1 //=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file lowers exception-related instructions and setjmp/longjmp
11 /// function calls in order to use Emscripten's JavaScript try and catch
12 /// mechanism.
13 ///
14 /// To handle exceptions and setjmp/longjmps, this scheme relies on JavaScript's
15 /// try and catch syntax and relevant exception-related libraries implemented
16 /// in JavaScript glue code that will be produced by Emscripten. This is similar
17 /// to the current Emscripten asm.js exception handling in fastcomp. For
18 /// fastcomp's EH / SjLj scheme, see these files in fastcomp LLVM branch:
19 /// (Location: https://github.com/kripken/emscripten-fastcomp)
20 /// lib/Target/JSBackend/NaCl/LowerEmExceptionsPass.cpp
21 /// lib/Target/JSBackend/NaCl/LowerEmSetjmp.cpp
22 /// lib/Target/JSBackend/JSBackend.cpp
23 /// lib/Target/JSBackend/CallHandlers.h
24 ///
25 /// * Exception handling
26 /// This pass lowers invokes and landingpads into library functions in JS glue
27 /// code. Invokes are lowered into function wrappers called invoke wrappers that
28 /// exist in JS side, which wraps the original function call with JS try-catch.
29 /// If an exception occurred, cxa_throw() function in JS side sets some
30 /// variables (see below) so we can check whether an exception occurred from
31 /// wasm code and handle it appropriately.
32 ///
33 /// * Setjmp-longjmp handling
34 /// This pass lowers setjmp to a reasonably-performant approach for emscripten.
35 /// The idea is that each block with a setjmp is broken up into two parts: the
36 /// part containing setjmp and the part right after the setjmp. The latter part
37 /// is either reached from the setjmp, or later from a longjmp. To handle the
38 /// longjmp, all calls that might longjmp are also called using invoke wrappers
39 /// and thus JS / try-catch. JS longjmp() function also sets some variables so
40 /// we can check / whether a longjmp occurred from wasm code. Each block with a
41 /// function call that might longjmp is also split up after the longjmp call.
42 /// After the longjmp call, we check whether a longjmp occurred, and if it did,
43 /// which setjmp it corresponds to, and jump to the right post-setjmp block.
44 /// We assume setjmp-longjmp handling always run after EH handling, which means
45 /// we don't expect any exception-related instructions when SjLj runs.
46 /// FIXME Currently this scheme does not support indirect call of setjmp,
47 /// because of the limitation of the scheme itself. fastcomp does not support it
48 /// either.
49 ///
50 /// In detail, this pass does following things:
51 ///
52 /// 1) Assumes the existence of global variables: __THREW__, __threwValue
53 ///    __THREW__ and __threwValue will be set in invoke wrappers
54 ///    in JS glue code. For what invoke wrappers are, refer to 3). These
55 ///    variables are used for both exceptions and setjmp/longjmps.
56 ///    __THREW__ indicates whether an exception or a longjmp occurred or not. 0
57 ///    means nothing occurred, 1 means an exception occurred, and other numbers
58 ///    mean a longjmp occurred. In the case of longjmp, __threwValue variable
59 ///    indicates the corresponding setjmp buffer the longjmp corresponds to.
60 ///
61 /// * Exception handling
62 ///
63 /// 2) We assume the existence of setThrew and setTempRet0/getTempRet0 functions
64 ///    at link time.
65 ///    The global variables in 1) will exist in wasm address space,
66 ///    but their values should be set in JS code, so these functions
67 ///    as interfaces to JS glue code. These functions are equivalent to the
68 ///    following JS functions, which actually exist in asm.js version of JS
69 ///    library.
70 ///
71 ///    function setThrew(threw, value) {
72 ///      if (__THREW__ == 0) {
73 ///        __THREW__ = threw;
74 ///        __threwValue = value;
75 ///      }
76 ///    }
77 //
78 ///    setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
79 ///
80 ///    In exception handling, getTempRet0 indicates the type of an exception
81 ///    caught, and in setjmp/longjmp, it means the second argument to longjmp
82 ///    function.
83 ///
84 /// 3) Lower
85 ///      invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad
86 ///    into
87 ///      __THREW__ = 0;
88 ///      call @__invoke_SIG(func, arg1, arg2)
89 ///      %__THREW__.val = __THREW__;
90 ///      __THREW__ = 0;
91 ///      if (%__THREW__.val == 1)
92 ///        goto %lpad
93 ///      else
94 ///         goto %invoke.cont
95 ///    SIG is a mangled string generated based on the LLVM IR-level function
96 ///    signature. After LLVM IR types are lowered to the target wasm types,
97 ///    the names for these wrappers will change based on wasm types as well,
98 ///    as in invoke_vi (function takes an int and returns void). The bodies of
99 ///    these wrappers will be generated in JS glue code, and inside those
100 ///    wrappers we use JS try-catch to generate actual exception effects. It
101 ///    also calls the original callee function. An example wrapper in JS code
102 ///    would look like this:
103 ///      function invoke_vi(index,a1) {
104 ///        try {
105 ///          Module["dynCall_vi"](index,a1); // This calls original callee
106 ///        } catch(e) {
107 ///          if (typeof e !== 'number' && e !== 'longjmp') throw e;
108 ///          asm["setThrew"](1, 0); // setThrew is called here
109 ///        }
110 ///      }
111 ///    If an exception is thrown, __THREW__ will be set to true in a wrapper,
112 ///    so we can jump to the right BB based on this value.
113 ///
114 /// 4) Lower
115 ///      %val = landingpad catch c1 catch c2 catch c3 ...
116 ///      ... use %val ...
117 ///    into
118 ///      %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...)
119 ///      %val = {%fmc, getTempRet0()}
120 ///      ... use %val ...
121 ///    Here N is a number calculated based on the number of clauses.
122 ///    setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
123 ///
124 /// 5) Lower
125 ///      resume {%a, %b}
126 ///    into
127 ///      call @__resumeException(%a)
128 ///    where __resumeException() is a function in JS glue code.
129 ///
130 /// 6) Lower
131 ///      call @llvm.eh.typeid.for(type) (intrinsic)
132 ///    into
133 ///      call @llvm_eh_typeid_for(type)
134 ///    llvm_eh_typeid_for function will be generated in JS glue code.
135 ///
136 /// * Setjmp / Longjmp handling
137 ///
138 /// In case calls to longjmp() exists
139 ///
140 /// 1) Lower
141 ///      longjmp(buf, value)
142 ///    into
143 ///      emscripten_longjmp_jmpbuf(buf, value)
144 ///    emscripten_longjmp_jmpbuf will be lowered to emscripten_longjmp later.
