1 //=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file lowers exception-related instructions and setjmp/longjmp
11 /// function calls in order to use Emscripten's JavaScript try and catch
12 /// mechanism.
13 ///
14 /// To handle exceptions and setjmp/longjmps, this scheme relies on JavaScript's
15 /// try and catch syntax and relevant exception-related libraries implemented
16 /// in JavaScript glue code that will be produced by Emscripten.
17 ///
18 /// * Exception handling
19 /// This pass lowers invokes and landingpads into library functions in JS glue
20 /// code. Invokes are lowered into function wrappers called invoke wrappers that
21 /// exist in JS side, which wraps the original function call with JS try-catch.
22 /// If an exception occurred, cxa_throw() function in JS side sets some
23 /// variables (see below) so we can check whether an exception occurred from
24 /// wasm code and handle it appropriately.
25 ///
26 /// * Setjmp-longjmp handling
27 /// This pass lowers setjmp to a reasonably-performant approach for emscripten.
28 /// The idea is that each block with a setjmp is broken up into two parts: the
29 /// part containing setjmp and the part right after the setjmp. The latter part
30 /// is either reached from the setjmp, or later from a longjmp. To handle the
31 /// longjmp, all calls that might longjmp are also called using invoke wrappers
32 /// and thus JS / try-catch. JS longjmp() function also sets some variables so
33 /// we can check / whether a longjmp occurred from wasm code. Each block with a
34 /// function call that might longjmp is also split up after the longjmp call.
35 /// After the longjmp call, we check whether a longjmp occurred, and if it did,
36 /// which setjmp it corresponds to, and jump to the right post-setjmp block.
37 /// We assume setjmp-longjmp handling always run after EH handling, which means
38 /// we don't expect any exception-related instructions when SjLj runs.
39 /// FIXME Currently this scheme does not support indirect call of setjmp,
40 /// because of the limitation of the scheme itself. fastcomp does not support it
41 /// either.
42 ///
43 /// In detail, this pass does following things:
44 ///
45 /// 1) Assumes the existence of global variables: __THREW__, __threwValue
46 ///    __THREW__ and __threwValue are defined in compiler-rt in Emscripten.
47 ///    These variables are used for both exceptions and setjmp/longjmps.
48 ///    __THREW__ indicates whether an exception or a longjmp occurred or not. 0
49 ///    means nothing occurred, 1 means an exception occurred, and other numbers
50 ///    mean a longjmp occurred. In the case of longjmp, __THREW__ variable
51 ///    indicates the corresponding setjmp buffer the longjmp corresponds to.
52 ///    __threwValue is 0 for exceptions, and the argument to longjmp in case of
53 ///    longjmp.
54 ///
55 /// * Exception handling
56 ///
57 /// 2) We assume the existence of setThrew and setTempRet0/getTempRet0 functions
58 ///    at link time. setThrew exists in Emscripten's compiler-rt:
59 ///
60 ///    void setThrew(uintptr_t threw, int value) {
61 ///      if (__THREW__ == 0) {
62 ///        __THREW__ = threw;
63 ///        __threwValue = value;
64 ///      }
65 ///    }
66 //
67 ///    setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
68 ///    In exception handling, getTempRet0 indicates the type of an exception
69 ///    caught, and in setjmp/longjmp, it means the second argument to longjmp
70 ///    function.
71 ///
72 /// 3) Lower
73 ///      invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad
74 ///    into
75 ///      __THREW__ = 0;
76 ///      call @__invoke_SIG(func, arg1, arg2)
77 ///      %__THREW__.val = __THREW__;
78 ///      __THREW__ = 0;
79 ///      if (%__THREW__.val == 1)
80 ///        goto %lpad
81 ///      else
82 ///         goto %invoke.cont
83 ///    SIG is a mangled string generated based on the LLVM IR-level function
84 ///    signature. After LLVM IR types are lowered to the target wasm types,
85 ///    the names for these wrappers will change based on wasm types as well,
86 ///    as in invoke_vi (function takes an int and returns void). The bodies of
87 ///    these wrappers will be generated in JS glue code, and inside those
88 ///    wrappers we use JS try-catch to generate actual exception effects. It
89 ///    also calls the original callee function. An example wrapper in JS code
90 ///    would look like this:
91 ///      function invoke_vi(index,a1) {
92 ///        try {
93 ///          Module["dynCall_vi"](index,a1); // This calls original callee
94 ///        } catch(e) {
95 ///          if (typeof e !== 'number' && e !== 'longjmp') throw e;
96 ///          _setThrew(1, 0); // setThrew is called here
97 ///        }
98 ///      }
99 ///    If an exception is thrown, __THREW__ will be set to true in a wrapper,
100 ///    so we can jump to the right BB based on this value.
