1 //=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file lowers exception-related instructions and setjmp/longjmp
11 /// function calls in order to use Emscripten's JavaScript try and catch
12 /// mechanism.
13 ///
14 /// To handle exceptions and setjmp/longjmps, this scheme relies on JavaScript's
15 /// try and catch syntax and relevant exception-related libraries implemented
16 /// in JavaScript glue code that will be produced by Emscripten. This is similar
17 /// to the current Emscripten asm.js exception handling in fastcomp. For
18 /// fastcomp's EH / SjLj scheme, see these files in fastcomp LLVM branch:
19 /// (Location: https://github.com/kripken/emscripten-fastcomp)
20 /// lib/Target/JSBackend/NaCl/LowerEmExceptionsPass.cpp
21 /// lib/Target/JSBackend/NaCl/LowerEmSetjmp.cpp
22 /// lib/Target/JSBackend/JSBackend.cpp
23 /// lib/Target/JSBackend/CallHandlers.h
24 ///
25 /// * Exception handling
26 /// This pass lowers invokes and landingpads into library functions in JS glue
27 /// code. Invokes are lowered into function wrappers called invoke wrappers that
28 /// exist in JS side, which wraps the original function call with JS try-catch.
29 /// If an exception occurred, cxa_throw() function in JS side sets some
30 /// variables (see below) so we can check whether an exception occurred from
31 /// wasm code and handle it appropriately.
32 ///
33 /// * Setjmp-longjmp handling
34 /// This pass lowers setjmp to a reasonably-performant approach for emscripten.
35 /// The idea is that each block with a setjmp is broken up into two parts: the
36 /// part containing setjmp and the part right after the setjmp. The latter part
37 /// is either reached from the setjmp, or later from a longjmp. To handle the
38 /// longjmp, all calls that might longjmp are also called using invoke wrappers
39 /// and thus JS / try-catch. JS longjmp() function also sets some variables so
40 /// we can check / whether a longjmp occurred from wasm code. Each block with a
41 /// function call that might longjmp is also split up after the longjmp call.
42 /// After the longjmp call, we check whether a longjmp occurred, and if it did,
43 /// which setjmp it corresponds to, and jump to the right post-setjmp block.
44 /// We assume setjmp-longjmp handling always run after EH handling, which means
45 /// we don't expect any exception-related instructions when SjLj runs.
46 /// FIXME Currently this scheme does not support indirect call of setjmp,
47 /// because of the limitation of the scheme itself. fastcomp does not support it
48 /// either.
49 ///
50 /// In detail, this pass does following things:
51 ///
52 /// 1) Assumes the existence of global variables: __THREW__, __threwValue
53 ///    __THREW__ and __threwValue will be set in invoke wrappers
54 ///    in JS glue code. For what invoke wrappers are, refer to 3). These
55 ///    variables are used for both exceptions and setjmp/longjmps.
56 ///    __THREW__ indicates whether an exception or a longjmp occurred or not. 0
57 ///    means nothing occurred, 1 means an exception occurred, and other numbers
58 ///    mean a longjmp occurred. In the case of longjmp, __threwValue variable
59 ///    indicates the corresponding setjmp buffer the longjmp corresponds to.
60 ///
61 /// * Exception handling
62 ///
63 /// 2) We assume the existence of setThrew and setTempRet0/getTempRet0 functions
64 ///    at link time.
65 ///    The global variables in 1) will exist in wasm address space,
66 ///    but their values should be set in JS code, so these functions
67 ///    as interfaces to JS glue code. These functions are equivalent to the
68 ///    following JS functions, which actually exist in asm.js version of JS
69 ///    library.
70 ///
71 ///    function setThrew(threw, value) {
72 ///      if (__THREW__ == 0) {
73 ///        __THREW__ = threw;
74 ///        __threwValue = value;
75 ///      }
76 ///    }
77 //
78 ///    setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
79 ///
80 ///    In exception handling, getTempRet0 indicates the type of an exception
81 ///    caught, and in setjmp/longjmp, it means the second argument to longjmp
82 ///    function.
83 ///
84 /// 3) Lower
85 ///      invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad
86 ///    into
87 ///      __THREW__ = 0;
88 ///      call @__invoke_SIG(func, arg1, arg2)
89 ///      %__THREW__.val = __THREW__;
90 ///      __THREW__ = 0;
91 ///      if (%__THREW__.val == 1)
92 ///        goto %lpad
93 ///      else
94 ///         goto %invoke.cont
95 ///    SIG is a mangled string generated based on the LLVM IR-level function
96 ///    signature. After LLVM IR types are lowered to the target wasm types,
97 ///    the names for these wrappers will change based on wasm types as well,
98 ///    as in invoke_vi (function takes an int and returns void). The bodies of
99 ///    these wrappers will be generated in JS glue code, and inside those
100 ///    wrappers we use JS try-catch to generate actual exception effects. It
101 ///    also calls the original callee function. An example wrapper in JS code
102 ///    would look like this:
103 ///      function invoke_vi(index,a1) {
104 ///        try {
105 ///          Module["dynCall_vi"](index,a1); // This calls original callee
106 ///        } catch(e) {
107 ///          if (typeof e !== 'number' && e !== 'longjmp') throw e;
108 ///          asm["setThrew"](1, 0); // setThrew is called here
109 ///        }
110 ///      }
111 ///    If an exception is thrown, __THREW__ will be set to true in a wrapper,
112 ///    so we can jump to the right BB based on this value.
113 ///
114 /// 4) Lower
115 ///      %val = landingpad catch c1 catch c2 catch c3 ...
116 ///      ... use %val ...
117 ///    into
118 ///      %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...)
119 ///      %val = {%fmc, getTempRet0()}
120 ///      ... use %val ...
121 ///    Here N is a number calculated based on the number of clauses.
122 ///    setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
123 ///
124 /// 5) Lower
125 ///      resume {%a, %b}
126 ///    into
127 ///      call @__resumeException(%a)
128 ///    where __resumeException() is a function in JS glue code.
129 ///
130 /// 6) Lower
131 ///      call @llvm.eh.typeid.for(type) (intrinsic)
132 ///    into
133 ///      call @llvm_eh_typeid_for(type)
134 ///    llvm_eh_typeid_for function will be generated in JS glue code.
135 ///
136 /// * Setjmp / Longjmp handling
137 ///
138 /// In case calls to longjmp() exists
139 ///
140 /// 1) Lower
141 ///      longjmp(buf, value)
142 ///    into
143 ///      emscripten_longjmp_jmpbuf(buf, value)
144 ///    emscripten_longjmp_jmpbuf will be lowered to emscripten_longjmp later.
145 ///
146 /// In case calls to setjmp() exists
147 ///
148 /// 2) In the function entry that calls setjmp, initialize setjmpTable and
149 ///    sejmpTableSize as follows:
150 ///      setjmpTableSize = 4;
151 ///      setjmpTable = (int *) malloc(40);
152 ///      setjmpTable[0] = 0;
153 ///    setjmpTable and setjmpTableSize are used in saveSetjmp() function in JS
154 ///    code.
