1 //=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file lowers exception-related instructions and setjmp/longjmp function
11 /// calls to use Emscripten's library functions. The pass uses JavaScript's try
12 /// and catch mechanism in case of Emscripten EH/SjLj and Wasm EH intrinsics in
13 /// case of Emscripten SjLJ.
14 ///
15 /// * Emscripten exception handling
16 /// This pass lowers invokes and landingpads into library functions in JS glue
17 /// code. Invokes are lowered into function wrappers called invoke wrappers that
18 /// exist in JS side, which wraps the original function call with JS try-catch.
19 /// If an exception occurred, cxa_throw() function in JS side sets some
20 /// variables (see below) so we can check whether an exception occurred from
21 /// wasm code and handle it appropriately.
22 ///
23 /// * Emscripten setjmp-longjmp handling
24 /// This pass lowers setjmp to a reasonably-performant approach for emscripten.
25 /// The idea is that each block with a setjmp is broken up into two parts: the
26 /// part containing setjmp and the part right after the setjmp. The latter part
27 /// is either reached from the setjmp, or later from a longjmp. To handle the
28 /// longjmp, all calls that might longjmp are also called using invoke wrappers
29 /// and thus JS / try-catch. JS longjmp() function also sets some variables so
30 /// we can check / whether a longjmp occurred from wasm code. Each block with a
31 /// function call that might longjmp is also split up after the longjmp call.
32 /// After the longjmp call, we check whether a longjmp occurred, and if it did,
33 /// which setjmp it corresponds to, and jump to the right post-setjmp block.
34 /// We assume setjmp-longjmp handling always run after EH handling, which means
35 /// we don't expect any exception-related instructions when SjLj runs.
36 /// FIXME Currently this scheme does not support indirect call of setjmp,
37 /// because of the limitation of the scheme itself. fastcomp does not support it
38 /// either.
39 ///
40 /// In detail, this pass does following things:
41 ///
42 /// 1) Assumes the existence of global variables: __THREW__, __threwValue
43 ///    __THREW__ and __threwValue are defined in compiler-rt in Emscripten.
44 ///    These variables are used for both exceptions and setjmp/longjmps.
45 ///    __THREW__ indicates whether an exception or a longjmp occurred or not. 0
46 ///    means nothing occurred, 1 means an exception occurred, and other numbers
47 ///    mean a longjmp occurred. In the case of longjmp, __THREW__ variable
48 ///    indicates the corresponding setjmp buffer the longjmp corresponds to.
49 ///    __threwValue is 0 for exceptions, and the argument to longjmp in case of
50 ///    longjmp.
51 ///
52 /// * Emscripten exception handling
53 ///
54 /// 2) We assume the existence of setThrew and setTempRet0/getTempRet0 functions
55 ///    at link time. setThrew exists in Emscripten's compiler-rt:
56 ///
57 ///    void setThrew(uintptr_t threw, int value) {
58 ///      if (__THREW__ == 0) {
59 ///        __THREW__ = threw;
60 ///        __threwValue = value;
61 ///      }
62 ///    }
63 //
64 ///    setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
65 ///    In exception handling, getTempRet0 indicates the type of an exception
66 ///    caught, and in setjmp/longjmp, it means the second argument to longjmp
67 ///    function.
68 ///
69 /// 3) Lower
70 ///      invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad
71 ///    into
72 ///      __THREW__ = 0;
73 ///      call @__invoke_SIG(func, arg1, arg2)
74 ///      %__THREW__.val = __THREW__;
75 ///      __THREW__ = 0;
76 ///      if (%__THREW__.val == 1)
77 ///        goto %lpad
78 ///      else
79 ///         goto %invoke.cont
80 ///    SIG is a mangled string generated based on the LLVM IR-level function
81 ///    signature. After LLVM IR types are lowered to the target wasm types,
82 ///    the names for these wrappers will change based on wasm types as well,
83 ///    as in invoke_vi (function takes an int and returns void). The bodies of
84 ///    these wrappers will be generated in JS glue code, and inside those
85 ///    wrappers we use JS try-catch to generate actual exception effects. It
86 ///    also calls the original callee function. An example wrapper in JS code
87 ///    would look like this:
88 ///      function invoke_vi(index,a1) {
89 ///        try {
90 ///          Module["dynCall_vi"](index,a1); // This calls original callee
91 ///        } catch(e) {
92 ///          if (typeof e !== 'number' && e !== 'longjmp') throw e;
93 ///          _setThrew(1, 0); // setThrew is called here
94 ///        }
95 ///      }
96 ///    If an exception is thrown, __THREW__ will be set to true in a wrapper,
97 ///    so we can jump to the right BB based on this value.
98 ///
99 /// 4) Lower
100 ///      %val = landingpad catch c1 catch c2 catch c3 ...
101 ///      ... use %val ...
102 ///    into
103 ///      %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...)
104 ///      %val = {%fmc, getTempRet0()}
105 ///      ... use %val ...
106 ///    Here N is a number calculated based on the number of clauses.
107 ///    setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
108 ///
109 /// 5) Lower
110 ///      resume {%a, %b}
111 ///    into
112 ///      call @__resumeException(%a)
113 ///    where __resumeException() is a function in JS glue code.
114 ///
115 /// 6) Lower
116 ///      call @llvm.eh.typeid.for(type) (intrinsic)
117 ///    into
118 ///      call @llvm_eh_typeid_for(type)
119 ///    llvm_eh_typeid_for function will be generated in JS glue code.
120 ///
121 /// * Emscripten setjmp / longjmp handling
122 ///
123 /// If there are calls to longjmp()
124 ///
125 /// 1) Lower
126 ///      longjmp(env, val)
127 ///    into
128 ///      emscripten_longjmp(env, val)
129 ///
130 /// If there are calls to setjmp()
131 ///
132 /// 2) In the function entry that calls setjmp, initialize setjmpTable and
133 ///    sejmpTableSize as follows:
134 ///      setjmpTableSize = 4;
135 ///      setjmpTable = (int *) malloc(40);
136 ///      setjmpTable[0] = 0;
137 ///    setjmpTable and setjmpTableSize are used to call saveSetjmp() function in
138 ///    Emscripten compiler-rt.
139 ///
140 /// 3) Lower
141 ///      setjmp(env)
142 ///    into
143 ///      setjmpTable = saveSetjmp(env, label, setjmpTable, setjmpTableSize);
144 ///      setjmpTableSize = getTempRet0();
145 ///    For each dynamic setjmp call, setjmpTable stores its ID (a number which
146 ///    is incrementally assigned from 0) and its label (a unique number that
147 ///    represents each callsite of setjmp). When we need more entries in
148 ///    setjmpTable, it is reallocated in saveSetjmp() in Emscripten's
149 ///    compiler-rt and it will return the new table address, and assign the new
150 ///    table size in setTempRet0(). saveSetjmp also stores the setjmp's ID into
151 ///    the buffer 'env'. A BB with setjmp is split into two after setjmp call in
152 ///    order to make the post-setjmp BB the possible destination of longjmp BB.
153 ///
154 /// 4) Lower every call that might longjmp into
155 ///      __THREW__ = 0;
156 ///      call @__invoke_SIG(func, arg1, arg2)
157 ///      %__THREW__.val = __THREW__;
158 ///      __THREW__ = 0;
159 ///      %__threwValue.val = __threwValue;
160 ///      if (%__THREW__.val != 0 & %__threwValue.val != 0) {
161 ///        %label = testSetjmp(mem[%__THREW__.val], setjmpTable,
162 ///                            setjmpTableSize);
163 ///        if (%label == 0)
164 ///          emscripten_longjmp(%__THREW__.val, %__threwValue.val);
165 ///        setTempRet0(%__threwValue.val);
166 ///      } else {
167 ///        %label = -1;
168 ///      }
169 ///      longjmp_result = getTempRet0();
170 ///      switch %label {
171 ///        label 1: goto post-setjmp BB 1
172 ///        label 2: goto post-setjmp BB 2
173 ///        ...
174 ///        default: goto splitted next BB
175 ///      }
176 ///    testSetjmp examines setjmpTable to see if there is a matching setjmp
177 ///    call. After calling an invoke wrapper, if a longjmp occurred, __THREW__
178 ///    will be the address of matching jmp_buf buffer and __threwValue be the
179 ///    second argument to longjmp. mem[%__THREW__.val] is a setjmp ID that is
180 ///    stored in saveSetjmp. testSetjmp returns a setjmp label, a unique ID to
181 ///    each setjmp callsite. Label 0 means this longjmp buffer does not
182 ///    correspond to one of the setjmp callsites in this function, so in this
183 ///    case we just chain the longjmp to the caller. Label -1 means no longjmp
184 ///    occurred. Otherwise we jump to the right post-setjmp BB based on the
185 ///    label.
186 ///
187 /// * Wasm setjmp / longjmp handling
188 /// This mode still uses some Emscripten library functions but not JavaScript's
189 /// try-catch mechanism. It instead uses Wasm exception handling intrinsics,
190 /// which will be lowered to exception handling instructions.
191 ///
192 /// If there are calls to longjmp()
193 ///
194 /// 1) Lower
195 ///      longjmp(env, val)
196 ///    into
197 ///      __wasm_longjmp(env, val)
198 ///
199 /// If there are calls to setjmp()
200 ///
201 /// 2) and 3): The same as 2) and 3) in Emscripten SjLj.
202 /// (setjmpTable/setjmpTableSize initialization + setjmp callsite
203 /// transformation)
204 ///
205 /// 4) Create a catchpad with a wasm.catch() intrinsic, which returns the value
206 /// thrown by __wasm_longjmp function. In Emscripten library, we have this
207 /// struct:
208 ///
209 /// struct __WasmLongjmpArgs {
210 ///   void *env;
211 ///   int val;
212 /// };
213 /// struct __WasmLongjmpArgs __wasm_longjmp_args;
214 ///
215 /// The thrown value here is a pointer to __wasm_longjmp_args struct object. We
216 /// use this struct to transfer two values by throwing a single value. Wasm
217 /// throw and catch instructions are capable of throwing and catching multiple
218 /// values, but it also requires multivalue support that is currently not very
219 /// reliable.
220 /// TODO Switch to throwing and catching two values without using the struct
221 ///
222 /// All longjmpable function calls will be converted to an invoke that will
223 /// unwind to this catchpad in case a longjmp occurs. Within the catchpad, we
224 /// test the thrown values using testSetjmp function as we do for Emscripten
225 /// SjLj. The main difference is, in Emscripten SjLj, we need to transform every
226 /// longjmpable callsite into a sequence of code including testSetjmp() call; in
227 /// Wasm SjLj we do the testing in only one place, in this catchpad.
228 ///
229 /// After testing calling testSetjmp(), if the longjmp does not correspond to
230 /// one of the setjmps within the current function, it rethrows the longjmp
231 /// by calling __wasm_longjmp(). If it corresponds to one of setjmps in the
232 /// function, we jump to the beginning of the function, which contains a switch
233 /// to each post-setjmp BB. Again, in Emscripten SjLj, this switch is added for
234 /// every longjmpable callsite; in Wasm SjLj we do this only once at the top of
235 /// the function. (after setjmpTable/setjmpTableSize initialization)
236 ///
237 /// The below is the pseudocode for what we have described
238 ///
239 /// entry:
240 ///   Initialize setjmpTable and setjmpTableSize
241 ///
242 /// setjmp.dispatch:
243 ///    switch %label {
244 ///      label 1: goto post-setjmp BB 1
245 ///      label 2: goto post-setjmp BB 2
246 ///      ...
247 ///      default: goto splitted next BB
248 ///    }
249 /// ...
