1 //=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file lowers exception-related instructions and setjmp/longjmp function
11 /// calls to use Emscripten's library functions. The pass uses JavaScript's try
12 /// and catch mechanism in case of Emscripten EH/SjLj and Wasm EH intrinsics in
13 /// case of Emscripten SjLJ.
14 ///
15 /// * Emscripten exception handling
16 /// This pass lowers invokes and landingpads into library functions in JS glue
17 /// code. Invokes are lowered into function wrappers called invoke wrappers that
18 /// exist in JS side, which wraps the original function call with JS try-catch.
19 /// If an exception occurred, cxa_throw() function in JS side sets some
20 /// variables (see below) so we can check whether an exception occurred from
21 /// wasm code and handle it appropriately.
22 ///
23 /// * Emscripten setjmp-longjmp handling
24 /// This pass lowers setjmp to a reasonably-performant approach for emscripten.
25 /// The idea is that each block with a setjmp is broken up into two parts: the
26 /// part containing setjmp and the part right after the setjmp. The latter part
27 /// is either reached from the setjmp, or later from a longjmp. To handle the
28 /// longjmp, all calls that might longjmp are also called using invoke wrappers
29 /// and thus JS / try-catch. JS longjmp() function also sets some variables so
30 /// we can check / whether a longjmp occurred from wasm code. Each block with a
31 /// function call that might longjmp is also split up after the longjmp call.
32 /// After the longjmp call, we check whether a longjmp occurred, and if it did,
33 /// which setjmp it corresponds to, and jump to the right post-setjmp block.
34 /// We assume setjmp-longjmp handling always run after EH handling, which means
35 /// we don't expect any exception-related instructions when SjLj runs.
36 /// FIXME Currently this scheme does not support indirect call of setjmp,
37 /// because of the limitation of the scheme itself. fastcomp does not support it
38 /// either.
39 ///
40 /// In detail, this pass does following things:
41 ///
42 /// 1) Assumes the existence of global variables: __THREW__, __threwValue
43 ///    __THREW__ and __threwValue are defined in compiler-rt in Emscripten.
44 ///    These variables are used for both exceptions and setjmp/longjmps.
45 ///    __THREW__ indicates whether an exception or a longjmp occurred or not. 0
46 ///    means nothing occurred, 1 means an exception occurred, and other numbers
47 ///    mean a longjmp occurred. In the case of longjmp, __THREW__ variable
48 ///    indicates the corresponding setjmp buffer the longjmp corresponds to.
49 ///    __threwValue is 0 for exceptions, and the argument to longjmp in case of
50 ///    longjmp.
51 ///
52 /// * Emscripten exception handling
53 ///
54 /// 2) We assume the existence of setThrew and setTempRet0/getTempRet0 functions
55 ///    at link time. setThrew exists in Emscripten's compiler-rt:
56 ///
57 ///    void setThrew(uintptr_t threw, int value) {
58 ///      if (__THREW__ == 0) {
59 ///        __THREW__ = threw;
60 ///        __threwValue = value;
61 ///      }
62 ///    }
63 //
64 ///    setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
65 ///    In exception handling, getTempRet0 indicates the type of an exception
66 ///    caught, and in setjmp/longjmp, it means the second argument to longjmp
67 ///    function.
68 ///
69 /// 3) Lower
70 ///      invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad
71 ///    into
72 ///      __THREW__ = 0;
73 ///      call @__invoke_SIG(func, arg1, arg2)
74 ///      %__THREW__.val = __THREW__;
75 ///      __THREW__ = 0;
76 ///      if (%__THREW__.val == 1)
77 ///        goto %lpad
78 ///      else
79 ///         goto %invoke.cont
80 ///    SIG is a mangled string generated based on the LLVM IR-level function
81 ///    signature. After LLVM IR types are lowered to the target wasm types,
82 ///    the names for these wrappers will change based on wasm types as well,
83 ///    as in invoke_vi (function takes an int and returns void). The bodies of
84 ///    these wrappers will be generated in JS glue code, and inside those
85 ///    wrappers we use JS try-catch to generate actual exception effects. It
86 ///    also calls the original callee function. An example wrapper in JS code
87 ///    would look like this:
88 ///      function invoke_vi(index,a1) {
89 ///        try {
90 ///          Module["dynCall_vi"](index,a1); // This calls original callee
91 ///        } catch(e) {
92 ///          if (typeof e !== 'number' && e !== 'longjmp') throw e;
93 ///          _setThrew(1, 0); // setThrew is called here
94 ///        }
95 ///      }
96 ///    If an exception is thrown, __THREW__ will be set to true in a wrapper,
97 ///    so we can jump to the right BB based on this value.
98 ///
99 /// 4) Lower
100 ///      %val = landingpad catch c1 catch c2 catch c3 ...
101 ///      ... use %val ...
102 ///    into
103 ///      %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...)
104 ///      %val = {%fmc, getTempRet0()}
105 ///      ... use %val ...
106 ///    Here N is a number calculated based on the number of clauses.
107 ///    setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
108 ///
109 /// 5) Lower
110 ///      resume {%a, %b}
111 ///    into
112 ///      call @__resumeException(%a)
113 ///    where __resumeException() is a function in JS glue code.
114 ///
115 /// 6) Lower
116 ///      call @llvm.eh.typeid.for(type) (intrinsic)
117 ///    into
118 ///      call @llvm_eh_typeid_for(type)
119 ///    llvm_eh_typeid_for function will be generated in JS glue code.
120 ///
121 /// * Emscripten setjmp / longjmp handling
122 ///
123 /// If there are calls to longjmp()
124 ///
125 /// 1) Lower
126 ///      longjmp(env, val)
127 ///    into
128 ///      emscripten_longjmp(env, val)
129 ///
130 /// If there are calls to setjmp()
131 ///
132 /// 2) In the function entry that calls setjmp, initialize setjmpTable and
133 ///    sejmpTableSize as follows:
134 ///      setjmpTableSize = 4;
135 ///      setjmpTable = (int *) malloc(40);
136 ///      setjmpTable[0] = 0;
137 ///    setjmpTable and setjmpTableSize are used to call saveSetjmp() function in
138 ///    Emscripten compiler-rt.
139 ///
140 /// 3) Lower
141 ///      setjmp(env)
142 ///    into
143 ///      setjmpTable = saveSetjmp(env, label, setjmpTable, setjmpTableSize);
144 ///      setjmpTableSize = getTempRet0();
145 ///    For each dynamic setjmp call, setjmpTable stores its ID (a number which
146 ///    is incrementally assigned from 0) and its label (a unique number that
147 ///    represents each callsite of setjmp). When we need more entries in
148 ///    setjmpTable, it is reallocated in saveSetjmp() in Emscripten's
149 ///    compiler-rt and it will return the new table address, and assign the new
150 ///    table size in setTempRet0(). saveSetjmp also stores the setjmp's ID into
151 ///    the buffer 'env'. A BB with setjmp is split into two after setjmp call in
152 ///    order to make the post-setjmp BB the possible destination of longjmp BB.
153 ///
154 /// 4) Lower every call that might longjmp into
155 ///      __THREW__ = 0;
156 ///      call @__invoke_SIG(func, arg1, arg2)
157 ///      %__THREW__.val = __THREW__;
158 ///      __THREW__ = 0;
159 ///      %__threwValue.val = __threwValue;
160 ///      if (%__THREW__.val != 0 & %__threwValue.val != 0) {
161 ///        %label = testSetjmp(mem[%__THREW__.val], setjmpTable,
162 ///                            setjmpTableSize);
163 ///        if (%label == 0)
164 ///          emscripten_longjmp(%__THREW__.val, %__threwValue.val);
165 ///        setTempRet0(%__threwValue.val);
166 ///      } else {
167 ///        %label = -1;
168 ///      }
169 ///      longjmp_result = getTempRet0();
170 ///      switch %label {
171 ///        label 1: goto post-setjmp BB 1
172 ///        label 2: goto post-setjmp BB 2
173 ///        ...
174 ///        default: goto splitted next BB
175 ///      }
176 ///    testSetjmp examines setjmpTable to see if there is a matching setjmp
177 ///    call. After calling an invoke wrapper, if a longjmp occurred, __THREW__
178 ///    will be the address of matching jmp_buf buffer and __threwValue be the
179 ///    second argument to longjmp. mem[%__THREW__.val] is a setjmp ID that is
180 ///    stored in saveSetjmp. testSetjmp returns a setjmp label, a unique ID to
181 ///    each setjmp callsite. Label 0 means this longjmp buffer does not
182 ///    correspond to one of the setjmp callsites in this function, so in this
183 ///    case we just chain the longjmp to the caller. Label -1 means no longjmp
184 ///    occurred. Otherwise we jump to the right post-setjmp BB based on the
185 ///    label.
186 ///
187 /// * Wasm setjmp / longjmp handling
188 /// This mode still uses some Emscripten library functions but not JavaScript's
189 /// try-catch mechanism. It instead uses Wasm exception handling intrinsics,
190 /// which will be lowered to exception handling instructions.
191 ///
192 /// If there are calls to longjmp()
193 ///
194 /// 1) Lower
195 ///      longjmp(env, val)
196 ///    into
197 ///      __wasm_longjmp(env, val)
198 ///
199 /// If there are calls to setjmp()
200 ///
201 /// 2) and 3): The same as 2) and 3) in Emscripten SjLj.
202 /// (setjmpTable/setjmpTableSize initialization + setjmp callsite
203 /// transformation)
204 ///
205 /// 4) Create a catchpad with a wasm.catch() intrinsic, which returns the value
206 /// thrown by __wasm_longjmp function. In Emscripten library, we have this
207 /// struct:
208 ///
209 /// struct __WasmLongjmpArgs {
210 ///   void *env;
211 ///   int val;
212 /// };
213 /// struct __WasmLongjmpArgs __wasm_longjmp_args;
214 ///
215 /// The thrown value here is a pointer to __wasm_longjmp_args struct object. We
216 /// use this struct to transfer two values by throwing a single value. Wasm
217 /// throw and catch instructions are capable of throwing and catching multiple
218 /// values, but it also requires multivalue support that is currently not very
219 /// reliable.
220 /// TODO Switch to throwing and catching two values without using the struct
221 ///
222 /// All longjmpable function calls will be converted to an invoke that will
223 /// unwind to this catchpad in case a longjmp occurs. Within the catchpad, we
224 /// test the thrown values using testSetjmp function as we do for Emscripten
225 /// SjLj. The main difference is, in Emscripten SjLj, we need to transform every
226 /// longjmpable callsite into a sequence of code including testSetjmp() call; in
227 /// Wasm SjLj we do the testing in only one place, in this catchpad.
