1 //=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file lowers exception-related instructions and setjmp/longjmp
11 /// function calls in order to use Emscripten's JavaScript try and catch
12 /// mechanism.
13 ///
14 /// To handle exceptions and setjmp/longjmps, this scheme relies on JavaScript's
15 /// try and catch syntax and relevant exception-related libraries implemented
16 /// in JavaScript glue code that will be produced by Emscripten. This is similar
17 /// to the current Emscripten asm.js exception handling in fastcomp. For
18 /// fastcomp's EH / SjLj scheme, see these files in fastcomp LLVM branch:
19 /// (Location: https://github.com/kripken/emscripten-fastcomp)
20 /// lib/Target/JSBackend/NaCl/LowerEmExceptionsPass.cpp
21 /// lib/Target/JSBackend/NaCl/LowerEmSetjmp.cpp
22 /// lib/Target/JSBackend/JSBackend.cpp
23 /// lib/Target/JSBackend/CallHandlers.h
24 ///
25 /// * Exception handling
26 /// This pass lowers invokes and landingpads into library functions in JS glue
27 /// code. Invokes are lowered into function wrappers called invoke wrappers that
28 /// exist in JS side, which wraps the original function call with JS try-catch.
29 /// If an exception occurred, cxa_throw() function in JS side sets some
30 /// variables (see below) so we can check whether an exception occurred from
31 /// wasm code and handle it appropriately.
32 ///
33 /// * Setjmp-longjmp handling
34 /// This pass lowers setjmp to a reasonably-performant approach for emscripten.
35 /// The idea is that each block with a setjmp is broken up into two parts: the
36 /// part containing setjmp and the part right after the setjmp. The latter part
37 /// is either reached from the setjmp, or later from a longjmp. To handle the
38 /// longjmp, all calls that might longjmp are also called using invoke wrappers
39 /// and thus JS / try-catch. JS longjmp() function also sets some variables so
40 /// we can check / whether a longjmp occurred from wasm code. Each block with a
41 /// function call that might longjmp is also split up after the longjmp call.
42 /// After the longjmp call, we check whether a longjmp occurred, and if it did,
43 /// which setjmp it corresponds to, and jump to the right post-setjmp block.
44 /// We assume setjmp-longjmp handling always run after EH handling, which means
45 /// we don't expect any exception-related instructions when SjLj runs.
46 /// FIXME Currently this scheme does not support indirect call of setjmp,
47 /// because of the limitation of the scheme itself. fastcomp does not support it
48 /// either.
49 ///
50 /// In detail, this pass does following things:
51 ///
52 /// 1) Assumes the existence of global variables: __THREW__, __threwValue
53 ///    __THREW__ and __threwValue will be set in invoke wrappers
54 ///    in JS glue code. For what invoke wrappers are, refer to 3). These
55 ///    variables are used for both exceptions and setjmp/longjmps.
56 ///    __THREW__ indicates whether an exception or a longjmp occurred or not. 0
57 ///    means nothing occurred, 1 means an exception occurred, and other numbers
58 ///    mean a longjmp occurred. In the case of longjmp, __threwValue variable
59 ///    indicates the corresponding setjmp buffer the longjmp corresponds to.
60 ///
61 /// * Exception handling
62 ///
63 /// 2) We assume the existence of setThrew and setTempRet0/getTempRet0 functions
64 ///    at link time.
65 ///    The global variables in 1) will exist in wasm address space,
66 ///    but their values should be set in JS code, so these functions
67 ///    as interfaces to JS glue code. These functions are equivalent to the
68 ///    following JS functions, which actually exist in asm.js version of JS
69 ///    library.
70 ///
71 ///    function setThrew(threw, value) {
72 ///      if (__THREW__ == 0) {
73 ///        __THREW__ = threw;
74 ///        __threwValue = value;
75 ///      }
76 ///    }
77 //
78 ///    setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
79 ///
80 ///    In exception handling, getTempRet0 indicates the type of an exception
81 ///    caught, and in setjmp/longjmp, it means the second argument to longjmp
82 ///    function.
83 ///
84 /// 3) Lower
85 ///      invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad
86 ///    into
87 ///      __THREW__ = 0;
88 ///      call @__invoke_SIG(func, arg1, arg2)
89 ///      %__THREW__.val = __THREW__;
90 ///      __THREW__ = 0;
91 ///      if (%__THREW__.val == 1)
92 ///        goto %lpad
93 ///      else
94 ///         goto %invoke.cont
95 ///    SIG is a mangled string generated based on the LLVM IR-level function
96 ///    signature. After LLVM IR types are lowered to the target wasm types,
97 ///    the names for these wrappers will change based on wasm types as well,
98 ///    as in invoke_vi (function takes an int and returns void). The bodies of
99 ///    these wrappers will be generated in JS glue code, and inside those
100 ///    wrappers we use JS try-catch to generate actual exception effects. It
101 ///    also calls the original callee function. An example wrapper in JS code
102 ///    would look like this:
103 ///      function invoke_vi(index,a1) {
104 ///        try {
105 ///          Module["dynCall_vi"](index,a1); // This calls original callee
106 ///        } catch(e) {
107 ///          if (typeof e !== 'number' && e !== 'longjmp') throw e;
108 ///          asm["setThrew"](1, 0); // setThrew is called here
109 ///        }
110 ///      }
111 ///    If an exception is thrown, __THREW__ will be set to true in a wrapper,
112 ///    so we can jump to the right BB based on this value.
113 ///
114 /// 4) Lower
115 ///      %val = landingpad catch c1 catch c2 catch c3 ...
116 ///      ... use %val ...
117 ///    into
118 ///      %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...)
119 ///      %val = {%fmc, getTempRet0()}
120 ///      ... use %val ...
121 ///    Here N is a number calculated based on the number of clauses.
122 ///    setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
123 ///
124 /// 5) Lower
125 ///      resume {%a, %b}
126 ///    into
127 ///      call @__resumeException(%a)
128 ///    where __resumeException() is a function in JS glue code.
129 ///
130 /// 6) Lower
131 ///      call @llvm.eh.typeid.for(type) (intrinsic)
132 ///    into
133 ///      call @llvm_eh_typeid_for(type)
134 ///    llvm_eh_typeid_for function will be generated in JS glue code.
135 ///
136 /// * Setjmp / Longjmp handling
137 ///
138 /// In case calls to longjmp() exists
139 ///
140 /// 1) Lower
141 ///      longjmp(buf, value)
142 ///    into
143 ///      emscripten_longjmp_jmpbuf(buf, value)
144 ///    emscripten_longjmp_jmpbuf will be lowered to emscripten_longjmp later.
145 ///
146 /// In case calls to setjmp() exists
147 ///
148 /// 2) In the function entry that calls setjmp, initialize setjmpTable and
149 ///    sejmpTableSize as follows:
150 ///      setjmpTableSize = 4;
151 ///      setjmpTable = (int *) malloc(40);
152 ///      setjmpTable[0] = 0;
153 ///    setjmpTable and setjmpTableSize are used in saveSetjmp() function in JS
154 ///    code.