250 ///
251 /// bb:
252 ///   invoke void @foo() ;; foo is a longjmpable function
253 ///     to label %next unwind label %catch.dispatch.longjmp
254 /// ...
255 ///
256 /// catch.dispatch.longjmp:
257 ///   %0 = catchswitch within none [label %catch.longjmp] unwind to caller
258 ///
259 /// catch.longjmp:
260 ///   %longjmp.args = wasm.catch() ;; struct __WasmLongjmpArgs
261 ///   %env = load 'env' field from __WasmLongjmpArgs
262 ///   %val = load 'val' field from __WasmLongjmpArgs
263 ///   %label = testSetjmp(mem[%env], setjmpTable, setjmpTableSize);
264 ///   if (%label == 0)
265 ///     __wasm_longjmp(%env, %val)
266 ///   catchret to %setjmp.dispatch
267 ///
268 ///===----------------------------------------------------------------------===//
269 
270 #include "Utils/WebAssemblyUtilities.h"
271 #include "WebAssembly.h"
272 #include "WebAssemblyTargetMachine.h"
273 #include "llvm/ADT/StringExtras.h"
274 #include "llvm/CodeGen/TargetPassConfig.h"
275 #include "llvm/CodeGen/WasmEHFuncInfo.h"
276 #include "llvm/IR/DebugInfoMetadata.h"
277 #include "llvm/IR/Dominators.h"
278 #include "llvm/IR/IRBuilder.h"
279 #include "llvm/IR/IntrinsicsWebAssembly.h"
280 #include "llvm/Support/CommandLine.h"
281 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
282 #include "llvm/Transforms/Utils/Local.h"
283 #include "llvm/Transforms/Utils/SSAUpdater.h"
284 #include "llvm/Transforms/Utils/SSAUpdaterBulk.h"
285 
286 using namespace llvm;
287 
288 #define DEBUG_TYPE "wasm-lower-em-ehsjlj"
289 
290 static cl::list<std::string>
291     EHAllowlist("emscripten-cxx-exceptions-allowed",
292                 cl::desc("The list of function names in which Emscripten-style "
293                          "exception handling is enabled (see emscripten "
294                          "EMSCRIPTEN_CATCHING_ALLOWED options)"),
295                 cl::CommaSeparated);
296 
297 namespace {
298 class WebAssemblyLowerEmscriptenEHSjLj final : public ModulePass {
299   bool EnableEmEH;     // Enable Emscripten exception handling
300   bool EnableEmSjLj;   // Enable Emscripten setjmp/longjmp handling
301   bool EnableWasmSjLj; // Enable Wasm setjmp/longjmp handling
302   bool DoSjLj;         // Whether we actually perform setjmp/longjmp handling
303 
304   GlobalVariable *ThrewGV = nullptr;      // __THREW__ (Emscripten)
305   GlobalVariable *ThrewValueGV = nullptr; // __threwValue (Emscripten)
306   Function *GetTempRet0F = nullptr;       // getTempRet0() (Emscripten)
307   Function *SetTempRet0F = nullptr;       // setTempRet0() (Emscripten)
308   Function *ResumeF = nullptr;            // __resumeException() (Emscripten)
309   Function *EHTypeIDF = nullptr;          // llvm.eh.typeid.for() (intrinsic)
310   Function *EmLongjmpF = nullptr;         // emscripten_longjmp() (Emscripten)
311   Function *SaveSetjmpF = nullptr;        // saveSetjmp() (Emscripten)
312   Function *TestSetjmpF = nullptr;        // testSetjmp() (Emscripten)
313   Function *WasmLongjmpF = nullptr;       // __wasm_longjmp() (Emscripten)
314   Function *CatchF = nullptr;             // wasm.catch() (intrinsic)
315 
316   // type of 'struct __WasmLongjmpArgs' defined in emscripten
317   Type *LongjmpArgsTy = nullptr;
318 
319   // __cxa_find_matching_catch_N functions.
320   // Indexed by the number of clauses in an original landingpad instruction.
321   DenseMap<int, Function *> FindMatchingCatches;
322   // Map of <function signature string, invoke_ wrappers>
323   StringMap<Function *> InvokeWrappers;
324   // Set of allowed function names for exception handling
325   std::set<std::string> EHAllowlistSet;
326   // Functions that contains calls to setjmp
327   SmallPtrSet<Function *, 8> SetjmpUsers;
328 
329   StringRef getPassName() const override {
330     return "WebAssembly Lower Emscripten Exceptions";
331   }
332 
333   using InstVector = SmallVectorImpl<Instruction *>;
334   bool runEHOnFunction(Function &F);
335   bool runSjLjOnFunction(Function &F);
336   void handleLongjmpableCallsForEmscriptenSjLj(
337       Function &F, InstVector &SetjmpTableInsts,
338       InstVector &SetjmpTableSizeInsts,
339       SmallVectorImpl<PHINode *> &SetjmpRetPHIs);
340   void
341   handleLongjmpableCallsForWasmSjLj(Function &F, InstVector &SetjmpTableInsts,
342                                     InstVector &SetjmpTableSizeInsts,
343                                     SmallVectorImpl<PHINode *> &SetjmpRetPHIs);
344   Function *getFindMatchingCatch(Module &M, unsigned NumClauses);
345 
346   Value *wrapInvoke(CallBase *CI);
347   void wrapTestSetjmp(BasicBlock *BB, DebugLoc DL, Value *Threw,
348                       Value *SetjmpTable, Value *SetjmpTableSize, Value *&Label,
349                       Value *&LongjmpResult, BasicBlock *&CallEmLongjmpBB,
350                       PHINode *&CallEmLongjmpBBThrewPHI,
351                       PHINode *&CallEmLongjmpBBThrewValuePHI,
352                       BasicBlock *&EndBB);
353   Function *getInvokeWrapper(CallBase *CI);
354 
355   bool areAllExceptionsAllowed() const { return EHAllowlistSet.empty(); }
356   bool supportsException(const Function *F) const {
357     return EnableEmEH && (areAllExceptionsAllowed() ||
358                           EHAllowlistSet.count(std::string(F->getName())));
359   }
360   void replaceLongjmpWith(Function *LongjmpF, Function *NewF);
361 
362   void rebuildSSA(Function &F);
363 
364 public:
365   static char ID;
366 
367   WebAssemblyLowerEmscriptenEHSjLj()
368       : ModulePass(ID), EnableEmEH(WebAssembly::WasmEnableEmEH),
369         EnableEmSjLj(WebAssembly::WasmEnableEmSjLj),
370         EnableWasmSjLj(WebAssembly::WasmEnableSjLj) {
371     assert(!(EnableEmSjLj && EnableWasmSjLj) &&
372            "Two SjLj modes cannot be turned on at the same time");
373     assert(!(EnableEmEH && EnableWasmSjLj) &&
374            "Wasm SjLj should be only used with Wasm EH");
375     EHAllowlistSet.insert(EHAllowlist.begin(), EHAllowlist.end());
376   }
377   bool runOnModule(Module &M) override;
378 
379   void getAnalysisUsage(AnalysisUsage &AU) const override {
380     AU.addRequired<DominatorTreeWrapperPass>();
381   }
382 };
383 } // End anonymous namespace
384 
385 char WebAssemblyLowerEmscriptenEHSjLj::ID = 0;
386 INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj, DEBUG_TYPE,
387                 "WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp",
388                 false, false)
389 
390 ModulePass *llvm::createWebAssemblyLowerEmscriptenEHSjLj() {
391   return new WebAssemblyLowerEmscriptenEHSjLj();
392 }
393 
394 static bool canThrow(const Value *V) {
395   if (const auto *F = dyn_cast<const Function>(V)) {
396     // Intrinsics cannot throw
397     if (F->isIntrinsic())
398       return false;
399     StringRef Name = F->getName();
400     // leave setjmp and longjmp (mostly) alone, we process them properly later
401     if (Name == "setjmp" || Name == "longjmp" || Name == "emscripten_longjmp")
402       return false;
403     return !F->doesNotThrow();
404   }
405   // not a function, so an indirect call - can throw, we can't tell
406   return true;
407 }
408 
409 // Get a global variable with the given name. If it doesn't exist declare it,
410 // which will generate an import and assume that it will exist at link time.
411 static GlobalVariable *getGlobalVariable(Module &M, Type *Ty,
412                                          WebAssemblyTargetMachine &TM,
413                                          const char *Name) {
414   auto *GV = dyn_cast<GlobalVariable>(M.getOrInsertGlobal(Name, Ty));
415   if (!GV)
416     report_fatal_error(Twine("unable to create global: ") + Name);
417 
418   // If the target supports TLS, make this variable thread-local. We can't just
419   // unconditionally make it thread-local and depend on
420   // CoalesceFeaturesAndStripAtomics to downgrade it, because stripping TLS has
421   // the side effect of disallowing the object from being linked into a
422   // shared-memory module, which we don't want to be responsible for.
423   auto *Subtarget = TM.getSubtargetImpl();
424   auto TLS = Subtarget->hasAtomics() && Subtarget->hasBulkMemory()
425                  ? GlobalValue::LocalExecTLSModel
426                  : GlobalValue::NotThreadLocal;
427   GV->setThreadLocalMode(TLS);
428   return GV;
429 }
430 
431 // Simple function name mangler.
432 // This function simply takes LLVM's string representation of parameter types
433 // and concatenate them with '_'. There are non-alphanumeric characters but llc
434 // is ok with it, and we need to postprocess these names after the lowering
435 // phase anyway.
436 static std::string getSignature(FunctionType *FTy) {
437   std::string Sig;
438   raw_string_ostream OS(Sig);
439   OS << *FTy->getReturnType();
440   for (Type *ParamTy : FTy->params())
441     OS << "_" << *ParamTy;
442   if (FTy->isVarArg())
443     OS << "_...";
444   Sig = OS.str();
445   erase_if(Sig, isSpace);
446   // When s2wasm parses .s file, a comma means the end of an argument. So a
447   // mangled function name can contain any character but a comma.
448   std::replace(Sig.begin(), Sig.end(), ',', '.');
449   return Sig;
450 }
451 
452 static Function *getEmscriptenFunction(FunctionType *Ty, const Twine &Name,
453                                        Module *M) {
454   Function* F = Function::Create(Ty, GlobalValue::ExternalLinkage, Name, M);
455   // Tell the linker that this function is expected to be imported from the
456   // 'env' module.
457   if (!F->hasFnAttribute("wasm-import-module")) {
458     llvm::AttrBuilder B(M->getContext());
459     B.addAttribute("wasm-import-module", "env");
460     F->addFnAttrs(B);
461   }
462   if (!F->hasFnAttribute("wasm-import-name")) {
463     llvm::AttrBuilder B(M->getContext());
464     B.addAttribute("wasm-import-name", F->getName());
465     F->addFnAttrs(B);
466   }
467   return F;
468 }
469 
470 // Returns an integer type for the target architecture's address space.
471 // i32 for wasm32 and i64 for wasm64.
472 static Type *getAddrIntType(Module *M) {
473   IRBuilder<> IRB(M->getContext());
474   return IRB.getIntNTy(M->getDataLayout().getPointerSizeInBits());
475 }
476 
477 // Returns an integer pointer type for the target architecture's address space.
478 // i32* for wasm32 and i64* for wasm64.
479 static Type *getAddrPtrType(Module *M) {
480   return Type::getIntNPtrTy(M->getContext(),
481                             M->getDataLayout().getPointerSizeInBits());
482 }
483 
484 // Returns an integer whose type is the integer type for the target's address
485 // space. Returns (i32 C) for wasm32 and (i64 C) for wasm64, when C is the
486 // integer.
