               if (GV == ThrewGV) {
1529                 Threw = ThrewLI = LI;
1530                 break;
1531               }
1532         }
1533         // Search for the store instruction after the load above
1534         // __THREW__ = 0;
1535         for (auto I = std::next(BasicBlock::iterator(ThrewLI)), IE = BB->end();
1536              I != IE; ++I) {
1537           if (auto *SI = dyn_cast<StoreInst>(I)) {
1538             if (auto *GV = dyn_cast<GlobalVariable>(SI->getPointerOperand())) {
1539               if (GV == ThrewGV &&
1540                   SI->getValueOperand() == getAddrSizeInt(&M, 0)) {
1541                 ThrewResetSI = SI;
1542                 break;
1543               }
1544             }
1545           }
1546         }
1547         assert(Threw && ThrewLI && "Cannot find __THREW__ load after invoke");
1548         assert(ThrewResetSI && "Cannot find __THREW__ store after invoke");
1549         Tail = SplitBlock(BB, ThrewResetSI->getNextNode());
1550 
1551       } else {
1552         // Wrap call with invoke wrapper and generate preamble/postamble
1553         Threw = wrapInvoke(CI);
1554         ToErase.push_back(CI);
1555         Tail = SplitBlock(BB, CI->getNextNode());
1556 
1557         // If exception handling is enabled, the thrown value can be not a
1558         // longjmp but an exception, in which case we shouldn't silently ignore
1559         // exceptions; we should rethrow them.
1560         // __THREW__'s value is 0 when nothing happened, 1 when an exception is
1561         // thrown, other values when longjmp is thrown.
1562         //
1563         // if (%__THREW__.val == 1)
1564         //   goto %eh.rethrow
1565         // else
1566         //   goto %normal
1567         //
1568         // eh.rethrow: ;; Rethrow exception
1569         //   %exn = call @__cxa_find_matching_catch_2() ;; Retrieve thrown ptr
1570         //   __resumeException(%exn)
1571         //
1572         // normal:
1573         //   <-- Insertion point. Will insert sjlj handling code from here
1574         //   goto %tail
1575         //
1576         // tail:
1577         //   ...
1578         if (supportsException(&F) && canThrow(Callee)) {
1579           // We will add a new conditional branch. So remove the branch created
1580           // when we split the BB
1581           ToErase.push_back(BB->getTerminator());
1582 
1583           // Generate rethrow.exn BB once and share it within the function
1584           if (!RethrowExnBB) {
1585             RethrowExnBB = BasicBlock::Create(C, "rethrow.exn", &F);
1586             IRB.SetInsertPoint(RethrowExnBB);
1587             CallInst *Exn =
1588                 IRB.CreateCall(getFindMatchingCatch(M, 0), {}, "exn");
1589             IRB.CreateCall(ResumeF, {Exn});
1590             IRB.CreateUnreachable();
1591           }
1592 
1593           IRB.SetInsertPoint(CI);
1594           BasicBlock *NormalBB = BasicBlock::Create(C, "normal", &F);
1595           Value *CmpEqOne =
1596               IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp.eq.one");
1597           IRB.CreateCondBr(CmpEqOne, RethrowExnBB, NormalBB);
1598 
1599           IRB.SetInsertPoint(NormalBB);
1600           IRB.CreateBr(Tail);
1601           BB = NormalBB; // New insertion point to insert testSetjmp()
1602         }
1603       }
1604 
1605       // We need to replace the terminator in Tail - SplitBlock makes BB go
1606       // straight to Tail, we need to check if a longjmp occurred, and go to the
1607       // right setjmp-tail if so
1608       ToErase.push_back(BB->getTerminator());
1609 
1610       // Generate a function call to testSetjmp function and preamble/postamble
1611       // code to figure out (1) whether longjmp occurred (2) if longjmp
1612       // occurred, which setjmp it corresponds to
1613       Value *Label = nullptr;
1614       Value *LongjmpResult = nullptr;
1615       BasicBlock *EndBB = nullptr;
1616       wrapTestSetjmp(BB, CI->getDebugLoc(), Threw, SetjmpTable, SetjmpTableSize,
1617                      Label, LongjmpResult, CallEmLongjmpBB,
1618                      CallEmLongjmpBBThrewPHI, CallEmLongjmpBBThrewValuePHI,
1619                      EndBB);
1620       assert(Label && LongjmpResult && EndBB);
1621 
1622       // Create switch instruction
1623       IRB.SetInsertPoint(EndBB);
1624       IRB.SetCurrentDebugLocation(EndBB->getInstList().back().getDebugLoc());
1625       SwitchInst *SI = IRB.CreateSwitch(Label, Tail, SetjmpRetPHIs.size());
1626       // -1 means no longjmp happened, continue normally (will hit the default
1627       // switch case). 0 means a longjmp that is not ours to handle, needs a
1628       // rethrow. Otherwise the index is the same as the index in P+1 (to avoid
1629       // 0).