155 ///
156 /// 3) Lower
157 ///      setjmp(buf)
158 ///    into
159 ///      setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize);
160 ///      setjmpTableSize = getTempRet0();
161 ///    For each dynamic setjmp call, setjmpTable stores its ID (a number which
162 ///    is incrementally assigned from 0) and its label (a unique number that
163 ///    represents each callsite of setjmp). When we need more entries in
164 ///    setjmpTable, it is reallocated in saveSetjmp() in JS code and it will
165 ///    return the new table address, and assign the new table size in
166 ///    setTempRet0(). saveSetjmp also stores the setjmp's ID into the buffer
167 ///    buf. A BB with setjmp is split into two after setjmp call in order to
168 ///    make the post-setjmp BB the possible destination of longjmp BB.
169 ///
170 ///
171 /// 4) Lower every call that might longjmp into
172 ///      __THREW__ = 0;
173 ///      call @__invoke_SIG(func, arg1, arg2)
174 ///      %__THREW__.val = __THREW__;
175 ///      __THREW__ = 0;
176 ///      if (%__THREW__.val != 0 & __threwValue != 0) {
177 ///        %label = testSetjmp(mem[%__THREW__.val], setjmpTable,
178 ///                            setjmpTableSize);
179 ///        if (%label == 0)
180 ///          emscripten_longjmp(%__THREW__.val, __threwValue);
181 ///        setTempRet0(__threwValue);
182 ///      } else {
183 ///        %label = -1;
184 ///      }
185 ///      longjmp_result = getTempRet0();
186 ///      switch label {
187 ///        label 1: goto post-setjmp BB 1
188 ///        label 2: goto post-setjmp BB 2
189 ///        ...
190 ///        default: goto splitted next BB
191 ///      }
192 ///    testSetjmp examines setjmpTable to see if there is a matching setjmp
193 ///    call. After calling an invoke wrapper, if a longjmp occurred, __THREW__
194 ///    will be the address of matching jmp_buf buffer and __threwValue be the
195 ///    second argument to longjmp. mem[__THREW__.val] is a setjmp ID that is
196 ///    stored in saveSetjmp. testSetjmp returns a setjmp label, a unique ID to
197 ///    each setjmp callsite. Label 0 means this longjmp buffer does not
198 ///    correspond to one of the setjmp callsites in this function, so in this
199 ///    case we just chain the longjmp to the caller. (Here we call
200 ///    emscripten_longjmp, which is different from emscripten_longjmp_jmpbuf.
201 ///    emscripten_longjmp_jmpbuf takes jmp_buf as its first argument, while
202 ///    emscripten_longjmp takes an int. Both of them will eventually be lowered
203 ///    to emscripten_longjmp in s2wasm, but here we need two signatures - we
204 ///    can't translate an int value to a jmp_buf.)
205 ///    Label -1 means no longjmp occurred. Otherwise we jump to the right
206 ///    post-setjmp BB based on the label.
207 ///
208 ///===----------------------------------------------------------------------===//
209 
210 #include "WebAssembly.h"
211 #include "WebAssemblyTargetMachine.h"
212 #include "llvm/ADT/StringExtras.h"
213 #include "llvm/CodeGen/TargetPassConfig.h"
214 #include "llvm/IR/DebugInfoMetadata.h"
215 #include "llvm/IR/Dominators.h"
216 #include "llvm/IR/IRBuilder.h"
217 #include "llvm/Support/CommandLine.h"
218 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
219 #include "llvm/Transforms/Utils/SSAUpdater.h"
220 
221 using namespace llvm;
222 
223 #define DEBUG_TYPE "wasm-lower-em-ehsjlj"
224 
225 static cl::list<std::string>
226     EHAllowlist("emscripten-cxx-exceptions-allowed",
227                 cl::desc("The list of function names in which Emscripten-style "
228                          "exception handling is enabled (see emscripten "
229                          "EMSCRIPTEN_CATCHING_ALLOWED options)"),
230                 cl::CommaSeparated);
231 
232 namespace {
233 class WebAssemblyLowerEmscriptenEHSjLj final : public ModulePass {
234   bool EnableEH;   // Enable exception handling
235   bool EnableSjLj; // Enable setjmp/longjmp handling
236 
237   GlobalVariable *ThrewGV = nullptr;
238   GlobalVariable *ThrewValueGV = nullptr;
239   Function *GetTempRet0Func = nullptr;
240   Function *SetTempRet0Func = nullptr;
241   Function *ResumeF = nullptr;
242   Function *EHTypeIDF = nullptr;
243   Function *EmLongjmpF = nullptr;
244   Function *EmLongjmpJmpbufF = nullptr;
245   Function *SaveSetjmpF = nullptr;
246   Function *TestSetjmpF = nullptr;
247 
248   // __cxa_find_matching_catch_N functions.
249   // Indexed by the number of clauses in an original landingpad instruction.
250   DenseMap<int, Function *> FindMatchingCatches;
251   // Map of <function signature string, invoke_ wrappers>
252   StringMap<Function *> InvokeWrappers;
253   // Set of allowed function names for exception handling
254   std::set<std::string> EHAllowlistSet;
255 
256   StringRef getPassName() const override {
257     return "WebAssembly Lower Emscripten Exceptions";
258   }
259 
260   bool runEHOnFunction(Function &F);
261   bool runSjLjOnFunction(Function &F);
262   Function *getFindMatchingCatch(Module &M, unsigned NumClauses);
263 
264   Value *wrapInvoke(CallBase *CI);
265   void wrapTestSetjmp(BasicBlock *BB, DebugLoc DL, Value *Threw,
266                       Value *SetjmpTable, Value *SetjmpTableSize, Value *&Label,
267                       Value *&LongjmpResult, BasicBlock *&EndBB);
268   Function *getInvokeWrapper(CallBase *CI);
269 
270   bool areAllExceptionsAllowed() const { return EHAllowlistSet.empty(); }
271   bool canLongjmp(Module &M, const Value *Callee) const;
272   bool isEmAsmCall(Module &M, const Value *Callee) const;
273 
274   void rebuildSSA(Function &F);
275 
276 public:
277   static char ID;
278 
279   WebAssemblyLowerEmscriptenEHSjLj(bool EnableEH = true, bool EnableSjLj = true)
280       : ModulePass(ID), EnableEH(EnableEH), EnableSjLj(EnableSjLj) {
281     EHAllowlistSet.insert(EHAllowlist.begin(), EHAllowlist.end());
282   }
283   bool runOnModule(Module &M) override;
284 
285   void getAnalysisUsage(AnalysisUsage &AU) const override {
286     AU.addRequired<DominatorTreeWrapperPass>();
287   }
288 };
289 } // End anonymous namespace
290 
291 char WebAssemblyLowerEmscriptenEHSjLj::ID = 0;
292 INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj, DEBUG_TYPE,
293                 "WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp",
294                 false, false)
295 
296 ModulePass *llvm::createWebAssemblyLowerEmscriptenEHSjLj(bool EnableEH,
297                                                          bool EnableSjLj) {
298   return new WebAssemblyLowerEmscriptenEHSjLj(EnableEH, EnableSjLj);
299 }
300 
301 static bool canThrow(const Value *V) {
302   if (const auto *F = dyn_cast<const Function>(V)) {
303     // Intrinsics cannot throw
304     if (F->isIntrinsic())
305       return false;
306     StringRef Name = F->getName();
307     // leave setjmp and longjmp (mostly) alone, we process them properly later
308     if (Name == "setjmp" || Name == "longjmp")
309       return false;
310     return !F->doesNotThrow();
311   }
312   // not a function, so an indirect call - can throw, we can't tell
313   return true;
314 }
315 
316 // Get a global variable with the given name.  If it doesn't exist declare it,
317 // which will generate an import and asssumes that it will exist at link time.