145 ///
146 /// In case calls to setjmp() exists
147 ///
148 /// 2) In the function entry that calls setjmp, initialize setjmpTable and
149 ///    sejmpTableSize as follows:
150 ///      setjmpTableSize = 4;
151 ///      setjmpTable = (int *) malloc(40);
152 ///      setjmpTable[0] = 0;
153 ///    setjmpTable and setjmpTableSize are used in saveSetjmp() function in JS
154 ///    code.
155 ///
156 /// 3) Lower
157 ///      setjmp(buf)
158 ///    into
159 ///      setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize);
160 ///      setjmpTableSize = getTempRet0();
161 ///    For each dynamic setjmp call, setjmpTable stores its ID (a number which
162 ///    is incrementally assigned from 0) and its label (a unique number that
163 ///    represents each callsite of setjmp). When we need more entries in
164 ///    setjmpTable, it is reallocated in saveSetjmp() in JS code and it will
165 ///    return the new table address, and assign the new table size in
166 ///    setTempRet0(). saveSetjmp also stores the setjmp's ID into the buffer
167 ///    buf. A BB with setjmp is split into two after setjmp call in order to
168 ///    make the post-setjmp BB the possible destination of longjmp BB.
169 ///
170 ///
171 /// 4) Lower every call that might longjmp into
172 ///      __THREW__ = 0;
173 ///      call @__invoke_SIG(func, arg1, arg2)
174 ///      %__THREW__.val = __THREW__;
175 ///      __THREW__ = 0;
176 ///      if (%__THREW__.val != 0 & __threwValue != 0) {
177 ///        %label = testSetjmp(mem[%__THREW__.val], setjmpTable,
178 ///                            setjmpTableSize);
179 ///        if (%label == 0)
180 ///          emscripten_longjmp(%__THREW__.val, __threwValue);
181 ///        setTempRet0(__threwValue);
182 ///      } else {
183 ///        %label = -1;
184 ///      }
185 ///      longjmp_result = getTempRet0();
186 ///      switch label {
187 ///        label 1: goto post-setjmp BB 1
188 ///        label 2: goto post-setjmp BB 2
189 ///        ...
190 ///        default: goto splitted next BB
191 ///      }
192 ///    testSetjmp examines setjmpTable to see if there is a matching setjmp
193 ///    call. After calling an invoke wrapper, if a longjmp occurred, __THREW__
194 ///    will be the address of matching jmp_buf buffer and __threwValue be the
195 ///    second argument to longjmp. mem[__THREW__.val] is a setjmp ID that is
196 ///    stored in saveSetjmp. testSetjmp returns a setjmp label, a unique ID to
197 ///    each setjmp callsite. Label 0 means this longjmp buffer does not
198 ///    correspond to one of the setjmp callsites in this function, so in this
199 ///    case we just chain the longjmp to the caller. (Here we call
200 ///    emscripten_longjmp, which is different from emscripten_longjmp_jmpbuf.
201 ///    emscripten_longjmp_jmpbuf takes jmp_buf as its first argument, while
202 ///    emscripten_longjmp takes an int. Both of them will eventually be lowered
203 ///    to emscripten_longjmp in s2wasm, but here we need two signatures - we
204 ///    can't translate an int value to a jmp_buf.)
205 ///    Label -1 means no longjmp occurred. Otherwise we jump to the right
206 ///    post-setjmp BB based on the label.
207 ///
208 ///===----------------------------------------------------------------------===//
209 
210 #include "WebAssembly.h"
211 #include "llvm/IR/CallSite.h"
212 #include "llvm/IR/Dominators.h"
213 #include "llvm/IR/IRBuilder.h"
214 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
215 #include "llvm/Transforms/Utils/SSAUpdater.h"
216 
217 using namespace llvm;
218 
219 #define DEBUG_TYPE "wasm-lower-em-ehsjlj"
220 
221 static cl::list<std::string>
222     EHWhitelist("emscripten-cxx-exceptions-whitelist",
223                 cl::desc("The list of function names in which Emscripten-style "
224                          "exception handling is enabled (see emscripten "
225                          "EMSCRIPTEN_CATCHING_WHITELIST options)"),
226                 cl::CommaSeparated);
227 
228 namespace {
229 class WebAssemblyLowerEmscriptenEHSjLj final : public ModulePass {
230   static const char *ResumeFName;
231   static const char *EHTypeIDFName;
232   static const char *EmLongjmpFName;
233   static const char *EmLongjmpJmpbufFName;
234   static const char *SaveSetjmpFName;
235   static const char *TestSetjmpFName;
236   static const char *FindMatchingCatchPrefix;
237   static const char *InvokePrefix;
238 
239   bool EnableEH;   // Enable exception handling
240   bool EnableSjLj; // Enable setjmp/longjmp handling
241 
242   GlobalVariable *ThrewGV = nullptr;
243   GlobalVariable *ThrewValueGV = nullptr;
244   Function *GetTempRet0Func = nullptr;
245   Function *SetTempRet0Func = nullptr;
246   Function *ResumeF = nullptr;
247   Function *EHTypeIDF = nullptr;
248   Function *EmLongjmpF = nullptr;
249   Function *EmLongjmpJmpbufF = nullptr;
250   Function *SaveSetjmpF = nullptr;
251   Function *TestSetjmpF = nullptr;
252 
253   // __cxa_find_matching_catch_N functions.
254   // Indexed by the number of clauses in an original landingpad instruction.