155 ///
156 /// 3) Lower
157 ///      setjmp(buf)
158 ///    into
159 ///      setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize);
160 ///      setjmpTableSize = getTempRet0();
161 ///    For each dynamic setjmp call, setjmpTable stores its ID (a number which
162 ///    is incrementally assigned from 0) and its label (a unique number that
163 ///    represents each callsite of setjmp). When we need more entries in
164 ///    setjmpTable, it is reallocated in saveSetjmp() in JS code and it will
165 ///    return the new table address, and assign the new table size in
166 ///    setTempRet0(). saveSetjmp also stores the setjmp's ID into the buffer
167 ///    buf. A BB with setjmp is split into two after setjmp call in order to
168 ///    make the post-setjmp BB the possible destination of longjmp BB.
169 ///
170 ///
171 /// 4) Lower every call that might longjmp into
172 ///      __THREW__ = 0;
173 ///      call @__invoke_SIG(func, arg1, arg2)
174 ///      %__THREW__.val = __THREW__;
175 ///      __THREW__ = 0;
176 ///      if (%__THREW__.val != 0 & __threwValue != 0) {
177 ///        %label = testSetjmp(mem[%__THREW__.val], setjmpTable,
178 ///                            setjmpTableSize);
179 ///        if (%label == 0)
180 ///          emscripten_longjmp(%__THREW__.val, __threwValue);
181 ///        setTempRet0(__threwValue);
182 ///      } else {
183 ///        %label = -1;
184 ///      }
185 ///      longjmp_result = getTempRet0();
186 ///      switch label {
187 ///        label 1: goto post-setjmp BB 1
188 ///        label 2: goto post-setjmp BB 2
189 ///        ...
190 ///        default: goto splitted next BB
191 ///      }
192 ///    testSetjmp examines setjmpTable to see if there is a matching setjmp
193 ///    call. After calling an invoke wrapper, if a longjmp occurred, __THREW__
194 ///    will be the address of matching jmp_buf buffer and __threwValue be the
195 ///    second argument to longjmp. mem[__THREW__.val] is a setjmp ID that is
196 ///    stored in saveSetjmp. testSetjmp returns a setjmp label, a unique ID to
197 ///    each setjmp callsite. Label 0 means this longjmp buffer does not
198 ///    correspond to one of the setjmp callsites in this function, so in this
199 ///    case we just chain the longjmp to the caller. (Here we call
200 ///    emscripten_longjmp, which is different from emscripten_longjmp_jmpbuf.
201 ///    emscripten_longjmp_jmpbuf takes jmp_buf as its first argument, while
202 ///    emscripten_longjmp takes an int. Both of them will eventually be lowered
203 ///    to emscripten_longjmp in s2wasm, but here we need two signatures - we
204 ///    can't translate an int value to a jmp_buf.)
205 ///    Label -1 means no longjmp occurred. Otherwise we jump to the right
206 ///    post-setjmp BB based on the label.
207 ///
208 ///===----------------------------------------------------------------------===//
209 
210 #include "WebAssembly.h"
211 #include "llvm/IR/DebugInfoMetadata.h"
212 #include "llvm/IR/Dominators.h"
213 #include "llvm/IR/IRBuilder.h"
214 #include "llvm/Support/CommandLine.h"
215 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
216 #include "llvm/Transforms/Utils/SSAUpdater.h"
217 
218 using namespace llvm;
219 
220 #define DEBUG_TYPE "wasm-lower-em-ehsjlj"
221 
222 static cl::list<std::string>
223     EHWhitelist("emscripten-cxx-exceptions-whitelist",
224                 cl::desc("The list of function names in which Emscripten-style "
225                          "exception handling is enabled (see emscripten "
226                          "EMSCRIPTEN_CATCHING_WHITELIST options)"),
227                 cl::CommaSeparated);
228 
229 namespace {
230 class WebAssemblyLowerEmscriptenEHSjLj final : public ModulePass {
231   bool EnableEH;   // Enable exception handling
232   bool EnableSjLj; // Enable setjmp/longjmp handling
233 
234   GlobalVariable *ThrewGV = nullptr;
235   GlobalVariable *ThrewValueGV = nullptr;
236   Function *GetTempRet0Func = nullptr;
237   Function *SetTempRet0Func = nullptr;
238   Function *ResumeF = nullptr;
239   Function *EHTypeIDF = nullptr;
240   Function *EmLongjmpF = nullptr;
241   Function *EmLongjmpJmpbufF = nullptr;
242   Function *SaveSetjmpF = nullptr;
243   Function *TestSetjmpF = nullptr;
244 
245   // __cxa_find_matching_catch_N functions.
246   // Indexed by the number of clauses in an original landingpad instruction.
247   DenseMap<int, Function *> FindMatchingCatches;
248   // Map of <function signature string, invoke_ wrappers>
249   StringMap<Function *> InvokeWrappers;
250   // Set of whitelisted function names for exception handling
251   std::set<std::string> EHWhitelistSet;
252 
253   StringRef getPassName() const override {
254     return "WebAssembly Lower Emscripten Exceptions";
255   }
256 
257   bool runEHOnFunction(Function &F);
258   bool runSjLjOnFunction(Function &F);
259   Function *getFindMatchingCatch(Module &M, unsigned NumClauses);
260 
261   template <typename CallOrInvoke> Value *wrapInvoke(CallOrInvoke *CI);
262   void wrapTestSetjmp(BasicBlock *BB, DebugLoc DL, Value *Threw,
263                       Value *SetjmpTable, Value *SetjmpTableSize, Value *&Label,
264                       Value *&LongjmpResult, BasicBlock *&EndBB);
265   template <typename CallOrInvoke> Function *getInvokeWrapper(CallOrInvoke *CI);
266 
267   bool areAllExceptionsAllowed() const { return EHWhitelistSet.empty(); }
268   bool canLongjmp(Module &M, const Value *Callee) const;
269   bool isEmAsmCall(Module &M, const Value *Callee) const;
270 
271   void rebuildSSA(Function &F);
272 
273 public:
274   static char ID;
275 
276   WebAssemblyLowerEmscriptenEHSjLj(bool EnableEH = true, bool EnableSjLj = true)
277       : ModulePass(ID), EnableEH(EnableEH), EnableSjLj(EnableSjLj) {
278     EHWhitelistSet.insert(EHWhitelist.begin(), EHWhitelist.end());
279   }
280   bool runOnModule(Module &M) override;
281 
282   void getAnalysisUsage(AnalysisUsage &AU) const override {
283     AU.addRequired<DominatorTreeWrapperPass>();
284   }
285 };
286 } // End anonymous namespace
287 
288 char WebAssemblyLowerEmscriptenEHSjLj::ID = 0;
289 INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj, DEBUG_TYPE,
290                 "WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp",
291                 false, false)
292 
293 ModulePass *llvm::createWebAssemblyLowerEmscriptenEHSjLj(bool EnableEH,
294                                                          bool EnableSjLj) {
295   return new WebAssemblyLowerEmscriptenEHSjLj(EnableEH, EnableSjLj);
296 }
297 
298 static bool canThrow(const Value *V) {
299   if (const auto *F = dyn_cast<const Function>(V)) {
300     // Intrinsics cannot throw
301     if (F->isIntrinsic())
302       return false;
303     StringRef Name = F->getName();
304     // leave setjmp and longjmp (mostly) alone, we process them properly later
305     if (Name == "setjmp" || Name == "longjmp")
306       return false;
307     return !F->doesNotThrow();
308   }
309   // not a function, so an indirect call - can throw, we can't tell
310   return true;
311 }
312 
313 // Get a global variable with the given name.  If it doesn't exist declare it,
314 // which will generate an import and asssumes that it will exist at link time.