1630       for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) {
1631         SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent());
1632         SetjmpRetPHIs[I]->addIncoming(LongjmpResult, EndBB);
1633       }
1634 
1635       // We are splitting the block here, and must continue to find other calls
1636       // in the block - which is now split. so continue to traverse in the Tail
1637       BBs.push_back(Tail);
1638     }
1639   }
1640 
1641   for (Instruction *I : ToErase)
1642     I->eraseFromParent();
1643 }
1644 
1645 static BasicBlock *getCleanupRetUnwindDest(const CleanupPadInst *CPI) {
1646   for (const User *U : CPI->users())
1647     if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
1648       return CRI->getUnwindDest();
1649   return nullptr;
1650 }
1651 
1652 // Create a catchpad in which we catch a longjmp's env and val arguments, test
1653 // if the longjmp corresponds to one of setjmps in the current function, and if
1654 // so, jump to the setjmp dispatch BB from which we go to one of post-setjmp
1655 // BBs. Refer to 4) of "Wasm setjmp/longjmp handling" section in the comments at
1656 // top of the file for details.
1657 void WebAssemblyLowerEmscriptenEHSjLj::handleLongjmpableCallsForWasmSjLj(
1658     Function &F, InstVector &SetjmpTableInsts, InstVector &SetjmpTableSizeInsts,
1659     SmallVectorImpl<PHINode *> &SetjmpRetPHIs) {
1660   Module &M = *F.getParent();
1661   LLVMContext &C = F.getContext();
1662   IRBuilder<> IRB(C);
1663 
1664   // A function with catchswitch/catchpad instruction should have a personality
1665   // function attached to it. Search for the wasm personality function, and if
1666   // it exists, use it, and if it doesn't, create a dummy personality function.
1667   // (SjLj is not going to call it anyway.)
1668   if (!F.hasPersonalityFn()) {
1669     StringRef PersName = getEHPersonalityName(EHPersonality::Wasm_CXX);
1670     FunctionType *PersType =
1671         FunctionType::get(IRB.getInt32Ty(), /* isVarArg */ true);
1672     Value *PersF = M.getOrInsertFunction(PersName, PersType).getCallee();
1673     F.setPersonalityFn(
1674         cast<Constant>(IRB.CreateBitCast(PersF, IRB.getInt8PtrTy())));
1675   }
1676 
1677   // Use the entry BB's debugloc as a fallback
1678   BasicBlock *Entry = &F.getEntryBlock();
1679   DebugLoc FirstDL = getOrCreateDebugLoc(&*Entry->begin(), F.getSubprogram());
1680   IRB.SetCurrentDebugLocation(FirstDL);
1681 
1682   // Arbitrarily use the ones defined in the beginning of the function.
1683   // SSAUpdater will later update them to the correct values.
1684   Instruction *SetjmpTable = *SetjmpTableInsts.begin();
1685   Instruction *SetjmpTableSize = *SetjmpTableSizeInsts.begin();
1686 
1687   // Add setjmp.dispatch BB right after the entry block. Because we have
1688   // initialized setjmpTable/setjmpTableSize in the entry block and split the
1689   // rest into another BB, here 'OrigEntry' is the function's original entry
1690   // block before the transformation.
1691   //
1692   // entry:
1693   //   setjmpTable / setjmpTableSize initialization
1694   // setjmp.dispatch:
1695   //   switch will be inserted here later
1696   // entry.split: (OrigEntry)
1697   //   the original function starts here
1698   BasicBlock *OrigEntry = Entry->getNextNode();
1699   BasicBlock *SetjmpDispatchBB =
1700       BasicBlock::Create(C, "setjmp.dispatch", &F, OrigEntry);
1701   cast<BranchInst>(Entry->getTerminator())->setSuccessor(0, SetjmpDispatchBB);
1702 
1703   // Create catch.dispatch.longjmp BB and a catchswitch instruction
1704   BasicBlock *CatchDispatchLongjmpBB =
1705       BasicBlock::Create(C, "catch.dispatch.longjmp", &F);
1706   IRB.SetInsertPoint(CatchDispatchLongjmpBB);
1707   CatchSwitchInst *CatchSwitchLongjmp =
1708       IRB.CreateCatchSwitch(ConstantTokenNone::get(C), nullptr, 1);
1709 
1710   // Create catch.longjmp BB and a catchpad instruction
1711   BasicBlock *CatchLongjmpBB = BasicBlock::Create(C, "catch.longjmp", &F);
1712   CatchSwitchLongjmp->addHandler(CatchLongjmpBB);
1713   IRB.SetInsertPoint(CatchLongjmpBB);
1714   CatchPadInst *CatchPad = IRB.CreateCatchPad(CatchSwitchLongjmp, {});
1715 
1716   // Wasm throw and catch instructions can throw and catch multiple values, but
1717   // that requires multivalue support in the toolchain, which is currently not
1718   // very reliable. We instead throw and catch a pointer to a struct value of
1719   // type 'struct __WasmLongjmpArgs', which is defined in Emscripten.