318 static GlobalVariable *getGlobalVariableI32(Module &M, IRBuilder<> &IRB,
319                                             WebAssemblyTargetMachine &TM,
320                                             const char *Name) {
321   auto Int32Ty = IRB.getInt32Ty();
322   auto *GV = dyn_cast<GlobalVariable>(M.getOrInsertGlobal(Name, Int32Ty));
323   if (!GV)
324     report_fatal_error(Twine("unable to create global: ") + Name);
325 
326   // If the target supports TLS, make this variable thread-local. We can't just
327   // unconditionally make it thread-local and depend on
328   // CoalesceFeaturesAndStripAtomics to downgrade it, because stripping TLS has
329   // the side effect of disallowing the object from being linked into a
330   // shared-memory module, which we don't want to be responsible for.
331   auto *Subtarget = TM.getSubtargetImpl();
332   auto TLS = Subtarget->hasAtomics() && Subtarget->hasBulkMemory()
333                  ? GlobalValue::LocalExecTLSModel
334                  : GlobalValue::NotThreadLocal;
335   GV->setThreadLocalMode(TLS);
336   return GV;
337 }
338 
339 // Simple function name mangler.
340 // This function simply takes LLVM's string representation of parameter types
341 // and concatenate them with '_'. There are non-alphanumeric characters but llc
342 // is ok with it, and we need to postprocess these names after the lowering
343 // phase anyway.
344 static std::string getSignature(FunctionType *FTy) {
345   std::string Sig;
346   raw_string_ostream OS(Sig);
347   OS << *FTy->getReturnType();
348   for (Type *ParamTy : FTy->params())
349     OS << "_" << *ParamTy;
350   if (FTy->isVarArg())
351     OS << "_...";
352   Sig = OS.str();
353   Sig.erase(remove_if(Sig, isSpace), Sig.end());
354   // When s2wasm parses .s file, a comma means the end of an argument. So a
355   // mangled function name can contain any character but a comma.
356   std::replace(Sig.begin(), Sig.end(), ',', '.');
357   return Sig;
358 }
359 
360 static Function *getEmscriptenFunction(FunctionType *Ty, const Twine &Name,
361                                        Module *M) {
362   Function* F = Function::Create(Ty, GlobalValue::ExternalLinkage, Name, M);
363   // Tell the linker that this function is expected to be imported from the
364   // 'env' module.
365   if (!F->hasFnAttribute("wasm-import-module")) {
366     llvm::AttrBuilder B;
367     B.addAttribute("wasm-import-module", "env");
368     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
369   }
370   if (!F->hasFnAttribute("wasm-import-name")) {
371     llvm::AttrBuilder B;
372     B.addAttribute("wasm-import-name", F->getName());
373     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
374   }
375   return F;
376 }
377 
378 // Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2.
379 // This is because a landingpad instruction contains two more arguments, a
380 // personality function and a cleanup bit, and __cxa_find_matching_catch_N
381 // functions are named after the number of arguments in the original landingpad
382 // instruction.
383 Function *
384 WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module &M,
385                                                        unsigned NumClauses) {
386   if (FindMatchingCatches.count(NumClauses))
387     return FindMatchingCatches[NumClauses];
388   PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext());
389   SmallVector<Type *, 16> Args(NumClauses, Int8PtrTy);
390   FunctionType *FTy = FunctionType::get(Int8PtrTy, Args, false);
391   Function *F = getEmscriptenFunction(
392       FTy, "__cxa_find_matching_catch_" + Twine(NumClauses + 2), &M);
393   FindMatchingCatches[NumClauses] = F;
394   return F;
395 }
396 
397 // Generate invoke wrapper seqence with preamble and postamble
398 // Preamble:
399 // __THREW__ = 0;
400 // Postamble:
401 // %__THREW__.val = __THREW__; __THREW__ = 0;
402 // Returns %__THREW__.val, which indicates whether an exception is thrown (or
403 // whether longjmp occurred), for future use.
404 Value *WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallBase *CI) {
405   LLVMContext &C = CI->getModule()->getContext();
406 
407   // If we are calling a function that is noreturn, we must remove that
408   // attribute. The code we insert here does expect it to return, after we
409   // catch the exception.
410   if (CI->doesNotReturn()) {
411     if (auto *F = CI->getCalledFunction())
412       F->removeFnAttr(Attribute::NoReturn);
413     CI->removeAttribute(AttributeList::FunctionIndex, Attribute::NoReturn);
414   }
415 
416   IRBuilder<> IRB(C);
417   IRB.SetInsertPoint(CI);
418 
419   // Pre-invoke
420   // __THREW__ = 0;
421   IRB.CreateStore(IRB.getInt32(0), ThrewGV);
422 
423   // Invoke function wrapper in JavaScript
424   SmallVector<Value *, 16> Args;
425   // Put the pointer to the callee as first argument, so it can be called
426   // within the invoke wrapper later
427   Args.push_back(CI->getCalledOperand());
428   Args.append(CI->arg_begin(), CI->arg_end());
429   CallInst *NewCall = IRB.CreateCall(getInvokeWrapper(CI), Args);
430   NewCall->takeName(CI);
431   NewCall->setCallingConv(CallingConv::WASM_EmscriptenInvoke);
432   NewCall->setDebugLoc(CI->getDebugLoc());
433 
434   // Because we added the pointer to the callee as first argument, all
435   // argument attribute indices have to be incremented by one.
436   SmallVector<AttributeSet, 8> ArgAttributes;
437   const AttributeList &InvokeAL = CI->getAttributes();
438 
439   // No attributes for the callee pointer.
440   ArgAttributes.push_back(AttributeSet());
441   // Copy the argument attributes from the original
442   for (unsigned I = 0, E = CI->getNumArgOperands(); I < E; ++I)
443     ArgAttributes.push_back(InvokeAL.getParamAttributes(I));
444 
445   AttrBuilder FnAttrs(InvokeAL.getFnAttributes());
446   if (FnAttrs.contains(Attribute::AllocSize)) {
447     // The allocsize attribute (if any) referes to parameters by index and needs
448     // to be adjusted.