101 ///
102 /// 4) Lower
103 ///      %val = landingpad catch c1 catch c2 catch c3 ...
104 ///      ... use %val ...
105 ///    into
106 ///      %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...)
107 ///      %val = {%fmc, getTempRet0()}
108 ///      ... use %val ...
109 ///    Here N is a number calculated based on the number of clauses.
110 ///    setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
111 ///
112 /// 5) Lower
113 ///      resume {%a, %b}
114 ///    into
115 ///      call @__resumeException(%a)
116 ///    where __resumeException() is a function in JS glue code.
117 ///
118 /// 6) Lower
119 ///      call @llvm.eh.typeid.for(type) (intrinsic)
120 ///    into
121 ///      call @llvm_eh_typeid_for(type)
122 ///    llvm_eh_typeid_for function will be generated in JS glue code.
123 ///
124 /// * Setjmp / Longjmp handling
125 ///
126 /// In case calls to longjmp() exists
127 ///
128 /// 1) Lower
129 ///      longjmp(buf, value)
130 ///    into
131 ///      emscripten_longjmp(buf, value)
132 ///
133 /// In case calls to setjmp() exists
134 ///
135 /// 2) In the function entry that calls setjmp, initialize setjmpTable and
136 ///    sejmpTableSize as follows:
137 ///      setjmpTableSize = 4;
138 ///      setjmpTable = (int *) malloc(40);
139 ///      setjmpTable[0] = 0;
140 ///    setjmpTable and setjmpTableSize are used to call saveSetjmp() function in
141 ///    Emscripten compiler-rt.
142 ///
143 /// 3) Lower
144 ///      setjmp(buf)
145 ///    into
146 ///      setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize);
147 ///      setjmpTableSize = getTempRet0();
148 ///    For each dynamic setjmp call, setjmpTable stores its ID (a number which
149 ///    is incrementally assigned from 0) and its label (a unique number that
150 ///    represents each callsite of setjmp). When we need more entries in
151 ///    setjmpTable, it is reallocated in saveSetjmp() in Emscripten's
152 ///    compiler-rt and it will return the new table address, and assign the new
153 ///    table size in setTempRet0(). saveSetjmp also stores the setjmp's ID into
154 ///    the buffer buf. A BB with setjmp is split into two after setjmp call in
155 ///    order to make the post-setjmp BB the possible destination of longjmp BB.
156 ///
157 ///
158 /// 4) Lower every call that might longjmp into
159 ///      __THREW__ = 0;
160 ///      call @__invoke_SIG(func, arg1, arg2)
161 ///      %__THREW__.val = __THREW__;
162 ///      __THREW__ = 0;
163 ///      %__threwValue.val = __threwValue;
164 ///      if (%__THREW__.val != 0 & %__threwValue.val != 0) {
165 ///        %label = testSetjmp(mem[%__THREW__.val], setjmpTable,
166 ///                            setjmpTableSize);
167 ///        if (%label == 0)
168 ///          emscripten_longjmp(%__THREW__.val, %__threwValue.val);
169 ///        setTempRet0(%__threwValue.val);
170 ///      } else {
171 ///        %label = -1;
172 ///      }
173 ///      longjmp_result = getTempRet0();
174 ///      switch label {
175 ///        label 1: goto post-setjmp BB 1
176 ///        label 2: goto post-setjmp BB 2
177 ///        ...