487 static Value *getAddrSizeInt(Module *M, uint64_t C) {
488   IRBuilder<> IRB(M->getContext());
489   return IRB.getIntN(M->getDataLayout().getPointerSizeInBits(), C);
490 }
491 
492 // Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2.
493 // This is because a landingpad instruction contains two more arguments, a
494 // personality function and a cleanup bit, and __cxa_find_matching_catch_N
495 // functions are named after the number of arguments in the original landingpad
496 // instruction.
497 Function *
498 WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module &M,
499                                                        unsigned NumClauses) {
500   if (FindMatchingCatches.count(NumClauses))
501     return FindMatchingCatches[NumClauses];
502   PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext());
503   SmallVector<Type *, 16> Args(NumClauses, Int8PtrTy);
504   FunctionType *FTy = FunctionType::get(Int8PtrTy, Args, false);
505   Function *F = getEmscriptenFunction(
506       FTy, "__cxa_find_matching_catch_" + Twine(NumClauses + 2), &M);
507   FindMatchingCatches[NumClauses] = F;
508   return F;
509 }
510 
511 // Generate invoke wrapper seqence with preamble and postamble
512 // Preamble:
513 // __THREW__ = 0;
514 // Postamble:
515 // %__THREW__.val = __THREW__; __THREW__ = 0;
516 // Returns %__THREW__.val, which indicates whether an exception is thrown (or
517 // whether longjmp occurred), for future use.
518 Value *WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallBase *CI) {
519   Module *M = CI->getModule();
520   LLVMContext &C = M->getContext();
521 
522   IRBuilder<> IRB(C);
523   IRB.SetInsertPoint(CI);
524 
525   // Pre-invoke
526   // __THREW__ = 0;
527   IRB.CreateStore(getAddrSizeInt(M, 0), ThrewGV);
528 
529   // Invoke function wrapper in JavaScript
530   SmallVector<Value *, 16> Args;
531   // Put the pointer to the callee as first argument, so it can be called
532   // within the invoke wrapper later
533   Args.push_back(CI->getCalledOperand());
534   Args.append(CI->arg_begin(), CI->arg_end());
535   CallInst *NewCall = IRB.CreateCall(getInvokeWrapper(CI), Args);
536   NewCall->takeName(CI);
537   NewCall->setCallingConv(CallingConv::WASM_EmscriptenInvoke);
538   NewCall->setDebugLoc(CI->getDebugLoc());
539 
540   // Because we added the pointer to the callee as first argument, all
541   // argument attribute indices have to be incremented by one.
542   SmallVector<AttributeSet, 8> ArgAttributes;
543   const AttributeList &InvokeAL = CI->getAttributes();
544 
545   // No attributes for the callee pointer.
546   ArgAttributes.push_back(AttributeSet());
547   // Copy the argument attributes from the original
548   for (unsigned I = 0, E = CI->arg_size(); I < E; ++I)
549     ArgAttributes.push_back(InvokeAL.getParamAttrs(I));
550 
551   AttrBuilder FnAttrs(CI->getContext(), InvokeAL.getFnAttrs());
552   if (FnAttrs.contains(Attribute::AllocSize)) {
553     // The allocsize attribute (if any) referes to parameters by index and needs
554     // to be adjusted.
555     unsigned SizeArg;
556     Optional<unsigned> NEltArg;
557     std::tie(SizeArg, NEltArg) = FnAttrs.getAllocSizeArgs();
558     SizeArg += 1;
559     if (NEltArg.hasValue())
560       NEltArg = NEltArg.getValue() + 1;
561     FnAttrs.addAllocSizeAttr(SizeArg, NEltArg);
562   }
563 
564   // Reconstruct the AttributesList based on the vector we constructed.
565   AttributeList NewCallAL = AttributeList::get(
566       C, AttributeSet::get(C, FnAttrs), InvokeAL.getRetAttrs(), ArgAttributes);
567   NewCall->setAttributes(NewCallAL);
568 
569   CI->replaceAllUsesWith(NewCall);
570 
571   // Post-invoke
572   // %__THREW__.val = __THREW__; __THREW__ = 0;
573   Value *Threw =
574       IRB.CreateLoad(getAddrIntType(M), ThrewGV, ThrewGV->getName() + ".val");
575   IRB.CreateStore(getAddrSizeInt(M, 0), ThrewGV);
576   return Threw;
577 }
578 
579 // Get matching invoke wrapper based on callee signature
580 Function *WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallBase *CI) {
581   Module *M = CI->getModule();
582   SmallVector<Type *, 16> ArgTys;
583   FunctionType *CalleeFTy = CI->getFunctionType();
584 
585   std::string Sig = getSignature(CalleeFTy);
586   if (InvokeWrappers.find(Sig) != InvokeWrappers.end())
587     return InvokeWrappers[Sig];
588 
589   // Put the pointer to the callee as first argument
590   ArgTys.push_back(PointerType::getUnqual(CalleeFTy));
591   // Add argument types
592   ArgTys.append(CalleeFTy->param_begin(), CalleeFTy->param_end());
593 
594   FunctionType *FTy = FunctionType::get(CalleeFTy->getReturnType(), ArgTys,
595                                         CalleeFTy->isVarArg());
596   Function *F = getEmscriptenFunction(FTy, "__invoke_" + Sig, M);
597   InvokeWrappers[Sig] = F;
598   return F;
599 }
600 
601 static bool canLongjmp(const Value *Callee) {
602   if (auto *CalleeF = dyn_cast<Function>(Callee))
603     if (CalleeF->isIntrinsic())
604       return false;
605 
606   // Attempting to transform inline assembly will result in something like:
607   //     call void @__invoke_void(void ()* asm ...)
608   // which is invalid because inline assembly blocks do not have addresses
609   // and can't be passed by pointer. The result is a crash with illegal IR.
610   if (isa<InlineAsm>(Callee))
611     return false;
612   StringRef CalleeName = Callee->getName();
613 
614   // TODO Include more functions or consider checking with mangled prefixes
615 
616   // The reason we include malloc/free here is to exclude the malloc/free
617   // calls generated in setjmp prep / cleanup routines.
618   if (CalleeName == "setjmp" || CalleeName == "malloc" || CalleeName == "free")
619     return false;
620 
621   // There are functions in Emscripten's JS glue code or compiler-rt
622   if (CalleeName == "__resumeException" || CalleeName == "llvm_eh_typeid_for" ||
623       CalleeName == "saveSetjmp" || CalleeName == "testSetjmp" ||
624       CalleeName == "getTempRet0" || CalleeName == "setTempRet0")
625     return false;
626 
627   // __cxa_find_matching_catch_N functions cannot longjmp
628   if (Callee->getName().startswith("__cxa_find_matching_catch_"))
629     return false;
630 
631   // Exception-catching related functions
632   //
633   // We intentionally excluded __cxa_end_catch here even though it surely cannot
634   // longjmp, in order to maintain the unwind relationship from all existing
635   // catchpads (and calls within them) to catch.dispatch.longjmp.
636   //
637   // In Wasm EH + Wasm SjLj, we
638   // 1. Make all catchswitch and cleanuppad that unwind to caller unwind to
639   //    catch.dispatch.longjmp instead
640   // 2. Convert all longjmpable calls to invokes that unwind to
641   //    catch.dispatch.longjmp
642   // But catchswitch BBs are removed in isel, so if an EH catchswitch (generated
643   // from an exception)'s catchpad does not contain any calls that are converted
644   // into invokes unwinding to catch.dispatch.longjmp, this unwind relationship
645   // (EH catchswitch BB -> catch.dispatch.longjmp BB) is lost and
646   // catch.dispatch.longjmp BB can be placed before the EH catchswitch BB in
647   // CFGSort.
648   // int ret = setjmp(buf);
649   // try {
650   //   foo(); // longjmps
651   // } catch (...) {
652   // }
653   // Then in this code, if 'foo' longjmps, it first unwinds to 'catch (...)'
654   // catchswitch, and is not caught by that catchswitch because it is a longjmp,
655   // then it should next unwind to catch.dispatch.longjmp BB. But if this 'catch
656   // (...)' catchswitch -> catch.dispatch.longjmp unwind relationship is lost,
657   // it will not unwind to catch.dispatch.longjmp, producing an incorrect
658   // result.
659   //
660   // Every catchpad generated by Wasm C++ contains __cxa_end_catch, so we
661   // intentionally treat it as longjmpable to work around this problem. This is
662   // a hacky fix but an easy one.
663   //
664   // The comment block in findWasmUnwindDestinations() in
665   // SelectionDAGBuilder.cpp is addressing a similar problem.
666   if (CalleeName == "__cxa_begin_catch" ||
667       CalleeName == "__cxa_allocate_exception" || CalleeName == "__cxa_throw" ||
668       CalleeName == "__clang_call_terminate")
669     return false;
670 
671   // std::terminate, which is generated when another exception occurs while
672   // handling an exception, cannot longjmp.
673   if (CalleeName == "_ZSt9terminatev")
674     return false;
675 
676   // Otherwise we don't know
677   return true;
678 }
679 
680 static bool isEmAsmCall(const Value *Callee) {
681   StringRef CalleeName = Callee->getName();
682   // This is an exhaustive list from Emscripten's <emscripten/em_asm.h>.
683   return CalleeName == "emscripten_asm_const_int" ||
684          CalleeName == "emscripten_asm_const_double" ||
685          CalleeName == "emscripten_asm_const_int_sync_on_main_thread" ||
686          CalleeName == "emscripten_asm_const_double_sync_on_main_thread" ||
687          CalleeName == "emscripten_asm_const_async_on_main_thread";
688 }
689 
690 // Generate testSetjmp function call seqence with preamble and postamble.
691 // The code this generates is equivalent to the following JavaScript code:
692 // %__threwValue.val = __threwValue;
693 // if (%__THREW__.val != 0 & %__threwValue.val != 0) {
694 //   %label = testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize);
695 //   if (%label == 0)
696 //     emscripten_longjmp(%__THREW__.val, %__threwValue.val);
697 //   setTempRet0(%__threwValue.val);
698 // } else {
699 //   %label = -1;
700 // }
701 // %longjmp_result = getTempRet0();
702 //
703 // As output parameters. returns %label, %longjmp_result, and the BB the last
704 // instruction (%longjmp_result = ...) is in.