228 ///
229 /// After testing calling testSetjmp(), if the longjmp does not correspond to
230 /// one of the setjmps within the current function, it rethrows the longjmp
231 /// by calling __wasm_longjmp(). If it corresponds to one of setjmps in the
232 /// function, we jump to the beginning of the function, which contains a switch
233 /// to each post-setjmp BB. Again, in Emscripten SjLj, this switch is added for
234 /// every longjmpable callsite; in Wasm SjLj we do this only once at the top of
235 /// the function. (after setjmpTable/setjmpTableSize initialization)
236 ///
237 /// The below is the pseudocode for what we have described
238 ///
239 /// entry:
240 ///   Initialize setjmpTable and setjmpTableSize
241 ///
242 /// setjmp.dispatch:
243 ///    switch %label {
244 ///      label 1: goto post-setjmp BB 1
245 ///      label 2: goto post-setjmp BB 2
246 ///      ...
247 ///      default: goto splitted next BB
248 ///    }
249 /// ...
250 ///
251 /// bb:
252 ///   invoke void @foo() ;; foo is a longjmpable function
253 ///     to label %next unwind label %catch.dispatch.longjmp
254 /// ...
255 ///
256 /// catch.dispatch.longjmp:
257 ///   %0 = catchswitch within none [label %catch.longjmp] unwind to caller
258 ///
259 /// catch.longjmp:
260 ///   %longjmp.args = wasm.catch() ;; struct __WasmLongjmpArgs
261 ///   %env = load 'env' field from __WasmLongjmpArgs
262 ///   %val = load 'val' field from __WasmLongjmpArgs
263 ///   %label = testSetjmp(mem[%env], setjmpTable, setjmpTableSize);
264 ///   if (%label == 0)
265 ///     __wasm_longjmp(%env, %val)
266 ///   catchret to %setjmp.dispatch
267 ///
268 ///===----------------------------------------------------------------------===//
269 
270 #include "WebAssembly.h"
271 #include "WebAssemblyTargetMachine.h"
272 #include "llvm/ADT/StringExtras.h"
273 #include "llvm/CodeGen/TargetPassConfig.h"
274 #include "llvm/CodeGen/WasmEHFuncInfo.h"
275 #include "llvm/IR/DebugInfoMetadata.h"
276 #include "llvm/IR/Dominators.h"
277 #include "llvm/IR/IRBuilder.h"
278 #include "llvm/IR/IntrinsicsWebAssembly.h"
279 #include "llvm/Support/CommandLine.h"
280 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
281 #include "llvm/Transforms/Utils/SSAUpdater.h"
282 #include "llvm/Transforms/Utils/SSAUpdaterBulk.h"
283 
284 using namespace llvm;
285 
286 #define DEBUG_TYPE "wasm-lower-em-ehsjlj"
287 
288 // Emscripten's asm.js-style exception handling
289 extern cl::opt<bool> WasmEnableEmEH;
290 // Emscripten's asm.js-style setjmp/longjmp handling
291 extern cl::opt<bool> WasmEnableEmSjLj;
292 // Wasm setjmp/longjmp handling using wasm EH instructions
293 extern cl::opt<bool> WasmEnableSjLj;
294 
295 static cl::list<std::string>
296     EHAllowlist("emscripten-cxx-exceptions-allowed",
297                 cl::desc("The list of function names in which Emscripten-style "
298                          "exception handling is enabled (see emscripten "
299                          "EMSCRIPTEN_CATCHING_ALLOWED options)"),
300                 cl::CommaSeparated);
301 
302 namespace {
303 class WebAssemblyLowerEmscriptenEHSjLj final : public ModulePass {
304   bool EnableEmEH;     // Enable Emscripten exception handling
305   bool EnableEmSjLj;   // Enable Emscripten setjmp/longjmp handling
306   bool EnableWasmSjLj; // Enable Wasm setjmp/longjmp handling
307   bool DoSjLj;         // Whether we actually perform setjmp/longjmp handling
308 
309   GlobalVariable *ThrewGV = nullptr;      // __THREW__ (Emscripten)
310   GlobalVariable *ThrewValueGV = nullptr; // __threwValue (Emscripten)
311   Function *GetTempRet0F = nullptr;       // getTempRet0() (Emscripten)
312   Function *SetTempRet0F = nullptr;       // setTempRet0() (Emscripten)
313   Function *ResumeF = nullptr;            // __resumeException() (Emscripten)
314   Function *EHTypeIDF = nullptr;          // llvm.eh.typeid.for() (intrinsic)
315   Function *EmLongjmpF = nullptr;         // emscripten_longjmp() (Emscripten)
316   Function *SaveSetjmpF = nullptr;        // saveSetjmp() (Emscripten)
317   Function *TestSetjmpF = nullptr;        // testSetjmp() (Emscripten)
318   Function *WasmLongjmpF = nullptr;       // __wasm_longjmp() (Emscripten)
319   Function *CatchF = nullptr;             // wasm.catch() (intrinsic)
320 
321   // type of 'struct __WasmLongjmpArgs' defined in emscripten
322   Type *LongjmpArgsTy = nullptr;
323 
324   // __cxa_find_matching_catch_N functions.
325   // Indexed by the number of clauses in an original landingpad instruction.
326   DenseMap<int, Function *> FindMatchingCatches;
327   // Map of <function signature string, invoke_ wrappers>
328   StringMap<Function *> InvokeWrappers;
329   // Set of allowed function names for exception handling
330   std::set<std::string> EHAllowlistSet;
331   // Functions that contains calls to setjmp
332   SmallPtrSet<Function *, 8> SetjmpUsers;
333 
334   StringRef getPassName() const override {
335     return "WebAssembly Lower Emscripten Exceptions";
336   }
337 
338   using InstVector = SmallVectorImpl<Instruction *>;
339   bool runEHOnFunction(Function &F);
340   bool runSjLjOnFunction(Function &F);
341   void handleLongjmpableCallsForEmscriptenSjLj(
342       Function &F, InstVector &SetjmpTableInsts,
343       InstVector &SetjmpTableSizeInsts,
344       SmallVectorImpl<PHINode *> &SetjmpRetPHIs);
345   void
346   handleLongjmpableCallsForWasmSjLj(Function &F, InstVector &SetjmpTableInsts,
347                                     InstVector &SetjmpTableSizeInsts,
348                                     SmallVectorImpl<PHINode *> &SetjmpRetPHIs);
349   Function *getFindMatchingCatch(Module &M, unsigned NumClauses);
350 
351   Value *wrapInvoke(CallBase *CI);
352   void wrapTestSetjmp(BasicBlock *BB, DebugLoc DL, Value *Threw,
353                       Value *SetjmpTable, Value *SetjmpTableSize, Value *&Label,
354                       Value *&LongjmpResult, BasicBlock *&CallEmLongjmpBB,
355                       PHINode *&CallEmLongjmpBBThrewPHI,
356                       PHINode *&CallEmLongjmpBBThrewValuePHI,
357                       BasicBlock *&EndBB);
358   Function *getInvokeWrapper(CallBase *CI);
359 
360   bool areAllExceptionsAllowed() const { return EHAllowlistSet.empty(); }
361   bool supportsException(const Function *F) const {
362     return EnableEmEH && (areAllExceptionsAllowed() ||
363                           EHAllowlistSet.count(std::string(F->getName())));
364   }
365   void replaceLongjmpWith(Function *LongjmpF, Function *NewF);
366 
367   void rebuildSSA(Function &F);
368 
369 public:
370   static char ID;
371 
372   WebAssemblyLowerEmscriptenEHSjLj()
373       : ModulePass(ID), EnableEmEH(WasmEnableEmEH),
374         EnableEmSjLj(WasmEnableEmSjLj), EnableWasmSjLj(WasmEnableSjLj) {
375     assert(!(EnableEmSjLj && EnableWasmSjLj) &&
376            "Two SjLj modes cannot be turned on at the same time");
377     assert(!(EnableEmEH && EnableWasmSjLj) &&
378            "Wasm SjLj should be only used with Wasm EH");
379     EHAllowlistSet.insert(EHAllowlist.begin(), EHAllowlist.end());
380   }
381   bool runOnModule(Module &M) override;
382 
383   void getAnalysisUsage(AnalysisUsage &AU) const override {
384     AU.addRequired<DominatorTreeWrapperPass>();
385   }
386 };
387 } // End anonymous namespace
388 
389 char WebAssemblyLowerEmscriptenEHSjLj::ID = 0;
390 INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj, DEBUG_TYPE,
391                 "WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp",
392                 false, false)
393 
394 ModulePass *llvm::createWebAssemblyLowerEmscriptenEHSjLj() {
395   return new WebAssemblyLowerEmscriptenEHSjLj();
396 }
397 
398 static bool canThrow(const Value *V) {
399   if (const auto *F = dyn_cast<const Function>(V)) {
400     // Intrinsics cannot throw
401     if (F->isIntrinsic())
402       return false;
403     StringRef Name = F->getName();
404     // leave setjmp and longjmp (mostly) alone, we process them properly later
405     if (Name == "setjmp" || Name == "longjmp" || Name == "emscripten_longjmp")
406       return false;
407     return !F->doesNotThrow();
408   }
409   // not a function, so an indirect call - can throw, we can't tell
410   return true;
411 }
412 
413 // Get a global variable with the given name. If it doesn't exist declare it,
414 // which will generate an import and assume that it will exist at link time.
415 static GlobalVariable *getGlobalVariable(Module &M, Type *Ty,
416                                          WebAssemblyTargetMachine &TM,
417                                          const char *Name) {
418   auto *GV = dyn_cast<GlobalVariable>(M.getOrInsertGlobal(Name, Ty));
419   if (!GV)
420     report_fatal_error(Twine("unable to create global: ") + Name);
421 
422   // If the target supports TLS, make this variable thread-local. We can't just
423   // unconditionally make it thread-local and depend on
424   // CoalesceFeaturesAndStripAtomics to downgrade it, because stripping TLS has
425   // the side effect of disallowing the object from being linked into a
426   // shared-memory module, which we don't want to be responsible for.
427   auto *Subtarget = TM.getSubtargetImpl();
428   auto TLS = Subtarget->hasAtomics() && Subtarget->hasBulkMemory()
429                  ? GlobalValue::LocalExecTLSModel
430                  : GlobalValue::NotThreadLocal;
431   GV->setThreadLocalMode(TLS);
432   return GV;
433 }
434 
435 // Simple function name mangler.
436 // This function simply takes LLVM's string representation of parameter types
437 // and concatenate them with '_'. There are non-alphanumeric characters but llc
438 // is ok with it, and we need to postprocess these names after the lowering
439 // phase anyway.
440 static std::string getSignature(FunctionType *FTy) {
441   std::string Sig;
442   raw_string_ostream OS(Sig);
443   OS << *FTy->getReturnType();
444   for (Type *ParamTy : FTy->params())
445     OS << "_" << *ParamTy;
446   if (FTy->isVarArg())
447     OS << "_...";
448   Sig = OS.str();
449   erase_if(Sig, isSpace);
450   // When s2wasm parses .s file, a comma means the end of an argument. So a
451   // mangled function name can contain any character but a comma.