315 static GlobalVariable *getGlobalVariableI32(Module &M, IRBuilder<> &IRB,
316                                             const char *Name) {
317 
318   auto *GV =
319       dyn_cast<GlobalVariable>(M.getOrInsertGlobal(Name, IRB.getInt32Ty()));
320   if (!GV)
321     report_fatal_error(Twine("unable to create global: ") + Name);
322 
323   return GV;
324 }
325 
326 // Simple function name mangler.
327 // This function simply takes LLVM's string representation of parameter types
328 // and concatenate them with '_'. There are non-alphanumeric characters but llc
329 // is ok with it, and we need to postprocess these names after the lowering
330 // phase anyway.
331 static std::string getSignature(FunctionType *FTy) {
332   std::string Sig;
333   raw_string_ostream OS(Sig);
334   OS << *FTy->getReturnType();
335   for (Type *ParamTy : FTy->params())
336     OS << "_" << *ParamTy;
337   if (FTy->isVarArg())
338     OS << "_...";
339   Sig = OS.str();
340   Sig.erase(remove_if(Sig, isspace), Sig.end());
341   // When s2wasm parses .s file, a comma means the end of an argument. So a
342   // mangled function name can contain any character but a comma.
343   std::replace(Sig.begin(), Sig.end(), ',', '.');
344   return Sig;
345 }
346 
347 static Function *getEmscriptenFunction(FunctionType *Ty, const Twine &Name,
348                                        Module *M) {
349   Function* F = Function::Create(Ty, GlobalValue::ExternalLinkage, Name, M);
350   // Tell the linker that this function is expected to be imported from the
351   // 'env' module.
352   if (!F->hasFnAttribute("wasm-import-module")) {
353     llvm::AttrBuilder B;
354     B.addAttribute("wasm-import-module", "env");
355     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
356   }
357   if (!F->hasFnAttribute("wasm-import-name")) {
358     llvm::AttrBuilder B;
359     B.addAttribute("wasm-import-name", F->getName());
360     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
361   }
362   return F;
363 }
364 
365 // Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2.
366 // This is because a landingpad instruction contains two more arguments, a
367 // personality function and a cleanup bit, and __cxa_find_matching_catch_N
368 // functions are named after the number of arguments in the original landingpad
369 // instruction.
370 Function *
371 WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module &M,
372                                                        unsigned NumClauses) {
373   if (FindMatchingCatches.count(NumClauses))
374     return FindMatchingCatches[NumClauses];
375   PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext());
376   SmallVector<Type *, 16> Args(NumClauses, Int8PtrTy);
377   FunctionType *FTy = FunctionType::get(Int8PtrTy, Args, false);
378   Function *F = getEmscriptenFunction(
379       FTy, "__cxa_find_matching_catch_" + Twine(NumClauses + 2), &M);
380   FindMatchingCatches[NumClauses] = F;
381   return F;
382 }
383 
384 // Generate invoke wrapper seqence with preamble and postamble
385 // Preamble:
386 // __THREW__ = 0;
387 // Postamble:
388 // %__THREW__.val = __THREW__; __THREW__ = 0;
389 // Returns %__THREW__.val, which indicates whether an exception is thrown (or
390 // whether longjmp occurred), for future use.
391 template <typename CallOrInvoke>
392 Value *WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallOrInvoke *CI) {
393   LLVMContext &C = CI->getModule()->getContext();
394 
395   // If we are calling a function that is noreturn, we must remove that
396   // attribute. The code we insert here does expect it to return, after we
397   // catch the exception.
398   if (CI->doesNotReturn()) {
399     if (auto *F = dyn_cast<Function>(CI->getCalledValue()))
400       F->removeFnAttr(Attribute::NoReturn);
401     CI->removeAttribute(AttributeList::FunctionIndex, Attribute::NoReturn);
402   }
403 
404   IRBuilder<> IRB(C);
405   IRB.SetInsertPoint(CI);
406 
407   // Pre-invoke
408   // __THREW__ = 0;
409   IRB.CreateStore(IRB.getInt32(0), ThrewGV);
410 
411   // Invoke function wrapper in JavaScript
412   SmallVector<Value *, 16> Args;
413   // Put the pointer to the callee as first argument, so it can be called
414   // within the invoke wrapper later
415   Args.push_back(CI->getCalledValue());
416   Args.append(CI->arg_begin(), CI->arg_end());
417   CallInst *NewCall = IRB.CreateCall(getInvokeWrapper(CI), Args);
418   NewCall->takeName(CI);
419   NewCall->setCallingConv(CallingConv::WASM_EmscriptenInvoke);
420   NewCall->setDebugLoc(CI->getDebugLoc());
421 
422   // Because we added the pointer to the callee as first argument, all
423   // argument attribute indices have to be incremented by one.
424   SmallVector<AttributeSet, 8> ArgAttributes;
425   const AttributeList &InvokeAL = CI->getAttributes();
426 
427   // No attributes for the callee pointer.
428   ArgAttributes.push_back(AttributeSet());
429   // Copy the argument attributes from the original
430   for (unsigned I = 0, E = CI->getNumArgOperands(); I < E; ++I)
431     ArgAttributes.push_back(InvokeAL.getParamAttributes(I));
432 
433   AttrBuilder FnAttrs(InvokeAL.getFnAttributes());
434   if (FnAttrs.contains(Attribute::AllocSize)) {
435     // The allocsize attribute (if any) referes to parameters by index and needs
436     // to be adjusted.
437     unsigned SizeArg;
438     Optional<unsigned> NEltArg;
439     std::tie(SizeArg, NEltArg) = FnAttrs.getAllocSizeArgs();
440     SizeArg += 1;
441     if (NEltArg.hasValue())
442       NEltArg = NEltArg.getValue() + 1;
443     FnAttrs.addAllocSizeAttr(SizeArg, NEltArg);
444   }
445 
446   // Reconstruct the AttributesList based on the vector we constructed.