705 void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp(
706     BasicBlock *BB, DebugLoc DL, Value *Threw, Value *SetjmpTable,
707     Value *SetjmpTableSize, Value *&Label, Value *&LongjmpResult,
708     BasicBlock *&CallEmLongjmpBB, PHINode *&CallEmLongjmpBBThrewPHI,
709     PHINode *&CallEmLongjmpBBThrewValuePHI, BasicBlock *&EndBB) {
710   Function *F = BB->getParent();
711   Module *M = F->getParent();
712   LLVMContext &C = M->getContext();
713   IRBuilder<> IRB(C);
714   IRB.SetCurrentDebugLocation(DL);
715 
716   // if (%__THREW__.val != 0 & %__threwValue.val != 0)
717   IRB.SetInsertPoint(BB);
718   BasicBlock *ThenBB1 = BasicBlock::Create(C, "if.then1", F);
719   BasicBlock *ElseBB1 = BasicBlock::Create(C, "if.else1", F);
720   BasicBlock *EndBB1 = BasicBlock::Create(C, "if.end", F);
721   Value *ThrewCmp = IRB.CreateICmpNE(Threw, getAddrSizeInt(M, 0));
722   Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV,
723                                      ThrewValueGV->getName() + ".val");
724   Value *ThrewValueCmp = IRB.CreateICmpNE(ThrewValue, IRB.getInt32(0));
725   Value *Cmp1 = IRB.CreateAnd(ThrewCmp, ThrewValueCmp, "cmp1");
726   IRB.CreateCondBr(Cmp1, ThenBB1, ElseBB1);
727 
728   // Generate call.em.longjmp BB once and share it within the function
729   if (!CallEmLongjmpBB) {
730     // emscripten_longjmp(%__THREW__.val, %__threwValue.val);
731     CallEmLongjmpBB = BasicBlock::Create(C, "call.em.longjmp", F);
732     IRB.SetInsertPoint(CallEmLongjmpBB);
733     CallEmLongjmpBBThrewPHI = IRB.CreatePHI(getAddrIntType(M), 4, "threw.phi");
734     CallEmLongjmpBBThrewValuePHI =
735         IRB.CreatePHI(IRB.getInt32Ty(), 4, "threwvalue.phi");
736     CallEmLongjmpBBThrewPHI->addIncoming(Threw, ThenBB1);
737     CallEmLongjmpBBThrewValuePHI->addIncoming(ThrewValue, ThenBB1);
738     IRB.CreateCall(EmLongjmpF,
739                    {CallEmLongjmpBBThrewPHI, CallEmLongjmpBBThrewValuePHI});
740     IRB.CreateUnreachable();
741   } else {
742     CallEmLongjmpBBThrewPHI->addIncoming(Threw, ThenBB1);
743     CallEmLongjmpBBThrewValuePHI->addIncoming(ThrewValue, ThenBB1);
744   }
745 
746   // %label = testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize);
747   // if (%label == 0)
748   IRB.SetInsertPoint(ThenBB1);
749   BasicBlock *EndBB2 = BasicBlock::Create(C, "if.end2", F);
750   Value *ThrewPtr =
751       IRB.CreateIntToPtr(Threw, getAddrPtrType(M), Threw->getName() + ".p");
752   Value *LoadedThrew = IRB.CreateLoad(getAddrIntType(M), ThrewPtr,
753                                       ThrewPtr->getName() + ".loaded");
754   Value *ThenLabel = IRB.CreateCall(
755       TestSetjmpF, {LoadedThrew, SetjmpTable, SetjmpTableSize}, "label");
756   Value *Cmp2 = IRB.CreateICmpEQ(ThenLabel, IRB.getInt32(0));
757   IRB.CreateCondBr(Cmp2, CallEmLongjmpBB, EndBB2);
758 
759   // setTempRet0(%__threwValue.val);
760   IRB.SetInsertPoint(EndBB2);
761   IRB.CreateCall(SetTempRet0F, ThrewValue);
762   IRB.CreateBr(EndBB1);
763 
764   IRB.SetInsertPoint(ElseBB1);
765   IRB.CreateBr(EndBB1);
766 
767   // longjmp_result = getTempRet0();
768   IRB.SetInsertPoint(EndBB1);
769   PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label");
770   LabelPHI->addIncoming(ThenLabel, EndBB2);
771 
772   LabelPHI->addIncoming(IRB.getInt32(-1), ElseBB1);
773 
774   // Output parameter assignment
775   Label = LabelPHI;
776   EndBB = EndBB1;
777   LongjmpResult = IRB.CreateCall(GetTempRet0F, None, "longjmp_result");
778 }
779 
780 void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function &F) {
781   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
782   DT.recalculate(F); // CFG has been changed
783 
784   SSAUpdaterBulk SSA;
785   for (BasicBlock &BB : F) {
786     for (Instruction &I : BB) {
787       unsigned VarID = SSA.AddVariable(I.getName(), I.getType());
788       // If a value is defined by an invoke instruction, it is only available in
789       // its normal destination and not in its unwind destination.
790       if (auto *II = dyn_cast<InvokeInst>(&I))
791         SSA.AddAvailableValue(VarID, II->getNormalDest(), II);
792       else
793         SSA.AddAvailableValue(VarID, &BB, &I);
794       for (auto &U : I.uses()) {
795         auto *User = cast<Instruction>(U.getUser());
796         if (auto *UserPN = dyn_cast<PHINode>(User))
797           if (UserPN->getIncomingBlock(U) == &BB)
798             continue;
799         if (DT.dominates(&I, User))
800           continue;
801         SSA.AddUse(VarID, &U);
802       }
803     }
804   }
805   SSA.RewriteAllUses(&DT);
806 }
807 
808 // Replace uses of longjmp with a new longjmp function in Emscripten library.
809 // In Emscripten SjLj, the new function is
810 //   void emscripten_longjmp(uintptr_t, i32)
811 // In Wasm SjLj, the new function is
812 //   void __wasm_longjmp(i8*, i32)
813 // Because the original libc longjmp function takes (jmp_buf*, i32), we need a
814 // ptrtoint/bitcast instruction here to make the type match. jmp_buf* will
815 // eventually be lowered to i32/i64 in the wasm backend.
816 void WebAssemblyLowerEmscriptenEHSjLj::replaceLongjmpWith(Function *LongjmpF,
817                                                           Function *NewF) {
818   assert(NewF == EmLongjmpF || NewF == WasmLongjmpF);
819   Module *M = LongjmpF->getParent();
820   SmallVector<CallInst *, 8> ToErase;
821   LLVMContext &C = LongjmpF->getParent()->getContext();
822   IRBuilder<> IRB(C);
823 
824   // For calls to longjmp, replace it with emscripten_longjmp/__wasm_longjmp and
825   // cast its first argument (jmp_buf*) appropriately
826   for (User *U : LongjmpF->users()) {
827     auto *CI = dyn_cast<CallInst>(U);
828     if (CI && CI->getCalledFunction() == LongjmpF) {
829       IRB.SetInsertPoint(CI);
830       Value *Env = nullptr;
831       if (NewF == EmLongjmpF)
832         Env =
833             IRB.CreatePtrToInt(CI->getArgOperand(0), getAddrIntType(M), "env");
834       else // WasmLongjmpF
835         Env =
836             IRB.CreateBitCast(CI->getArgOperand(0), IRB.getInt8PtrTy(), "env");
837       IRB.CreateCall(NewF, {Env, CI->getArgOperand(1)});
838       ToErase.push_back(CI);
839     }
840   }
841   for (auto *I : ToErase)
842     I->eraseFromParent();
843 
844   // If we have any remaining uses of longjmp's function pointer, replace it
845   // with (void(*)(jmp_buf*, int))emscripten_longjmp / __wasm_longjmp.
846   if (!LongjmpF->uses().empty()) {
847     Value *NewLongjmp =
848         IRB.CreateBitCast(NewF, LongjmpF->getType(), "longjmp.cast");
849     LongjmpF->replaceAllUsesWith(NewLongjmp);
850   }
851 }
852 
853 static bool containsLongjmpableCalls(const Function *F) {
854   for (const auto &BB : *F)
855     for (const auto &I : BB)
856       if (const auto *CB = dyn_cast<CallBase>(&I))
857         if (canLongjmp(CB->getCalledOperand()))
858           return true;
859   return false;
860 }
861 
862 // When a function contains a setjmp call but not other calls that can longjmp,
863 // we don't do setjmp transformation for that setjmp. But we need to convert the
864 // setjmp calls into "i32 0" so they don't cause link time errors. setjmp always
865 // returns 0 when called directly.
866 static void nullifySetjmp(Function *F) {
867   Module &M = *F->getParent();
868   IRBuilder<> IRB(M.getContext());
869   Function *SetjmpF = M.getFunction("setjmp");
870   SmallVector<Instruction *, 1> ToErase;
871 
872   for (User *U : SetjmpF->users()) {
873     auto *CI = dyn_cast<CallInst>(U);
874     // FIXME 'invoke' to setjmp can happen when we use Wasm EH + Wasm SjLj, but
875     // we don't support two being used together yet.
876     if (!CI)
877       report_fatal_error("Wasm EH + Wasm SjLj is not fully supported yet");
878     BasicBlock *BB = CI->getParent();
879     if (BB->getParent() != F) // in other function
880       continue;
881     ToErase.push_back(CI);
882     CI->replaceAllUsesWith(IRB.getInt32(0));
883   }
884   for (auto *I : ToErase)
885     I->eraseFromParent();
886 }
887 
888 bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module &M) {
889   LLVM_DEBUG(dbgs() << "********** Lower Emscripten EH & SjLj **********\n");
890 
891   LLVMContext &C = M.getContext();
892   IRBuilder<> IRB(C);
893 
894   Function *SetjmpF = M.getFunction("setjmp");
895   Function *LongjmpF = M.getFunction("longjmp");
896 
897   // In some platforms _setjmp and _longjmp are used instead. Change these to
898   // use setjmp/longjmp instead, because we later detect these functions by
899   // their names.
900   Function *SetjmpF2 = M.getFunction("_setjmp");
901   Function *LongjmpF2 = M.getFunction("_longjmp");
902   if (SetjmpF2) {
903     if (SetjmpF) {
904       if (SetjmpF->getFunctionType() != SetjmpF2->getFunctionType())
905         report_fatal_error("setjmp and _setjmp have different function types");
906     } else {
907       SetjmpF = Function::Create(SetjmpF2->getFunctionType(),
908                                  GlobalValue::ExternalLinkage, "setjmp", M);
909     }
910     SetjmpF2->replaceAllUsesWith(SetjmpF);
911   }
912   if (LongjmpF2) {
913     if (LongjmpF) {
914       if (LongjmpF->getFunctionType() != LongjmpF2->getFunctionType())
915         report_fatal_error(
916             "longjmp and _longjmp have different function types");
917     } else {
918       LongjmpF = Function::Create(LongjmpF2->getFunctionType(),
919                                   GlobalValue::ExternalLinkage, "setjmp", M);
920     }
921     LongjmpF2->replaceAllUsesWith(LongjmpF);
922   }
923 
924   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
925   assert(TPC && "Expected a TargetPassConfig");
926   auto &TM = TPC->getTM<WebAssemblyTargetMachine>();
927 
928   // Declare (or get) global variables __THREW__, __threwValue, and
929   // getTempRet0/setTempRet0 function which are used in common for both
930   // exception handling and setjmp/longjmp handling
931   ThrewGV = getGlobalVariable(M, getAddrIntType(&M), TM, "__THREW__");
932   ThrewValueGV = getGlobalVariable(M, IRB.getInt32Ty(), TM, "__threwValue");
933   GetTempRet0F = getEmscriptenFunction(
934       FunctionType::get(IRB.getInt32Ty(), false), "getTempRet0", &M);
935   SetTempRet0F = getEmscriptenFunction(
936       FunctionType::get(IRB.getVoidTy(), IRB.getInt32Ty(), false),
937       "setTempRet0", &M);
938   GetTempRet0F->setDoesNotThrow();
939   SetTempRet0F->setDoesNotThrow();
940 
941   bool Changed = false;
942 
943   // Function registration for exception handling
944   if (EnableEmEH) {
945     // Register __resumeException function
946     FunctionType *ResumeFTy =
947         FunctionType::get(IRB.getVoidTy(), IRB.getInt8PtrTy(), false);
948     ResumeF = getEmscriptenFunction(ResumeFTy, "__resumeException", &M);
949     ResumeF->addFnAttr(Attribute::NoReturn);
950 
951     // Register llvm_eh_typeid_for function
952     FunctionType *EHTypeIDTy =
953         FunctionType::get(IRB.getInt32Ty(), IRB.getInt8PtrTy(), false);
954     EHTypeIDF = getEmscriptenFunction(EHTypeIDTy, "llvm_eh_typeid_for", &M);
955   }
956 
957   // Functions that contains calls to setjmp but don't have other longjmpable
958   // calls within them.