255   DenseMap<int, Function *> FindMatchingCatches;
256   // Map of <function signature string, invoke_ wrappers>
257   StringMap<Function *> InvokeWrappers;
258   // Set of whitelisted function names for exception handling
259   std::set<std::string> EHWhitelistSet;
260 
261   StringRef getPassName() const override {
262     return "WebAssembly Lower Emscripten Exceptions";
263   }
264 
265   bool runEHOnFunction(Function &F);
266   bool runSjLjOnFunction(Function &F);
267   Function *getFindMatchingCatch(Module &M, unsigned NumClauses);
268 
269   template <typename CallOrInvoke> Value *wrapInvoke(CallOrInvoke *CI);
270   void wrapTestSetjmp(BasicBlock *BB, Instruction *InsertPt, Value *Threw,
271                       Value *SetjmpTable, Value *SetjmpTableSize, Value *&Label,
272                       Value *&LongjmpResult, BasicBlock *&EndBB);
273   template <typename CallOrInvoke> Function *getInvokeWrapper(CallOrInvoke *CI);
274 
275   bool areAllExceptionsAllowed() const { return EHWhitelistSet.empty(); }
276   bool canLongjmp(Module &M, const Value *Callee) const;
277   bool isEmAsmCall(Module &M, const Value *Callee) const;
278 
279   void rebuildSSA(Function &F);
280 
281 public:
282   static char ID;
283 
284   WebAssemblyLowerEmscriptenEHSjLj(bool EnableEH = true, bool EnableSjLj = true)
285       : ModulePass(ID), EnableEH(EnableEH), EnableSjLj(EnableSjLj) {
286     EHWhitelistSet.insert(EHWhitelist.begin(), EHWhitelist.end());
287   }
288   bool runOnModule(Module &M) override;
289 
290   void getAnalysisUsage(AnalysisUsage &AU) const override {
291     AU.addRequired<DominatorTreeWrapperPass>();
292   }
293 };
294 } // End anonymous namespace
295 
296 const char *WebAssemblyLowerEmscriptenEHSjLj::ResumeFName = "__resumeException";
297 const char *WebAssemblyLowerEmscriptenEHSjLj::EHTypeIDFName =
298     "llvm_eh_typeid_for";
299 const char *WebAssemblyLowerEmscriptenEHSjLj::EmLongjmpFName =
300     "emscripten_longjmp";
301 const char *WebAssemblyLowerEmscriptenEHSjLj::EmLongjmpJmpbufFName =
302     "emscripten_longjmp_jmpbuf";
303 const char *WebAssemblyLowerEmscriptenEHSjLj::SaveSetjmpFName = "saveSetjmp";
304 const char *WebAssemblyLowerEmscriptenEHSjLj::TestSetjmpFName = "testSetjmp";
305 const char *WebAssemblyLowerEmscriptenEHSjLj::FindMatchingCatchPrefix =
306     "__cxa_find_matching_catch_";
307 const char *WebAssemblyLowerEmscriptenEHSjLj::InvokePrefix = "__invoke_";
308 
309 char WebAssemblyLowerEmscriptenEHSjLj::ID = 0;
310 INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj, DEBUG_TYPE,
311                 "WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp",
312                 false, false)
313 
314 ModulePass *llvm::createWebAssemblyLowerEmscriptenEHSjLj(bool EnableEH,
315                                                          bool EnableSjLj) {
316   return new WebAssemblyLowerEmscriptenEHSjLj(EnableEH, EnableSjLj);
317 }
318 
319 static bool canThrow(const Value *V) {
320   if (const auto *F = dyn_cast<const Function>(V)) {
321     // Intrinsics cannot throw
322     if (F->isIntrinsic())
323       return false;
324     StringRef Name = F->getName();
325     // leave setjmp and longjmp (mostly) alone, we process them properly later
326     if (Name == "setjmp" || Name == "longjmp")
327       return false;
328     return !F->doesNotThrow();
329   }
330   // not a function, so an indirect call - can throw, we can't tell
331   return true;
332 }
333 
334 // Get a global variable with the given name.  If it doesn't exist declare it,
335 // which will generate an import and asssumes that it will exist at link time.
336 static GlobalVariable *getGlobalVariableI32(Module &M, IRBuilder<> &IRB,
337                                             const char *Name) {
338 
339   auto* GV = dyn_cast<GlobalVariable>(M.getOrInsertGlobal(Name, IRB.getInt32Ty()));
340   if (!GV)
341     report_fatal_error(Twine("unable to create global: ") + Name);
342 
343   return GV;
344 }
345 
346 // Simple function name mangler.
347 // This function simply takes LLVM's string representation of parameter types
348 // and concatenate them with '_'. There are non-alphanumeric characters but llc
349 // is ok with it, and we need to postprocess these names after the lowering
350 // phase anyway.
351 static std::string getSignature(FunctionType *FTy) {
352   std::string Sig;
353   raw_string_ostream OS(Sig);
354   OS << *FTy->getReturnType();
355   for (Type *ParamTy : FTy->params())
356     OS << "_" << *ParamTy;
357   if (FTy->isVarArg())
358     OS << "_...";
359   Sig = OS.str();
360   Sig.erase(remove_if(Sig, isspace), Sig.end());
361   // When s2wasm parses .s file, a comma means the end of an argument. So a
362   // mangled function name can contain any character but a comma.
363   std::replace(Sig.begin(), Sig.end(), ',', '.');
364   return Sig;
365 }
366 
367 // Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2.
368 // This is because a landingpad instruction contains two more arguments, a
369 // personality function and a cleanup bit, and __cxa_find_matching_catch_N
370 // functions are named after the number of arguments in the original landingpad
371 // instruction.
372 Function *
373 WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module &M,
374                                                        unsigned NumClauses) {
375   if (FindMatchingCatches.count(NumClauses))
376     return FindMatchingCatches[NumClauses];
377   PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext());
378   SmallVector<Type *, 16> Args(NumClauses, Int8PtrTy);
379   FunctionType *FTy = FunctionType::get(Int8PtrTy, Args, false);
380   Function *F =
381       Function::Create(FTy, GlobalValue::ExternalLinkage,
382                        FindMatchingCatchPrefix + Twine(NumClauses + 2), &M);
383   FindMatchingCatches[NumClauses] = F;
384   return F;
385 }
386 
387 // Generate invoke wrapper seqence with preamble and postamble
388 // Preamble:
389 // __THREW__ = 0;
390 // Postamble:
391 // %__THREW__.val = __THREW__; __THREW__ = 0;
392 // Returns %__THREW__.val, which indicates whether an exception is thrown (or
393 // whether longjmp occurred), for future use.
394 template <typename CallOrInvoke>
395 Value *WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallOrInvoke *CI) {
396   LLVMContext &C = CI->getModule()->getContext();
397 
398   // If we are calling a function that is noreturn, we must remove that
399   // attribute. The code we insert here does expect it to return, after we
400   // catch the exception.
401   if (CI->doesNotReturn()) {
402     if (auto *F = dyn_cast<Function>(CI->getCalledValue()))
403       F->removeFnAttr(Attribute::NoReturn);
404     CI->removeAttribute(AttributeList::FunctionIndex, Attribute::NoReturn);
405   }
406 
407   IRBuilder<> IRB(C);
408   IRB.SetInsertPoint(CI);
409 
410   // Pre-invoke
411   // __THREW__ = 0;
412   IRB.CreateStore(IRB.getInt32(0), ThrewGV);
413 
414   // Invoke function wrapper in JavaScript
415   SmallVector<Value *, 16> Args;
416   // Put the pointer to the callee as first argument, so it can be called
417   // within the invoke wrapper later
418   Args.push_back(CI->getCalledValue());
419   Args.append(CI->arg_begin(), CI->arg_end());
420   CallInst *NewCall = IRB.CreateCall(getInvokeWrapper(CI), Args);
421   NewCall->takeName(CI);
422   NewCall->setCallingConv(CallingConv::WASM_EmscriptenInvoke);
423   NewCall->setDebugLoc(CI->getDebugLoc());
424 
425   // Because we added the pointer to the callee as first argument, all
426   // argument attribute indices have to be incremented by one.
427   SmallVector<AttributeSet, 8> ArgAttributes;
428   const AttributeList &InvokeAL = CI->getAttributes();
429 
430   // No attributes for the callee pointer.