1720   Instruction *CatchCI =
1721       IRB.CreateCall(CatchF, {IRB.getInt32(WebAssembly::C_LONGJMP)}, "thrown");
1722   Value *LongjmpArgs =
1723       IRB.CreateBitCast(CatchCI, LongjmpArgsTy->getPointerTo(), "longjmp.args");
1724   Value *EnvField =
1725       IRB.CreateConstGEP2_32(LongjmpArgsTy, LongjmpArgs, 0, 0, "env_gep");
1726   Value *ValField =
1727       IRB.CreateConstGEP2_32(LongjmpArgsTy, LongjmpArgs, 0, 1, "val_gep");
1728   // void *env = __wasm_longjmp_args.env;
1729   Instruction *Env = IRB.CreateLoad(IRB.getInt8PtrTy(), EnvField, "env");
1730   // int val = __wasm_longjmp_args.val;
1731   Instruction *Val = IRB.CreateLoad(IRB.getInt32Ty(), ValField, "val");
1732 
1733   // %label = testSetjmp(mem[%env], setjmpTable, setjmpTableSize);
1734   // if (%label == 0)
1735   //   __wasm_longjmp(%env, %val)
1736   // catchret to %setjmp.dispatch
1737   BasicBlock *ThenBB = BasicBlock::Create(C, "if.then", &F);
1738   BasicBlock *EndBB = BasicBlock::Create(C, "if.end", &F);
1739   Value *EnvP = IRB.CreateBitCast(Env, getAddrPtrType(&M), "env.p");
1740   Value *SetjmpID = IRB.CreateLoad(getAddrIntType(&M), EnvP, "setjmp.id");
1741   Value *Label =
1742       IRB.CreateCall(TestSetjmpF, {SetjmpID, SetjmpTable, SetjmpTableSize},
1743                      OperandBundleDef("funclet", CatchPad), "label");
1744   Value *Cmp = IRB.CreateICmpEQ(Label, IRB.getInt32(0));
1745   IRB.CreateCondBr(Cmp, ThenBB, EndBB);
1746 
1747   IRB.SetInsertPoint(ThenBB);
1748   CallInst *WasmLongjmpCI = IRB.CreateCall(
1749       WasmLongjmpF, {Env, Val}, OperandBundleDef("funclet", CatchPad));
1750   IRB.CreateUnreachable();
1751 
1752   IRB.SetInsertPoint(EndBB);
1753   // Jump to setjmp.dispatch block
1754   IRB.CreateCatchRet(CatchPad, SetjmpDispatchBB);
1755 
1756   // Go back to setjmp.dispatch BB
1757   // setjmp.dispatch:
1758   //   switch %label {
1759   //     label 1: goto post-setjmp BB 1
1760   //     label 2: goto post-setjmp BB 2
1761   //     ...
1762   //     default: goto splitted next BB
1763   //   }
1764   IRB.SetInsertPoint(SetjmpDispatchBB);
1765   PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label.phi");
1766   LabelPHI->addIncoming(Label, EndBB);
1767   LabelPHI->addIncoming(IRB.getInt32(-1), Entry);
1768   SwitchInst *SI = IRB.CreateSwitch(LabelPHI, OrigEntry, SetjmpRetPHIs.size());
1769   // -1 means no longjmp happened, continue normally (will hit the default
1770   // switch case). 0 means a longjmp that is not ours to handle, needs a
1771   // rethrow. Otherwise the index is the same as the index in P+1 (to avoid
1772   // 0).
1773   for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) {
1774     SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent());
1775     SetjmpRetPHIs[I]->addIncoming(Val, SetjmpDispatchBB);
1776   }
1777 
1778   // Convert all longjmpable call instructions to invokes that unwind to the
1779   // newly created catch.dispatch.longjmp BB.