959   SmallPtrSet<Function *, 4> SetjmpUsersToNullify;
960 
961   if ((EnableEmSjLj || EnableWasmSjLj) && SetjmpF) {
962     // Precompute setjmp users
963     for (User *U : SetjmpF->users()) {
964       if (auto *CB = dyn_cast<CallBase>(U)) {
965         auto *UserF = CB->getFunction();
966         // If a function that calls setjmp does not contain any other calls that
967         // can longjmp, we don't need to do any transformation on that function,
968         // so can ignore it
969         if (containsLongjmpableCalls(UserF))
970           SetjmpUsers.insert(UserF);
971         else
972           SetjmpUsersToNullify.insert(UserF);
973       } else {
974         std::string S;
975         raw_string_ostream SS(S);
976         SS << *U;
977         report_fatal_error(Twine("Indirect use of setjmp is not supported: ") +
978                            SS.str());
979       }
980     }
981   }
982 
983   bool SetjmpUsed = SetjmpF && !SetjmpUsers.empty();
984   bool LongjmpUsed = LongjmpF && !LongjmpF->use_empty();
985   DoSjLj = (EnableEmSjLj | EnableWasmSjLj) && (SetjmpUsed || LongjmpUsed);
986 
987   // Function registration and data pre-gathering for setjmp/longjmp handling
988   if (DoSjLj) {
989     assert(EnableEmSjLj || EnableWasmSjLj);
990     if (EnableEmSjLj) {
991       // Register emscripten_longjmp function
992       FunctionType *FTy = FunctionType::get(
993           IRB.getVoidTy(), {getAddrIntType(&M), IRB.getInt32Ty()}, false);
994       EmLongjmpF = getEmscriptenFunction(FTy, "emscripten_longjmp", &M);
995       EmLongjmpF->addFnAttr(Attribute::NoReturn);
996     } else { // EnableWasmSjLj
997       // Register __wasm_longjmp function, which calls __builtin_wasm_longjmp.
998       FunctionType *FTy = FunctionType::get(
999           IRB.getVoidTy(), {IRB.getInt8PtrTy(), IRB.getInt32Ty()}, false);
1000       WasmLongjmpF = getEmscriptenFunction(FTy, "__wasm_longjmp", &M);
1001       WasmLongjmpF->addFnAttr(Attribute::NoReturn);
1002     }
1003 
1004     if (SetjmpF) {
1005       // Register saveSetjmp function
1006       FunctionType *SetjmpFTy = SetjmpF->getFunctionType();
1007       FunctionType *FTy =
1008           FunctionType::get(Type::getInt32PtrTy(C),
1009                             {SetjmpFTy->getParamType(0), IRB.getInt32Ty(),
1010                              Type::getInt32PtrTy(C), IRB.getInt32Ty()},
1011                             false);
1012       SaveSetjmpF = getEmscriptenFunction(FTy, "saveSetjmp", &M);
1013 
1014       // Register testSetjmp function
1015       FTy = FunctionType::get(
1016           IRB.getInt32Ty(),
1017           {getAddrIntType(&M), Type::getInt32PtrTy(C), IRB.getInt32Ty()},
1018           false);
1019       TestSetjmpF = getEmscriptenFunction(FTy, "testSetjmp", &M);
1020 
1021       // wasm.catch() will be lowered down to wasm 'catch' instruction in
1022       // instruction selection.
1023       CatchF = Intrinsic::getDeclaration(&M, Intrinsic::wasm_catch);
1024       // Type for struct __WasmLongjmpArgs
1025       LongjmpArgsTy = StructType::get(IRB.getInt8PtrTy(), // env
1026                                       IRB.getInt32Ty()    // val
1027       );
1028     }
1029   }
1030 
1031   // Exception handling transformation
1032   if (EnableEmEH) {
1033     for (Function &F : M) {
1034       if (F.isDeclaration())
1035         continue;
1036       Changed |= runEHOnFunction(F);
1037     }
1038   }
1039 
1040   // Setjmp/longjmp handling transformation
1041   if (DoSjLj) {
1042     Changed = true; // We have setjmp or longjmp somewhere
1043     if (LongjmpF)
1044       replaceLongjmpWith(LongjmpF, EnableEmSjLj ? EmLongjmpF : WasmLongjmpF);
1045     // Only traverse functions that uses setjmp in order not to insert
1046     // unnecessary prep / cleanup code in every function
1047     if (SetjmpF)
1048       for (Function *F : SetjmpUsers)
1049         runSjLjOnFunction(*F);
1050   }
1051 
1052   // Replace unnecessary setjmp calls with 0
1053   if ((EnableEmSjLj || EnableWasmSjLj) && !SetjmpUsersToNullify.empty()) {
1054     Changed = true;
1055     assert(SetjmpF);
1056     for (Function *F : SetjmpUsersToNullify)
1057       nullifySetjmp(F);
1058   }
1059 
1060   if (!Changed) {
1061     // Delete unused global variables and functions
1062     if (ResumeF)
1063       ResumeF->eraseFromParent();
1064     if (EHTypeIDF)
1065       EHTypeIDF->eraseFromParent();
1066     if (EmLongjmpF)
1067       EmLongjmpF->eraseFromParent();
1068     if (SaveSetjmpF)
1069       SaveSetjmpF->eraseFromParent();
1070     if (TestSetjmpF)
1071       TestSetjmpF->eraseFromParent();
1072     return false;
1073   }
1074 
1075   return true;
1076 }
1077 
1078 bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function &F) {
1079   Module &M = *F.getParent();
1080   LLVMContext &C = F.getContext();
1081   IRBuilder<> IRB(C);
1082   bool Changed = false;
1083   SmallVector<Instruction *, 64> ToErase;
1084   SmallPtrSet<LandingPadInst *, 32> LandingPads;
1085 
1086   // rethrow.longjmp BB that will be shared within the function.
1087   BasicBlock *RethrowLongjmpBB = nullptr;
1088   // PHI node for the loaded value of __THREW__ global variable in
1089   // rethrow.longjmp BB
1090   PHINode *RethrowLongjmpBBThrewPHI = nullptr;
1091 
1092   for (BasicBlock &BB : F) {
1093     auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
1094     if (!II)
1095       continue;
1096     Changed = true;
1097     LandingPads.insert(II->getLandingPadInst());
1098     IRB.SetInsertPoint(II);
1099 
1100     const Value *Callee = II->getCalledOperand();
1101     bool NeedInvoke = supportsException(&F) && canThrow(Callee);
1102     if (NeedInvoke) {
1103       // Wrap invoke with invoke wrapper and generate preamble/postamble
1104       Value *Threw = wrapInvoke(II);
1105       ToErase.push_back(II);
1106 
1107       // If setjmp/longjmp handling is enabled, the thrown value can be not an
1108       // exception but a longjmp. If the current function contains calls to
1109       // setjmp, it will be appropriately handled in runSjLjOnFunction. But even
1110       // if the function does not contain setjmp calls, we shouldn't silently
1111       // ignore longjmps; we should rethrow them so they can be correctly
1112       // handled in somewhere up the call chain where setjmp is. __THREW__'s
1113       // value is 0 when nothing happened, 1 when an exception is thrown, and
1114       // other values when longjmp is thrown.
1115       //
1116       // if (%__THREW__.val == 0 || %__THREW__.val == 1)
1117       //   goto %tail
1118       // else
1119       //   goto %longjmp.rethrow
1120       //
1121       // rethrow.longjmp: ;; This is longjmp. Rethrow it
1122       //   %__threwValue.val = __threwValue
1123       //   emscripten_longjmp(%__THREW__.val, %__threwValue.val);
1124       //
1125       // tail: ;; Nothing happened or an exception is thrown
1126       //   ... Continue exception handling ...
1127       if (DoSjLj && EnableEmSjLj && !SetjmpUsers.count(&F) &&
1128           canLongjmp(Callee)) {
1129         // Create longjmp.rethrow BB once and share it within the function
1130         if (!RethrowLongjmpBB) {
1131           RethrowLongjmpBB = BasicBlock::Create(C, "rethrow.longjmp", &F);
1132           IRB.SetInsertPoint(RethrowLongjmpBB);
1133           RethrowLongjmpBBThrewPHI =
1134               IRB.CreatePHI(getAddrIntType(&M), 4, "threw.phi");
1135           RethrowLongjmpBBThrewPHI->addIncoming(Threw, &BB);
1136           Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV,
1137                                              ThrewValueGV->getName() + ".val");
1138           IRB.CreateCall(EmLongjmpF, {RethrowLongjmpBBThrewPHI, ThrewValue});
1139           IRB.CreateUnreachable();
1140         } else {
1141           RethrowLongjmpBBThrewPHI->addIncoming(Threw, &BB);
1142         }
1143 
1144         IRB.SetInsertPoint(II); // Restore the insert point back
1145         BasicBlock *Tail = BasicBlock::Create(C, "tail", &F);
1146         Value *CmpEqOne =
1147             IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp.eq.one");
1148         Value *CmpEqZero =
1149             IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 0), "cmp.eq.zero");
1150         Value *Or = IRB.CreateOr(CmpEqZero, CmpEqOne, "or");
1151         IRB.CreateCondBr(Or, Tail, RethrowLongjmpBB);
1152         IRB.SetInsertPoint(Tail);
1153         BB.replaceSuccessorsPhiUsesWith(&BB, Tail);
1154       }
1155 
1156       // Insert a branch based on __THREW__ variable
1157       Value *Cmp = IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp");
1158       IRB.CreateCondBr(Cmp, II->getUnwindDest(), II->getNormalDest());
1159 
1160     } else {
1161       // This can't throw, and we don't need this invoke, just replace it with a
1162       // call+branch
1163       changeToCall(II);
1164     }
1165   }
1166 
1167   // Process resume instructions
1168   for (BasicBlock &BB : F) {
1169     // Scan the body of the basic block for resumes
1170     for (Instruction &I : BB) {
1171       auto *RI = dyn_cast<ResumeInst>(&I);
1172       if (!RI)
1173         continue;
1174       Changed = true;
1175 
1176       // Split the input into legal values
1177       Value *Input = RI->getValue();
1178       IRB.SetInsertPoint(RI);
1179       Value *Low = IRB.CreateExtractValue(Input, 0, "low");
1180       // Create a call to __resumeException function
1181       IRB.CreateCall(ResumeF, {Low});
1182       // Add a terminator to the block
1183       IRB.CreateUnreachable();
1184       ToErase.push_back(RI);
1185     }
1186   }
1187 
1188   // Process llvm.eh.typeid.for intrinsics
1189   for (BasicBlock &BB : F) {
1190     for (Instruction &I : BB) {
1191       auto *CI = dyn_cast<CallInst>(&I);
1192       if (!CI)
1193         continue;
1194       const Function *Callee = CI->getCalledFunction();
1195       if (!Callee)
1196         continue;
1197       if (Callee->getIntrinsicID() != Intrinsic::eh_typeid_for)
1198         continue;
1199       Changed = true;
1200 
1201       IRB.SetInsertPoint(CI);
1202       CallInst *NewCI =
1203           IRB.CreateCall(EHTypeIDF, CI->getArgOperand(0), "typeid");
1204       CI->replaceAllUsesWith(NewCI);
1205       ToErase.push_back(CI);
1206     }
1207   }
1208 
1209   // Look for orphan landingpads, can occur in blocks with no predecessors
1210   for (BasicBlock &BB : F) {
1211     Instruction *I = BB.getFirstNonPHI();
1212     if (auto *LPI = dyn_cast<LandingPadInst>(I))
1213       LandingPads.insert(LPI);
1214   }
1215   Changed |= !LandingPads.empty();
1216 
1217   // Handle all the landingpad for this function together, as multiple invokes
1218   // may share a single lp
1219   for (LandingPadInst *LPI : LandingPads) {
1220     IRB.SetInsertPoint(LPI);
1221     SmallVector<Value *, 16> FMCArgs;
1222     for (unsigned I = 0, E = LPI->getNumClauses(); I < E; ++I) {
1223       Constant *Clause = LPI->getClause(I);
1224       // TODO Handle filters (= exception specifications).