431   ArgAttributes.push_back(AttributeSet());
432   // Copy the argument attributes from the original
433   for (unsigned I = 0, E = CI->getNumArgOperands(); I < E; ++I)
434     ArgAttributes.push_back(InvokeAL.getParamAttributes(I));
435 
436   AttrBuilder FnAttrs(InvokeAL.getFnAttributes());
437   if (FnAttrs.contains(Attribute::AllocSize)) {
438     // The allocsize attribute (if any) referes to parameters by index and needs
439     // to be adjusted.
440     unsigned SizeArg;
441     Optional<unsigned> NEltArg;
442     std::tie(SizeArg, NEltArg) = FnAttrs.getAllocSizeArgs();
443     SizeArg += 1;
444     if (NEltArg.hasValue())
445       NEltArg = NEltArg.getValue() + 1;
446     FnAttrs.addAllocSizeAttr(SizeArg, NEltArg);
447   }
448 
449   // Reconstruct the AttributesList based on the vector we constructed.
450   AttributeList NewCallAL =
451       AttributeList::get(C, AttributeSet::get(C, FnAttrs),
452                          InvokeAL.getRetAttributes(), ArgAttributes);
453   NewCall->setAttributes(NewCallAL);
454 
455   CI->replaceAllUsesWith(NewCall);
456 
457   // Post-invoke
458   // %__THREW__.val = __THREW__; __THREW__ = 0;
459   Value *Threw =
460       IRB.CreateLoad(IRB.getInt32Ty(), ThrewGV, ThrewGV->getName() + ".val");
461   IRB.CreateStore(IRB.getInt32(0), ThrewGV);
462   return Threw;
463 }
464 
465 // Get matching invoke wrapper based on callee signature
466 template <typename CallOrInvoke>
467 Function *WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallOrInvoke *CI) {
468   Module *M = CI->getModule();
469   SmallVector<Type *, 16> ArgTys;
470   Value *Callee = CI->getCalledValue();
471   FunctionType *CalleeFTy;
472   if (auto *F = dyn_cast<Function>(Callee))
473     CalleeFTy = F->getFunctionType();
474   else {
475     auto *CalleeTy = cast<PointerType>(Callee->getType())->getElementType();
476     CalleeFTy = dyn_cast<FunctionType>(CalleeTy);
477   }
478 
479   std::string Sig = getSignature(CalleeFTy);
480   if (InvokeWrappers.find(Sig) != InvokeWrappers.end())
481     return InvokeWrappers[Sig];
482 
483   // Put the pointer to the callee as first argument
484   ArgTys.push_back(PointerType::getUnqual(CalleeFTy));
485   // Add argument types
486   ArgTys.append(CalleeFTy->param_begin(), CalleeFTy->param_end());
487 
488   FunctionType *FTy = FunctionType::get(CalleeFTy->getReturnType(), ArgTys,
489                                         CalleeFTy->isVarArg());
490   Function *F = Function::Create(FTy, GlobalValue::ExternalLinkage,
491                                  InvokePrefix + Sig, M);
492   InvokeWrappers[Sig] = F;
493   return F;
494 }
495 
496 bool WebAssemblyLowerEmscriptenEHSjLj::canLongjmp(Module &M,
497                                                   const Value *Callee) const {
498   if (auto *CalleeF = dyn_cast<Function>(Callee))
499     if (CalleeF->isIntrinsic())
500       return false;
501 
502   // Attempting to transform inline assembly will result in something like:
503   //     call void @__invoke_void(void ()* asm ...)
504   // which is invalid because inline assembly blocks do not have addresses
505   // and can't be passed by pointer. The result is a crash with illegal IR.
506   if (isa<InlineAsm>(Callee))
507     return false;
508 
509   // The reason we include malloc/free here is to exclude the malloc/free
510   // calls generated in setjmp prep / cleanup routines.
511   Function *SetjmpF = M.getFunction("setjmp");
512   Function *MallocF = M.getFunction("malloc");
513   Function *FreeF = M.getFunction("free");
514   if (Callee == SetjmpF || Callee == MallocF || Callee == FreeF)
515     return false;
516 
517   // There are functions in JS glue code
518   if (Callee == ResumeF || Callee == EHTypeIDF || Callee == SaveSetjmpF ||
519       Callee == TestSetjmpF)
520     return false;
521 
522   // __cxa_find_matching_catch_N functions cannot longjmp
523   if (Callee->getName().startswith(FindMatchingCatchPrefix))
524     return false;
525 
526   // Exception-catching related functions
527   Function *BeginCatchF = M.getFunction("__cxa_begin_catch");
528   Function *EndCatchF = M.getFunction("__cxa_end_catch");
529   Function *AllocExceptionF = M.getFunction("__cxa_allocate_exception");
530   Function *ThrowF = M.getFunction("__cxa_throw");
531   Function *TerminateF = M.getFunction("__clang_call_terminate");
532   if (Callee == BeginCatchF || Callee == EndCatchF ||
533       Callee == AllocExceptionF || Callee == ThrowF || Callee == TerminateF ||
534       Callee == GetTempRet0Func || Callee == SetTempRet0Func)
535     return false;
536 
537   // Otherwise we don't know
538   return true;
539 }
540 
541 bool WebAssemblyLowerEmscriptenEHSjLj::isEmAsmCall(Module &M,
542                                                    const Value *Callee) const {
543   // This is an exhaustive list from Emscripten's <emscripten/em_asm.h>.
544   Function *EmAsmConstIntF = M.getFunction("emscripten_asm_const_int");
545   Function *EmAsmConstDoubleF = M.getFunction("emscripten_asm_const_double");
546   Function *EmAsmConstIntSyncMainF =
547       M.getFunction("emscripten_asm_const_int_sync_on_main_thread");
548   Function *EmAsmConstDoubleSyncMainF =
549       M.getFunction("emscripten_asm_const_double_sync_on_main_thread");
550   Function *EmAsmConstAsyncMainF =
551       M.getFunction("emscripten_asm_const_async_on_main_thread");
552 
553   return Callee == EmAsmConstIntF || Callee == EmAsmConstDoubleF ||
554          Callee == EmAsmConstIntSyncMainF ||
555          Callee == EmAsmConstDoubleSyncMainF || Callee == EmAsmConstAsyncMainF;
556 }
557 
558 // Generate testSetjmp function call seqence with preamble and postamble.
559 // The code this generates is equivalent to the following JavaScript code:
560 // if (%__THREW__.val != 0 & threwValue != 0) {
561 //   %label = _testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize);
562 //   if (%label == 0)
563 //     emscripten_longjmp(%__THREW__.val, threwValue);
564 //   setTempRet0(threwValue);
565 // } else {
566 //   %label = -1;
567 // }
568 // %longjmp_result = getTempRet0();
569 //
570 // As output parameters. returns %label, %longjmp_result, and the BB the last
571 // instruction (%longjmp_result = ...) is in.