449     unsigned SizeArg;
450     Optional<unsigned> NEltArg;
451     std::tie(SizeArg, NEltArg) = FnAttrs.getAllocSizeArgs();
452     SizeArg += 1;
453     if (NEltArg.hasValue())
454       NEltArg = NEltArg.getValue() + 1;
455     FnAttrs.addAllocSizeAttr(SizeArg, NEltArg);
456   }
457 
458   // Reconstruct the AttributesList based on the vector we constructed.
459   AttributeList NewCallAL =
460       AttributeList::get(C, AttributeSet::get(C, FnAttrs),
461                          InvokeAL.getRetAttributes(), ArgAttributes);
462   NewCall->setAttributes(NewCallAL);
463 
464   CI->replaceAllUsesWith(NewCall);
465 
466   // Post-invoke
467   // %__THREW__.val = __THREW__; __THREW__ = 0;
468   Value *Threw =
469       IRB.CreateLoad(IRB.getInt32Ty(), ThrewGV, ThrewGV->getName() + ".val");
470   IRB.CreateStore(IRB.getInt32(0), ThrewGV);
471   return Threw;
472 }
473 
474 // Get matching invoke wrapper based on callee signature
475 Function *WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallBase *CI) {
476   Module *M = CI->getModule();
477   SmallVector<Type *, 16> ArgTys;
478   FunctionType *CalleeFTy = CI->getFunctionType();
479 
480   std::string Sig = getSignature(CalleeFTy);
481   if (InvokeWrappers.find(Sig) != InvokeWrappers.end())
482     return InvokeWrappers[Sig];
483 
484   // Put the pointer to the callee as first argument
485   ArgTys.push_back(PointerType::getUnqual(CalleeFTy));
486   // Add argument types
487   ArgTys.append(CalleeFTy->param_begin(), CalleeFTy->param_end());
488 
489   FunctionType *FTy = FunctionType::get(CalleeFTy->getReturnType(), ArgTys,
490                                         CalleeFTy->isVarArg());
491   Function *F = getEmscriptenFunction(FTy, "__invoke_" + Sig, M);
492   InvokeWrappers[Sig] = F;
493   return F;
494 }
495 
496 bool WebAssemblyLowerEmscriptenEHSjLj::canLongjmp(Module &M,
497                                                   const Value *Callee) const {
498   if (auto *CalleeF = dyn_cast<Function>(Callee))
499     if (CalleeF->isIntrinsic())
500       return false;
501 
502   // Attempting to transform inline assembly will result in something like:
503   //     call void @__invoke_void(void ()* asm ...)
504   // which is invalid because inline assembly blocks do not have addresses
505   // and can't be passed by pointer. The result is a crash with illegal IR.
506   if (isa<InlineAsm>(Callee))
507     return false;
508   StringRef CalleeName = Callee->getName();
509 
510   // The reason we include malloc/free here is to exclude the malloc/free
511   // calls generated in setjmp prep / cleanup routines.
512   if (CalleeName == "setjmp" || CalleeName == "malloc" || CalleeName == "free")
513     return false;
514 
515   // There are functions in JS glue code
516   if (CalleeName == "__resumeException" || CalleeName == "llvm_eh_typeid_for" ||
517       CalleeName == "saveSetjmp" || CalleeName == "testSetjmp" ||
518       CalleeName == "getTempRet0" || CalleeName == "setTempRet0")
519     return false;
520 
521   // __cxa_find_matching_catch_N functions cannot longjmp
522   if (Callee->getName().startswith("__cxa_find_matching_catch_"))
523     return false;
524 
525   // Exception-catching related functions
526   if (CalleeName == "__cxa_begin_catch" || CalleeName == "__cxa_end_catch" ||
527       CalleeName == "__cxa_allocate_exception" || CalleeName == "__cxa_throw" ||
528       CalleeName == "__clang_call_terminate")
529     return false;
530 
531   // Otherwise we don't know
532   return true;
533 }
534 
535 bool WebAssemblyLowerEmscriptenEHSjLj::isEmAsmCall(Module &M,
536                                                    const Value *Callee) const {
537   StringRef CalleeName = Callee->getName();
538   // This is an exhaustive list from Emscripten's <emscripten/em_asm.h>.
539   return CalleeName == "emscripten_asm_const_int" ||
540          CalleeName == "emscripten_asm_const_double" ||
541          CalleeName == "emscripten_asm_const_int_sync_on_main_thread" ||
542          CalleeName == "emscripten_asm_const_double_sync_on_main_thread" ||
543          CalleeName == "emscripten_asm_const_async_on_main_thread";
544 }
545 
546 // Generate testSetjmp function call seqence with preamble and postamble.
547 // The code this generates is equivalent to the following JavaScript code:
548 // if (%__THREW__.val != 0 & threwValue != 0) {
549 //   %label = _testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize);
550 //   if (%label == 0)
551 //     emscripten_longjmp(%__THREW__.val, threwValue);
552 //   setTempRet0(threwValue);
553 // } else {
554 //   %label = -1;
555 // }
556 // %longjmp_result = getTempRet0();
557 //
558 // As output parameters. returns %label, %longjmp_result, and the BB the last
559 // instruction (%longjmp_result = ...) is in.