1225       // https://bugs.llvm.org/show_bug.cgi?id=50396
1226       if (LPI->isCatch(I))
1227         FMCArgs.push_back(Clause);
1228     }
1229 
1230     // Create a call to __cxa_find_matching_catch_N function
1231     Function *FMCF = getFindMatchingCatch(M, FMCArgs.size());
1232     CallInst *FMCI = IRB.CreateCall(FMCF, FMCArgs, "fmc");
1233     Value *Undef = UndefValue::get(LPI->getType());
1234     Value *Pair0 = IRB.CreateInsertValue(Undef, FMCI, 0, "pair0");
1235     Value *TempRet0 = IRB.CreateCall(GetTempRet0F, None, "tempret0");
1236     Value *Pair1 = IRB.CreateInsertValue(Pair0, TempRet0, 1, "pair1");
1237 
1238     LPI->replaceAllUsesWith(Pair1);
1239     ToErase.push_back(LPI);
1240   }
1241 
1242   // Erase everything we no longer need in this function
1243   for (Instruction *I : ToErase)
1244     I->eraseFromParent();
1245 
1246   return Changed;
1247 }
1248 
1249 // This tries to get debug info from the instruction before which a new
1250 // instruction will be inserted, and if there's no debug info in that
1251 // instruction, tries to get the info instead from the previous instruction (if
1252 // any). If none of these has debug info and a DISubprogram is provided, it
1253 // creates a dummy debug info with the first line of the function, because IR
1254 // verifier requires all inlinable callsites should have debug info when both a
1255 // caller and callee have DISubprogram. If none of these conditions are met,
1256 // returns empty info.
1257 static DebugLoc getOrCreateDebugLoc(const Instruction *InsertBefore,
1258                                     DISubprogram *SP) {
1259   assert(InsertBefore);
1260   if (InsertBefore->getDebugLoc())
1261     return InsertBefore->getDebugLoc();
1262   const Instruction *Prev = InsertBefore->getPrevNode();
1263   if (Prev && Prev->getDebugLoc())
1264     return Prev->getDebugLoc();
1265   if (SP)
1266     return DILocation::get(SP->getContext(), SP->getLine(), 1, SP);
1267   return DebugLoc();
1268 }
1269 
1270 bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function &F) {
1271   assert(EnableEmSjLj || EnableWasmSjLj);
1272   Module &M = *F.getParent();
1273   LLVMContext &C = F.getContext();
1274   IRBuilder<> IRB(C);
1275   SmallVector<Instruction *, 64> ToErase;
1276   // Vector of %setjmpTable values
1277   SmallVector<Instruction *, 4> SetjmpTableInsts;
1278   // Vector of %setjmpTableSize values
1279   SmallVector<Instruction *, 4> SetjmpTableSizeInsts;
1280 
1281   // Setjmp preparation
1282 
1283   // This instruction effectively means %setjmpTableSize = 4.
1284   // We create this as an instruction intentionally, and we don't want to fold
1285   // this instruction to a constant 4, because this value will be used in
1286   // SSAUpdater.AddAvailableValue(...) later.
1287   BasicBlock *Entry = &F.getEntryBlock();
1288   DebugLoc FirstDL = getOrCreateDebugLoc(&*Entry->begin(), F.getSubprogram());
1289   SplitBlock(Entry, &*Entry->getFirstInsertionPt());
1290 
1291   BinaryOperator *SetjmpTableSize =
1292       BinaryOperator::Create(Instruction::Add, IRB.getInt32(4), IRB.getInt32(0),
1293                              "setjmpTableSize", Entry->getTerminator());
1294   SetjmpTableSize->setDebugLoc(FirstDL);
1295   // setjmpTable = (int *) malloc(40);
1296   Instruction *SetjmpTable = CallInst::CreateMalloc(
1297       SetjmpTableSize, IRB.getInt32Ty(), IRB.getInt32Ty(), IRB.getInt32(40),
1298       nullptr, nullptr, "setjmpTable");
1299   SetjmpTable->setDebugLoc(FirstDL);
1300   // CallInst::CreateMalloc may return a bitcast instruction if the result types
1301   // mismatch. We need to set the debug loc for the original call too.
1302   auto *MallocCall = SetjmpTable->stripPointerCasts();
1303   if (auto *MallocCallI = dyn_cast<Instruction>(MallocCall)) {
1304     MallocCallI->setDebugLoc(FirstDL);
1305   }
1306   // setjmpTable[0] = 0;
1307   IRB.SetInsertPoint(SetjmpTableSize);
1308   IRB.CreateStore(IRB.getInt32(0), SetjmpTable);
1309   SetjmpTableInsts.push_back(SetjmpTable);
1310   SetjmpTableSizeInsts.push_back(SetjmpTableSize);
1311 
1312   // Setjmp transformation
1313   SmallVector<PHINode *, 4> SetjmpRetPHIs;
1314   Function *SetjmpF = M.getFunction("setjmp");
1315   for (auto *U : make_early_inc_range(SetjmpF->users())) {
1316     auto *CB = dyn_cast<CallBase>(U);
1317     BasicBlock *BB = CB->getParent();
1318     if (BB->getParent() != &F) // in other function
1319       continue;
1320 
1321     CallInst *CI = nullptr;
1322     // setjmp cannot throw. So if it is an invoke, lower it to a call
1323     if (auto *II = dyn_cast<InvokeInst>(CB))
1324       CI = llvm::changeToCall(II);
1325     else
1326       CI = cast<CallInst>(CB);
1327 
1328     // The tail is everything right after the call, and will be reached once
1329     // when setjmp is called, and later when longjmp returns to the setjmp
1330     BasicBlock *Tail = SplitBlock(BB, CI->getNextNode());
1331     // Add a phi to the tail, which will be the output of setjmp, which
1332     // indicates if this is the first call or a longjmp back. The phi directly
1333     // uses the right value based on where we arrive from
1334     IRB.SetInsertPoint(Tail->getFirstNonPHI());
1335     PHINode *SetjmpRet = IRB.CreatePHI(IRB.getInt32Ty(), 2, "setjmp.ret");
1336 
1337     // setjmp initial call returns 0
1338     SetjmpRet->addIncoming(IRB.getInt32(0), BB);
1339     // The proper output is now this, not the setjmp call itself
1340     CI->replaceAllUsesWith(SetjmpRet);
1341     // longjmp returns to the setjmp will add themselves to this phi
1342     SetjmpRetPHIs.push_back(SetjmpRet);
1343 
1344     // Fix call target
1345     // Our index in the function is our place in the array + 1 to avoid index
1346     // 0, because index 0 means the longjmp is not ours to handle.
1347     IRB.SetInsertPoint(CI);
1348     Value *Args[] = {CI->getArgOperand(0), IRB.getInt32(SetjmpRetPHIs.size()),
1349                      SetjmpTable, SetjmpTableSize};
1350     Instruction *NewSetjmpTable =
1351         IRB.CreateCall(SaveSetjmpF, Args, "setjmpTable");
1352     Instruction *NewSetjmpTableSize =
1353         IRB.CreateCall(GetTempRet0F, None, "setjmpTableSize");
1354     SetjmpTableInsts.push_back(NewSetjmpTable);
1355     SetjmpTableSizeInsts.push_back(NewSetjmpTableSize);
1356     ToErase.push_back(CI);
1357   }
1358 
1359   // Handle longjmpable calls.
1360   if (EnableEmSjLj)
1361     handleLongjmpableCallsForEmscriptenSjLj(
1362         F, SetjmpTableInsts, SetjmpTableSizeInsts, SetjmpRetPHIs);
1363   else // EnableWasmSjLj
1364     handleLongjmpableCallsForWasmSjLj(F, SetjmpTableInsts, SetjmpTableSizeInsts,
1365                                       SetjmpRetPHIs);
1366 
1367   // Erase everything we no longer need in this function
1368   for (Instruction *I : ToErase)
1369     I->eraseFromParent();
1370 
1371   // Free setjmpTable buffer before each return instruction + function-exiting
1372   // call
1373   SmallVector<Instruction *, 16> ExitingInsts;
1374   for (BasicBlock &BB : F) {
1375     Instruction *TI = BB.getTerminator();
1376     if (isa<ReturnInst>(TI))
1377       ExitingInsts.push_back(TI);
1378     // Any 'call' instruction with 'noreturn' attribute exits the function at
1379     // this point. If this throws but unwinds to another EH pad within this
1380     // function instead of exiting, this would have been an 'invoke', which
1381     // happens if we use Wasm EH or Wasm SjLJ.
1382     for (auto &I : BB) {
1383       if (auto *CI = dyn_cast<CallInst>(&I)) {
1384         bool IsNoReturn = CI->hasFnAttr(Attribute::NoReturn);
1385         if (Function *CalleeF = CI->getCalledFunction())
1386           IsNoReturn |= CalleeF->hasFnAttribute(Attribute::NoReturn);
1387         if (IsNoReturn)
1388           ExitingInsts.push_back(&I);
1389       }
1390     }
1391   }
1392   for (auto *I : ExitingInsts) {
1393     DebugLoc DL = getOrCreateDebugLoc(I, F.getSubprogram());
1394     // If this existing instruction is a call within a catchpad, we should add
1395     // it as "funclet" to the operand bundle of 'free' call
1396     SmallVector<OperandBundleDef, 1> Bundles;
1397     if (auto *CB = dyn_cast<CallBase>(I))
1398       if (auto Bundle = CB->getOperandBundle(LLVMContext::OB_funclet))
1399         Bundles.push_back(OperandBundleDef(*Bundle));
1400     auto *Free = CallInst::CreateFree(SetjmpTable, Bundles, I);
1401     Free->setDebugLoc(DL);
1402     // CallInst::CreateFree may create a bitcast instruction if its argument
1403     // types mismatch. We need to set the debug loc for the bitcast too.
1404     if (auto *FreeCallI = dyn_cast<CallInst>(Free)) {
1405       if (auto *BitCastI = dyn_cast<BitCastInst>(FreeCallI->getArgOperand(0)))
1406         BitCastI->setDebugLoc(DL);
1407     }
1408   }
1409 
1410   // Every call to saveSetjmp can change setjmpTable and setjmpTableSize
1411   // (when buffer reallocation occurs)
1412   // entry:
1413   //   setjmpTableSize = 4;
1414   //   setjmpTable = (int *) malloc(40);
1415   //   setjmpTable[0] = 0;
1416   // ...
1417   // somebb:
1418   //   setjmpTable = saveSetjmp(env, label, setjmpTable, setjmpTableSize);
1419   //   setjmpTableSize = getTempRet0();
1420   // So we need to make sure the SSA for these variables is valid so that every
1421   // saveSetjmp and testSetjmp calls have the correct arguments.