452   std::replace(Sig.begin(), Sig.end(), ',', '.');
453   return Sig;
454 }
455 
456 static Function *getEmscriptenFunction(FunctionType *Ty, const Twine &Name,
457                                        Module *M) {
458   Function* F = Function::Create(Ty, GlobalValue::ExternalLinkage, Name, M);
459   // Tell the linker that this function is expected to be imported from the
460   // 'env' module.
461   if (!F->hasFnAttribute("wasm-import-module")) {
462     llvm::AttrBuilder B;
463     B.addAttribute("wasm-import-module", "env");
464     F->addFnAttrs(B);
465   }
466   if (!F->hasFnAttribute("wasm-import-name")) {
467     llvm::AttrBuilder B;
468     B.addAttribute("wasm-import-name", F->getName());
469     F->addFnAttrs(B);
470   }
471   return F;
472 }
473 
474 // Returns an integer type for the target architecture's address space.
475 // i32 for wasm32 and i64 for wasm64.
476 static Type *getAddrIntType(Module *M) {
477   IRBuilder<> IRB(M->getContext());
478   return IRB.getIntNTy(M->getDataLayout().getPointerSizeInBits());
479 }
480 
481 // Returns an integer pointer type for the target architecture's address space.
482 // i32* for wasm32 and i64* for wasm64.
483 static Type *getAddrPtrType(Module *M) {
484   return Type::getIntNPtrTy(M->getContext(),
485                             M->getDataLayout().getPointerSizeInBits());
486 }
487 
488 // Returns an integer whose type is the integer type for the target's address
489 // space. Returns (i32 C) for wasm32 and (i64 C) for wasm64, when C is the
490 // integer.
491 static Value *getAddrSizeInt(Module *M, uint64_t C) {
492   IRBuilder<> IRB(M->getContext());
493   return IRB.getIntN(M->getDataLayout().getPointerSizeInBits(), C);
494 }
495 
496 // Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2.
497 // This is because a landingpad instruction contains two more arguments, a
498 // personality function and a cleanup bit, and __cxa_find_matching_catch_N
499 // functions are named after the number of arguments in the original landingpad
500 // instruction.
501 Function *
502 WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module &M,
503                                                        unsigned NumClauses) {
504   if (FindMatchingCatches.count(NumClauses))
505     return FindMatchingCatches[NumClauses];
506   PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext());
507   SmallVector<Type *, 16> Args(NumClauses, Int8PtrTy);
508   FunctionType *FTy = FunctionType::get(Int8PtrTy, Args, false);
509   Function *F = getEmscriptenFunction(
510       FTy, "__cxa_find_matching_catch_" + Twine(NumClauses + 2), &M);
511   FindMatchingCatches[NumClauses] = F;
512   return F;
513 }
514 
515 // Generate invoke wrapper seqence with preamble and postamble
516 // Preamble:
517 // __THREW__ = 0;
518 // Postamble:
519 // %__THREW__.val = __THREW__; __THREW__ = 0;
520 // Returns %__THREW__.val, which indicates whether an exception is thrown (or
521 // whether longjmp occurred), for future use.
522 Value *WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallBase *CI) {
523   Module *M = CI->getModule();
524   LLVMContext &C = M->getContext();
525 
526   IRBuilder<> IRB(C);
527   IRB.SetInsertPoint(CI);
528 
529   // Pre-invoke
530   // __THREW__ = 0;
531   IRB.CreateStore(getAddrSizeInt(M, 0), ThrewGV);
532 
533   // Invoke function wrapper in JavaScript
534   SmallVector<Value *, 16> Args;
535   // Put the pointer to the callee as first argument, so it can be called
536   // within the invoke wrapper later
537   Args.push_back(CI->getCalledOperand());
538   Args.append(CI->arg_begin(), CI->arg_end());
539   CallInst *NewCall = IRB.CreateCall(getInvokeWrapper(CI), Args);
540   NewCall->takeName(CI);
541   NewCall->setCallingConv(CallingConv::WASM_EmscriptenInvoke);
542   NewCall->setDebugLoc(CI->getDebugLoc());
543 
544   // Because we added the pointer to the callee as first argument, all
545   // argument attribute indices have to be incremented by one.
546   SmallVector<AttributeSet, 8> ArgAttributes;
547   const AttributeList &InvokeAL = CI->getAttributes();
548 
549   // No attributes for the callee pointer.
550   ArgAttributes.push_back(AttributeSet());
551   // Copy the argument attributes from the original
552   for (unsigned I = 0, E = CI->getNumArgOperands(); I < E; ++I)
553     ArgAttributes.push_back(InvokeAL.getParamAttrs(I));
554 
555   AttrBuilder FnAttrs(InvokeAL.getFnAttrs());
556   if (FnAttrs.contains(Attribute::AllocSize)) {
557     // The allocsize attribute (if any) referes to parameters by index and needs
558     // to be adjusted.
559     unsigned SizeArg;
560     Optional<unsigned> NEltArg;
561     std::tie(SizeArg, NEltArg) = FnAttrs.getAllocSizeArgs();
562     SizeArg += 1;
563     if (NEltArg.hasValue())
564       NEltArg = NEltArg.getValue() + 1;
565     FnAttrs.addAllocSizeAttr(SizeArg, NEltArg);
566   }
567 
568   // Reconstruct the AttributesList based on the vector we constructed.
569   AttributeList NewCallAL = AttributeList::get(
570       C, AttributeSet::get(C, FnAttrs), InvokeAL.getRetAttrs(), ArgAttributes);
571   NewCall->setAttributes(NewCallAL);
572 
573   CI->replaceAllUsesWith(NewCall);
574 
575   // Post-invoke
576   // %__THREW__.val = __THREW__; __THREW__ = 0;
577   Value *Threw =
578       IRB.CreateLoad(getAddrIntType(M), ThrewGV, ThrewGV->getName() + ".val");
579   IRB.CreateStore(getAddrSizeInt(M, 0), ThrewGV);
580   return Threw;
581 }
582 
583 // Get matching invoke wrapper based on callee signature
584 Function *WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallBase *CI) {
585   Module *M = CI->getModule();
586   SmallVector<Type *, 16> ArgTys;
587   FunctionType *CalleeFTy = CI->getFunctionType();
588 
589   std::string Sig = getSignature(CalleeFTy);
590   if (InvokeWrappers.find(Sig) != InvokeWrappers.end())
591     return InvokeWrappers[Sig];
592 
593   // Put the pointer to the callee as first argument
594   ArgTys.push_back(PointerType::getUnqual(CalleeFTy));
595   // Add argument types
596   ArgTys.append(CalleeFTy->param_begin(), CalleeFTy->param_end());
597 
598   FunctionType *FTy = FunctionType::get(CalleeFTy->getReturnType(), ArgTys,
599                                         CalleeFTy->isVarArg());
600   Function *F = getEmscriptenFunction(FTy, "__invoke_" + Sig, M);
601   InvokeWrappers[Sig] = F;
602   return F;
603 }
604 
605 static bool canLongjmp(const Value *Callee) {
606   if (auto *CalleeF = dyn_cast<Function>(Callee))
607     if (CalleeF->isIntrinsic())
608       return false;
609 
610   // Attempting to transform inline assembly will result in something like:
611   //     call void @__invoke_void(void ()* asm ...)
612   // which is invalid because inline assembly blocks do not have addresses
613   // and can't be passed by pointer. The result is a crash with illegal IR.
614   if (isa<InlineAsm>(Callee))
615     return false;
616   StringRef CalleeName = Callee->getName();
617 
618   // The reason we include malloc/free here is to exclude the malloc/free
619   // calls generated in setjmp prep / cleanup routines.
620   if (CalleeName == "setjmp" || CalleeName == "malloc" || CalleeName == "free")
621     return false;
622 
623   // There are functions in Emscripten's JS glue code or compiler-rt
624   if (CalleeName == "__resumeException" || CalleeName == "llvm_eh_typeid_for" ||
625       CalleeName == "saveSetjmp" || CalleeName == "testSetjmp" ||
626       CalleeName == "getTempRet0" || CalleeName == "setTempRet0")
627     return false;
628 
629   // __cxa_find_matching_catch_N functions cannot longjmp
630   if (Callee->getName().startswith("__cxa_find_matching_catch_"))
631     return false;
632 
633   // Exception-catching related functions
634   if (CalleeName == "__cxa_begin_catch" || CalleeName == "__cxa_end_catch" ||
635       CalleeName == "__cxa_allocate_exception" || CalleeName == "__cxa_throw" ||
636       CalleeName == "__clang_call_terminate")
637     return false;
638 
639   // Otherwise we don't know
640   return true;
641 }
642 
643 static bool isEmAsmCall(const Value *Callee) {
644   StringRef CalleeName = Callee->getName();
645   // This is an exhaustive list from Emscripten's <emscripten/em_asm.h>.
646   return CalleeName == "emscripten_asm_const_int" ||
647          CalleeName == "emscripten_asm_const_double" ||
648          CalleeName == "emscripten_asm_const_int_sync_on_main_thread" ||
649          CalleeName == "emscripten_asm_const_double_sync_on_main_thread" ||
650          CalleeName == "emscripten_asm_const_async_on_main_thread";
651 }
652 
653 // Generate testSetjmp function call seqence with preamble and postamble.
654 // The code this generates is equivalent to the following JavaScript code:
655 // %__threwValue.val = __threwValue;
656 // if (%__THREW__.val != 0 & %__threwValue.val != 0) {
657 //   %label = testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize);
658 //   if (%label == 0)
659 //     emscripten_longjmp(%__THREW__.val, %__threwValue.val);
660 //   setTempRet0(%__threwValue.val);
661 // } else {
662 //   %label = -1;
663 // }
664 // %longjmp_result = getTempRet0();
665 //
666 // As output parameters. returns %label, %longjmp_result, and the BB the last
667 // instruction (%longjmp_result = ...) is in.