560 void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp(
561     BasicBlock *BB, DebugLoc DL, Value *Threw, Value *SetjmpTable,
562     Value *SetjmpTableSize, Value *&Label, Value *&LongjmpResult,
563     BasicBlock *&EndBB) {
564   Function *F = BB->getParent();
565   LLVMContext &C = BB->getModule()->getContext();
566   IRBuilder<> IRB(C);
567   IRB.SetCurrentDebugLocation(DL);
568 
569   // if (%__THREW__.val != 0 & threwValue != 0)
570   IRB.SetInsertPoint(BB);
571   BasicBlock *ThenBB1 = BasicBlock::Create(C, "if.then1", F);
572   BasicBlock *ElseBB1 = BasicBlock::Create(C, "if.else1", F);
573   BasicBlock *EndBB1 = BasicBlock::Create(C, "if.end", F);
574   Value *ThrewCmp = IRB.CreateICmpNE(Threw, IRB.getInt32(0));
575   Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV,
576                                      ThrewValueGV->getName() + ".val");
577   Value *ThrewValueCmp = IRB.CreateICmpNE(ThrewValue, IRB.getInt32(0));
578   Value *Cmp1 = IRB.CreateAnd(ThrewCmp, ThrewValueCmp, "cmp1");
579   IRB.CreateCondBr(Cmp1, ThenBB1, ElseBB1);
580 
581   // %label = _testSetjmp(mem[%__THREW__.val], _setjmpTable, _setjmpTableSize);
582   // if (%label == 0)
583   IRB.SetInsertPoint(ThenBB1);
584   BasicBlock *ThenBB2 = BasicBlock::Create(C, "if.then2", F);
585   BasicBlock *EndBB2 = BasicBlock::Create(C, "if.end2", F);
586   Value *ThrewInt = IRB.CreateIntToPtr(Threw, Type::getInt32PtrTy(C),
587                                        Threw->getName() + ".i32p");
588   Value *LoadedThrew = IRB.CreateLoad(IRB.getInt32Ty(), ThrewInt,
589                                       ThrewInt->getName() + ".loaded");
590   Value *ThenLabel = IRB.CreateCall(
591       TestSetjmpF, {LoadedThrew, SetjmpTable, SetjmpTableSize}, "label");
592   Value *Cmp2 = IRB.CreateICmpEQ(ThenLabel, IRB.getInt32(0));
593   IRB.CreateCondBr(Cmp2, ThenBB2, EndBB2);
594 
595   // emscripten_longjmp(%__THREW__.val, threwValue);
596   IRB.SetInsertPoint(ThenBB2);
597   IRB.CreateCall(EmLongjmpF, {Threw, ThrewValue});
598   IRB.CreateUnreachable();
599 
600   // setTempRet0(threwValue);
601   IRB.SetInsertPoint(EndBB2);
602   IRB.CreateCall(SetTempRet0Func, ThrewValue);
603   IRB.CreateBr(EndBB1);
604 
605   IRB.SetInsertPoint(ElseBB1);
606   IRB.CreateBr(EndBB1);
607 
608   // longjmp_result = getTempRet0();
609   IRB.SetInsertPoint(EndBB1);
610   PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label");
611   LabelPHI->addIncoming(ThenLabel, EndBB2);
612 
613   LabelPHI->addIncoming(IRB.getInt32(-1), ElseBB1);
614 
615   // Output parameter assignment
616   Label = LabelPHI;
617   EndBB = EndBB1;
618   LongjmpResult = IRB.CreateCall(GetTempRet0Func, None, "longjmp_result");
619 }
620 
621 void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function &F) {
622   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
623   DT.recalculate(F); // CFG has been changed
624   SSAUpdater SSA;
625   for (BasicBlock &BB : F) {
626     for (Instruction &I : BB) {
627       SSA.Initialize(I.getType(), I.getName());
628       SSA.AddAvailableValue(&BB, &I);
629       for (auto UI = I.use_begin(), UE = I.use_end(); UI != UE;) {
630         Use &U = *UI;
631         ++UI;
632         auto *User = cast<Instruction>(U.getUser());
633         if (auto *UserPN = dyn_cast<PHINode>(User))
634           if (UserPN->getIncomingBlock(U) == &BB)
635             continue;
636 
637         if (DT.dominates(&I, User))
638           continue;
639         SSA.RewriteUseAfterInsertions(U);
640       }
641     }
642   }
643 }
644 
645 bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module &M) {
646   LLVM_DEBUG(dbgs() << "********** Lower Emscripten EH & SjLj **********\n");
647 
648   LLVMContext &C = M.getContext();
649   IRBuilder<> IRB(C);
650 
651   Function *SetjmpF = M.getFunction("setjmp");
652   Function *LongjmpF = M.getFunction("longjmp");
653   bool SetjmpUsed = SetjmpF && !SetjmpF->use_empty();
654   bool LongjmpUsed = LongjmpF && !LongjmpF->use_empty();
655   bool DoSjLj = EnableSjLj && (SetjmpUsed || LongjmpUsed);
656 
657   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
658   assert(TPC && "Expected a TargetPassConfig");
659   auto &TM = TPC->getTM<WebAssemblyTargetMachine>();
660 
661   // Declare (or get) global variables __THREW__, __threwValue, and
662   // getTempRet0/setTempRet0 function which are used in common for both
663   // exception handling and setjmp/longjmp handling
664   ThrewGV = getGlobalVariableI32(M, IRB, TM, "__THREW__");
665   ThrewValueGV = getGlobalVariableI32(M, IRB, TM, "__threwValue");
666   GetTempRet0Func = getEmscriptenFunction(
667       FunctionType::get(IRB.getInt32Ty(), false), "getTempRet0", &M);
668   SetTempRet0Func = getEmscriptenFunction(
669       FunctionType::get(IRB.getVoidTy(), IRB.getInt32Ty(), false),
670       "setTempRet0", &M);
671   GetTempRet0Func->setDoesNotThrow();
672   SetTempRet0Func->setDoesNotThrow();
673 
674   bool Changed = false;
675 
676   // Exception handling
677   if (EnableEH) {
678     // Register __resumeException function
679     FunctionType *ResumeFTy =
680         FunctionType::get(IRB.getVoidTy(), IRB.getInt8PtrTy(), false);
681     ResumeF = getEmscriptenFunction(ResumeFTy, "__resumeException", &M);
682 
683     // Register llvm_eh_typeid_for function
684     FunctionType *EHTypeIDTy =
685         FunctionType::get(IRB.getInt32Ty(), IRB.getInt8PtrTy(), false);
686     EHTypeIDF = getEmscriptenFunction(EHTypeIDTy, "llvm_eh_typeid_for", &M);
687 
688     for (Function &F : M) {
689       if (F.isDeclaration())
690         continue;
691       Changed |= runEHOnFunction(F);
692     }
693   }
694 
695   // Setjmp/longjmp handling
696   if (DoSjLj) {
697     Changed = true; // We have setjmp or longjmp somewhere
698 
699     if (LongjmpF) {
700       // Replace all uses of longjmp with emscripten_longjmp_jmpbuf, which is
701       // defined in JS code
702       EmLongjmpJmpbufF = getEmscriptenFunction(LongjmpF->getFunctionType(),
703                                                "emscripten_longjmp_jmpbuf", &M);
704       LongjmpF->replaceAllUsesWith(EmLongjmpJmpbufF);
705     }
706 
707     if (SetjmpF) {
708       // Register saveSetjmp function
709       FunctionType *SetjmpFTy = SetjmpF->getFunctionType();
710       FunctionType *FTy =
711           FunctionType::get(Type::getInt32PtrTy(C),
712                             {SetjmpFTy->getParamType(0), IRB.getInt32Ty(),
713                              Type::getInt32PtrTy(C), IRB.getInt32Ty()},
714                             false);
715       SaveSetjmpF = getEmscriptenFunction(FTy, "saveSetjmp", &M);
716 
717       // Register testSetjmp function
718       FTy = FunctionType::get(
719           IRB.getInt32Ty(),
720           {IRB.getInt32Ty(), Type::getInt32PtrTy(C), IRB.getInt32Ty()}, false);
721       TestSetjmpF = getEmscriptenFunction(FTy, "testSetjmp", &M);
722 
723       FTy = FunctionType::get(IRB.getVoidTy(),