1422   SSAUpdater SetjmpTableSSA;
1423   SSAUpdater SetjmpTableSizeSSA;
1424   SetjmpTableSSA.Initialize(Type::getInt32PtrTy(C), "setjmpTable");
1425   SetjmpTableSizeSSA.Initialize(Type::getInt32Ty(C), "setjmpTableSize");
1426   for (Instruction *I : SetjmpTableInsts)
1427     SetjmpTableSSA.AddAvailableValue(I->getParent(), I);
1428   for (Instruction *I : SetjmpTableSizeInsts)
1429     SetjmpTableSizeSSA.AddAvailableValue(I->getParent(), I);
1430 
1431   for (auto &U : make_early_inc_range(SetjmpTable->uses()))
1432     if (auto *I = dyn_cast<Instruction>(U.getUser()))
1433       if (I->getParent() != Entry)
1434         SetjmpTableSSA.RewriteUse(U);
1435   for (auto &U : make_early_inc_range(SetjmpTableSize->uses()))
1436     if (auto *I = dyn_cast<Instruction>(U.getUser()))
1437       if (I->getParent() != Entry)
1438         SetjmpTableSizeSSA.RewriteUse(U);
1439 
1440   // Finally, our modifications to the cfg can break dominance of SSA variables.
1441   // For example, in this code,
1442   // if (x()) { .. setjmp() .. }
1443   // if (y()) { .. longjmp() .. }
1444   // We must split the longjmp block, and it can jump into the block splitted
1445   // from setjmp one. But that means that when we split the setjmp block, it's
1446   // first part no longer dominates its second part - there is a theoretically
1447   // possible control flow path where x() is false, then y() is true and we
1448   // reach the second part of the setjmp block, without ever reaching the first
1449   // part. So, we rebuild SSA form here.
1450   rebuildSSA(F);
1451   return true;
1452 }
1453 
1454 // Update each call that can longjmp so it can return to the corresponding
1455 // setjmp. Refer to 4) of "Emscripten setjmp/longjmp handling" section in the
1456 // comments at top of the file for details.
1457 void WebAssemblyLowerEmscriptenEHSjLj::handleLongjmpableCallsForEmscriptenSjLj(
1458     Function &F, InstVector &SetjmpTableInsts, InstVector &SetjmpTableSizeInsts,
1459     SmallVectorImpl<PHINode *> &SetjmpRetPHIs) {
1460   Module &M = *F.getParent();
1461   LLVMContext &C = F.getContext();
1462   IRBuilder<> IRB(C);
1463   SmallVector<Instruction *, 64> ToErase;
1464 
1465   // We need to pass setjmpTable and setjmpTableSize to testSetjmp function.
1466   // These values are defined in the beginning of the function and also in each
1467   // setjmp callsite, but we don't know which values we should use at this
1468   // point. So here we arbitraily use the ones defined in the beginning of the
1469   // function, and SSAUpdater will later update them to the correct values.
1470   Instruction *SetjmpTable = *SetjmpTableInsts.begin();
1471   Instruction *SetjmpTableSize = *SetjmpTableSizeInsts.begin();
1472 
1473   // call.em.longjmp BB that will be shared within the function.
1474   BasicBlock *CallEmLongjmpBB = nullptr;
1475   // PHI node for the loaded value of __THREW__ global variable in
1476   // call.em.longjmp BB
1477   PHINode *CallEmLongjmpBBThrewPHI = nullptr;
1478   // PHI node for the loaded value of __threwValue global variable in
1479   // call.em.longjmp BB
1480   PHINode *CallEmLongjmpBBThrewValuePHI = nullptr;
1481   // rethrow.exn BB that will be shared within the function.
1482   BasicBlock *RethrowExnBB = nullptr;
1483 
1484   // Because we are creating new BBs while processing and don't want to make
1485   // all these newly created BBs candidates again for longjmp processing, we
1486   // first make the vector of candidate BBs.
1487   std::vector<BasicBlock *> BBs;
1488   for (BasicBlock &BB : F)
1489     BBs.push_back(&BB);
1490 
1491   // BBs.size() will change within the loop, so we query it every time
1492   for (unsigned I = 0; I < BBs.size(); I++) {
1493     BasicBlock *BB = BBs[I];
1494     for (Instruction &I : *BB) {
1495       if (isa<InvokeInst>(&I))
1496         report_fatal_error("When using Wasm EH with Emscripten SjLj, there is "
1497                            "a restriction that `setjmp` function call and "
1498                            "exception cannot be used within the same function");
1499       auto *CI = dyn_cast<CallInst>(&I);
1500       if (!CI)
1501         continue;
1502 
1503       const Value *Callee = CI->getCalledOperand();
1504       if (!canLongjmp(Callee))
1505         continue;
1506       if (isEmAsmCall(Callee))
1507         report_fatal_error("Cannot use EM_ASM* alongside setjmp/longjmp in " +
1508                                F.getName() +
1509                                ". Please consider using EM_JS, or move the "
1510                                "EM_ASM into another function.",
1511                            false);
1512 
1513       Value *Threw = nullptr;
1514       BasicBlock *Tail;
1515       if (Callee->getName().startswith("__invoke_")) {
1516         // If invoke wrapper has already been generated for this call in
1517         // previous EH phase, search for the load instruction
1518         // %__THREW__.val = __THREW__;
1519         // in postamble after the invoke wrapper call
1520         LoadInst *ThrewLI = nullptr;
1521         StoreInst *ThrewResetSI = nullptr;
1522         for (auto I = std::next(BasicBlock::iterator(CI)), IE = BB->end();
1523              I != IE; ++I) {
1524           if (auto *LI = dyn_cast<LoadInst>(I))
1525             if (auto *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()))
1526               if (GV == ThrewGV) {
1527                 Threw = ThrewLI = LI;
1528                 break;
1529               }
1530         }
1531         // Search for the store instruction after the load above
1532         // __THREW__ = 0;
1533         for (auto I = std::next(BasicBlock::iterator(ThrewLI)), IE = BB->end();
1534              I != IE; ++I) {
1535           if (auto *SI = dyn_cast<StoreInst>(I)) {
1536             if (auto *GV = dyn_cast<GlobalVariable>(SI->getPointerOperand())) {
1537               if (GV == ThrewGV &&
1538                   SI->getValueOperand() == getAddrSizeInt(&M, 0)) {
1539                 ThrewResetSI = SI;
1540                 break;
1541               }
1542             }
1543           }
1544         }
1545         assert(Threw && ThrewLI && "Cannot find __THREW__ load after invoke");
1546         assert(ThrewResetSI && "Cannot find __THREW__ store after invoke");
1547         Tail = SplitBlock(BB, ThrewResetSI->getNextNode());
1548 
1549       } else {
1550         // Wrap call with invoke wrapper and generate preamble/postamble
1551         Threw = wrapInvoke(CI);
1552         ToErase.push_back(CI);
1553         Tail = SplitBlock(BB, CI->getNextNode());
1554 
1555         // If exception handling is enabled, the thrown value can be not a
1556         // longjmp but an exception, in which case we shouldn't silently ignore
1557         // exceptions; we should rethrow them.
1558         // __THREW__'s value is 0 when nothing happened, 1 when an exception is
1559         // thrown, other values when longjmp is thrown.
1560         //
1561         // if (%__THREW__.val == 1)
1562         //   goto %eh.rethrow
1563         // else
1564         //   goto %normal
1565         //
1566         // eh.rethrow: ;; Rethrow exception
1567         //   %exn = call @__cxa_find_matching_catch_2() ;; Retrieve thrown ptr
1568         //   __resumeException(%exn)
1569         //
1570         // normal:
1571         //   <-- Insertion point. Will insert sjlj handling code from here
1572         //   goto %tail
1573         //
1574         // tail:
1575         //   ...
1576         if (supportsException(&F) && canThrow(Callee)) {
1577           // We will add a new conditional branch. So remove the branch created
1578           // when we split the BB
1579           ToErase.push_back(BB->getTerminator());
1580 
1581           // Generate rethrow.exn BB once and share it within the function
1582           if (!RethrowExnBB) {
1583             RethrowExnBB = BasicBlock::Create(C, "rethrow.exn", &F);
1584             IRB.SetInsertPoint(RethrowExnBB);
1585             CallInst *Exn =
1586                 IRB.CreateCall(getFindMatchingCatch(M, 0), {}, "exn");
1587             IRB.CreateCall(ResumeF, {Exn});
1588             IRB.CreateUnreachable();
1589           }
1590 
1591           IRB.SetInsertPoint(CI);
1592           BasicBlock *NormalBB = BasicBlock::Create(C, "normal", &F);
1593           Value *CmpEqOne =
1594               IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp.eq.one");
1595           IRB.CreateCondBr(CmpEqOne, RethrowExnBB, NormalBB);
1596 
1597           IRB.SetInsertPoint(NormalBB);
1598           IRB.CreateBr(Tail);
1599           BB = NormalBB; // New insertion point to insert testSetjmp()
1600         }
1601       }
1602 
1603       // We need to replace the terminator in Tail - SplitBlock makes BB go
1604       // straight to Tail, we need to check if a longjmp occurred, and go to the
1605       // right setjmp-tail if so
1606       ToErase.push_back(BB->getTerminator());
1607 
1608       // Generate a function call to testSetjmp function and preamble/postamble
1609       // code to figure out (1) whether longjmp occurred (2) if longjmp
1610       // occurred, which setjmp it corresponds to
1611       Value *Label = nullptr;
1612       Value *LongjmpResult = nullptr;
1613       BasicBlock *EndBB = nullptr;
1614       wrapTestSetjmp(BB, CI->getDebugLoc(), Threw, SetjmpTable, SetjmpTableSize,
1615                      Label, LongjmpResult, CallEmLongjmpBB,
1616                      CallEmLongjmpBBThrewPHI, CallEmLongjmpBBThrewValuePHI,
1617                      EndBB);
1618       assert(Label && LongjmpResult && EndBB);
1619 
1620       // Create switch instruction
1621       IRB.SetInsertPoint(EndBB);
1622       IRB.SetCurrentDebugLocation(EndBB->getInstList().back().getDebugLoc());
1623       SwitchInst *SI = IRB.CreateSwitch(Label, Tail, SetjmpRetPHIs.size());
1624       // -1 means no longjmp happened, continue normally (will hit the default
1625       // switch case). 0 means a longjmp that is not ours to handle, needs a
1626       // rethrow. Otherwise the index is the same as the index in P+1 (to avoid
1627       // 0).
1628       for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) {
1629         SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent());
1630         SetjmpRetPHIs[I]->addIncoming(LongjmpResult, EndBB);
1631       }
1632 
1633       // We are splitting the block here, and must continue to find other calls
1634       // in the block - which is now split. so continue to traverse in the Tail
1635       BBs.push_back(Tail);
1636     }
1637   }
1638 
1639   for (Instruction *I : ToErase)
1640     I->eraseFromParent();
1641 }
1642 
1643 static BasicBlock *getCleanupRetUnwindDest(const CleanupPadInst *CPI) {
1644   for (const User *U : CPI->users())
1645     if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
1646       return CRI->getUnwindDest();
1647   return nullptr;
1648 }
1649 
1650 // Create a catchpad in which we catch a longjmp's env and val arguments, test
1651 // if the longjmp corresponds to one of setjmps in the current function, and if
1652 // so, jump to the setjmp dispatch BB from which we go to one of post-setjmp
1653 // BBs. Refer to 4) of "Wasm setjmp/longjmp handling" section in the comments at
1654 // top of the file for details.
1655 void WebAssemblyLowerEmscriptenEHSjLj::handleLongjmpableCallsForWasmSjLj(
1656     Function &F, InstVector &SetjmpTableInsts, InstVector &SetjmpTableSizeInsts,
1657     SmallVectorImpl<PHINode *> &SetjmpRetPHIs) {
1658   Module &M = *F.getParent();
1659   LLVMContext &C = F.getContext();
1660   IRBuilder<> IRB(C);
1661 
1662   // A function with catchswitch/catchpad instruction should have a personality
1663   // function attached to it. Search for the wasm personality function, and if
1664   // it exists, use it, and if it doesn't, create a dummy personality function.