178 ///        default: goto splitted next BB
179 ///      }
180 ///    testSetjmp examines setjmpTable to see if there is a matching setjmp
181 ///    call. After calling an invoke wrapper, if a longjmp occurred, __THREW__
182 ///    will be the address of matching jmp_buf buffer and __threwValue be the
183 ///    second argument to longjmp. mem[%__THREW__.val] is a setjmp ID that is
184 ///    stored in saveSetjmp. testSetjmp returns a setjmp label, a unique ID to
185 ///    each setjmp callsite. Label 0 means this longjmp buffer does not
186 ///    correspond to one of the setjmp callsites in this function, so in this
187 ///    case we just chain the longjmp to the caller. Label -1 means no longjmp
188 ///    occurred. Otherwise we jump to the right post-setjmp BB based on the
189 ///    label.
190 ///
191 ///===----------------------------------------------------------------------===//
192 
193 #include "WebAssembly.h"
194 #include "WebAssemblyTargetMachine.h"
195 #include "llvm/ADT/StringExtras.h"
196 #include "llvm/CodeGen/TargetPassConfig.h"
197 #include "llvm/IR/DebugInfoMetadata.h"
198 #include "llvm/IR/Dominators.h"
199 #include "llvm/IR/IRBuilder.h"
200 #include "llvm/Support/CommandLine.h"
201 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
202 #include "llvm/Transforms/Utils/SSAUpdater.h"
203 
204 using namespace llvm;
205 
206 #define DEBUG_TYPE "wasm-lower-em-ehsjlj"
207 
208 static cl::list<std::string>
209     EHAllowlist("emscripten-cxx-exceptions-allowed",
210                 cl::desc("The list of function names in which Emscripten-style "
211                          "exception handling is enabled (see emscripten "
212                          "EMSCRIPTEN_CATCHING_ALLOWED options)"),
213                 cl::CommaSeparated);
214 
215 namespace {
216 class WebAssemblyLowerEmscriptenEHSjLj final : public ModulePass {
217   bool EnableEmEH;   // Enable Emscripten exception handling
218   bool EnableEmSjLj; // Enable Emscripten setjmp/longjmp handling
219   bool DoSjLj;       // Whether we actually perform setjmp/longjmp handling
220 
221   GlobalVariable *ThrewGV = nullptr;      // __THREW__ (Emscripten)
222   GlobalVariable *ThrewValueGV = nullptr; // __threwValue (Emscripten)
223   Function *GetTempRet0F = nullptr;       // getTempRet0() (Emscripten)
224   Function *SetTempRet0F = nullptr;       // setTempRet0() (Emscripten)
225   Function *ResumeF = nullptr;            // __resumeException() (Emscripten)
226   Function *EHTypeIDF = nullptr;          // llvm.eh.typeid.for() (intrinsic)
227   Function *EmLongjmpF = nullptr;         // emscripten_longjmp() (Emscripten)
228   Function *SaveSetjmpF = nullptr;        // saveSetjmp() (Emscripten)
229   Function *TestSetjmpF = nullptr;        // testSetjmp() (Emscripten)
230 
231   // __cxa_find_matching_catch_N functions.
232   // Indexed by the number of clauses in an original landingpad instruction.