447   AttributeList NewCallAL =
448       AttributeList::get(C, AttributeSet::get(C, FnAttrs),
449                          InvokeAL.getRetAttributes(), ArgAttributes);
450   NewCall->setAttributes(NewCallAL);
451 
452   CI->replaceAllUsesWith(NewCall);
453 
454   // Post-invoke
455   // %__THREW__.val = __THREW__; __THREW__ = 0;
456   Value *Threw =
457       IRB.CreateLoad(IRB.getInt32Ty(), ThrewGV, ThrewGV->getName() + ".val");
458   IRB.CreateStore(IRB.getInt32(0), ThrewGV);
459   return Threw;
460 }
461 
462 // Get matching invoke wrapper based on callee signature
463 template <typename CallOrInvoke>
464 Function *WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallOrInvoke *CI) {
465   Module *M = CI->getModule();
466   SmallVector<Type *, 16> ArgTys;
467   Value *Callee = CI->getCalledValue();
468   FunctionType *CalleeFTy;
469   if (auto *F = dyn_cast<Function>(Callee))
470     CalleeFTy = F->getFunctionType();
471   else {
472     auto *CalleeTy = cast<PointerType>(Callee->getType())->getElementType();
473     CalleeFTy = cast<FunctionType>(CalleeTy);
474   }
475 
476   std::string Sig = getSignature(CalleeFTy);
477   if (InvokeWrappers.find(Sig) != InvokeWrappers.end())
478     return InvokeWrappers[Sig];
479 
480   // Put the pointer to the callee as first argument
481   ArgTys.push_back(PointerType::getUnqual(CalleeFTy));
482   // Add argument types
483   ArgTys.append(CalleeFTy->param_begin(), CalleeFTy->param_end());
484 
485   FunctionType *FTy = FunctionType::get(CalleeFTy->getReturnType(), ArgTys,
486                                         CalleeFTy->isVarArg());
487   Function *F = getEmscriptenFunction(FTy, "__invoke_" + Sig, M);
488   InvokeWrappers[Sig] = F;
489   return F;
490 }
491 
492 bool WebAssemblyLowerEmscriptenEHSjLj::canLongjmp(Module &M,
493                                                   const Value *Callee) const {
494   if (auto *CalleeF = dyn_cast<Function>(Callee))
495     if (CalleeF->isIntrinsic())
496       return false;
497 
498   // Attempting to transform inline assembly will result in something like:
499   //     call void @__invoke_void(void ()* asm ...)
500   // which is invalid because inline assembly blocks do not have addresses
501   // and can't be passed by pointer. The result is a crash with illegal IR.
502   if (isa<InlineAsm>(Callee))
503     return false;
504   StringRef CalleeName = Callee->getName();
505 
506   // The reason we include malloc/free here is to exclude the malloc/free
507   // calls generated in setjmp prep / cleanup routines.
508   if (CalleeName == "setjmp" || CalleeName == "malloc" || CalleeName == "free")
509     return false;
510 
511   // There are functions in JS glue code
512   if (CalleeName == "__resumeException" || CalleeName == "llvm_eh_typeid_for" ||
513       CalleeName == "saveSetjmp" || CalleeName == "testSetjmp" ||
514       CalleeName == "getTempRet0" || CalleeName == "setTempRet0")
515     return false;
516 
517   // __cxa_find_matching_catch_N functions cannot longjmp
518   if (Callee->getName().startswith("__cxa_find_matching_catch_"))
519     return false;
520 
521   // Exception-catching related functions
522   if (CalleeName == "__cxa_begin_catch" || CalleeName == "__cxa_end_catch" ||
523       CalleeName == "__cxa_allocate_exception" || CalleeName == "__cxa_throw" ||
524       CalleeName == "__clang_call_terminate")
525     return false;
526 
527   // Otherwise we don't know
528   return true;
529 }
530 
531 bool WebAssemblyLowerEmscriptenEHSjLj::isEmAsmCall(Module &M,
532                                                    const Value *Callee) const {
533   StringRef CalleeName = Callee->getName();
534   // This is an exhaustive list from Emscripten's <emscripten/em_asm.h>.
535   return CalleeName == "emscripten_asm_const_int" ||
536          CalleeName == "emscripten_asm_const_double" ||
537          CalleeName == "emscripten_asm_const_int_sync_on_main_thread" ||
538          CalleeName == "emscripten_asm_const_double_sync_on_main_thread" ||
539          CalleeName == "emscripten_asm_const_async_on_main_thread";
540 }
541 
542 // Generate testSetjmp function call seqence with preamble and postamble.
543 // The code this generates is equivalent to the following JavaScript code:
544 // if (%__THREW__.val != 0 & threwValue != 0) {
545 //   %label = _testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize);
546 //   if (%label == 0)
547 //     emscripten_longjmp(%__THREW__.val, threwValue);
548 //   setTempRet0(threwValue);
549 // } else {
550 //   %label = -1;
551 // }
552 // %longjmp_result = getTempRet0();
553 //
554 // As output parameters. returns %label, %longjmp_result, and the BB the last
555 // instruction (%longjmp_result = ...) is in.