668 void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp(
669     BasicBlock *BB, DebugLoc DL, Value *Threw, Value *SetjmpTable,
670     Value *SetjmpTableSize, Value *&Label, Value *&LongjmpResult,
671     BasicBlock *&CallEmLongjmpBB, PHINode *&CallEmLongjmpBBThrewPHI,
672     PHINode *&CallEmLongjmpBBThrewValuePHI, BasicBlock *&EndBB) {
673   Function *F = BB->getParent();
674   Module *M = F->getParent();
675   LLVMContext &C = M->getContext();
676   IRBuilder<> IRB(C);
677   IRB.SetCurrentDebugLocation(DL);
678 
679   // if (%__THREW__.val != 0 & %__threwValue.val != 0)
680   IRB.SetInsertPoint(BB);
681   BasicBlock *ThenBB1 = BasicBlock::Create(C, "if.then1", F);
682   BasicBlock *ElseBB1 = BasicBlock::Create(C, "if.else1", F);
683   BasicBlock *EndBB1 = BasicBlock::Create(C, "if.end", F);
684   Value *ThrewCmp = IRB.CreateICmpNE(Threw, getAddrSizeInt(M, 0));
685   Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV,
686                                      ThrewValueGV->getName() + ".val");
687   Value *ThrewValueCmp = IRB.CreateICmpNE(ThrewValue, IRB.getInt32(0));
688   Value *Cmp1 = IRB.CreateAnd(ThrewCmp, ThrewValueCmp, "cmp1");
689   IRB.CreateCondBr(Cmp1, ThenBB1, ElseBB1);
690 
691   // Generate call.em.longjmp BB once and share it within the function
692   if (!CallEmLongjmpBB) {
693     // emscripten_longjmp(%__THREW__.val, %__threwValue.val);
694     CallEmLongjmpBB = BasicBlock::Create(C, "call.em.longjmp", F);
695     IRB.SetInsertPoint(CallEmLongjmpBB);
696     CallEmLongjmpBBThrewPHI = IRB.CreatePHI(getAddrIntType(M), 4, "threw.phi");
697     CallEmLongjmpBBThrewValuePHI =
698         IRB.CreatePHI(IRB.getInt32Ty(), 4, "threwvalue.phi");
699     CallEmLongjmpBBThrewPHI->addIncoming(Threw, ThenBB1);
700     CallEmLongjmpBBThrewValuePHI->addIncoming(ThrewValue, ThenBB1);
701     IRB.CreateCall(EmLongjmpF,
702                    {CallEmLongjmpBBThrewPHI, CallEmLongjmpBBThrewValuePHI});
703     IRB.CreateUnreachable();
704   } else {
705     CallEmLongjmpBBThrewPHI->addIncoming(Threw, ThenBB1);
706     CallEmLongjmpBBThrewValuePHI->addIncoming(ThrewValue, ThenBB1);
707   }
708 
709   // %label = testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize);
710   // if (%label == 0)
711   IRB.SetInsertPoint(ThenBB1);
712   BasicBlock *EndBB2 = BasicBlock::Create(C, "if.end2", F);
713   Value *ThrewPtr =
714       IRB.CreateIntToPtr(Threw, getAddrPtrType(M), Threw->getName() + ".p");
715   Value *LoadedThrew = IRB.CreateLoad(getAddrIntType(M), ThrewPtr,
716                                       ThrewPtr->getName() + ".loaded");
717   Value *ThenLabel = IRB.CreateCall(
718       TestSetjmpF, {LoadedThrew, SetjmpTable, SetjmpTableSize}, "label");
719   Value *Cmp2 = IRB.CreateICmpEQ(ThenLabel, IRB.getInt32(0));
720   IRB.CreateCondBr(Cmp2, CallEmLongjmpBB, EndBB2);
721 
722   // setTempRet0(%__threwValue.val);
723   IRB.SetInsertPoint(EndBB2);
724   IRB.CreateCall(SetTempRet0F, ThrewValue);
725   IRB.CreateBr(EndBB1);
726 
727   IRB.SetInsertPoint(ElseBB1);
728   IRB.CreateBr(EndBB1);
729 
730   // longjmp_result = getTempRet0();
731   IRB.SetInsertPoint(EndBB1);
732   PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label");
733   LabelPHI->addIncoming(ThenLabel, EndBB2);
734 
735   LabelPHI->addIncoming(IRB.getInt32(-1), ElseBB1);
736 
737   // Output parameter assignment
738   Label = LabelPHI;
739   EndBB = EndBB1;
740   LongjmpResult = IRB.CreateCall(GetTempRet0F, None, "longjmp_result");
741 }
742 
743 void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function &F) {
744   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
745   DT.recalculate(F); // CFG has been changed
746 
747   SSAUpdaterBulk SSA;
748   for (BasicBlock &BB : F) {
749     for (Instruction &I : BB) {
750       unsigned VarID = SSA.AddVariable(I.getName(), I.getType());
751       // If a value is defined by an invoke instruction, it is only available in
752       // its normal destination and not in its unwind destination.
753       if (auto *II = dyn_cast<InvokeInst>(&I))
754         SSA.AddAvailableValue(VarID, II->getNormalDest(), II);
755       else
756         SSA.AddAvailableValue(VarID, &BB, &I);
757       for (auto &U : I.uses()) {
758         auto *User = cast<Instruction>(U.getUser());
759         if (auto *UserPN = dyn_cast<PHINode>(User))
760           if (UserPN->getIncomingBlock(U) == &BB)
761             continue;
762         if (DT.dominates(&I, User))
763           continue;
764         SSA.AddUse(VarID, &U);
765       }
766     }
767   }
768   SSA.RewriteAllUses(&DT);
769 }
770 
771 // Replace uses of longjmp with a new longjmp function in Emscripten library.
772 // In Emscripten SjLj, the new function is
773 //   void emscripten_longjmp(uintptr_t, i32)
774 // In Wasm SjLj, the new function is
775 //   void __wasm_longjmp(i8*, i32)
776 // Because the original libc longjmp function takes (jmp_buf*, i32), we need a
777 // ptrtoint/bitcast instruction here to make the type match. jmp_buf* will
778 // eventually be lowered to i32/i64 in the wasm backend.
779 void WebAssemblyLowerEmscriptenEHSjLj::replaceLongjmpWith(Function *LongjmpF,
780                                                           Function *NewF) {
781   assert(NewF == EmLongjmpF || NewF == WasmLongjmpF);
782   Module *M = LongjmpF->getParent();
783   SmallVector<CallInst *, 8> ToErase;
784   LLVMContext &C = LongjmpF->getParent()->getContext();
785   IRBuilder<> IRB(C);
786 
787   // For calls to longjmp, replace it with emscripten_longjmp/__wasm_longjmp and
788   // cast its first argument (jmp_buf*) appropriately
789   for (User *U : LongjmpF->users()) {
790     auto *CI = dyn_cast<CallInst>(U);
791     if (CI && CI->getCalledFunction() == LongjmpF) {
792       IRB.SetInsertPoint(CI);
793       Value *Env = nullptr;
794       if (NewF == EmLongjmpF)
795         Env =
796             IRB.CreatePtrToInt(CI->getArgOperand(0), getAddrIntType(M), "env");
797       else // WasmLongjmpF
798         Env =
799             IRB.CreateBitCast(CI->getArgOperand(0), IRB.getInt8PtrTy(), "env");
800       IRB.CreateCall(NewF, {Env, CI->getArgOperand(1)});
801       ToErase.push_back(CI);
802     }
803   }
804   for (auto *I : ToErase)
805     I->eraseFromParent();
806 
807   // If we have any remaining uses of longjmp's function pointer, replace it
808   // with (void(*)(jmp_buf*, int))emscripten_longjmp / __wasm_longjmp.
809   if (!LongjmpF->uses().empty()) {
810     Value *NewLongjmp =
811         IRB.CreateBitCast(NewF, LongjmpF->getType(), "longjmp.cast");
812     LongjmpF->replaceAllUsesWith(NewLongjmp);
813   }
814 }
815 
816 static bool containsLongjmpableCalls(const Function *F) {
817   for (const auto &BB : *F)
818     for (const auto &I : BB)
819       if (const auto *CB = dyn_cast<CallBase>(&I))
820         if (canLongjmp(CB->getCalledOperand()))
821           return true;
822   return false;
823 }
824 
825 bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module &M) {
826   LLVM_DEBUG(dbgs() << "********** Lower Emscripten EH & SjLj **********\n");
827 
828   LLVMContext &C = M.getContext();
829   IRBuilder<> IRB(C);
830 
831   Function *SetjmpF = M.getFunction("setjmp");
832   Function *LongjmpF = M.getFunction("longjmp");
833 
834   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
835   assert(TPC && "Expected a TargetPassConfig");
836   auto &TM = TPC->getTM<WebAssemblyTargetMachine>();
837 
838   // Declare (or get) global variables __THREW__, __threwValue, and
839   // getTempRet0/setTempRet0 function which are used in common for both
840   // exception handling and setjmp/longjmp handling
841   ThrewGV = getGlobalVariable(M, getAddrIntType(&M), TM, "__THREW__");
842   ThrewValueGV = getGlobalVariable(M, IRB.getInt32Ty(), TM, "__threwValue");
843   GetTempRet0F = getEmscriptenFunction(
844       FunctionType::get(IRB.getInt32Ty(), false), "getTempRet0", &M);
845   SetTempRet0F = getEmscriptenFunction(
846       FunctionType::get(IRB.getVoidTy(), IRB.getInt32Ty(), false),
847       "setTempRet0", &M);
848   GetTempRet0F->setDoesNotThrow();
849   SetTempRet0F->setDoesNotThrow();
850 
851   bool Changed = false;
852 
853   // Function registration for exception handling
854   if (EnableEmEH) {
855     // Register __resumeException function
856     FunctionType *ResumeFTy =
857         FunctionType::get(IRB.getVoidTy(), IRB.getInt8PtrTy(), false);
858     ResumeF = getEmscriptenFunction(ResumeFTy, "__resumeException", &M);
859     ResumeF->addFnAttr(Attribute::NoReturn);
860 
861     // Register llvm_eh_typeid_for function
862     FunctionType *EHTypeIDTy =
863         FunctionType::get(IRB.getInt32Ty(), IRB.getInt8PtrTy(), false);
864     EHTypeIDF = getEmscriptenFunction(EHTypeIDTy, "llvm_eh_typeid_for", &M);
865   }
866 
867   if ((EnableEmSjLj || EnableWasmSjLj) && SetjmpF) {
868     // Precompute setjmp users
869     for (User *U : SetjmpF->users()) {
870       if (auto *CB = dyn_cast<CallBase>(U)) {
871         auto *UserF = CB->getFunction();
872         // If a function that calls setjmp does not contain any other calls that
873         // can longjmp, we don't need to do any transformation on that function,
874         // so can ignore it
875         if (containsLongjmpableCalls(UserF))
876           SetjmpUsers.insert(UserF);
877       } else {
878         std::string S;
879         raw_string_ostream SS(S);
880         SS << *U;
881         report_fatal_error(Twine("Indirect use of setjmp is not supported: ") +
882                            SS.str());
883       }
884     }
885   }
886 
887   bool SetjmpUsed = SetjmpF && !SetjmpUsers.empty();
888   bool LongjmpUsed = LongjmpF && !LongjmpF->use_empty();
889   DoSjLj = (EnableEmSjLj | EnableWasmSjLj) && (SetjmpUsed || LongjmpUsed);
890 
891   // Function registration and data pre-gathering for setjmp/longjmp handling
892   if (DoSjLj) {
893     assert(EnableEmSjLj || EnableWasmSjLj);
894     if (EnableEmSjLj) {
895       // Register emscripten_longjmp function
896       FunctionType *FTy = FunctionType::get(
897           IRB.getVoidTy(), {getAddrIntType(&M), IRB.getInt32Ty()}, false);
898       EmLongjmpF = getEmscriptenFunction(FTy, "emscripten_longjmp", &M);
899       EmLongjmpF->addFnAttr(Attribute::NoReturn);
900     } else { // EnableWasmSjLj
901       // Register __wasm_longjmp function, which calls __builtin_wasm_longjmp.