233   DenseMap<int, Function *> FindMatchingCatches;
234   // Map of <function signature string, invoke_ wrappers>
235   StringMap<Function *> InvokeWrappers;
236   // Set of allowed function names for exception handling
237   std::set<std::string> EHAllowlistSet;
238   // Functions that contains calls to setjmp
239   SmallPtrSet<Function *, 8> SetjmpUsers;
240 
241   StringRef getPassName() const override {
242     return "WebAssembly Lower Emscripten Exceptions";
243   }
244 
245   bool runEHOnFunction(Function &F);
246   bool runSjLjOnFunction(Function &F);
247   Function *getFindMatchingCatch(Module &M, unsigned NumClauses);
248 
249   Value *wrapInvoke(CallBase *CI);
250   void wrapTestSetjmp(BasicBlock *BB, DebugLoc DL, Value *Threw,
251                       Value *SetjmpTable, Value *SetjmpTableSize, Value *&Label,
252                       Value *&LongjmpResult, BasicBlock *&EndBB);
253   Function *getInvokeWrapper(CallBase *CI);
254 
255   bool areAllExceptionsAllowed() const { return EHAllowlistSet.empty(); }
256   bool canLongjmp(const Value *Callee) const;
257   bool isEmAsmCall(const Value *Callee) const;
258   bool supportsException(const Function *F) const {
259     return EnableEmEH && (areAllExceptionsAllowed() ||
260                           EHAllowlistSet.count(std::string(F->getName())));
261   }
262 
263   void rebuildSSA(Function &F);
264 
265 public:
266   static char ID;
267 
268   WebAssemblyLowerEmscriptenEHSjLj(bool EnableEmEH = true,
269                                    bool EnableEmSjLj = true)
270       : ModulePass(ID), EnableEmEH(EnableEmEH), EnableEmSjLj(EnableEmSjLj) {
271     EHAllowlistSet.insert(EHAllowlist.begin(), EHAllowlist.end());
272   }
273   bool runOnModule(Module &M) override;
274 
275   void getAnalysisUsage(AnalysisUsage &AU) const override {
276     AU.addRequired<DominatorTreeWrapperPass>();
277   }
278 };
279 } // End anonymous namespace
280 
281 char WebAssemblyLowerEmscriptenEHSjLj::ID = 0;
282 INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj, DEBUG_TYPE,
283                 "WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp",
284                 false, false)
285 
286 ModulePass *llvm::createWebAssemblyLowerEmscriptenEHSjLj(bool EnableEmEH,
287                                                          bool EnableEmSjLj) {
288   return new WebAssemblyLowerEmscriptenEHSjLj(EnableEmEH, EnableEmSjLj);
289 }
290 
291 static bool canThrow(const Value *V) {
292   if (const auto *F = dyn_cast<const Function>(V)) {
293     // Intrinsics cannot throw
294     if (F->isIntrinsic())
295       return false;
296     StringRef Name = F->getName();
297     // leave setjmp and longjmp (mostly) alone, we process them properly later
298     if (Name == "setjmp" || Name == "longjmp" || Name == "emscripten_longjmp")
299       return false;
300     return !F->doesNotThrow();
301   }
302   // not a function, so an indirect call - can throw, we can't tell
303   return true;
304 }
305 
306 // Get a global variable with the given name. If it doesn't exist declare it,
307 // which will generate an import and assume that it will exist at link time.
308 static GlobalVariable *getGlobalVariable(Module &M, Type *Ty,
309                                          WebAssemblyTargetMachine &TM,
310                                          const char *Name) {
311   auto *GV = dyn_cast<GlobalVariable>(M.getOrInsertGlobal(Name, Ty));
312   if (!GV)
313     report_fatal_error(Twine("unable to create global: ") + Name);
314 
315   // If the target supports TLS, make this variable thread-local. We can't just
316   // unconditionally make it thread-local and depend on
317   // CoalesceFeaturesAndStripAtomics to downgrade it, because stripping TLS has
318   // the side effect of disallowing the object from being linked into a
319   // shared-memory module, which we don't want to be responsible for.
320   auto *Subtarget = TM.getSubtargetImpl();
321   auto TLS = Subtarget->hasAtomics() && Subtarget->hasBulkMemory()
322                  ? GlobalValue::LocalExecTLSModel
323                  : GlobalValue::NotThreadLocal;
324   GV->setThreadLocalMode(TLS);
325   return GV;
326 }
327 
328 // Simple function name mangler.
329 // This function simply takes LLVM's string representation of parameter types
330 // and concatenate them with '_'. There are non-alphanumeric characters but llc
331 // is ok with it, and we need to postprocess these names after the lowering
332 // phase anyway.
333 static std::string getSignature(FunctionType *FTy) {
334   std::string Sig;
335   raw_string_ostream OS(Sig);
336   OS << *FTy->getReturnType();
337   for (Type *ParamTy : FTy->params())
338     OS << "_" << *ParamTy;
339   if (FTy->isVarArg())
340     OS << "_...";
341   Sig = OS.str();
342   erase_if(Sig, isSpace);
343   // When s2wasm parses .s file, a comma means the end of an argument. So a
344   // mangled function name can contain any character but a comma.
345   std::replace(Sig.begin(), Sig.end(), ',', '.');
346   return Sig;
347 }
348 
349 static Function *getEmscriptenFunction(FunctionType *Ty, const Twine &Name,
350                                        Module *M) {
351   Function* F = Function::Create(Ty, GlobalValue::ExternalLinkage, Name, M);
352   // Tell the linker that this function is expected to be imported from the
353   // 'env' module.