556 void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp(
557     BasicBlock *BB, DebugLoc DL, Value *Threw, Value *SetjmpTable,
558     Value *SetjmpTableSize, Value *&Label, Value *&LongjmpResult,
559     BasicBlock *&EndBB) {
560   Function *F = BB->getParent();
561   LLVMContext &C = BB->getModule()->getContext();
562   IRBuilder<> IRB(C);
563   IRB.SetCurrentDebugLocation(DL);
564 
565   // if (%__THREW__.val != 0 & threwValue != 0)
566   IRB.SetInsertPoint(BB);
567   BasicBlock *ThenBB1 = BasicBlock::Create(C, "if.then1", F);
568   BasicBlock *ElseBB1 = BasicBlock::Create(C, "if.else1", F);
569   BasicBlock *EndBB1 = BasicBlock::Create(C, "if.end", F);
570   Value *ThrewCmp = IRB.CreateICmpNE(Threw, IRB.getInt32(0));
571   Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV,
572                                      ThrewValueGV->getName() + ".val");
573   Value *ThrewValueCmp = IRB.CreateICmpNE(ThrewValue, IRB.getInt32(0));
574   Value *Cmp1 = IRB.CreateAnd(ThrewCmp, ThrewValueCmp, "cmp1");
575   IRB.CreateCondBr(Cmp1, ThenBB1, ElseBB1);
576 
577   // %label = _testSetjmp(mem[%__THREW__.val], _setjmpTable, _setjmpTableSize);
578   // if (%label == 0)
579   IRB.SetInsertPoint(ThenBB1);
580   BasicBlock *ThenBB2 = BasicBlock::Create(C, "if.then2", F);
581   BasicBlock *EndBB2 = BasicBlock::Create(C, "if.end2", F);
582   Value *ThrewInt = IRB.CreateIntToPtr(Threw, Type::getInt32PtrTy(C),
583                                        Threw->getName() + ".i32p");
584   Value *LoadedThrew = IRB.CreateLoad(IRB.getInt32Ty(), ThrewInt,
585                                       ThrewInt->getName() + ".loaded");
586   Value *ThenLabel = IRB.CreateCall(
587       TestSetjmpF, {LoadedThrew, SetjmpTable, SetjmpTableSize}, "label");
588   Value *Cmp2 = IRB.CreateICmpEQ(ThenLabel, IRB.getInt32(0));
589   IRB.CreateCondBr(Cmp2, ThenBB2, EndBB2);
590 
591   // emscripten_longjmp(%__THREW__.val, threwValue);
592   IRB.SetInsertPoint(ThenBB2);
593   IRB.CreateCall(EmLongjmpF, {Threw, ThrewValue});
594   IRB.CreateUnreachable();
595 
596   // setTempRet0(threwValue);
597   IRB.SetInsertPoint(EndBB2);
598   IRB.CreateCall(SetTempRet0Func, ThrewValue);
599   IRB.CreateBr(EndBB1);
600 
601   IRB.SetInsertPoint(ElseBB1);
602   IRB.CreateBr(EndBB1);
603 
604   // longjmp_result = getTempRet0();
605   IRB.SetInsertPoint(EndBB1);
606   PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label");
607   LabelPHI->addIncoming(ThenLabel, EndBB2);
608 
609   LabelPHI->addIncoming(IRB.getInt32(-1), ElseBB1);
610 
611   // Output parameter assignment
612   Label = LabelPHI;
613   EndBB = EndBB1;
614   LongjmpResult = IRB.CreateCall(GetTempRet0Func, None, "longjmp_result");
615 }
616 
617 void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function &F) {
618   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
619   DT.recalculate(F); // CFG has been changed
620   SSAUpdater SSA;
621   for (BasicBlock &BB : F) {
622     for (Instruction &I : BB) {
623       SSA.Initialize(I.getType(), I.getName());
624       SSA.AddAvailableValue(&BB, &I);
625       for (auto UI = I.use_begin(), UE = I.use_end(); UI != UE;) {
626         Use &U = *UI;
627         ++UI;
628         auto *User = cast<Instruction>(U.getUser());
629         if (auto *UserPN = dyn_cast<PHINode>(User))
630           if (UserPN->getIncomingBlock(U) == &BB)
631             continue;
632 
633         if (DT.dominates(&I, User))
634           continue;
635         SSA.RewriteUseAfterInsertions(U);
636       }
637     }
638   }
639 }
640 
641 bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module &M) {
642   LLVM_DEBUG(dbgs() << "********** Lower Emscripten EH & SjLj **********\n");
643 
644   LLVMContext &C = M.getContext();
645   IRBuilder<> IRB(C);
646 
647   Function *SetjmpF = M.getFunction("setjmp");
648   Function *LongjmpF = M.getFunction("longjmp");
649   bool SetjmpUsed = SetjmpF && !SetjmpF->use_empty();
650   bool LongjmpUsed = LongjmpF && !LongjmpF->use_empty();
651   bool DoSjLj = EnableSjLj && (SetjmpUsed || LongjmpUsed);
652 
653   // Declare (or get) global variables __THREW__, __threwValue, and
654   // getTempRet0/setTempRet0 function which are used in common for both
655   // exception handling and setjmp/longjmp handling
656   ThrewGV = getGlobalVariableI32(M, IRB, "__THREW__");
657   ThrewValueGV = getGlobalVariableI32(M, IRB, "__threwValue");
658   GetTempRet0Func = getEmscriptenFunction(
659       FunctionType::get(IRB.getInt32Ty(), false), "getTempRet0", &M);
660   SetTempRet0Func = getEmscriptenFunction(
661       FunctionType::get(IRB.getVoidTy(), IRB.getInt32Ty(), false),
662       "setTempRet0", &M);
663   GetTempRet0Func->setDoesNotThrow();
664   SetTempRet0Func->setDoesNotThrow();
665 
666   bool Changed = false;
667 
668   // Exception handling
669   if (EnableEH) {
670     // Register __resumeException function
671     FunctionType *ResumeFTy =
672         FunctionType::get(IRB.getVoidTy(), IRB.getInt8PtrTy(), false);
673     ResumeF = getEmscriptenFunction(ResumeFTy, "__resumeException", &M);
674 
675     // Register llvm_eh_typeid_for function
676     FunctionType *EHTypeIDTy =
677         FunctionType::get(IRB.getInt32Ty(), IRB.getInt8PtrTy(), false);
678     EHTypeIDF = getEmscriptenFunction(EHTypeIDTy, "llvm_eh_typeid_for", &M);
679 
680     for (Function &F : M) {
681       if (F.isDeclaration())
682         continue;
683       Changed |= runEHOnFunction(F);
684     }
685   }
686 
687   // Setjmp/longjmp handling
688   if (DoSjLj) {
689     Changed = true; // We have setjmp or longjmp somewhere
690 
691     if (LongjmpF) {
692       // Replace all uses of longjmp with emscripten_longjmp_jmpbuf, which is
693       // defined in JS code
694       EmLongjmpJmpbufF = getEmscriptenFunction(LongjmpF->getFunctionType(),
695                                                "emscripten_longjmp_jmpbuf", &M);
696       LongjmpF->replaceAllUsesWith(EmLongjmpJmpbufF);
697     }
698 
699     if (SetjmpF) {
700       // Register saveSetjmp function
701       FunctionType *SetjmpFTy = SetjmpF->getFunctionType();
702       FunctionType *FTy =
703           FunctionType::get(Type::getInt32PtrTy(C),
704                             {SetjmpFTy->getParamType(0), IRB.getInt32Ty(),
705                              Type::getInt32PtrTy(C), IRB.getInt32Ty()},
706                             false);
707       SaveSetjmpF = getEmscriptenFunction(FTy, "saveSetjmp", &M);
708 
709       // Register testSetjmp function
710       FTy = FunctionType::get(
711           IRB.getInt32Ty(),
712           {IRB.getInt32Ty(), Type::getInt32PtrTy(C), IRB.getInt32Ty()}, false);
713       TestSetjmpF = getEmscriptenFunction(FTy, "testSetjmp", &M);
714 
715       FTy = FunctionType::get(IRB.getVoidTy(),
716                               {IRB.getInt32Ty(), IRB.getInt32Ty()}, false);