572 void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp(
573     BasicBlock *BB, Instruction *InsertPt, Value *Threw, Value *SetjmpTable,
574     Value *SetjmpTableSize, Value *&Label, Value *&LongjmpResult,
575     BasicBlock *&EndBB) {
576   Function *F = BB->getParent();
577   LLVMContext &C = BB->getModule()->getContext();
578   IRBuilder<> IRB(C);
579   IRB.SetInsertPoint(InsertPt);
580 
581   // if (%__THREW__.val != 0 & threwValue != 0)
582   IRB.SetInsertPoint(BB);
583   BasicBlock *ThenBB1 = BasicBlock::Create(C, "if.then1", F);
584   BasicBlock *ElseBB1 = BasicBlock::Create(C, "if.else1", F);
585   BasicBlock *EndBB1 = BasicBlock::Create(C, "if.end", F);
586   Value *ThrewCmp = IRB.CreateICmpNE(Threw, IRB.getInt32(0));
587   Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV,
588                                      ThrewValueGV->getName() + ".val");
589   Value *ThrewValueCmp = IRB.CreateICmpNE(ThrewValue, IRB.getInt32(0));
590   Value *Cmp1 = IRB.CreateAnd(ThrewCmp, ThrewValueCmp, "cmp1");
591   IRB.CreateCondBr(Cmp1, ThenBB1, ElseBB1);
592 
593   // %label = _testSetjmp(mem[%__THREW__.val], _setjmpTable, _setjmpTableSize);
594   // if (%label == 0)
595   IRB.SetInsertPoint(ThenBB1);
596   BasicBlock *ThenBB2 = BasicBlock::Create(C, "if.then2", F);
597   BasicBlock *EndBB2 = BasicBlock::Create(C, "if.end2", F);
598   Value *ThrewInt = IRB.CreateIntToPtr(Threw, Type::getInt32PtrTy(C),
599                                        Threw->getName() + ".i32p");
600   Value *LoadedThrew = IRB.CreateLoad(IRB.getInt32Ty(), ThrewInt,
601                                       ThrewInt->getName() + ".loaded");
602   Value *ThenLabel = IRB.CreateCall(
603       TestSetjmpF, {LoadedThrew, SetjmpTable, SetjmpTableSize}, "label");
604   Value *Cmp2 = IRB.CreateICmpEQ(ThenLabel, IRB.getInt32(0));
605   IRB.CreateCondBr(Cmp2, ThenBB2, EndBB2);
606 
607   // emscripten_longjmp(%__THREW__.val, threwValue);
608   IRB.SetInsertPoint(ThenBB2);
609   IRB.CreateCall(EmLongjmpF, {Threw, ThrewValue});
610   IRB.CreateUnreachable();
611 
612   // setTempRet0(threwValue);
613   IRB.SetInsertPoint(EndBB2);
614   IRB.CreateCall(SetTempRet0Func, ThrewValue);
615   IRB.CreateBr(EndBB1);
616 
617   IRB.SetInsertPoint(ElseBB1);
618   IRB.CreateBr(EndBB1);
619 
620   // longjmp_result = getTempRet0();
621   IRB.SetInsertPoint(EndBB1);
622   PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label");
623   LabelPHI->addIncoming(ThenLabel, EndBB2);
624 
625   LabelPHI->addIncoming(IRB.getInt32(-1), ElseBB1);
626 
627   // Output parameter assignment
628   Label = LabelPHI;
629   EndBB = EndBB1;
630   LongjmpResult = IRB.CreateCall(GetTempRet0Func, None, "longjmp_result");
631 }
632 
633 void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function &F) {
634   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
635   DT.recalculate(F); // CFG has been changed
636   SSAUpdater SSA;
637   for (BasicBlock &BB : F) {
638     for (Instruction &I : BB) {
639       for (auto UI = I.use_begin(), UE = I.use_end(); UI != UE;) {
640         Use &U = *UI;
641         ++UI;
642         SSA.Initialize(I.getType(), I.getName());
643         SSA.AddAvailableValue(&BB, &I);
644         auto *User = cast<Instruction>(U.getUser());
645         if (User->getParent() == &BB)
646           continue;
647 
648         if (auto *UserPN = dyn_cast<PHINode>(User))
649           if (UserPN->getIncomingBlock(U) == &BB)
650             continue;
651 
652         if (DT.dominates(&I, User))
653           continue;
654         SSA.RewriteUseAfterInsertions(U);
655       }
656     }
657   }
658 }
659 
660 bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module &M) {
661   LLVM_DEBUG(dbgs() << "********** Lower Emscripten EH & SjLj **********\n");
662 
663   LLVMContext &C = M.getContext();
664   IRBuilder<> IRB(C);
665 
666   Function *SetjmpF = M.getFunction("setjmp");
667   Function *LongjmpF = M.getFunction("longjmp");
668   bool SetjmpUsed = SetjmpF && !SetjmpF->use_empty();
669   bool LongjmpUsed = LongjmpF && !LongjmpF->use_empty();
670   bool DoSjLj = EnableSjLj && (SetjmpUsed || LongjmpUsed);
671 
672   // Declare (or get) global variables __THREW__, __threwValue, and
673   // getTempRet0/setTempRet0 function which are used in common for both
674   // exception handling and setjmp/longjmp handling
675   ThrewGV = getGlobalVariableI32(M, IRB, "__THREW__");
676   ThrewValueGV = getGlobalVariableI32(M, IRB, "__threwValue");
677   GetTempRet0Func =
678       Function::Create(FunctionType::get(IRB.getInt32Ty(), false),
679                        GlobalValue::ExternalLinkage, "getTempRet0", &M);
680   SetTempRet0Func = Function::Create(
681       FunctionType::get(IRB.getVoidTy(), IRB.getInt32Ty(), false),
682       GlobalValue::ExternalLinkage, "setTempRet0", &M);
683   GetTempRet0Func->setDoesNotThrow();
684   SetTempRet0Func->setDoesNotThrow();
685 
686   bool Changed = false;
687 
688   // Exception handling
689   if (EnableEH) {
690     // Register __resumeException function
691     FunctionType *ResumeFTy =
692         FunctionType::get(IRB.getVoidTy(), IRB.getInt8PtrTy(), false);
693     ResumeF = Function::Create(ResumeFTy, GlobalValue::ExternalLinkage,
694                                ResumeFName, &M);
695 
696     // Register llvm_eh_typeid_for function
697     FunctionType *EHTypeIDTy =
698         FunctionType::get(IRB.getInt32Ty(), IRB.getInt8PtrTy(), false);
699     EHTypeIDF = Function::Create(EHTypeIDTy, GlobalValue::ExternalLinkage,
700                                  EHTypeIDFName, &M);
701 
702     for (Function &F : M) {
703       if (F.isDeclaration())
704         continue;
705       Changed |= runEHOnFunction(F);
706     }
707   }
708 
709   // Setjmp/longjmp handling
710   if (DoSjLj) {
711     Changed = true; // We have setjmp or longjmp somewhere
712 
713     if (LongjmpF) {
714       // Replace all uses of longjmp with emscripten_longjmp_jmpbuf, which is
715       // defined in JS code
716       EmLongjmpJmpbufF = Function::Create(LongjmpF->getFunctionType(),
717                                           GlobalValue::ExternalLinkage,
718                                           EmLongjmpJmpbufFName, &M);