354   if (!F->hasFnAttribute("wasm-import-module")) {
355     llvm::AttrBuilder B;
356     B.addAttribute("wasm-import-module", "env");
357     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
358   }
359   if (!F->hasFnAttribute("wasm-import-name")) {
360     llvm::AttrBuilder B;
361     B.addAttribute("wasm-import-name", F->getName());
362     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
363   }
364   return F;
365 }
366 
367 // Returns an integer type for the target architecture's address space.
368 // i32 for wasm32 and i64 for wasm64.
369 static Type *getAddrIntType(Module *M) {
370   IRBuilder<> IRB(M->getContext());
371   return IRB.getIntNTy(M->getDataLayout().getPointerSizeInBits());
372 }
373 
374 // Returns an integer pointer type for the target architecture's address space.
375 // i32* for wasm32 and i64* for wasm64.
376 static Type *getAddrPtrType(Module *M) {
377   return Type::getIntNPtrTy(M->getContext(),
378                             M->getDataLayout().getPointerSizeInBits());
379 }
380 
381 // Returns an integer whose type is the integer type for the target's address
382 // space. Returns (i32 C) for wasm32 and (i64 C) for wasm64, when C is the
383 // integer.
384 static Value *getAddrSizeInt(Module *M, uint64_t C) {
385   IRBuilder<> IRB(M->getContext());
386   return IRB.getIntN(M->getDataLayout().getPointerSizeInBits(), C);
387 }
388 
389 // Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2.
390 // This is because a landingpad instruction contains two more arguments, a
391 // personality function and a cleanup bit, and __cxa_find_matching_catch_N
392 // functions are named after the number of arguments in the original landingpad
393 // instruction.
394 Function *
395 WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module &M,
396                                                        unsigned NumClauses) {
397   if (FindMatchingCatches.count(NumClauses))
398     return FindMatchingCatches[NumClauses];
399   PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext());
400   SmallVector<Type *, 16> Args(NumClauses, Int8PtrTy);
401   FunctionType *FTy = FunctionType::get(Int8PtrTy, Args, false);
402   Function *F = getEmscriptenFunction(
403       FTy, "__cxa_find_matching_catch_" + Twine(NumClauses + 2), &M);
404   FindMatchingCatches[NumClauses] = F;
405   return F;
406 }
407 
408 // Generate invoke wrapper seqence with preamble and postamble
409 // Preamble:
410 // __THREW__ = 0;
411 // Postamble:
412 // %__THREW__.val = __THREW__; __THREW__ = 0;
413 // Returns %__THREW__.val, which indicates whether an exception is thrown (or
414 // whether longjmp occurred), for future use.
415 Value *WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallBase *CI) {
416   Module *M = CI->getModule();
417   LLVMContext &C = M->getContext();
418 
419   // If we are calling a function that is noreturn, we must remove that
420   // attribute. The code we insert here does expect it to return, after we
421   // catch the exception.
422   if (CI->doesNotReturn()) {
423     if (auto *F = CI->getCalledFunction())
424       F->removeFnAttr(Attribute::NoReturn);
425     CI->removeAttribute(AttributeList::FunctionIndex, Attribute::NoReturn);
426   }
427 
428   IRBuilder<> IRB(C);
429   IRB.SetInsertPoint(CI);
430 
431   // Pre-invoke
432   // __THREW__ = 0;
433   IRB.CreateStore(getAddrSizeInt(M, 0), ThrewGV);
434 
435   // Invoke function wrapper in JavaScript
436   SmallVector<Value *, 16> Args;
437   // Put the pointer to the callee as first argument, so it can be called
438   // within the invoke wrapper later
439   Args.push_back(CI->getCalledOperand());
440   Args.append(CI->arg_begin(), CI->arg_end());
441   CallInst *NewCall = IRB.CreateCall(getInvokeWrapper(CI), Args);
442   NewCall->takeName(CI);
443   NewCall->setCallingConv(CallingConv::WASM_EmscriptenInvoke);
444   NewCall->setDebugLoc(CI->getDebugLoc());
445 
446   // Because we added the pointer to the callee as first argument, all
447   // argument attribute indices have to be incremented by one.