717       EmLongjmpF = getEmscriptenFunction(FTy, "emscripten_longjmp", &M);
718 
719       // Only traverse functions that uses setjmp in order not to insert
720       // unnecessary prep / cleanup code in every function
721       SmallPtrSet<Function *, 8> SetjmpUsers;
722       for (User *U : SetjmpF->users()) {
723         auto *UI = cast<Instruction>(U);
724         SetjmpUsers.insert(UI->getFunction());
725       }
726       for (Function *F : SetjmpUsers)
727         runSjLjOnFunction(*F);
728     }
729   }
730 
731   if (!Changed) {
732     // Delete unused global variables and functions
733     if (ResumeF)
734       ResumeF->eraseFromParent();
735     if (EHTypeIDF)
736       EHTypeIDF->eraseFromParent();
737     if (EmLongjmpF)
738       EmLongjmpF->eraseFromParent();
739     if (SaveSetjmpF)
740       SaveSetjmpF->eraseFromParent();
741     if (TestSetjmpF)
742       TestSetjmpF->eraseFromParent();
743     return false;
744   }
745 
746   return true;
747 }
748 
749 bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function &F) {
750   Module &M = *F.getParent();
751   LLVMContext &C = F.getContext();
752   IRBuilder<> IRB(C);
753   bool Changed = false;
754   SmallVector<Instruction *, 64> ToErase;
755   SmallPtrSet<LandingPadInst *, 32> LandingPads;
756   bool AllowExceptions = areAllExceptionsAllowed() ||
757                          EHWhitelistSet.count(std::string(F.getName()));
758 
759   for (BasicBlock &BB : F) {
760     auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
761     if (!II)
762       continue;
763     Changed = true;
764     LandingPads.insert(II->getLandingPadInst());
765     IRB.SetInsertPoint(II);
766 
767     bool NeedInvoke = AllowExceptions && canThrow(II->getCalledValue());
768     if (NeedInvoke) {
769       // Wrap invoke with invoke wrapper and generate preamble/postamble
770       Value *Threw = wrapInvoke(II);
771       ToErase.push_back(II);
772 
773       // Insert a branch based on __THREW__ variable
774       Value *Cmp = IRB.CreateICmpEQ(Threw, IRB.getInt32(1), "cmp");
775       IRB.CreateCondBr(Cmp, II->getUnwindDest(), II->getNormalDest());
776 
777     } else {
778       // This can't throw, and we don't need this invoke, just replace it with a
779       // call+branch
780       SmallVector<Value *, 16> Args(II->arg_begin(), II->arg_end());
781       CallInst *NewCall =
782           IRB.CreateCall(II->getFunctionType(), II->getCalledValue(), Args);
783       NewCall->takeName(II);
784       NewCall->setCallingConv(II->getCallingConv());
785       NewCall->setDebugLoc(II->getDebugLoc());
786       NewCall->setAttributes(II->getAttributes());
787       II->replaceAllUsesWith(NewCall);
788       ToErase.push_back(II);
789 
790       IRB.CreateBr(II->getNormalDest());
791 
792       // Remove any PHI node entries from the exception destination
793       II->getUnwindDest()->removePredecessor(&BB);
794     }
795   }
796 
797   // Process resume instructions
798   for (BasicBlock &BB : F) {
799     // Scan the body of the basic block for resumes
800     for (Instruction &I : BB) {
801       auto *RI = dyn_cast<ResumeInst>(&I);
802       if (!RI)
803         continue;
804       Changed = true;
805 
806       // Split the input into legal values
807       Value *Input = RI->getValue();
808       IRB.SetInsertPoint(RI);
809       Value *Low = IRB.CreateExtractValue(Input, 0, "low");
810       // Create a call to __resumeException function
811       IRB.CreateCall(ResumeF, {Low});
812       // Add a terminator to the block
813       IRB.CreateUnreachable();
814       ToErase.push_back(RI);
815     }
816   }
817 
818   // Process llvm.eh.typeid.for intrinsics
819   for (BasicBlock &BB : F) {
820     for (Instruction &I : BB) {
821       auto *CI = dyn_cast<CallInst>(&I);
822       if (!CI)
823         continue;
824       const Function *Callee = CI->getCalledFunction();
825       if (!Callee)
826         continue;
827       if (Callee->getIntrinsicID() != Intrinsic::eh_typeid_for)
828         continue;
829       Changed = true;
830 
831       IRB.SetInsertPoint(CI);
832       CallInst *NewCI =
833           IRB.CreateCall(EHTypeIDF, CI->getArgOperand(0), "typeid");
834       CI->replaceAllUsesWith(NewCI);
835       ToErase.push_back(CI);
836     }
837   }
838 
839   // Look for orphan landingpads, can occur in blocks with no predecessors
840   for (BasicBlock &BB : F) {
841     Instruction *I = BB.getFirstNonPHI();
842     if (auto *LPI = dyn_cast<LandingPadInst>(I))
843       LandingPads.insert(LPI);
844   }
845   Changed |= !LandingPads.empty();
846 
847   // Handle all the landingpad for this function together, as multiple invokes
848   // may share a single lp
849   for (LandingPadInst *LPI : LandingPads) {
850     IRB.SetInsertPoint(LPI);
851     SmallVector<Value *, 16> FMCArgs;
852     for (unsigned I = 0, E = LPI->getNumClauses(); I < E; ++I) {
853       Constant *Clause = LPI->getClause(I);
854       // As a temporary workaround for the lack of aggregate varargs support
855       // in the interface between JS and wasm, break out filter operands into
856       // their component elements.
857       if (LPI->isFilter(I)) {
858         auto *ATy = cast<ArrayType>(Clause->getType());
859         for (unsigned J = 0, E = ATy->getNumElements(); J < E; ++J) {
860           Value *EV = IRB.CreateExtractValue(Clause, makeArrayRef(J), "filter");
861           FMCArgs.push_back(EV);
862         }
863       } else
864         FMCArgs.push_back(Clause);
865     }
866 
867     // Create a call to __cxa_find_matching_catch_N function
868     Function *FMCF = getFindMatchingCatch(M, FMCArgs.size());
869     CallInst *FMCI = IRB.CreateCall(FMCF, FMCArgs, "fmc");
870     Value *Undef = UndefValue::get(LPI->getType());
871     Value *Pair0 = IRB.CreateInsertValue(Undef, FMCI, 0, "pair0");
872     Value *TempRet0 = IRB.CreateCall(GetTempRet0Func, None, "tempret0");
873     Value *Pair1 = IRB.CreateInsertValue(Pair0, TempRet0, 1, "pair1");
874 
875     LPI->replaceAllUsesWith(Pair1);
876     ToErase.push_back(LPI);
877   }
878 
879   // Erase everything we no longer need in this function
880   for (Instruction *I : ToErase)
881     I->eraseFromParent();
882 
883   return Changed;
884 }
885 
886 // This tries to get debug info from the instruction before which a new
887 // instruction will be inserted, and if there's no debug info in that
888 // instruction, tries to get the info instead from the previous instruction (if
889 // any). If none of these has debug info and a DISubprogram is provided, it
890 // creates a dummy debug info with the first line of the function, because IR
891 // verifier requires all inlinable callsites should have debug info when both a
892 // caller and callee have DISubprogram. If none of these conditions are met,
893 // returns empty info.