1780   SmallVector<CallInst *, 64> LongjmpableCalls;
1781   for (auto *BB = &*F.begin(); BB; BB = BB->getNextNode()) {
1782     for (auto &I : *BB) {
1783       auto *CI = dyn_cast<CallInst>(&I);
1784       if (!CI)
1785         continue;
1786       const Value *Callee = CI->getCalledOperand();
1787       if (!canLongjmp(Callee))
1788         continue;
1789       if (isEmAsmCall(Callee))
1790         report_fatal_error("Cannot use EM_ASM* alongside setjmp/longjmp in " +
1791                                F.getName() +
1792                                ". Please consider using EM_JS, or move the "
1793                                "EM_ASM into another function.",
1794                            false);
1795       // This is __wasm_longjmp() call we inserted in this function, which
1796       // rethrows the longjmp when the longjmp does not correspond to one of
1797       // setjmps in this function. We should not convert this call to an invoke.
1798       if (CI == WasmLongjmpCI)
1799         continue;
1800       LongjmpableCalls.push_back(CI);
1801     }
1802   }
1803 
1804   for (auto *CI : LongjmpableCalls) {
1805     // Even if the callee function has attribute 'nounwind', which is true for
1806     // all C functions, it can longjmp, which means it can throw a Wasm
1807     // exception now.
1808     CI->removeFnAttr(Attribute::NoUnwind);
1809     if (Function *CalleeF = CI->getCalledFunction())
1810       CalleeF->removeFnAttr(Attribute::NoUnwind);
1811 
1812     // Change it to an invoke and make it unwind to the catch.dispatch.longjmp
1813     // BB. If the call is enclosed in another catchpad/cleanuppad scope, unwind
1814     // to its parent pad's unwind destination instead to preserve the scope
1815     // structure. It will eventually unwind to the catch.dispatch.longjmp.
1816     SmallVector<OperandBundleDef, 1> Bundles;
1817     BasicBlock *UnwindDest = nullptr;
1818     if (auto Bundle = CI->getOperandBundle(LLVMContext::OB_funclet)) {
1819       Instruction *FromPad = cast<Instruction>(Bundle->Inputs[0]);
1820       while (!UnwindDest && FromPad) {
1821         if (auto *CPI = dyn_cast<CatchPadInst>(FromPad)) {
1822           UnwindDest = CPI->getCatchSwitch()->getUnwindDest();
1823           FromPad = nullptr; // stop searching
1824         } else if (auto *CPI = dyn_cast<CleanupPadInst>(FromPad)) {
1825           // getCleanupRetUnwindDest() can return nullptr when
1826           // 1. This cleanuppad's matching cleanupret uwninds to caller
1827           // 2. There is no matching cleanupret because it ends with
1828           //    unreachable.
1829           // In case of 2, we need to traverse the parent pad chain.
1830           UnwindDest = getCleanupRetUnwindDest(CPI);
1831           FromPad = cast<Instruction>(CPI->getParentPad());
1832         }
1833       }
1834     }
1835     if (!UnwindDest)
1836       UnwindDest = CatchDispatchLongjmpBB;
1837     changeToInvokeAndSplitBasicBlock(CI, UnwindDest);
1838   }
1839 
1840   SmallVector<Instruction *, 16> ToErase;
1841   for (auto &BB : F) {
1842     if (auto *CSI = dyn_cast<CatchSwitchInst>(BB.getFirstNonPHI())) {
1843       if (CSI != CatchSwitchLongjmp && CSI->unwindsToCaller()) {
1844         IRB.SetInsertPoint(CSI);
1845         ToErase.push_back(CSI);
1846         auto *NewCSI = IRB.CreateCatchSwitch(CSI->getParentPad(),
1847                                              CatchDispatchLongjmpBB, 1);
1848         NewCSI->addHandler(*CSI->handler_begin());
1849         NewCSI->takeName(CSI);
1850         CSI->replaceAllUsesWith(NewCSI);
1851       }
1852     }
1853 
1854     if (auto *CRI = dyn_cast<CleanupReturnInst>(BB.getTerminator())) {
1855       if (CRI->unwindsToCaller()) {
1856         IRB.SetInsertPoint(CRI);
1857         ToErase.push_back(CRI);
1858         IRB.CreateCleanupRet(CRI->getCleanupPad(), CatchDispatchLongjmpBB);
1859       }
1860     }
1861   }
1862 
1863   for (Instruction *I : ToErase)
1864     I->eraseFromParent();
1865 }
1866