719 
720       LongjmpF->replaceAllUsesWith(EmLongjmpJmpbufF);
721     }
722 
723     if (SetjmpF) {
724       // Register saveSetjmp function
725       FunctionType *SetjmpFTy = SetjmpF->getFunctionType();
726       SmallVector<Type *, 4> Params = {SetjmpFTy->getParamType(0),
727                                        IRB.getInt32Ty(), Type::getInt32PtrTy(C),
728                                        IRB.getInt32Ty()};
729       FunctionType *FTy =
730           FunctionType::get(Type::getInt32PtrTy(C), Params, false);
731       SaveSetjmpF = Function::Create(FTy, GlobalValue::ExternalLinkage,
732                                      SaveSetjmpFName, &M);
733 
734       // Register testSetjmp function
735       Params = {IRB.getInt32Ty(), Type::getInt32PtrTy(C), IRB.getInt32Ty()};
736       FTy = FunctionType::get(IRB.getInt32Ty(), Params, false);
737       TestSetjmpF = Function::Create(FTy, GlobalValue::ExternalLinkage,
738                                      TestSetjmpFName, &M);
739 
740       FTy = FunctionType::get(IRB.getVoidTy(),
741                               {IRB.getInt32Ty(), IRB.getInt32Ty()}, false);
742       EmLongjmpF = Function::Create(FTy, GlobalValue::ExternalLinkage,
743                                     EmLongjmpFName, &M);
744 
745       // Only traverse functions that uses setjmp in order not to insert
746       // unnecessary prep / cleanup code in every function
747       SmallPtrSet<Function *, 8> SetjmpUsers;
748       for (User *U : SetjmpF->users()) {
749         auto *UI = cast<Instruction>(U);
750         SetjmpUsers.insert(UI->getFunction());
751       }
752       for (Function *F : SetjmpUsers)
753         runSjLjOnFunction(*F);
754     }
755   }
756 
757   if (!Changed) {
758     // Delete unused global variables and functions
759     if (ResumeF)
760       ResumeF->eraseFromParent();
761     if (EHTypeIDF)
762       EHTypeIDF->eraseFromParent();
763     if (EmLongjmpF)
764       EmLongjmpF->eraseFromParent();
765     if (SaveSetjmpF)
766       SaveSetjmpF->eraseFromParent();
767     if (TestSetjmpF)
768       TestSetjmpF->eraseFromParent();
769     return false;
770   }
771 
772   return true;
773 }
774 
775 bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function &F) {
776   Module &M = *F.getParent();
777   LLVMContext &C = F.getContext();
778   IRBuilder<> IRB(C);
779   bool Changed = false;
780   SmallVector<Instruction *, 64> ToErase;
781   SmallPtrSet<LandingPadInst *, 32> LandingPads;
782   bool AllowExceptions =
783       areAllExceptionsAllowed() || EHWhitelistSet.count(F.getName());
784 
785   for (BasicBlock &BB : F) {
786     auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
787     if (!II)
788       continue;
789     Changed = true;
790     LandingPads.insert(II->getLandingPadInst());
791     IRB.SetInsertPoint(II);
792 
793     bool NeedInvoke = AllowExceptions && canThrow(II->getCalledValue());
794     if (NeedInvoke) {
795       // Wrap invoke with invoke wrapper and generate preamble/postamble
796       Value *Threw = wrapInvoke(II);
797       ToErase.push_back(II);
798 
799       // Insert a branch based on __THREW__ variable
800       Value *Cmp = IRB.CreateICmpEQ(Threw, IRB.getInt32(1), "cmp");
801       IRB.CreateCondBr(Cmp, II->getUnwindDest(), II->getNormalDest());
802 
803     } else {
804       // This can't throw, and we don't need this invoke, just replace it with a
805       // call+branch
806       SmallVector<Value *, 16> Args(II->arg_begin(), II->arg_end());
807       CallInst *NewCall =
808           IRB.CreateCall(II->getFunctionType(), II->getCalledValue(), Args);
809       NewCall->takeName(II);
810       NewCall->setCallingConv(II->getCallingConv());
811       NewCall->setDebugLoc(II->getDebugLoc());
812       NewCall->setAttributes(II->getAttributes());
813       II->replaceAllUsesWith(NewCall);
814       ToErase.push_back(II);
815 
816       IRB.CreateBr(II->getNormalDest());
817 
818       // Remove any PHI node entries from the exception destination
819       II->getUnwindDest()->removePredecessor(&BB);
820     }
821   }
822 
823   // Process resume instructions
824   for (BasicBlock &BB : F) {
825     // Scan the body of the basic block for resumes
826     for (Instruction &I : BB) {
827       auto *RI = dyn_cast<ResumeInst>(&I);
828       if (!RI)
829         continue;
830 
831       // Split the input into legal values
832       Value *Input = RI->getValue();
833       IRB.SetInsertPoint(RI);
834       Value *Low = IRB.CreateExtractValue(Input, 0, "low");
835       // Create a call to __resumeException function
836       IRB.CreateCall(ResumeF, {Low});
837       // Add a terminator to the block
838       IRB.CreateUnreachable();
839       ToErase.push_back(RI);
840     }
841   }
842 
843   // Process llvm.eh.typeid.for intrinsics
844   for (BasicBlock &BB : F) {
845     for (Instruction &I : BB) {
846       auto *CI = dyn_cast<CallInst>(&I);
847       if (!CI)
848         continue;
849       const Function *Callee = CI->getCalledFunction();
850       if (!Callee)
851         continue;
852       if (Callee->getIntrinsicID() != Intrinsic::eh_typeid_for)
853         continue;
854 
855       IRB.SetInsertPoint(CI);
856       CallInst *NewCI =
857           IRB.CreateCall(EHTypeIDF, CI->getArgOperand(0), "typeid");
858       CI->replaceAllUsesWith(NewCI);
859       ToErase.push_back(CI);
860     }
861   }
862 
863   // Look for orphan landingpads, can occur in blocks with no predecessors
864   for (BasicBlock &BB : F) {
865     Instruction *I = BB.getFirstNonPHI();
866     if (auto *LPI = dyn_cast<LandingPadInst>(I))
867       LandingPads.insert(LPI);
868   }
869 
870   // Handle all the landingpad for this function together, as multiple invokes
871   // may share a single lp
872   for (LandingPadInst *LPI : LandingPads) {
873     IRB.SetInsertPoint(LPI);
874     SmallVector<Value *, 16> FMCArgs;
875     for (unsigned I = 0, E = LPI->getNumClauses(); I < E; ++I) {
876       Constant *Clause = LPI->getClause(I);
877       // As a temporary workaround for the lack of aggregate varargs support
878       // in the interface between JS and wasm, break out filter operands into
879       // their component elements.