894 static DebugLoc getOrCreateDebugLoc(const Instruction *InsertBefore,
895                                     DISubprogram *SP) {
896   assert(InsertBefore);
897   if (InsertBefore->getDebugLoc())
898     return InsertBefore->getDebugLoc();
899   const Instruction *Prev = InsertBefore->getPrevNode();
900   if (Prev && Prev->getDebugLoc())
901     return Prev->getDebugLoc();
902   if (SP)
903     return DILocation::get(SP->getContext(), SP->getLine(), 1, SP);
904   return DebugLoc();
905 }
906 
907 bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function &F) {
908   Module &M = *F.getParent();
909   LLVMContext &C = F.getContext();
910   IRBuilder<> IRB(C);
911   SmallVector<Instruction *, 64> ToErase;
912   // Vector of %setjmpTable values
913   std::vector<Instruction *> SetjmpTableInsts;
914   // Vector of %setjmpTableSize values
915   std::vector<Instruction *> SetjmpTableSizeInsts;
916 
917   // Setjmp preparation
918 
919   // This instruction effectively means %setjmpTableSize = 4.
920   // We create this as an instruction intentionally, and we don't want to fold
921   // this instruction to a constant 4, because this value will be used in
922   // SSAUpdater.AddAvailableValue(...) later.
923   BasicBlock &EntryBB = F.getEntryBlock();
924   DebugLoc FirstDL = getOrCreateDebugLoc(&*EntryBB.begin(), F.getSubprogram());
925   BinaryOperator *SetjmpTableSize = BinaryOperator::Create(
926       Instruction::Add, IRB.getInt32(4), IRB.getInt32(0), "setjmpTableSize",
927       &*EntryBB.getFirstInsertionPt());
928   SetjmpTableSize->setDebugLoc(FirstDL);
929   // setjmpTable = (int *) malloc(40);
930   Instruction *SetjmpTable = CallInst::CreateMalloc(
931       SetjmpTableSize, IRB.getInt32Ty(), IRB.getInt32Ty(), IRB.getInt32(40),
932       nullptr, nullptr, "setjmpTable");
933   SetjmpTable->setDebugLoc(FirstDL);
934   // CallInst::CreateMalloc may return a bitcast instruction if the result types
935   // mismatch. We need to set the debug loc for the original call too.
936   auto *MallocCall = SetjmpTable->stripPointerCasts();
937   if (auto *MallocCallI = dyn_cast<Instruction>(MallocCall)) {
938     MallocCallI->setDebugLoc(FirstDL);
939   }
940   // setjmpTable[0] = 0;
941   IRB.SetInsertPoint(SetjmpTableSize);
942   IRB.CreateStore(IRB.getInt32(0), SetjmpTable);
943   SetjmpTableInsts.push_back(SetjmpTable);
944   SetjmpTableSizeInsts.push_back(SetjmpTableSize);
945 
946   // Setjmp transformation
947   std::vector<PHINode *> SetjmpRetPHIs;
948   Function *SetjmpF = M.getFunction("setjmp");
949   for (User *U : SetjmpF->users()) {
950     auto *CI = dyn_cast<CallInst>(U);
951     if (!CI)
952       report_fatal_error("Does not support indirect calls to setjmp");
953 
954     BasicBlock *BB = CI->getParent();
955     if (BB->getParent() != &F) // in other function
956       continue;
957 
958     // The tail is everything right after the call, and will be reached once
959     // when setjmp is called, and later when longjmp returns to the setjmp
960     BasicBlock *Tail = SplitBlock(BB, CI->getNextNode());
961     // Add a phi to the tail, which will be the output of setjmp, which
962     // indicates if this is the first call or a longjmp back. The phi directly
963     // uses the right value based on where we arrive from
964     IRB.SetInsertPoint(Tail->getFirstNonPHI());
965     PHINode *SetjmpRet = IRB.CreatePHI(IRB.getInt32Ty(), 2, "setjmp.ret");
966 
967     // setjmp initial call returns 0
968     SetjmpRet->addIncoming(IRB.getInt32(0), BB);
969     // The proper output is now this, not the setjmp call itself
970     CI->replaceAllUsesWith(SetjmpRet);
971     // longjmp returns to the setjmp will add themselves to this phi
972     SetjmpRetPHIs.push_back(SetjmpRet);
973 
974     // Fix call target
975     // Our index in the function is our place in the array + 1 to avoid index
976     // 0, because index 0 means the longjmp is not ours to handle.
977     IRB.SetInsertPoint(CI);
978     Value *Args[] = {CI->getArgOperand(0), IRB.getInt32(SetjmpRetPHIs.size()),
979                      SetjmpTable, SetjmpTableSize};
980     Instruction *NewSetjmpTable =
981         IRB.CreateCall(SaveSetjmpF, Args, "setjmpTable");
982     Instruction *NewSetjmpTableSize =
983         IRB.CreateCall(GetTempRet0Func, None, "setjmpTableSize");
984     SetjmpTableInsts.push_back(NewSetjmpTable);
985     SetjmpTableSizeInsts.push_back(NewSetjmpTableSize);
986     ToErase.push_back(CI);
987   }
988 
989   // Update each call that can longjmp so it can return to a setjmp where
990   // relevant.
991 
992   // Because we are creating new BBs while processing and don't want to make
993   // all these newly created BBs candidates again for longjmp processing, we
994   // first make the vector of candidate BBs.