902       FunctionType *FTy = FunctionType::get(
903           IRB.getVoidTy(), {IRB.getInt8PtrTy(), IRB.getInt32Ty()}, false);
904       WasmLongjmpF = getEmscriptenFunction(FTy, "__wasm_longjmp", &M);
905       WasmLongjmpF->addFnAttr(Attribute::NoReturn);
906     }
907 
908     if (SetjmpF) {
909       // Register saveSetjmp function
910       FunctionType *SetjmpFTy = SetjmpF->getFunctionType();
911       FunctionType *FTy =
912           FunctionType::get(Type::getInt32PtrTy(C),
913                             {SetjmpFTy->getParamType(0), IRB.getInt32Ty(),
914                              Type::getInt32PtrTy(C), IRB.getInt32Ty()},
915                             false);
916       SaveSetjmpF = getEmscriptenFunction(FTy, "saveSetjmp", &M);
917 
918       // Register testSetjmp function
919       FTy = FunctionType::get(
920           IRB.getInt32Ty(),
921           {getAddrIntType(&M), Type::getInt32PtrTy(C), IRB.getInt32Ty()},
922           false);
923       TestSetjmpF = getEmscriptenFunction(FTy, "testSetjmp", &M);
924 
925       // wasm.catch() will be lowered down to wasm 'catch' instruction in
926       // instruction selection.
927       CatchF = Intrinsic::getDeclaration(&M, Intrinsic::wasm_catch);
928       // Type for struct __WasmLongjmpArgs
929       LongjmpArgsTy = StructType::get(IRB.getInt8PtrTy(), // env
930                                       IRB.getInt32Ty()    // val
931       );
932     }
933   }
934 
935   // Above, we registered emscripten_longjmp function only when it SjLj is
936   // actually used. But there is a case we need emscripten_longjmp when we
937   // rethrow longjmps after checking for an Emscripten exception. Refer to
938   // runEHOnFunction for details.
939   if (EnableEmEH && EnableEmSjLj && !EmLongjmpF) {
940     // Register emscripten_longjmp function
941     FunctionType *FTy = FunctionType::get(
942         IRB.getVoidTy(), {getAddrIntType(&M), IRB.getInt32Ty()}, false);
943     EmLongjmpF = getEmscriptenFunction(FTy, "emscripten_longjmp", &M);
944     EmLongjmpF->addFnAttr(Attribute::NoReturn);
945   }
946 
947   // Exception handling transformation
948   if (EnableEmEH) {
949     for (Function &F : M) {
950       if (F.isDeclaration())
951         continue;
952       Changed |= runEHOnFunction(F);
953     }
954   }
955 
956   // Setjmp/longjmp handling transformation
957   if (DoSjLj) {
958     Changed = true; // We have setjmp or longjmp somewhere
959     if (LongjmpF)
960       replaceLongjmpWith(LongjmpF, EnableEmSjLj ? EmLongjmpF : WasmLongjmpF);
961     // Only traverse functions that uses setjmp in order not to insert
962     // unnecessary prep / cleanup code in every function
963     if (SetjmpF)
964       for (Function *F : SetjmpUsers)
965         runSjLjOnFunction(*F);
966   }
967 
968   if (!Changed) {
969     // Delete unused global variables and functions
970     if (ResumeF)
971       ResumeF->eraseFromParent();
972     if (EHTypeIDF)
973       EHTypeIDF->eraseFromParent();
974     if (EmLongjmpF)
975       EmLongjmpF->eraseFromParent();
976     if (SaveSetjmpF)
977       SaveSetjmpF->eraseFromParent();
978     if (TestSetjmpF)
979       TestSetjmpF->eraseFromParent();
980     return false;
981   }
982 
983   return true;
984 }
985 
986 bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function &F) {
987   Module &M = *F.getParent();
988   LLVMContext &C = F.getContext();
989   IRBuilder<> IRB(C);
990   bool Changed = false;
991   SmallVector<Instruction *, 64> ToErase;
992   SmallPtrSet<LandingPadInst *, 32> LandingPads;
993 
994   // rethrow.longjmp BB that will be shared within the function.
995   BasicBlock *RethrowLongjmpBB = nullptr;
996   // PHI node for the loaded value of __THREW__ global variable in
997   // rethrow.longjmp BB
998   PHINode *RethrowLongjmpBBThrewPHI = nullptr;
999 
1000   for (BasicBlock &BB : F) {
1001     auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
1002     if (!II)
1003       continue;
1004     Changed = true;
1005     LandingPads.insert(II->getLandingPadInst());
1006     IRB.SetInsertPoint(II);
1007 
1008     const Value *Callee = II->getCalledOperand();
1009     bool NeedInvoke = supportsException(&F) && canThrow(Callee);
1010     if (NeedInvoke) {
1011       // Wrap invoke with invoke wrapper and generate preamble/postamble
1012       Value *Threw = wrapInvoke(II);
1013       ToErase.push_back(II);
1014 
1015       // If setjmp/longjmp handling is enabled, the thrown value can be not an
1016       // exception but a longjmp. If the current function contains calls to
1017       // setjmp, it will be appropriately handled in runSjLjOnFunction. But even
1018       // if the function does not contain setjmp calls, we shouldn't silently
1019       // ignore longjmps; we should rethrow them so they can be correctly
1020       // handled in somewhere up the call chain where setjmp is. __THREW__'s
1021       // value is 0 when nothing happened, 1 when an exception is thrown, and
1022       // other values when longjmp is thrown.
1023       //
1024       // Note that we do this whenever -enable-emscripten-sjlj is on, regardless
1025       // of whether there is actual usage of setjmp/longjmp within the module.
1026       // Because we use wasm-ld to link files, what we see here is not the whole
1027       // program, and there can be a longjmp call in another file.
1028       //
1029       // if (%__THREW__.val == 0 || %__THREW__.val == 1)
1030       //   goto %tail
1031       // else
1032       //   goto %longjmp.rethrow
1033       //
1034       // rethrow.longjmp: ;; This is longjmp. Rethrow it
1035       //   %__threwValue.val = __threwValue
1036       //   emscripten_longjmp(%__THREW__.val, %__threwValue.val);
1037       //
1038       // tail: ;; Nothing happened or an exception is thrown
1039       //   ... Continue exception handling ...
1040       if (EnableEmSjLj && !SetjmpUsers.count(&F) && canLongjmp(Callee)) {
1041         // Create longjmp.rethrow BB once and share it within the function
1042         if (!RethrowLongjmpBB) {
1043           RethrowLongjmpBB = BasicBlock::Create(C, "rethrow.longjmp", &F);
1044           IRB.SetInsertPoint(RethrowLongjmpBB);
1045           RethrowLongjmpBBThrewPHI =
1046               IRB.CreatePHI(getAddrIntType(&M), 4, "threw.phi");
1047           RethrowLongjmpBBThrewPHI->addIncoming(Threw, &BB);
1048           Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV,
1049                                              ThrewValueGV->getName() + ".val");
1050           IRB.CreateCall(EmLongjmpF, {RethrowLongjmpBBThrewPHI, ThrewValue});
1051           IRB.CreateUnreachable();
1052         } else {
1053           RethrowLongjmpBBThrewPHI->addIncoming(Threw, &BB);
1054         }
1055 
1056         IRB.SetInsertPoint(II); // Restore the insert point back
1057         BasicBlock *Tail = BasicBlock::Create(C, "tail", &F);
1058         Value *CmpEqOne =
1059             IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp.eq.one");
1060         Value *CmpEqZero =
1061             IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 0), "cmp.eq.zero");
1062         Value *Or = IRB.CreateOr(CmpEqZero, CmpEqOne, "or");
1063         IRB.CreateCondBr(Or, Tail, RethrowLongjmpBB);
1064         IRB.SetInsertPoint(Tail);
1065         BB.replaceSuccessorsPhiUsesWith(&BB, Tail);
1066       }
1067 
1068       // Insert a branch based on __THREW__ variable
1069       Value *Cmp = IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp");
1070       IRB.CreateCondBr(Cmp, II->getUnwindDest(), II->getNormalDest());
1071 
1072     } else {
1073       // This can't throw, and we don't need this invoke, just replace it with a
1074       // call+branch
1075       SmallVector<Value *, 16> Args(II->args());
1076       CallInst *NewCall =
1077           IRB.CreateCall(II->getFunctionType(), II->getCalledOperand(), Args);
1078       NewCall->takeName(II);
1079       NewCall->setCallingConv(II->getCallingConv());
1080       NewCall->setDebugLoc(II->getDebugLoc());
1081       NewCall->setAttributes(II->getAttributes());
1082       II->replaceAllUsesWith(NewCall);
1083       ToErase.push_back(II);
1084 
1085       IRB.CreateBr(II->getNormalDest());
1086 
1087       // Remove any PHI node entries from the exception destination
1088       II->getUnwindDest()->removePredecessor(&BB);
1089     }
1090   }
1091 
1092   // Process resume instructions
1093   for (BasicBlock &BB : F) {
1094     // Scan the body of the basic block for resumes
1095     for (Instruction &I : BB) {
1096       auto *RI = dyn_cast<ResumeInst>(&I);
1097       if (!RI)
1098         continue;
1099       Changed = true;
1100 
1101       // Split the input into legal values
1102       Value *Input = RI->getValue();
1103       IRB.SetInsertPoint(RI);
1104       Value *Low = IRB.CreateExtractValue(Input, 0, "low");
1105       // Create a call to __resumeException function
1106       IRB.CreateCall(ResumeF, {Low});
1107       // Add a terminator to the block
1108       IRB.CreateUnreachable();
1109       ToErase.push_back(RI);
1110     }
1111   }
1112 
1113   // Process llvm.eh.typeid.for intrinsics
1114   for (BasicBlock &BB : F) {
1115     for (Instruction &I : BB) {
1116       auto *CI = dyn_cast<CallInst>(&I);
1117       if (!CI)
1118         continue;
1119       const Function *Callee = CI->getCalledFunction();
1120       if (!Callee)
1121         continue;
1122       if (Callee->getIntrinsicID() != Intrinsic::eh_typeid_for)
1123         continue;
1124       Changed = true;
1125 
1126       IRB.SetInsertPoint(CI);
1127       CallInst *NewCI =
1128           IRB.CreateCall(EHTypeIDF, CI->getArgOperand(0), "typeid");
1129       CI->replaceAllUsesWith(NewCI);
1130       ToErase.push_back(CI);
1131     }
1132   }
1133 
1134   // Look for orphan landingpads, can occur in blocks with no predecessors
1135   for (BasicBlock &BB : F) {
1136     Instruction *I = BB.getFirstNonPHI();
1137     if (auto *LPI = dyn_cast<LandingPadInst>(I))
1138       LandingPads.insert(LPI);
1139   }
1140   Changed |= !LandingPads.empty();
1141 
1142   // Handle all the landingpad for this function together, as multiple invokes
1143   // may share a single lp
1144   for (LandingPadInst *LPI : LandingPads) {
1145     IRB.SetInsertPoint(LPI);
1146     SmallVector<Value *, 16> FMCArgs;
1147     for (unsigned I = 0, E = LPI->getNumClauses(); I < E; ++I) {
1148       Constant *Clause = LPI->getClause(I);
1149       // TODO Handle filters (= exception specifications).