880       if (LPI->isFilter(I)) {
881         auto *ATy = cast<ArrayType>(Clause->getType());
882         for (unsigned J = 0, E = ATy->getNumElements(); J < E; ++J) {
883           Value *EV = IRB.CreateExtractValue(Clause, makeArrayRef(J), "filter");
884           FMCArgs.push_back(EV);
885         }
886       } else
887         FMCArgs.push_back(Clause);
888     }
889 
890     // Create a call to __cxa_find_matching_catch_N function
891     Function *FMCF = getFindMatchingCatch(M, FMCArgs.size());
892     CallInst *FMCI = IRB.CreateCall(FMCF, FMCArgs, "fmc");
893     Value *Undef = UndefValue::get(LPI->getType());
894     Value *Pair0 = IRB.CreateInsertValue(Undef, FMCI, 0, "pair0");
895     Value *TempRet0 = IRB.CreateCall(GetTempRet0Func, None, "tempret0");
896     Value *Pair1 = IRB.CreateInsertValue(Pair0, TempRet0, 1, "pair1");
897 
898     LPI->replaceAllUsesWith(Pair1);
899     ToErase.push_back(LPI);
900   }
901 
902   // Erase everything we no longer need in this function
903   for (Instruction *I : ToErase)
904     I->eraseFromParent();
905 
906   return Changed;
907 }
908 
909 bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function &F) {
910   Module &M = *F.getParent();
911   LLVMContext &C = F.getContext();
912   IRBuilder<> IRB(C);
913   SmallVector<Instruction *, 64> ToErase;
914   // Vector of %setjmpTable values
915   std::vector<Instruction *> SetjmpTableInsts;
916   // Vector of %setjmpTableSize values
917   std::vector<Instruction *> SetjmpTableSizeInsts;
918 
919   // Setjmp preparation
920 
921   // This instruction effectively means %setjmpTableSize = 4.
922   // We create this as an instruction intentionally, and we don't want to fold
923   // this instruction to a constant 4, because this value will be used in
924   // SSAUpdater.AddAvailableValue(...) later.
925   BasicBlock &EntryBB = F.getEntryBlock();
926   BinaryOperator *SetjmpTableSize = BinaryOperator::Create(
927       Instruction::Add, IRB.getInt32(4), IRB.getInt32(0), "setjmpTableSize",
928       &*EntryBB.getFirstInsertionPt());
929   // setjmpTable = (int *) malloc(40);
930   Instruction *SetjmpTable = CallInst::CreateMalloc(
931       SetjmpTableSize, IRB.getInt32Ty(), IRB.getInt32Ty(), IRB.getInt32(40),
932       nullptr, nullptr, "setjmpTable");
933   // setjmpTable[0] = 0;
934   IRB.SetInsertPoint(SetjmpTableSize);
935   IRB.CreateStore(IRB.getInt32(0), SetjmpTable);
936   SetjmpTableInsts.push_back(SetjmpTable);
937   SetjmpTableSizeInsts.push_back(SetjmpTableSize);
938 
939   // Setjmp transformation
940   std::vector<PHINode *> SetjmpRetPHIs;
941   Function *SetjmpF = M.getFunction("setjmp");
942   for (User *U : SetjmpF->users()) {
943     auto *CI = dyn_cast<CallInst>(U);
944     if (!CI)
945       report_fatal_error("Does not support indirect calls to setjmp");
946 
947     BasicBlock *BB = CI->getParent();
948     if (BB->getParent() != &F) // in other function
949       continue;
950 
951     // The tail is everything right after the call, and will be reached once
952     // when setjmp is called, and later when longjmp returns to the setjmp
953     BasicBlock *Tail = SplitBlock(BB, CI->getNextNode());
954     // Add a phi to the tail, which will be the output of setjmp, which
955     // indicates if this is the first call or a longjmp back. The phi directly
956     // uses the right value based on where we arrive from
957     IRB.SetInsertPoint(Tail->getFirstNonPHI());
958     PHINode *SetjmpRet = IRB.CreatePHI(IRB.getInt32Ty(), 2, "setjmp.ret");
959 
960     // setjmp initial call returns 0
961     SetjmpRet->addIncoming(IRB.getInt32(0), BB);
962     // The proper output is now this, not the setjmp call itself
963     CI->replaceAllUsesWith(SetjmpRet);
964     // longjmp returns to the setjmp will add themselves to this phi
965     SetjmpRetPHIs.push_back(SetjmpRet);
966 
967     // Fix call target
968     // Our index in the function is our place in the array + 1 to avoid index
969     // 0, because index 0 means the longjmp is not ours to handle.
970     IRB.SetInsertPoint(CI);
971     Value *Args[] = {CI->getArgOperand(0), IRB.getInt32(SetjmpRetPHIs.size()),
972                      SetjmpTable, SetjmpTableSize};
973     Instruction *NewSetjmpTable =
974         IRB.CreateCall(SaveSetjmpF, Args, "setjmpTable");
975     Instruction *NewSetjmpTableSize =
976         IRB.CreateCall(GetTempRet0Func, None, "setjmpTableSize");
977     SetjmpTableInsts.push_back(NewSetjmpTable);
978     SetjmpTableSizeInsts.push_back(NewSetjmpTableSize);
979     ToErase.push_back(CI);
980   }
981 
982   // Update each call that can longjmp so it can return to a setjmp where
983   // relevant.
984 
985   // Because we are creating new BBs while processing and don't want to make
986   // all these newly created BBs candidates again for longjmp processing, we
987   // first make the vector of candidate BBs.