995   std::vector<BasicBlock *> BBs;
996   for (BasicBlock &BB : F)
997     BBs.push_back(&BB);
998 
999   // BBs.size() will change within the loop, so we query it every time
1000   for (unsigned I = 0; I < BBs.size(); I++) {
1001     BasicBlock *BB = BBs[I];
1002     for (Instruction &I : *BB) {
1003       assert(!isa<InvokeInst>(&I));
1004       auto *CI = dyn_cast<CallInst>(&I);
1005       if (!CI)
1006         continue;
1007 
1008       const Value *Callee = CI->getCalledValue();
1009       if (!canLongjmp(M, Callee))
1010         continue;
1011       if (isEmAsmCall(M, Callee))
1012         report_fatal_error("Cannot use EM_ASM* alongside setjmp/longjmp in " +
1013                                F.getName() +
1014                                ". Please consider using EM_JS, or move the "
1015                                "EM_ASM into another function.",
1016                            false);
1017 
1018       Value *Threw = nullptr;
1019       BasicBlock *Tail;
1020       if (Callee->getName().startswith("__invoke_")) {
1021         // If invoke wrapper has already been generated for this call in
1022         // previous EH phase, search for the load instruction
1023         // %__THREW__.val = __THREW__;
1024         // in postamble after the invoke wrapper call
1025         LoadInst *ThrewLI = nullptr;
1026         StoreInst *ThrewResetSI = nullptr;
1027         for (auto I = std::next(BasicBlock::iterator(CI)), IE = BB->end();
1028              I != IE; ++I) {
1029           if (auto *LI = dyn_cast<LoadInst>(I))
1030             if (auto *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()))
1031               if (GV == ThrewGV) {
1032                 Threw = ThrewLI = LI;
1033                 break;
1034               }
1035         }
1036         // Search for the store instruction after the load above
1037         // __THREW__ = 0;
1038         for (auto I = std::next(BasicBlock::iterator(ThrewLI)), IE = BB->end();
1039              I != IE; ++I) {
1040           if (auto *SI = dyn_cast<StoreInst>(I))
1041             if (auto *GV = dyn_cast<GlobalVariable>(SI->getPointerOperand()))
1042               if (GV == ThrewGV && SI->getValueOperand() == IRB.getInt32(0)) {
1043                 ThrewResetSI = SI;
1044                 break;
1045               }
1046         }
1047         assert(Threw && ThrewLI && "Cannot find __THREW__ load after invoke");
1048         assert(ThrewResetSI && "Cannot find __THREW__ store after invoke");
1049         Tail = SplitBlock(BB, ThrewResetSI->getNextNode());
1050 
1051       } else {
1052         // Wrap call with invoke wrapper and generate preamble/postamble
1053         Threw = wrapInvoke(CI);
1054         ToErase.push_back(CI);
1055         Tail = SplitBlock(BB, CI->getNextNode());
1056       }
1057 
1058       // We need to replace the terminator in Tail - SplitBlock makes BB go
1059       // straight to Tail, we need to check if a longjmp occurred, and go to the
1060       // right setjmp-tail if so
1061       ToErase.push_back(BB->getTerminator());
1062 
1063       // Generate a function call to testSetjmp function and preamble/postamble
1064       // code to figure out (1) whether longjmp occurred (2) if longjmp
1065       // occurred, which setjmp it corresponds to
1066       Value *Label = nullptr;
1067       Value *LongjmpResult = nullptr;
1068       BasicBlock *EndBB = nullptr;
1069       wrapTestSetjmp(BB, CI->getDebugLoc(), Threw, SetjmpTable, SetjmpTableSize,
1070                      Label, LongjmpResult, EndBB);
1071       assert(Label && LongjmpResult && EndBB);
1072 
1073       // Create switch instruction
1074       IRB.SetInsertPoint(EndBB);
1075       IRB.SetCurrentDebugLocation(EndBB->getInstList().back().getDebugLoc());
1076       SwitchInst *SI = IRB.CreateSwitch(Label, Tail, SetjmpRetPHIs.size());
1077       // -1 means no longjmp happened, continue normally (will hit the default
1078       // switch case). 0 means a longjmp that is not ours to handle, needs a
1079       // rethrow. Otherwise the index is the same as the index in P+1 (to avoid
1080       // 0).
1081       for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) {
1082         SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent());
1083         SetjmpRetPHIs[I]->addIncoming(LongjmpResult, EndBB);
1084       }
1085 
1086       // We are splitting the block here, and must continue to find other calls
1087       // in the block - which is now split. so continue to traverse in the Tail
1088       BBs.push_back(Tail);
1089     }
1090   }
1091 
1092   // Erase everything we no longer need in this function
1093   for (Instruction *I : ToErase)
1094     I->eraseFromParent();
1095 
1096   // Free setjmpTable buffer before each return instruction
1097   for (BasicBlock &BB : F) {
1098     Instruction *TI = BB.getTerminator();
1099     if (isa<ReturnInst>(TI)) {
1100       DebugLoc DL = getOrCreateDebugLoc(TI, F.getSubprogram());
1101       auto *Free = CallInst::CreateFree(SetjmpTable, TI);
1102       Free->setDebugLoc(DL);
1103       // CallInst::CreateFree may create a bitcast instruction if its argument
1104       // types mismatch. We need to set the debug loc for the bitcast too.
1105       if (auto *FreeCallI = dyn_cast<CallInst>(Free)) {
1106         if (auto *BitCastI = dyn_cast<BitCastInst>(FreeCallI->getArgOperand(0)))
1107           BitCastI->setDebugLoc(DL);
1108       }
1109     }
1110   }
1111 
1112   // Every call to saveSetjmp can change setjmpTable and setjmpTableSize
1113   // (when buffer reallocation occurs)
1114   // entry:
1115   //   setjmpTableSize = 4;
1116   //   setjmpTable = (int *) malloc(40);
1117   //   setjmpTable[0] = 0;
1118   // ...
1119   // somebb:
1120   //   setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize);
1121   //   setjmpTableSize = getTempRet0();
1122   // So we need to make sure the SSA for these variables is valid so that every
1123   // saveSetjmp and testSetjmp calls have the correct arguments.
1124   SSAUpdater SetjmpTableSSA;
1125   SSAUpdater SetjmpTableSizeSSA;
1126   SetjmpTableSSA.Initialize(Type::getInt32PtrTy(C), "setjmpTable");
1127   SetjmpTableSizeSSA.Initialize(Type::getInt32Ty(C), "setjmpTableSize");
1128   for (Instruction *I : SetjmpTableInsts)
1129     SetjmpTableSSA.AddAvailableValue(I->getParent(), I);
1130   for (Instruction *I : SetjmpTableSizeInsts)
1131     SetjmpTableSizeSSA.AddAvailableValue(I->getParent(), I);
1132 
1133   for (auto UI = SetjmpTable->use_begin(), UE = SetjmpTable->use_end();
1134        UI != UE;) {
1135     // Grab the use before incrementing the iterator.
1136     Use &U = *UI;
1137     // Increment the iterator before removing the use from the list.
1138     ++UI;
1139     if (auto *I = dyn_cast<Instruction>(U.getUser()))
1140       if (I->getParent() != &EntryBB)
1141         SetjmpTableSSA.RewriteUse(U);
1142   }
1143   for (auto UI = SetjmpTableSize->use_begin(), UE = SetjmpTableSize->use_end();
1144        UI != UE;) {
1145     Use &U = *UI;
1146     ++UI;
1147     if (auto *I = dyn_cast<Instruction>(U.getUser()))
1148       if (I->getParent() != &EntryBB)
1149         SetjmpTableSizeSSA.RewriteUse(U);
1150   }
1151 
1152   // Finally, our modifications to the cfg can break dominance of SSA variables.
1153   // For example, in this code,
1154   // if (x()) { .. setjmp() .. }
1155   // if (y()) { .. longjmp() .. }
1156   // We must split the longjmp block, and it can jump into the block splitted
1157   // from setjmp one. But that means that when we split the setjmp block, it's
1158   // first part no longer dominates its second part - there is a theoretically
1159   // possible control flow path where x() is false, then y() is true and we
1160   // reach the second part of the setjmp block, without ever reaching the first
1161   // part. So, we rebuild SSA form here.
1162   rebuildSSA(F);
1163   return true;
1164 }
1165