1150       // https://bugs.llvm.org/show_bug.cgi?id=50396
1151       if (LPI->isCatch(I))
1152         FMCArgs.push_back(Clause);
1153     }
1154 
1155     // Create a call to __cxa_find_matching_catch_N function
1156     Function *FMCF = getFindMatchingCatch(M, FMCArgs.size());
1157     CallInst *FMCI = IRB.CreateCall(FMCF, FMCArgs, "fmc");
1158     Value *Undef = UndefValue::get(LPI->getType());
1159     Value *Pair0 = IRB.CreateInsertValue(Undef, FMCI, 0, "pair0");
1160     Value *TempRet0 = IRB.CreateCall(GetTempRet0F, None, "tempret0");
1161     Value *Pair1 = IRB.CreateInsertValue(Pair0, TempRet0, 1, "pair1");
1162 
1163     LPI->replaceAllUsesWith(Pair1);
1164     ToErase.push_back(LPI);
1165   }
1166 
1167   // Erase everything we no longer need in this function
1168   for (Instruction *I : ToErase)
1169     I->eraseFromParent();
1170 
1171   return Changed;
1172 }
1173 
1174 // This tries to get debug info from the instruction before which a new
1175 // instruction will be inserted, and if there's no debug info in that
1176 // instruction, tries to get the info instead from the previous instruction (if
1177 // any). If none of these has debug info and a DISubprogram is provided, it
1178 // creates a dummy debug info with the first line of the function, because IR
1179 // verifier requires all inlinable callsites should have debug info when both a
1180 // caller and callee have DISubprogram. If none of these conditions are met,
1181 // returns empty info.
1182 static DebugLoc getOrCreateDebugLoc(const Instruction *InsertBefore,
1183                                     DISubprogram *SP) {
1184   assert(InsertBefore);
1185   if (InsertBefore->getDebugLoc())
1186     return InsertBefore->getDebugLoc();
1187   const Instruction *Prev = InsertBefore->getPrevNode();
1188   if (Prev && Prev->getDebugLoc())
1189     return Prev->getDebugLoc();
1190   if (SP)
1191     return DILocation::get(SP->getContext(), SP->getLine(), 1, SP);
1192   return DebugLoc();
1193 }
1194 
1195 bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function &F) {
1196   assert(EnableEmSjLj || EnableWasmSjLj);
1197   Module &M = *F.getParent();
1198   LLVMContext &C = F.getContext();
1199   IRBuilder<> IRB(C);
1200   SmallVector<Instruction *, 64> ToErase;
1201   // Vector of %setjmpTable values
1202   SmallVector<Instruction *, 4> SetjmpTableInsts;
1203   // Vector of %setjmpTableSize values
1204   SmallVector<Instruction *, 4> SetjmpTableSizeInsts;
1205 
1206   // Setjmp preparation
1207 
1208   // This instruction effectively means %setjmpTableSize = 4.
1209   // We create this as an instruction intentionally, and we don't want to fold
1210   // this instruction to a constant 4, because this value will be used in
1211   // SSAUpdater.AddAvailableValue(...) later.
1212   BasicBlock *Entry = &F.getEntryBlock();
1213   DebugLoc FirstDL = getOrCreateDebugLoc(&*Entry->begin(), F.getSubprogram());
1214   SplitBlock(Entry, &*Entry->getFirstInsertionPt());
1215 
1216   BinaryOperator *SetjmpTableSize =
1217       BinaryOperator::Create(Instruction::Add, IRB.getInt32(4), IRB.getInt32(0),
1218                              "setjmpTableSize", Entry->getTerminator());
1219   SetjmpTableSize->setDebugLoc(FirstDL);
1220   // setjmpTable = (int *) malloc(40);
1221   Instruction *SetjmpTable = CallInst::CreateMalloc(
1222       SetjmpTableSize, IRB.getInt32Ty(), IRB.getInt32Ty(), IRB.getInt32(40),
1223       nullptr, nullptr, "setjmpTable");
1224   SetjmpTable->setDebugLoc(FirstDL);
1225   // CallInst::CreateMalloc may return a bitcast instruction if the result types
1226   // mismatch. We need to set the debug loc for the original call too.
1227   auto *MallocCall = SetjmpTable->stripPointerCasts();
1228   if (auto *MallocCallI = dyn_cast<Instruction>(MallocCall)) {
1229     MallocCallI->setDebugLoc(FirstDL);
1230   }
1231   // setjmpTable[0] = 0;
1232   IRB.SetInsertPoint(SetjmpTableSize);
1233   IRB.CreateStore(IRB.getInt32(0), SetjmpTable);
1234   SetjmpTableInsts.push_back(SetjmpTable);
1235   SetjmpTableSizeInsts.push_back(SetjmpTableSize);
1236 
1237   // Setjmp transformation
1238   SmallVector<PHINode *, 4> SetjmpRetPHIs;
1239   Function *SetjmpF = M.getFunction("setjmp");
1240   for (User *U : SetjmpF->users()) {
1241     auto *CI = dyn_cast<CallInst>(U);
1242     // FIXME 'invoke' to setjmp can happen when we use Wasm EH + Wasm SjLj, but
1243     // we don't support two being used together yet.
1244     if (!CI)
1245       report_fatal_error("Wasm EH + Wasm SjLj is not fully supported yet");
1246     BasicBlock *BB = CI->getParent();
1247     if (BB->getParent() != &F) // in other function
1248       continue;
1249 
1250     // The tail is everything right after the call, and will be reached once
1251     // when setjmp is called, and later when longjmp returns to the setjmp
1252     BasicBlock *Tail = SplitBlock(BB, CI->getNextNode());
1253     // Add a phi to the tail, which will be the output of setjmp, which
1254     // indicates if this is the first call or a longjmp back. The phi directly
1255     // uses the right value based on where we arrive from
1256     IRB.SetInsertPoint(Tail->getFirstNonPHI());
1257     PHINode *SetjmpRet = IRB.CreatePHI(IRB.getInt32Ty(), 2, "setjmp.ret");
1258 
1259     // setjmp initial call returns 0
1260     SetjmpRet->addIncoming(IRB.getInt32(0), BB);
1261     // The proper output is now this, not the setjmp call itself
1262     CI->replaceAllUsesWith(SetjmpRet);
1263     // longjmp returns to the setjmp will add themselves to this phi
1264     SetjmpRetPHIs.push_back(SetjmpRet);
1265 
1266     // Fix call target
1267     // Our index in the function is our place in the array + 1 to avoid index
1268     // 0, because index 0 means the longjmp is not ours to handle.
1269     IRB.SetInsertPoint(CI);
1270     Value *Args[] = {CI->getArgOperand(0), IRB.getInt32(SetjmpRetPHIs.size()),
1271                      SetjmpTable, SetjmpTableSize};
1272     Instruction *NewSetjmpTable =
1273         IRB.CreateCall(SaveSetjmpF, Args, "setjmpTable");
1274     Instruction *NewSetjmpTableSize =
1275         IRB.CreateCall(GetTempRet0F, None, "setjmpTableSize");
1276     SetjmpTableInsts.push_back(NewSetjmpTable);
1277     SetjmpTableSizeInsts.push_back(NewSetjmpTableSize);
1278     ToErase.push_back(CI);
1279   }
1280 
1281   // Handle longjmpable calls.
1282   if (EnableEmSjLj)
1283     handleLongjmpableCallsForEmscriptenSjLj(
1284         F, SetjmpTableInsts, SetjmpTableSizeInsts, SetjmpRetPHIs);
1285   else // EnableWasmSjLj
1286     handleLongjmpableCallsForWasmSjLj(F, SetjmpTableInsts, SetjmpTableSizeInsts,
1287                                       SetjmpRetPHIs);
1288 
1289   // Erase everything we no longer need in this function
1290   for (Instruction *I : ToErase)
1291     I->eraseFromParent();
1292 
1293   // Free setjmpTable buffer before each return instruction + function-exiting
1294   // call
1295   SmallVector<Instruction *, 16> ExitingInsts;
1296   for (BasicBlock &BB : F) {
1297     Instruction *TI = BB.getTerminator();
1298     if (isa<ReturnInst>(TI))
1299       ExitingInsts.push_back(TI);
1300     // Any 'call' instruction with 'noreturn' attribute exits the function at
1301     // this point. If this throws but unwinds to another EH pad within this
1302     // function instead of exiting, this would have been an 'invoke', which
1303     // happens if we use Wasm EH or Wasm SjLJ.
1304     for (auto &I : BB) {
1305       if (auto *CI = dyn_cast<CallInst>(&I)) {
1306         bool IsNoReturn = CI->hasFnAttr(Attribute::NoReturn);
1307         if (Function *CalleeF = CI->getCalledFunction())
1308           IsNoReturn |= CalleeF->hasFnAttribute(Attribute::NoReturn);
1309         if (IsNoReturn)
1310           ExitingInsts.push_back(&I);
1311       }
1312     }
1313   }
1314   for (auto *I : ExitingInsts) {
1315     DebugLoc DL = getOrCreateDebugLoc(I, F.getSubprogram());
1316     // If this existing instruction is a call within a catchpad, we should add
1317     // it as "funclet" to the operand bundle of 'free' call
1318     SmallVector<OperandBundleDef, 1> Bundles;
1319     if (auto *CB = dyn_cast<CallBase>(I))
1320       if (auto Bundle = CB->getOperandBundle(LLVMContext::OB_funclet))
1321         Bundles.push_back(OperandBundleDef(*Bundle));
1322     auto *Free = CallInst::CreateFree(SetjmpTable, Bundles, I);
1323     Free->setDebugLoc(DL);
1324     // CallInst::CreateFree may create a bitcast instruction if its argument
1325     // types mismatch. We need to set the debug loc for the bitcast too.