724                               {IRB.getInt32Ty(), IRB.getInt32Ty()}, false);
725       EmLongjmpF = getEmscriptenFunction(FTy, "emscripten_longjmp", &M);
726 
727       // Only traverse functions that uses setjmp in order not to insert
728       // unnecessary prep / cleanup code in every function
729       SmallPtrSet<Function *, 8> SetjmpUsers;
730       for (User *U : SetjmpF->users()) {
731         auto *UI = cast<Instruction>(U);
732         SetjmpUsers.insert(UI->getFunction());
733       }
734       for (Function *F : SetjmpUsers)
735         runSjLjOnFunction(*F);
736     }
737   }
738 
739   if (!Changed) {
740     // Delete unused global variables and functions
741     if (ResumeF)
742       ResumeF->eraseFromParent();
743     if (EHTypeIDF)
744       EHTypeIDF->eraseFromParent();
745     if (EmLongjmpF)
746       EmLongjmpF->eraseFromParent();
747     if (SaveSetjmpF)
748       SaveSetjmpF->eraseFromParent();
749     if (TestSetjmpF)
750       TestSetjmpF->eraseFromParent();
751     return false;
752   }
753 
754   return true;
755 }
756 
757 bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function &F) {
758   Module &M = *F.getParent();
759   LLVMContext &C = F.getContext();
760   IRBuilder<> IRB(C);
761   bool Changed = false;
762   SmallVector<Instruction *, 64> ToErase;
763   SmallPtrSet<LandingPadInst *, 32> LandingPads;
764   bool AllowExceptions = areAllExceptionsAllowed() ||
765                          EHAllowlistSet.count(std::string(F.getName()));
766 
767   for (BasicBlock &BB : F) {
768     auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
769     if (!II)
770       continue;
771     Changed = true;
772     LandingPads.insert(II->getLandingPadInst());
773     IRB.SetInsertPoint(II);
774 
775     bool NeedInvoke = AllowExceptions && canThrow(II->getCalledOperand());
776     if (NeedInvoke) {
777       // Wrap invoke with invoke wrapper and generate preamble/postamble
778       Value *Threw = wrapInvoke(II);
779       ToErase.push_back(II);
780 
781       // Insert a branch based on __THREW__ variable
782       Value *Cmp = IRB.CreateICmpEQ(Threw, IRB.getInt32(1), "cmp");
783       IRB.CreateCondBr(Cmp, II->getUnwindDest(), II->getNormalDest());
784 
785     } else {
786       // This can't throw, and we don't need this invoke, just replace it with a
787       // call+branch
788       SmallVector<Value *, 16> Args(II->arg_begin(), II->arg_end());
789       CallInst *NewCall =
790           IRB.CreateCall(II->getFunctionType(), II->getCalledOperand(), Args);
791       NewCall->takeName(II);
792       NewCall->setCallingConv(II->getCallingConv());
793       NewCall->setDebugLoc(II->getDebugLoc());
794       NewCall->setAttributes(II->getAttributes());
795       II->replaceAllUsesWith(NewCall);
796       ToErase.push_back(II);
797 
798       IRB.CreateBr(II->getNormalDest());
799 
800       // Remove any PHI node entries from the exception destination
801       II->getUnwindDest()->removePredecessor(&BB);
802     }
803   }
804 
805   // Process resume instructions
806   for (BasicBlock &BB : F) {
807     // Scan the body of the basic block for resumes
808     for (Instruction &I : BB) {
809       auto *RI = dyn_cast<ResumeInst>(&I);
810       if (!RI)
811         continue;
812       Changed = true;
813 
814       // Split the input into legal values
815       Value *Input = RI->getValue();
816       IRB.SetInsertPoint(RI);
817       Value *Low = IRB.CreateExtractValue(Input, 0, "low");
818       // Create a call to __resumeException function
819       IRB.CreateCall(ResumeF, {Low});
820       // Add a terminator to the block
821       IRB.CreateUnreachable();
822       ToErase.push_back(RI);
823     }
824   }
825 
826   // Process llvm.eh.typeid.for intrinsics
827   for (BasicBlock &BB : F) {
828     for (Instruction &I : BB) {
829       auto *CI = dyn_cast<CallInst>(&I);
830       if (!CI)
831         continue;
832       const Function *Callee = CI->getCalledFunction();
833       if (!Callee)
834         continue;
835       if (Callee->getIntrinsicID() != Intrinsic::eh_typeid_for)
836         continue;
837       Changed = true;
838 
839       IRB.SetInsertPoint(CI);
840       CallInst *NewCI =
841           IRB.CreateCall(EHTypeIDF, CI->getArgOperand(0), "typeid");
842       CI->replaceAllUsesWith(NewCI);
843       ToErase.push_back(CI);
844     }
845   }
846 
847   // Look for orphan landingpads, can occur in blocks with no predecessors
848   for (BasicBlock &BB : F) {
849     Instruction *I = BB.getFirstNonPHI();
850     if (auto *LPI = dyn_cast<LandingPadInst>(I))
851       LandingPads.insert(LPI);
852   }
853   Changed |= !LandingPads.empty();
854 
855   // Handle all the landingpad for this function together, as multiple invokes
856   // may share a single lp
857   for (LandingPadInst *LPI : LandingPads) {
858     IRB.SetInsertPoint(LPI);
859     SmallVector<Value *, 16> FMCArgs;
860     for (unsigned I = 0, E = LPI->getNumClauses(); I < E; ++I) {
861       Constant *Clause = LPI->getClause(I);
862       // As a temporary workaround for the lack of aggregate varargs support
863       // in the interface between JS and wasm, break out filter operands into
864       // their component elements.
865       if (LPI->isFilter(I)) {
866         auto *ATy = cast<ArrayType>(Clause->getType());
867         for (unsigned J = 0, E = ATy->getNumElements(); J < E; ++J) {
868           Value *EV = IRB.CreateExtractValue(Clause, makeArrayRef(J), "filter");
869           FMCArgs.push_back(EV);
870         }
871       } else
872         FMCArgs.push_back(Clause);
873     }
874 
875     // Create a call to __cxa_find_matching_catch_N function
876     Function *FMCF = getFindMatchingCatch(M, FMCArgs.size());
877     CallInst *FMCI = IRB.CreateCall(FMCF, FMCArgs, "fmc");
878     Value *Undef = UndefValue::get(LPI->getType());
879     Value *Pair0 = IRB.CreateInsertValue(Undef, FMCI, 0, "pair0");
880     Value *TempRet0 = IRB.CreateCall(GetTempRet0Func, None, "tempret0");
881     Value *Pair1 = IRB.CreateInsertValue(Pair0, TempRet0, 1, "pair1");
882 
883     LPI->replaceAllUsesWith(Pair1);
884     ToErase.push_back(LPI);
885   }
886 
887   // Erase everything we no longer need in this function
888   for (Instruction *I : ToErase)
889     I->eraseFromParent();
890 
891   return Changed;
892 }
893 
894 // This tries to get debug info from the instruction before which a new
895 // instruction will be inserted, and if there's no debug info in that
896 // instruction, tries to get the info instead from the previous instruction (if
897 // any). If none of these has debug info and a DISubprogram is provided, it
898 // creates a dummy debug info with the first line of the function, because IR
899 // verifier requires all inlinable callsites should have debug info when both a
900 // caller and callee have DISubprogram. If none of these conditions are met,
901 // returns empty info.