988   std::vector<BasicBlock *> BBs;
989   for (BasicBlock &BB : F)
990     BBs.push_back(&BB);
991 
992   // BBs.size() will change within the loop, so we query it every time
993   for (unsigned I = 0; I < BBs.size(); I++) {
994     BasicBlock *BB = BBs[I];
995     for (Instruction &I : *BB) {
996       assert(!isa<InvokeInst>(&I));
997       auto *CI = dyn_cast<CallInst>(&I);
998       if (!CI)
999         continue;
1000 
1001       const Value *Callee = CI->getCalledValue();
1002       if (!canLongjmp(M, Callee))
1003         continue;
1004       if (isEmAsmCall(M, Callee))
1005         report_fatal_error("Cannot use EM_ASM* alongside setjmp/longjmp in " +
1006                                F.getName() +
1007                                ". Please consider using EM_JS, or move the "
1008                                "EM_ASM into another function.",
1009                            false);
1010 
1011       Value *Threw = nullptr;
1012       BasicBlock *Tail;
1013       if (Callee->getName().startswith(InvokePrefix)) {
1014         // If invoke wrapper has already been generated for this call in
1015         // previous EH phase, search for the load instruction
1016         // %__THREW__.val = __THREW__;
1017         // in postamble after the invoke wrapper call
1018         LoadInst *ThrewLI = nullptr;
1019         StoreInst *ThrewResetSI = nullptr;
1020         for (auto I = std::next(BasicBlock::iterator(CI)), IE = BB->end();
1021              I != IE; ++I) {
1022           if (auto *LI = dyn_cast<LoadInst>(I))
1023             if (auto *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()))
1024               if (GV == ThrewGV) {
1025                 Threw = ThrewLI = LI;
1026                 break;
1027               }
1028         }
1029         // Search for the store instruction after the load above
1030         // __THREW__ = 0;
1031         for (auto I = std::next(BasicBlock::iterator(ThrewLI)), IE = BB->end();
1032              I != IE; ++I) {
1033           if (auto *SI = dyn_cast<StoreInst>(I))
1034             if (auto *GV = dyn_cast<GlobalVariable>(SI->getPointerOperand()))
1035               if (GV == ThrewGV && SI->getValueOperand() == IRB.getInt32(0)) {
1036                 ThrewResetSI = SI;
1037                 break;
1038               }
1039         }
1040         assert(Threw && ThrewLI && "Cannot find __THREW__ load after invoke");
1041         assert(ThrewResetSI && "Cannot find __THREW__ store after invoke");
1042         Tail = SplitBlock(BB, ThrewResetSI->getNextNode());
1043 
1044       } else {
1045         // Wrap call with invoke wrapper and generate preamble/postamble
1046         Threw = wrapInvoke(CI);
1047         ToErase.push_back(CI);
1048         Tail = SplitBlock(BB, CI->getNextNode());
1049       }
1050 
1051       // We need to replace the terminator in Tail - SplitBlock makes BB go
1052       // straight to Tail, we need to check if a longjmp occurred, and go to the
1053       // right setjmp-tail if so
1054       ToErase.push_back(BB->getTerminator());
1055 
1056       // Generate a function call to testSetjmp function and preamble/postamble
1057       // code to figure out (1) whether longjmp occurred (2) if longjmp
1058       // occurred, which setjmp it corresponds to
1059       Value *Label = nullptr;
1060       Value *LongjmpResult = nullptr;
1061       BasicBlock *EndBB = nullptr;
1062       wrapTestSetjmp(BB, CI, Threw, SetjmpTable, SetjmpTableSize, Label,
1063                      LongjmpResult, EndBB);
1064       assert(Label && LongjmpResult && EndBB);
1065 
1066       // Create switch instruction
1067       IRB.SetInsertPoint(EndBB);
1068       SwitchInst *SI = IRB.CreateSwitch(Label, Tail, SetjmpRetPHIs.size());
1069       // -1 means no longjmp happened, continue normally (will hit the default
1070       // switch case). 0 means a longjmp that is not ours to handle, needs a
1071       // rethrow. Otherwise the index is the same as the index in P+1 (to avoid
1072       // 0).
1073       for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) {
1074         SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent());
1075         SetjmpRetPHIs[I]->addIncoming(LongjmpResult, EndBB);
1076       }
1077 
1078       // We are splitting the block here, and must continue to find other calls
1079       // in the block - which is now split. so continue to traverse in the Tail
1080       BBs.push_back(Tail);
1081     }
1082   }
1083 
1084   // Erase everything we no longer need in this function
1085   for (Instruction *I : ToErase)
1086     I->eraseFromParent();
1087 
1088   // Free setjmpTable buffer before each return instruction
1089   for (BasicBlock &BB : F) {
1090     Instruction *TI = BB.getTerminator();
1091     if (isa<ReturnInst>(TI))
1092       CallInst::CreateFree(SetjmpTable, TI);
1093   }
1094 
1095   // Every call to saveSetjmp can change setjmpTable and setjmpTableSize
1096   // (when buffer reallocation occurs)
1097   // entry:
1098   //   setjmpTableSize = 4;
1099   //   setjmpTable = (int *) malloc(40);
1100   //   setjmpTable[0] = 0;
1101   // ...
1102   // somebb:
1103   //   setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize);
1104   //   setjmpTableSize = getTempRet0();
1105   // So we need to make sure the SSA for these variables is valid so that every
1106   // saveSetjmp and testSetjmp calls have the correct arguments.
1107   SSAUpdater SetjmpTableSSA;
1108   SSAUpdater SetjmpTableSizeSSA;
1109   SetjmpTableSSA.Initialize(Type::getInt32PtrTy(C), "setjmpTable");
1110   SetjmpTableSizeSSA.Initialize(Type::getInt32Ty(C), "setjmpTableSize");
1111   for (Instruction *I : SetjmpTableInsts)
1112     SetjmpTableSSA.AddAvailableValue(I->getParent(), I);
1113   for (Instruction *I : SetjmpTableSizeInsts)
1114     SetjmpTableSizeSSA.AddAvailableValue(I->getParent(), I);
1115 
1116   for (auto UI = SetjmpTable->use_begin(), UE = SetjmpTable->use_end();
1117        UI != UE;) {
1118     // Grab the use before incrementing the iterator.
1119     Use &U = *UI;
1120     // Increment the iterator before removing the use from the list.
1121     ++UI;
1122     if (auto *I = dyn_cast<Instruction>(U.getUser()))
1123       if (I->getParent() != &EntryBB)
1124         SetjmpTableSSA.RewriteUse(U);
1125   }
1126   for (auto UI = SetjmpTableSize->use_begin(), UE = SetjmpTableSize->use_end();
1127        UI != UE;) {
1128     Use &U = *UI;
1129     ++UI;
1130     if (auto *I = dyn_cast<Instruction>(U.getUser()))
1131       if (I->getParent() != &EntryBB)
1132         SetjmpTableSizeSSA.RewriteUse(U);
1133   }
1134 
1135   // Finally, our modifications to the cfg can break dominance of SSA variables.
1136   // For example, in this code,
1137   // if (x()) { .. setjmp() .. }
1138   // if (y()) { .. longjmp() .. }
1139   // We must split the longjmp block, and it can jump into the block splitted
1140   // from setjmp one. But that means that when we split the setjmp block, it's
1141   // first part no longer dominates its second part - there is a theoretically
1142   // possible control flow path where x() is false, then y() is true and we
1143   // reach the second part of the setjmp block, without ever reaching the first
1144   // part. So, we rebuild SSA form here.
1145   rebuildSSA(F);
1146   return true;
1147 }
1148