1665   // (SjLj is not going to call it anyway.)
1666   if (!F.hasPersonalityFn()) {
1667     StringRef PersName = getEHPersonalityName(EHPersonality::Wasm_CXX);
1668     FunctionType *PersType =
1669         FunctionType::get(IRB.getInt32Ty(), /* isVarArg */ true);
1670     Value *PersF = M.getOrInsertFunction(PersName, PersType).getCallee();
1671     F.setPersonalityFn(
1672         cast<Constant>(IRB.CreateBitCast(PersF, IRB.getInt8PtrTy())));
1673   }
1674 
1675   // Use the entry BB's debugloc as a fallback
1676   BasicBlock *Entry = &F.getEntryBlock();
1677   DebugLoc FirstDL = getOrCreateDebugLoc(&*Entry->begin(), F.getSubprogram());
1678   IRB.SetCurrentDebugLocation(FirstDL);
1679 
1680   // Arbitrarily use the ones defined in the beginning of the function.
1681   // SSAUpdater will later update them to the correct values.
1682   Instruction *SetjmpTable = *SetjmpTableInsts.begin();
1683   Instruction *SetjmpTableSize = *SetjmpTableSizeInsts.begin();
1684 
1685   // Add setjmp.dispatch BB right after the entry block. Because we have
1686   // initialized setjmpTable/setjmpTableSize in the entry block and split the
1687   // rest into another BB, here 'OrigEntry' is the function's original entry
1688   // block before the transformation.
1689   //
1690   // entry:
1691   //   setjmpTable / setjmpTableSize initialization
1692   // setjmp.dispatch:
1693   //   switch will be inserted here later
1694   // entry.split: (OrigEntry)
1695   //   the original function starts here
1696   BasicBlock *OrigEntry = Entry->getNextNode();
1697   BasicBlock *SetjmpDispatchBB =
1698       BasicBlock::Create(C, "setjmp.dispatch", &F, OrigEntry);
1699   cast<BranchInst>(Entry->getTerminator())->setSuccessor(0, SetjmpDispatchBB);
1700 
1701   // Create catch.dispatch.longjmp BB and a catchswitch instruction
1702   BasicBlock *CatchDispatchLongjmpBB =
1703       BasicBlock::Create(C, "catch.dispatch.longjmp", &F);
1704   IRB.SetInsertPoint(CatchDispatchLongjmpBB);
1705   CatchSwitchInst *CatchSwitchLongjmp =
1706       IRB.CreateCatchSwitch(ConstantTokenNone::get(C), nullptr, 1);
1707 
1708   // Create catch.longjmp BB and a catchpad instruction
1709   BasicBlock *CatchLongjmpBB = BasicBlock::Create(C, "catch.longjmp", &F);
1710   CatchSwitchLongjmp->addHandler(CatchLongjmpBB);
1711   IRB.SetInsertPoint(CatchLongjmpBB);
1712   CatchPadInst *CatchPad = IRB.CreateCatchPad(CatchSwitchLongjmp, {});
1713 
1714   // Wasm throw and catch instructions can throw and catch multiple values, but
1715   // that requires multivalue support in the toolchain, which is currently not
1716   // very reliable. We instead throw and catch a pointer to a struct value of
1717   // type 'struct __WasmLongjmpArgs', which is defined in Emscripten.
1718   Instruction *CatchCI =
1719       IRB.CreateCall(CatchF, {IRB.getInt32(WebAssembly::C_LONGJMP)}, "thrown");
1720   Value *LongjmpArgs =
1721       IRB.CreateBitCast(CatchCI, LongjmpArgsTy->getPointerTo(), "longjmp.args");
1722   Value *EnvField =
1723       IRB.CreateConstGEP2_32(LongjmpArgsTy, LongjmpArgs, 0, 0, "env_gep");
1724   Value *ValField =
1725       IRB.CreateConstGEP2_32(LongjmpArgsTy, LongjmpArgs, 0, 1, "val_gep");
1726   // void *env = __wasm_longjmp_args.env;
1727   Instruction *Env = IRB.CreateLoad(IRB.getInt8PtrTy(), EnvField, "env");
1728   // int val = __wasm_longjmp_args.val;
1729   Instruction *Val = IRB.CreateLoad(IRB.getInt32Ty(), ValField, "val");
1730 
1731   // %label = testSetjmp(mem[%env], setjmpTable, setjmpTableSize);
1732   // if (%label == 0)
1733   //   __wasm_longjmp(%env, %val)
1734   // catchret to %setjmp.dispatch
1735   BasicBlock *ThenBB = BasicBlock::Create(C, "if.then", &F);
1736   BasicBlock *EndBB = BasicBlock::Create(C, "if.end", &F);
1737   Value *EnvP = IRB.CreateBitCast(Env, getAddrPtrType(&M), "env.p");
1738   Value *SetjmpID = IRB.CreateLoad(getAddrIntType(&M), EnvP, "setjmp.id");
1739   Value *Label =
1740       IRB.CreateCall(TestSetjmpF, {SetjmpID, SetjmpTable, SetjmpTableSize},
1741                      OperandBundleDef("funclet", CatchPad), "label");
1742   Value *Cmp = IRB.CreateICmpEQ(Label, IRB.getInt32(0));
1743   IRB.CreateCondBr(Cmp, ThenBB, EndBB);
1744 
1745   IRB.SetInsertPoint(ThenBB);
1746   CallInst *WasmLongjmpCI = IRB.CreateCall(
1747       WasmLongjmpF, {Env, Val}, OperandBundleDef("funclet", CatchPad));
1748   IRB.CreateUnreachable();
1749 
1750   IRB.SetInsertPoint(EndBB);
1751   // Jump to setjmp.dispatch block
1752   IRB.CreateCatchRet(CatchPad, SetjmpDispatchBB);
1753 
1754   // Go back to setjmp.dispatch BB
1755   // setjmp.dispatch:
1756   //   switch %label {
1757   //     label 1: goto post-setjmp BB 1
1758   //     label 2: goto post-setjmp BB 2
1759   //     ...
1760   //     default: goto splitted next BB
1761   //   }
1762   IRB.SetInsertPoint(SetjmpDispatchBB);
1763   PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label.phi");
1764   LabelPHI->addIncoming(Label, EndBB);
1765   LabelPHI->addIncoming(IRB.getInt32(-1), Entry);
1766   SwitchInst *SI = IRB.CreateSwitch(LabelPHI, OrigEntry, SetjmpRetPHIs.size());
1767   // -1 means no longjmp happened, continue normally (will hit the default
1768   // switch case). 0 means a longjmp that is not ours to handle, needs a
1769   // rethrow. Otherwise the index is the same as the index in P+1 (to avoid
1770   // 0).
1771   for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) {
1772     SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent());
1773     SetjmpRetPHIs[I]->addIncoming(Val, SetjmpDispatchBB);
1774   }
1775 
1776   // Convert all longjmpable call instructions to invokes that unwind to the
1777   // newly created catch.dispatch.longjmp BB.
1778   SmallVector<CallInst *, 64> LongjmpableCalls;
1779   for (auto *BB = &*F.begin(); BB; BB = BB->getNextNode()) {
1780     for (auto &I : *BB) {
1781       auto *CI = dyn_cast<CallInst>(&I);
1782       if (!CI)
1783         continue;
1784       const Value *Callee = CI->getCalledOperand();
1785       if (!canLongjmp(Callee))
1786         continue;
1787       if (isEmAsmCall(Callee))
1788         report_fatal_error("Cannot use EM_ASM* alongside setjmp/longjmp in " +
1789                                F.getName() +
1790                                ". Please consider using EM_JS, or move the "
1791                                "EM_ASM into another function.",
1792                            false);
1793       // This is __wasm_longjmp() call we inserted in this function, which
1794       // rethrows the longjmp when the longjmp does not correspond to one of
1795       // setjmps in this function. We should not convert this call to an invoke.
1796       if (CI == WasmLongjmpCI)
1797         continue;
1798       LongjmpableCalls.push_back(CI);
1799     }
1800   }
1801 
1802   for (auto *CI : LongjmpableCalls) {
1803     // Even if the callee function has attribute 'nounwind', which is true for
1804     // all C functions, it can longjmp, which means it can throw a Wasm
1805     // exception now.
1806     CI->removeFnAttr(Attribute::NoUnwind);
1807     if (Function *CalleeF = CI->getCalledFunction())
1808       CalleeF->removeFnAttr(Attribute::NoUnwind);
1809 
1810     // Change it to an invoke and make it unwind to the catch.dispatch.longjmp
1811     // BB. If the call is enclosed in another catchpad/cleanuppad scope, unwind
1812     // to its parent pad's unwind destination instead to preserve the scope
1813     // structure. It will eventually unwind to the catch.dispatch.longjmp.
1814     SmallVector<OperandBundleDef, 1> Bundles;
1815     BasicBlock *UnwindDest = nullptr;
1816     if (auto Bundle = CI->getOperandBundle(LLVMContext::OB_funclet)) {
1817       Instruction *FromPad = cast<Instruction>(Bundle->Inputs[0]);
1818       while (!UnwindDest && FromPad) {
1819         if (auto *CPI = dyn_cast<CatchPadInst>(FromPad)) {
1820           UnwindDest = CPI->getCatchSwitch()->getUnwindDest();
1821           FromPad = nullptr; // stop searching
1822         } else if (auto *CPI = dyn_cast<CleanupPadInst>(FromPad)) {
1823           // getCleanupRetUnwindDest() can return nullptr when
1824           // 1. This cleanuppad's matching cleanupret uwninds to caller
1825           // 2. There is no matching cleanupret because it ends with
1826           //    unreachable.
1827           // In case of 2, we need to traverse the parent pad chain.
1828           UnwindDest = getCleanupRetUnwindDest(CPI);
1829           FromPad = cast<Instruction>(CPI->getParentPad());
1830         }
1831       }
1832     }
1833     if (!UnwindDest)
1834       UnwindDest = CatchDispatchLongjmpBB;
1835     changeToInvokeAndSplitBasicBlock(CI, UnwindDest);
1836   }
1837 
1838   SmallVector<Instruction *, 16> ToErase;
1839   for (auto &BB : F) {
1840     if (auto *CSI = dyn_cast<CatchSwitchInst>(BB.getFirstNonPHI())) {
1841       if (CSI != CatchSwitchLongjmp && CSI->unwindsToCaller()) {
1842         IRB.SetInsertPoint(CSI);
1843         ToErase.push_back(CSI);
1844         auto *NewCSI = IRB.CreateCatchSwitch(CSI->getParentPad(),
1845                                              CatchDispatchLongjmpBB, 1);
1846         NewCSI->addHandler(*CSI->handler_begin());
1847         NewCSI->takeName(CSI);
1848         CSI->replaceAllUsesWith(NewCSI);
1849       }
1850     }
1851 
1852     if (auto *CRI = dyn_cast<CleanupReturnInst>(BB.getTerminator())) {
1853       if (CRI->unwindsToCaller()) {
1854         IRB.SetInsertPoint(CRI);
1855         ToErase.push_back(CRI);
1856         IRB.CreateCleanupRet(CRI->getCleanupPad(), CatchDispatchLongjmpBB);
1857       }
1858     }
1859   }
1860 
1861   for (Instruction *I : ToErase)
1862     I->eraseFromParent();
1863 }
1864