902 static DebugLoc getOrCreateDebugLoc(const Instruction *InsertBefore,
903                                     DISubprogram *SP) {
904   assert(InsertBefore);
905   if (InsertBefore->getDebugLoc())
906     return InsertBefore->getDebugLoc();
907   const Instruction *Prev = InsertBefore->getPrevNode();
908   if (Prev && Prev->getDebugLoc())
909     return Prev->getDebugLoc();
910   if (SP)
911     return DILocation::get(SP->getContext(), SP->getLine(), 1, SP);
912   return DebugLoc();
913 }
914 
915 bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function &F) {
916   Module &M = *F.getParent();
917   LLVMContext &C = F.getContext();
918   IRBuilder<> IRB(C);
919   SmallVector<Instruction *, 64> ToErase;
920   // Vector of %setjmpTable values
921   std::vector<Instruction *> SetjmpTableInsts;
922   // Vector of %setjmpTableSize values
923   std::vector<Instruction *> SetjmpTableSizeInsts;
924 
925   // Setjmp preparation
926 
927   // This instruction effectively means %setjmpTableSize = 4.
928   // We create this as an instruction intentionally, and we don't want to fold
929   // this instruction to a constant 4, because this value will be used in
930   // SSAUpdater.AddAvailableValue(...) later.
931   BasicBlock &EntryBB = F.getEntryBlock();
932   DebugLoc FirstDL = getOrCreateDebugLoc(&*EntryBB.begin(), F.getSubprogram());
933   BinaryOperator *SetjmpTableSize = BinaryOperator::Create(
934       Instruction::Add, IRB.getInt32(4), IRB.getInt32(0), "setjmpTableSize",
935       &*EntryBB.getFirstInsertionPt());
936   SetjmpTableSize->setDebugLoc(FirstDL);
937   // setjmpTable = (int *) malloc(40);
938   Instruction *SetjmpTable = CallInst::CreateMalloc(
939       SetjmpTableSize, IRB.getInt32Ty(), IRB.getInt32Ty(), IRB.getInt32(40),
940       nullptr, nullptr, "setjmpTable");
941   SetjmpTable->setDebugLoc(FirstDL);
942   // CallInst::CreateMalloc may return a bitcast instruction if the result types
943   // mismatch. We need to set the debug loc for the original call too.
944   auto *MallocCall = SetjmpTable->stripPointerCasts();
945   if (auto *MallocCallI = dyn_cast<Instruction>(MallocCall)) {
946     MallocCallI->setDebugLoc(FirstDL);
947   }
948   // setjmpTable[0] = 0;
949   IRB.SetInsertPoint(SetjmpTableSize);
950   IRB.CreateStore(IRB.getInt32(0), SetjmpTable);
951   SetjmpTableInsts.push_back(SetjmpTable);
952   SetjmpTableSizeInsts.push_back(SetjmpTableSize);
953 
954   // Setjmp transformation
955   std::vector<PHINode *> SetjmpRetPHIs;
956   Function *SetjmpF = M.getFunction("setjmp");
957   for (User *U : SetjmpF->users()) {
958     auto *CI = dyn_cast<CallInst>(U);
959     if (!CI)
960       report_fatal_error("Does not support indirect calls to setjmp");
961 
962     BasicBlock *BB = CI->getParent();
963     if (BB->getParent() != &F) // in other function
964       continue;
965 
966     // The tail is everything right after the call, and will be reached once
967     // when setjmp is called, and later when longjmp returns to the setjmp
968     BasicBlock *Tail = SplitBlock(BB, CI->getNextNode());
969     // Add a phi to the tail, which will be the output of setjmp, which
970     // indicates if this is the first call or a longjmp back. The phi directly
971     // uses the right value based on where we arrive from
972     IRB.SetInsertPoint(Tail->getFirstNonPHI());
973     PHINode *SetjmpRet = IRB.CreatePHI(IRB.getInt32Ty(), 2, "setjmp.ret");
974 
975     // setjmp initial call returns 0
976     SetjmpRet->addIncoming(IRB.getInt32(0), BB);
977     // The proper output is now this, not the setjmp call itself
978     CI->replaceAllUsesWith(SetjmpRet);
979     // longjmp returns to the setjmp will add themselves to this phi
980     SetjmpRetPHIs.push_back(SetjmpRet);
981 
982     // Fix call target
983     // Our index in the function is our place in the array + 1 to avoid index
984     // 0, because index 0 means the longjmp is not ours to handle.
985     IRB.SetInsertPoint(CI);
986     Value *Args[] = {CI->getArgOperand(0), IRB.getInt32(SetjmpRetPHIs.size()),
987                      SetjmpTable, SetjmpTableSize};
988     Instruction *NewSetjmpTable =
989         IRB.CreateCall(SaveSetjmpF, Args, "setjmpTable");
990     Instruction *NewSetjmpTableSize =
991         IRB.CreateCall(GetTempRet0Func, None, "setjmpTableSize");
992     SetjmpTableInsts.push_back(NewSetjmpTable);
993     SetjmpTableSizeInsts.push_back(NewSetjmpTableSize);
994     ToErase.push_back(CI);
995   }
996 
997   // Update each call that can longjmp so it can return to a setjmp where
998   // relevant.
999 
1000   // Because we are creating new BBs while processing and don't want to make
1001   // all these newly created BBs candidates again for longjmp processing, we
1002   // first make the vector of candidate BBs.