1326     if (auto *FreeCallI = dyn_cast<CallInst>(Free)) {
1327       if (auto *BitCastI = dyn_cast<BitCastInst>(FreeCallI->getArgOperand(0)))
1328         BitCastI->setDebugLoc(DL);
1329     }
1330   }
1331 
1332   // Every call to saveSetjmp can change setjmpTable and setjmpTableSize
1333   // (when buffer reallocation occurs)
1334   // entry:
1335   //   setjmpTableSize = 4;
1336   //   setjmpTable = (int *) malloc(40);
1337   //   setjmpTable[0] = 0;
1338   // ...
1339   // somebb:
1340   //   setjmpTable = saveSetjmp(env, label, setjmpTable, setjmpTableSize);
1341   //   setjmpTableSize = getTempRet0();
1342   // So we need to make sure the SSA for these variables is valid so that every
1343   // saveSetjmp and testSetjmp calls have the correct arguments.
1344   SSAUpdater SetjmpTableSSA;
1345   SSAUpdater SetjmpTableSizeSSA;
1346   SetjmpTableSSA.Initialize(Type::getInt32PtrTy(C), "setjmpTable");
1347   SetjmpTableSizeSSA.Initialize(Type::getInt32Ty(C), "setjmpTableSize");
1348   for (Instruction *I : SetjmpTableInsts)
1349     SetjmpTableSSA.AddAvailableValue(I->getParent(), I);
1350   for (Instruction *I : SetjmpTableSizeInsts)
1351     SetjmpTableSizeSSA.AddAvailableValue(I->getParent(), I);
1352 
1353   for (auto &U : make_early_inc_range(SetjmpTable->uses()))
1354     if (auto *I = dyn_cast<Instruction>(U.getUser()))
1355       if (I->getParent() != Entry)
1356         SetjmpTableSSA.RewriteUse(U);
1357   for (auto &U : make_early_inc_range(SetjmpTableSize->uses()))
1358     if (auto *I = dyn_cast<Instruction>(U.getUser()))
1359       if (I->getParent() != Entry)
1360         SetjmpTableSizeSSA.RewriteUse(U);
1361 
1362   // Finally, our modifications to the cfg can break dominance of SSA variables.
1363   // For example, in this code,
1364   // if (x()) { .. setjmp() .. }
1365   // if (y()) { .. longjmp() .. }
1366   // We must split the longjmp block, and it can jump into the block splitted
1367   // from setjmp one. But that means that when we split the setjmp block, it's
1368   // first part no longer dominates its second part - there is a theoretically
1369   // possible control flow path where x() is false, then y() is true and we
1370   // reach the second part of the setjmp block, without ever reaching the first
1371   // part. So, we rebuild SSA form here.
1372   rebuildSSA(F);
1373   return true;
1374 }
1375 
1376 // Update each call that can longjmp so it can return to the corresponding
1377 // setjmp. Refer to 4) of "Emscripten setjmp/longjmp handling" section in the
1378 // comments at top of the file for details.
1379 void WebAssemblyLowerEmscriptenEHSjLj::handleLongjmpableCallsForEmscriptenSjLj(
1380     Function &F, InstVector &SetjmpTableInsts, InstVector &SetjmpTableSizeInsts,
1381     SmallVectorImpl<PHINode *> &SetjmpRetPHIs) {
1382   Module &M = *F.getParent();
1383   LLVMContext &C = F.getContext();
1384   IRBuilder<> IRB(C);
1385   SmallVector<Instruction *, 64> ToErase;
1386 
1387   // We need to pass setjmpTable and setjmpTableSize to testSetjmp function.
1388   // These values are defined in the beginning of the function and also in each
1389   // setjmp callsite, but we don't know which values we should use at this
1390   // point. So here we arbitraily use the ones defined in the beginning of the
1391   // function, and SSAUpdater will later update them to the correct values.
1392   Instruction *SetjmpTable = *SetjmpTableInsts.begin();
1393   Instruction *SetjmpTableSize = *SetjmpTableSizeInsts.begin();
1394 
1395   // call.em.longjmp BB that will be shared within the function.
1396   BasicBlock *CallEmLongjmpBB = nullptr;
1397   // PHI node for the loaded value of __THREW__ global variable in
1398   // call.em.longjmp BB
1399   PHINode *CallEmLongjmpBBThrewPHI = nullptr;
1400   // PHI node for the loaded value of __threwValue global variable in
1401   // call.em.longjmp BB
1402   PHINode *CallEmLongjmpBBThrewValuePHI = nullptr;
1403   // rethrow.exn BB that will be shared within the function.
1404   BasicBlock *RethrowExnBB = nullptr;
1405 
1406   // Because we are creating new BBs while processing and don't want to make
1407   // all these newly created BBs candidates again for longjmp processing, we
1408   // first make the vector of candidate BBs.
1409   std::vector<BasicBlock *> BBs;
1410   for (BasicBlock &BB : F)
1411     BBs.push_back(&BB);
1412 
1413   // BBs.size() will change within the loop, so we query it every time
1414   for (unsigned I = 0; I < BBs.size(); I++) {
1415     BasicBlock *BB = BBs[I];
1416     for (Instruction &I : *BB) {
1417       if (isa<InvokeInst>(&I))
1418         report_fatal_error("When using Wasm EH with Emscripten SjLj, there is "
1419                            "a restriction that `setjmp` function call and "
1420                            "exception cannot be used within the same function");
1421       auto *CI = dyn_cast<CallInst>(&I);
1422       if (!CI)
1423         continue;
1424 
1425       const Value *Callee = CI->getCalledOperand();
1426       if (!canLongjmp(Callee))
1427         continue;
1428       if (isEmAsmCall(Callee))
1429         report_fatal_error("Cannot use EM_ASM* alongside setjmp/longjmp in " +
1430                                F.getName() +
1431                                ". Please consider using EM_JS, or move the "
1432                                "EM_ASM into another function.",
1433                            false);
1434 
1435       Value *Threw = nullptr;
1436       BasicBlock *Tail;
1437       if (Callee->getName().startswith("__invoke_")) {
1438         // If invoke wrapper has already been generated for this call in
1439         // previous EH phase, search for the load instruction
1440         // %__THREW__.val = __THREW__;
1441         // in postamble after the invoke wrapper call
1442         LoadInst *ThrewLI = nullptr;
1443         StoreInst *ThrewResetSI = nullptr;
1444         for (auto I = std::next(BasicBlock::iterator(CI)), IE = BB->end();
1445              I != IE; ++I) {
1446           if (auto *LI = dyn_cast<LoadInst>(I))
1447             if (auto *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()))
1448               if (GV == ThrewGV) {
1449                 Threw = ThrewLI = LI;
1450                 break;
1451               }
1452         }
1453         // Search for the store instruction after the load above
1454         // __THREW__ = 0;
1455         for (auto I = std::next(BasicBlock::iterator(ThrewLI)), IE = BB->end();
1456              I != IE; ++I) {
1457           if (auto *SI = dyn_cast<StoreInst>(I)) {
1458             if (auto *GV = dyn_cast<GlobalVariable>(SI->getPointerOperand())) {
1459               if (GV == ThrewGV &&
1460                   SI->getValueOperand() == getAddrSizeInt(&M, 0)) {
1461                 ThrewResetSI = SI;
1462                 break;
1463               }
1464             }
1465           }
1466         }
1467         assert(Threw && ThrewLI && "Cannot find __THREW__ load after invoke");
1468         assert(ThrewResetSI && "Cannot find __THREW__ store after invoke");
1469         Tail = SplitBlock(BB, ThrewResetSI->getNextNode());
1470 
1471       } else {
1472         // Wrap call with invoke wrapper and generate preamble/postamble
1473         Threw = wrapInvoke(CI);
1474         ToErase.push_back(CI);
1475         Tail = SplitBlock(BB, CI->getNextNode());
1476 
1477         // If exception handling is enabled, the thrown value can be not a
1478         // longjmp but an exception, in which case we shouldn't silently ignore
1479         // exceptions; we should rethrow them.
1480         // __THREW__'s value is 0 when nothing happened, 1 when an exception is
1481         // thrown, other values when longjmp is thrown.
1482         //
1483         // if (%__THREW__.val == 1)
1484         //   goto %eh.rethrow
1485         // else
1486         //   goto %normal
1487         //
1488         // eh.rethrow: ;; Rethrow exception
1489         //   %exn = call @__cxa_find_matching_catch_2() ;; Retrieve thrown ptr
1490         //   __resumeException(%exn)
1491         //
1492         // normal:
1493         //   <-- Insertion point. Will insert sjlj handling code from here
1494         //   goto %tail
1495         //
1496         // tail:
1497         //   ...
1498         if (supportsException(&F) && canThrow(Callee)) {
1499           // We will add a new conditional branch. So remove the branch created
1500           // when we split the BB
1501           ToErase.push_back(BB->getTerminator());
1502 
1503           // Generate rethrow.exn BB once and share it within the function
1504           if (!RethrowExnBB) {
1505             RethrowExnBB = BasicBlock::Create(C, "rethrow.exn", &F);
1506             IRB.SetInsertPoint(RethrowExnBB);
1507             CallInst *Exn =
1508                 IRB.CreateCall(getFindMatchingCatch(M, 0), {}, "exn");
1509             IRB.CreateCall(ResumeF, {Exn});
1510             IRB.CreateUnreachable();
1511           }
1512 
1513           IRB.SetInsertPoint(CI);
1514           BasicBlock *NormalBB = BasicBlock::Create(C, "normal", &F);
1515           Value *CmpEqOne =
1516               IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp.eq.one");
1517           IRB.CreateCondBr(CmpEqOne, RethrowExnBB, NormalBB);
1518 
1519           IRB.SetInsertPoint(NormalBB);
1520           IRB.CreateBr(Tail);
1521           BB = NormalBB; // New insertion point to insert testSetjmp()
1522         }
1523       }
1524 
1525       // We need to replace the terminator in Tail - SplitBlock makes BB go
1526       // straight to Tail, we need to check if a longjmp occurred, and go to the
1527       // right setjmp-tail if so
1528       ToErase.push_back(BB->getTerminator());
1529 
1530       // Generate a function call to testSetjmp function and preamble/postamble
1531       // code to figure out (1) whether longjmp occurred (2) if longjmp
1532       // occurred, which setjmp it corresponds to
1533       Value *Label = nullptr;
1534       Value *LongjmpResult = nullptr;
1535       BasicBlock *EndBB = nullptr;
1536       wrapTestSetjmp(BB, CI->getDebugLoc(), Threw, SetjmpTable, SetjmpTableSize,
1537                      Label, LongjmpResult, CallEmLongjmpBB,
1538                      CallEmLongjmpBBThrewPHI, CallEmLongjmpBBThrewValuePHI,
1539                      EndBB);
1540       assert(Label && LongjmpResult && EndBB);
1541 
1542       // Create switch instruction
1543       IRB.SetInsertPoint(EndBB);
1544       IRB.SetCurrentDebugLocation(EndBB->getInstList().back().getDebugLoc());
1545       SwitchInst *SI = IRB.CreateSwitch(Label, Tail, SetjmpRetPHIs.size());
1546       // -1 means no longjmp happened, continue normally (will hit the default
1547       // switch case). 0 means a longjmp that is not ours to handle, needs a
1548       // rethrow. Otherwise the index is the same as the index in P+1 (to avoid
1549       // 0).