448   SmallVector<AttributeSet, 8> ArgAttributes;
449   const AttributeList &InvokeAL = CI->getAttributes();
450 
451   // No attributes for the callee pointer.
452   ArgAttributes.push_back(AttributeSet());
453   // Copy the argument attributes from the original
454   for (unsigned I = 0, E = CI->getNumArgOperands(); I < E; ++I)
455     ArgAttributes.push_back(InvokeAL.getParamAttributes(I));
456 
457   AttrBuilder FnAttrs(InvokeAL.getFnAttributes());
458   if (FnAttrs.contains(Attribute::AllocSize)) {
459     // The allocsize attribute (if any) referes to parameters by index and needs
460     // to be adjusted.
461     unsigned SizeArg;
462     Optional<unsigned> NEltArg;
463     std::tie(SizeArg, NEltArg) = FnAttrs.getAllocSizeArgs();
464     SizeArg += 1;
465     if (NEltArg.hasValue())
466       NEltArg = NEltArg.getValue() + 1;
467     FnAttrs.addAllocSizeAttr(SizeArg, NEltArg);
468   }
469 
470   // Reconstruct the AttributesList based on the vector we constructed.
471   AttributeList NewCallAL =
472       AttributeList::get(C, AttributeSet::get(C, FnAttrs),
473                          InvokeAL.getRetAttributes(), ArgAttributes);
474   NewCall->setAttributes(NewCallAL);
475 
476   CI->replaceAllUsesWith(NewCall);
477 
478   // Post-invoke
479   // %__THREW__.val = __THREW__; __THREW__ = 0;
480   Value *Threw =
481       IRB.CreateLoad(getAddrIntType(M), ThrewGV, ThrewGV->getName() + ".val");
482   IRB.CreateStore(getAddrSizeInt(M, 0), ThrewGV);
483   return Threw;
484 }
485 
486 // Get matching invoke wrapper based on callee signature
487 Function *WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallBase *CI) {
488   Module *M = CI->getModule();
489   SmallVector<Type *, 16> ArgTys;
490   FunctionType *CalleeFTy = CI->getFunctionType();
491 
492   std::string Sig = getSignature(CalleeFTy);
493   if (InvokeWrappers.find(Sig) != InvokeWrappers.end())
494     return InvokeWrappers[Sig];
495 
496   // Put the pointer to the callee as first argument
497   ArgTys.push_back(PointerType::getUnqual(CalleeFTy));
498   // Add argument types
499   ArgTys.append(CalleeFTy->param_begin(), CalleeFTy->param_end());
500 
501   FunctionType *FTy = FunctionType::get(CalleeFTy->getReturnType(), ArgTys,
502                                         CalleeFTy->isVarArg());
503   Function *F = getEmscriptenFunction(FTy, "__invoke_" + Sig, M);
504   InvokeWrappers[Sig] = F;
505   return F;
506 }
507 
508 bool WebAssemblyLowerEmscriptenEHSjLj::canLongjmp(const Value *Callee) const {
509   if (auto *CalleeF = dyn_cast<Function>(Callee))
510     if (CalleeF->isIntrinsic())
511       return false;
512 
513   // Attempting to transform inline assembly will result in something like:
514   //     call void @__invoke_void(void ()* asm ...)
515   // which is invalid because inline assembly blocks do not have addresses
516   // and can't be passed by pointer. The result is a crash with illegal IR.
517   if (isa<InlineAsm>(Callee))
518     return false;
519   StringRef CalleeName = Callee->getName();
520 
521   // The reason we include malloc/free here is to exclude the malloc/free
522   // calls generated in setjmp prep / cleanup routines.