1003   std::vector<BasicBlock *> BBs;
1004   for (BasicBlock &BB : F)
1005     BBs.push_back(&BB);
1006 
1007   // BBs.size() will change within the loop, so we query it every time
1008   for (unsigned I = 0; I < BBs.size(); I++) {
1009     BasicBlock *BB = BBs[I];
1010     for (Instruction &I : *BB) {
1011       assert(!isa<InvokeInst>(&I));
1012       auto *CI = dyn_cast<CallInst>(&I);
1013       if (!CI)
1014         continue;
1015 
1016       const Value *Callee = CI->getCalledOperand();
1017       if (!canLongjmp(M, Callee))
1018         continue;
1019       if (isEmAsmCall(M, Callee))
1020         report_fatal_error("Cannot use EM_ASM* alongside setjmp/longjmp in " +
1021                                F.getName() +
1022                                ". Please consider using EM_JS, or move the "
1023                                "EM_ASM into another function.",
1024                            false);
1025 
1026       Value *Threw = nullptr;
1027       BasicBlock *Tail;
1028       if (Callee->getName().startswith("__invoke_")) {
1029         // If invoke wrapper has already been generated for this call in
1030         // previous EH phase, search for the load instruction
1031         // %__THREW__.val = __THREW__;
1032         // in postamble after the invoke wrapper call
1033         LoadInst *ThrewLI = nullptr;
1034         StoreInst *ThrewResetSI = nullptr;
1035         for (auto I = std::next(BasicBlock::iterator(CI)), IE = BB->end();
1036              I != IE; ++I) {
1037           if (auto *LI = dyn_cast<LoadInst>(I))
1038             if (auto *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()))
1039               if (GV == ThrewGV) {
1040                 Threw = ThrewLI = LI;
1041                 break;
1042               }
1043         }
1044         // Search for the store instruction after the load above
1045         // __THREW__ = 0;
1046         for (auto I = std::next(BasicBlock::iterator(ThrewLI)), IE = BB->end();
1047              I != IE; ++I) {
1048           if (auto *SI = dyn_cast<StoreInst>(I))
1049             if (auto *GV = dyn_cast<GlobalVariable>(SI->getPointerOperand()))
1050               if (GV == ThrewGV && SI->getValueOperand() == IRB.getInt32(0)) {
1051                 ThrewResetSI = SI;
1052                 break;
1053               }
1054         }
1055         assert(Threw && ThrewLI && "Cannot find __THREW__ load after invoke");
1056         assert(ThrewResetSI && "Cannot find __THREW__ store after invoke");
1057         Tail = SplitBlock(BB, ThrewResetSI->getNextNode());
1058 
1059       } else {
1060         // Wrap call with invoke wrapper and generate preamble/postamble
1061         Threw = wrapInvoke(CI);
1062         ToErase.push_back(CI);
1063         Tail = SplitBlock(BB, CI->getNextNode());
1064       }
1065 
1066       // We need to replace the terminator in Tail - SplitBlock makes BB go
1067       // straight to Tail, we need to check if a longjmp occurred, and go to the
1068       // right setjmp-tail if so
1069       ToErase.push_back(BB->getTerminator());
1070 
1071       // Generate a function call to testSetjmp function and preamble/postamble
1072       // code to figure out (1) whether longjmp occurred (2) if longjmp
1073       // occurred, which setjmp it corresponds to
1074       Value *Label = nullptr;
1075       Value *LongjmpResult = nullptr;
1076       BasicBlock *EndBB = nullptr;
1077       wrapTestSetjmp(BB, CI->getDebugLoc(), Threw, SetjmpTable, SetjmpTableSize,
1078                      Label, LongjmpResult, EndBB);
1079       assert(Label && LongjmpResult && EndBB);
1080 
1081       // Create switch instruction
1082       IRB.SetInsertPoint(EndBB);
1083       IRB.SetCurrentDebugLocation(EndBB->getInstList().back().getDebugLoc());
1084       SwitchInst *SI = IRB.CreateSwitch(Label, Tail, SetjmpRetPHIs.size());
1085       // -1 means no longjmp happened, continue normally (will hit the default
1086       // switch case). 0 means a longjmp that is not ours to handle, needs a
1087       // rethrow. Otherwise the index is the same as the index in P+1 (to avoid
1088       // 0).
1089       for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) {
1090         SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent());
1091         SetjmpRetPHIs[I]->addIncoming(LongjmpResult, EndBB);
1092       }
1093 
1094       // We are splitting the block here, and must continue to find other calls
1095       // in the block - which is now split. so continue to traverse in the Tail
1096       BBs.push_back(Tail);
1097     }
1098   }
1099 
1100   // Erase everything we no longer need in this function
1101   for (Instruction *I : ToErase)
1102     I->eraseFromParent();
1103 
1104   // Free setjmpTable buffer before each return instruction
1105   for (BasicBlock &BB : F) {
1106     Instruction *TI = BB.getTerminator();
1107     if (isa<ReturnInst>(TI)) {
1108       DebugLoc DL = getOrCreateDebugLoc(TI, F.getSubprogram());
1109       auto *Free = CallInst::CreateFree(SetjmpTable, TI);
1110       Free->setDebugLoc(DL);
1111       // CallInst::CreateFree may create a bitcast instruction if its argument
1112       // types mismatch. We need to set the debug loc for the bitcast too.
1113       if (auto *FreeCallI = dyn_cast<CallInst>(Free)) {
1114         if (auto *BitCastI = dyn_cast<BitCastInst>(FreeCallI->getArgOperand(0)))
1115           BitCastI->setDebugLoc(DL);
1116       }
1117     }
1118   }
1119 
1120   // Every call to saveSetjmp can change setjmpTable and setjmpTableSize
1121   // (when buffer reallocation occurs)
1122   // entry:
1123   //   setjmpTableSize = 4;
1124   //   setjmpTable = (int *) malloc(40);
1125   //   setjmpTable[0] = 0;
1126   // ...
1127   // somebb:
1128   //   setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize);
1129   //   setjmpTableSize = getTempRet0();
1130   // So we need to make sure the SSA for these variables is valid so that every
1131   // saveSetjmp and testSetjmp calls have the correct arguments.
1132   SSAUpdater SetjmpTableSSA;
1133   SSAUpdater SetjmpTableSizeSSA;
1134   SetjmpTableSSA.Initialize(Type::getInt32PtrTy(C), "setjmpTable");
1135   SetjmpTableSizeSSA.Initialize(Type::getInt32Ty(C), "setjmpTableSize");
1136   for (Instruction *I : SetjmpTableInsts)
1137     SetjmpTableSSA.AddAvailableValue(I->getParent(), I);
1138   for (Instruction *I : SetjmpTableSizeInsts)
1139     SetjmpTableSizeSSA.AddAvailableValue(I->getParent(), I);
1140 
1141   for (auto UI = SetjmpTable->use_begin(), UE = SetjmpTable->use_end();
1142        UI != UE;) {
1143     // Grab the use before incrementing the iterator.
1144     Use &U = *UI;
1145     // Increment the iterator before removing the use from the list.
1146     ++UI;
1147     if (auto *I = dyn_cast<Instruction>(U.getUser()))
1148       if (I->getParent() != &EntryBB)
1149         SetjmpTableSSA.RewriteUse(U);
1150   }
1151   for (auto UI = SetjmpTableSize->use_begin(), UE = SetjmpTableSize->use_end();
1152        UI != UE;) {
1153     Use &U = *UI;
1154     ++UI;
1155     if (auto *I = dyn_cast<Instruction>(U.getUser()))
1156       if (I->getParent() != &EntryBB)
1157         SetjmpTableSizeSSA.RewriteUse(U);
1158   }
1159 
1160   // Finally, our modifications to the cfg can break dominance of SSA variables.
1161   // For example, in this code,
1162   // if (x()) { .. setjmp() .. }
1163   // if (y()) { .. longjmp() .. }
1164   // We must split the longjmp block, and it can jump into the block splitted
1165   // from setjmp one. But that means that when we split the setjmp block, it's
1166   // first part no longer dominates its second part - there is a theoretically
1167   // possible control flow path where x() is false, then y() is true and we
1168   // reach the second part of the setjmp block, without ever reaching the first
1169   // part. So, we rebuild SSA form here.
1170   rebuildSSA(F);
1171   return true;
1172 }
1173