1550       for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) {
1551         SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent());
1552         SetjmpRetPHIs[I]->addIncoming(LongjmpResult, EndBB);
1553       }
1554 
1555       // We are splitting the block here, and must continue to find other calls
1556       // in the block - which is now split. so continue to traverse in the Tail
1557       BBs.push_back(Tail);
1558     }
1559   }
1560 
1561   for (Instruction *I : ToErase)
1562     I->eraseFromParent();
1563 }
1564 
1565 // Create a catchpad in which we catch a longjmp's env and val arguments, test
1566 // if the longjmp corresponds to one of setjmps in the current function, and if
1567 // so, jump to the setjmp dispatch BB from which we go to one of post-setjmp
1568 // BBs. Refer to 4) of "Wasm setjmp/longjmp handling" section in the comments at
1569 // top of the file for details.
1570 void WebAssemblyLowerEmscriptenEHSjLj::handleLongjmpableCallsForWasmSjLj(
1571     Function &F, InstVector &SetjmpTableInsts, InstVector &SetjmpTableSizeInsts,
1572     SmallVectorImpl<PHINode *> &SetjmpRetPHIs) {
1573   Module &M = *F.getParent();
1574   LLVMContext &C = F.getContext();
1575   IRBuilder<> IRB(C);
1576 
1577   // A function with catchswitch/catchpad instruction should have a personality
1578   // function attached to it. Search for the wasm personality function, and if
1579   // it exists, use it, and if it doesn't, create a dummy personality function.
1580   // (SjLj is not going to call it anyway.)
1581   if (!F.hasPersonalityFn()) {
1582     StringRef PersName = getEHPersonalityName(EHPersonality::Wasm_CXX);
1583     FunctionType *PersType =
1584         FunctionType::get(IRB.getInt32Ty(), /* isVarArg */ true);
1585     Value *PersF = M.getOrInsertFunction(PersName, PersType).getCallee();
1586     F.setPersonalityFn(
1587         cast<Constant>(IRB.CreateBitCast(PersF, IRB.getInt8PtrTy())));
1588   }
1589 
1590   // Use the entry BB's debugloc as a fallback
1591   BasicBlock *Entry = &F.getEntryBlock();
1592   DebugLoc FirstDL = getOrCreateDebugLoc(&*Entry->begin(), F.getSubprogram());
1593   IRB.SetCurrentDebugLocation(FirstDL);
1594 
1595   // Arbitrarily use the ones defined in the beginning of the function.
1596   // SSAUpdater will later update them to the correct values.
1597   Instruction *SetjmpTable = *SetjmpTableInsts.begin();
1598   Instruction *SetjmpTableSize = *SetjmpTableSizeInsts.begin();
1599 
1600   // Add setjmp.dispatch BB right after the entry block. Because we have
1601   // initialized setjmpTable/setjmpTableSize in the entry block and split the
1602   // rest into another BB, here 'OrigEntry' is the function's original entry
1603   // block before the transformation.
1604   //
1605   // entry:
1606   //   setjmpTable / setjmpTableSize initialization
1607   // setjmp.dispatch:
1608   //   switch will be inserted here later
1609   // entry.split: (OrigEntry)
1610   //   the original function starts here
1611   BasicBlock *OrigEntry = Entry->getNextNode();
1612   BasicBlock *SetjmpDispatchBB =
1613       BasicBlock::Create(C, "setjmp.dispatch", &F, OrigEntry);
1614   cast<BranchInst>(Entry->getTerminator())->setSuccessor(0, SetjmpDispatchBB);
1615 
1616   // Create catch.dispatch.longjmp BB a catchswitch instruction
1617   BasicBlock *CatchSwitchBB =
1618       BasicBlock::Create(C, "catch.dispatch.longjmp", &F);
1619   IRB.SetInsertPoint(CatchSwitchBB);
1620   CatchSwitchInst *CatchSwitch =
1621       IRB.CreateCatchSwitch(ConstantTokenNone::get(C), nullptr, 1);
1622 
1623   // Create catch.longjmp BB and a catchpad instruction
1624   BasicBlock *CatchLongjmpBB = BasicBlock::Create(C, "catch.longjmp", &F);
1625   CatchSwitch->addHandler(CatchLongjmpBB);
1626   IRB.SetInsertPoint(CatchLongjmpBB);
1627   CatchPadInst *CatchPad = IRB.CreateCatchPad(CatchSwitch, {});
1628 
1629   // Wasm throw and catch instructions can throw and catch multiple values, but
1630   // that requires multivalue support in the toolchain, which is currently not
1631   // very reliable. We instead throw and catch a pointer to a struct value of
1632   // type 'struct __WasmLongjmpArgs', which is defined in Emscripten.
1633   Instruction *CatchCI =
1634       IRB.CreateCall(CatchF, {IRB.getInt32(WebAssembly::C_LONGJMP)}, "thrown");
1635   Value *LongjmpArgs =
1636       IRB.CreateBitCast(CatchCI, LongjmpArgsTy->getPointerTo(), "longjmp.args");
1637   Value *EnvField =
1638       IRB.CreateConstGEP2_32(LongjmpArgsTy, LongjmpArgs, 0, 0, "env_gep");
1639   Value *ValField =
1640       IRB.CreateConstGEP2_32(LongjmpArgsTy, LongjmpArgs, 0, 1, "val_gep");
1641   // void *env = __wasm_longjmp_args.env;
1642   Instruction *Env = IRB.CreateLoad(IRB.getInt8PtrTy(), EnvField, "env");
1643   // int val = __wasm_longjmp_args.val;
1644   Instruction *Val = IRB.CreateLoad(IRB.getInt32Ty(), ValField, "val");
1645 
1646   // %label = testSetjmp(mem[%env], setjmpTable, setjmpTableSize);
1647   // if (%label == 0)
1648   //   __wasm_longjmp(%env, %val)
1649   // catchret to %setjmp.dispatch
1650   BasicBlock *ThenBB = BasicBlock::Create(C, "if.then", &F);
1651   BasicBlock *EndBB = BasicBlock::Create(C, "if.end", &F);
1652   Value *EnvP = IRB.CreateBitCast(Env, getAddrPtrType(&M), "env.p");
1653   Value *SetjmpID = IRB.CreateLoad(getAddrIntType(&M), EnvP, "setjmp.id");
1654   Value *Label =
1655       IRB.CreateCall(TestSetjmpF, {SetjmpID, SetjmpTable, SetjmpTableSize},
1656                      OperandBundleDef("funclet", CatchPad), "label");
1657   Value *Cmp = IRB.CreateICmpEQ(Label, IRB.getInt32(0));
1658   IRB.CreateCondBr(Cmp, ThenBB, EndBB);
1659 
1660   IRB.SetInsertPoint(ThenBB);
1661   CallInst *WasmLongjmpCI = IRB.CreateCall(
1662       WasmLongjmpF, {Env, Val}, OperandBundleDef("funclet", CatchPad));
1663   IRB.CreateUnreachable();
1664 
1665   IRB.SetInsertPoint(EndBB);
1666   // Jump to setjmp.dispatch block
1667   IRB.CreateCatchRet(CatchPad, SetjmpDispatchBB);
1668 
1669   // Go back to setjmp.dispatch BB
1670   // setjmp.dispatch:
1671   //   switch %label {
1672   //     label 1: goto post-setjmp BB 1
1673   //     label 2: goto post-setjmp BB 2
1674   //     ...
1675   //     default: goto splitted next BB
1676   //   }
1677   IRB.SetInsertPoint(SetjmpDispatchBB);
1678   PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label.phi");
1679   LabelPHI->addIncoming(Label, EndBB);
1680   LabelPHI->addIncoming(IRB.getInt32(-1), Entry);
1681   SwitchInst *SI = IRB.CreateSwitch(LabelPHI, OrigEntry, SetjmpRetPHIs.size());
1682   // -1 means no longjmp happened, continue normally (will hit the default
1683   // switch case). 0 means a longjmp that is not ours to handle, needs a
1684   // rethrow. Otherwise the index is the same as the index in P+1 (to avoid
1685   // 0).
1686   for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) {
1687     SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent());
1688     SetjmpRetPHIs[I]->addIncoming(Val, SetjmpDispatchBB);
1689   }
1690 
1691   // Convert all longjmpable call instructions to invokes that unwind to the
1692   // newly created catch.dispatch.longjmp BB.
1693   SmallVector<Instruction *, 64> ToErase;
1694   for (auto *BB = &*F.begin(); BB; BB = BB->getNextNode()) {
1695     for (Instruction &I : *BB) {
1696       auto *CI = dyn_cast<CallInst>(&I);
1697       if (!CI)
1698         continue;
1699       const Value *Callee = CI->getCalledOperand();
1700       if (!canLongjmp(Callee))
1701         continue;
1702       if (isEmAsmCall(Callee))
1703         report_fatal_error("Cannot use EM_ASM* alongside setjmp/longjmp in " +
1704                                F.getName() +
1705                                ". Please consider using EM_JS, or move the "
1706                                "EM_ASM into another function.",
1707                            false);
1708       // This is __wasm_longjmp() call we inserted in this function, which
1709       // rethrows the longjmp when the longjmp does not correspond to one of
1710       // setjmps in this function. We should not convert this call to an invoke.
1711       if (CI == WasmLongjmpCI)
1712         continue;
1713       ToErase.push_back(CI);
1714 
1715       // Even if the callee function has attribute 'nounwind', which is true for
1716       // all C functions, it can longjmp, which means it can throw a Wasm
1717       // exception now.
1718       CI->removeFnAttr(Attribute::NoUnwind);
1719       if (Function *CalleeF = CI->getCalledFunction()) {
1720         CalleeF->removeFnAttr(Attribute::NoUnwind);
1721       }
1722 
1723       IRB.SetInsertPoint(CI);
1724       BasicBlock *Tail = SplitBlock(BB, CI->getNextNode());
1725       // We will add a new invoke. So remove the branch created when we split
1726       // the BB
1727       ToErase.push_back(BB->getTerminator());
1728       SmallVector<Value *, 8> Args(CI->args());
1729       InvokeInst *II =
1730           IRB.CreateInvoke(CI->getFunctionType(), CI->getCalledOperand(), Tail,
1731                            CatchSwitchBB, Args);
1732       II->takeName(CI);
1733       II->setDebugLoc(CI->getDebugLoc());
1734       II->setAttributes(CI->getAttributes());
1735       CI->replaceAllUsesWith(II);
1736     }
1737   }
1738 
1739   for (Instruction *I : ToErase)
1740     I->eraseFromParent();
1741 }
1742