523   if (CalleeName == "setjmp" || CalleeName == "malloc" || CalleeName == "free")
524     return false;
525 
526   // There are functions in Emscripten's JS glue code or compiler-rt
527   if (CalleeName == "__resumeException" || CalleeName == "llvm_eh_typeid_for" ||
528       CalleeName == "saveSetjmp" || CalleeName == "testSetjmp" ||
529       CalleeName == "getTempRet0" || CalleeName == "setTempRet0")
530     return false;
531 
532   // __cxa_find_matching_catch_N functions cannot longjmp
533   if (Callee->getName().startswith("__cxa_find_matching_catch_"))
534     return false;
535 
536   // Exception-catching related functions
537   if (CalleeName == "__cxa_begin_catch" || CalleeName == "__cxa_end_catch" ||
538       CalleeName == "__cxa_allocate_exception" || CalleeName == "__cxa_throw" ||
539       CalleeName == "__clang_call_terminate")
540     return false;
541 
542   // Otherwise we don't know
543   return true;
544 }
545 
546 bool WebAssemblyLowerEmscriptenEHSjLj::isEmAsmCall(const Value *Callee) const {
547   StringRef CalleeName = Callee->getName();
548   // This is an exhaustive list from Emscripten's <emscripten/em_asm.h>.
549   return CalleeName == "emscripten_asm_const_int" ||
550          CalleeName == "emscripten_asm_const_double" ||
551          CalleeName == "emscripten_asm_const_int_sync_on_main_thread" ||
552          CalleeName == "emscripten_asm_const_double_sync_on_main_thread" ||
553          CalleeName == "emscripten_asm_const_async_on_main_thread";
554 }
555 
556 // Generate testSetjmp function call seqence with preamble and postamble.
557 // The code this generates is equivalent to the following JavaScript code:
558 // %__threwValue.val = __threwValue;
559 // if (%__THREW__.val != 0 & %__threwValue.val != 0) {
560 //   %label = testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize);
561 //   if (%label == 0)
562 //     emscripten_longjmp(%__THREW__.val, %__threwValue.val);
563 //   setTempRet0(%__threwValue.val);
564 // } else {
565 //   %label = -1;
566 // }
567 // %longjmp_result = getTempRet0();
568 //
569 // As output parameters. returns %label, %longjmp_result, and the BB the last
570 // instruction (%longjmp_result = ...) is in.
571 void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp(
572     BasicBlock *BB, DebugLoc DL, Value *Threw, Value *SetjmpTable,
573     Value *SetjmpTableSize, Value *&Label, Value *&LongjmpResult,
574     BasicBlock *&EndBB) {
575   Function *F = BB->getParent();
576   Module *M = F->getParent();
577   LLVMContext &C = M->getContext();
578   IRBuilder<> IRB(C);
579   IRB.SetCurrentDebugLocation(DL);
580 
581   // if (%__THREW__.val != 0 & %__threwValue.val != 0)
582   IRB.SetInsertPoint(BB);
583   BasicBlock *ThenBB1 = BasicBlock::Create(C, "if.then1", F);
584   BasicBlock *ElseBB1 = BasicBlock::Create(C, "if.else1", F);
585   BasicBlock *EndBB1 = BasicBlock::Create(C, "if.end", F);
586   Value *ThrewCmp = IRB.CreateICmpNE(Threw, getAddrSizeInt(M, 0));
587   Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV,
588                                      ThrewValueGV->getName() + ".val");
589   Value *ThrewValueCmp = IRB.CreateICmpNE(ThrewValue, IRB.getInt32(0));
590   Value *Cmp1 = IRB.CreateAnd(ThrewCmp, ThrewValueCmp, "cmp1");
591   IRB.CreateCondBr(Cmp1, ThenBB1, ElseBB1);
592 
593   // %label = testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize);
594   // if (%label == 0)
595   IRB.SetInsertPoint(ThenBB1);
596   BasicBlock *ThenBB2 = BasicBlock::Create(C, "if.then2", F);
597   BasicBlock *EndBB2 = BasicBlock::Create(C, "if.end2", F);
598   Value *ThrewPtr =
599       IRB.CreateIntToPtr(Threw, getAddrPtrType(M), Threw->getName() + ".p");
600   Value *LoadedThrew = IRB.CreateLoad(getAddrIntType(M), ThrewPtr,
601                                       ThrewPtr->getName() + ".loaded");
602   Value *ThenLabel = IRB.CreateCall(
603       TestSetjmpF, {LoadedThrew, SetjmpTable, SetjmpTableSize}, "label");
604   Value *Cmp2 = IRB.CreateICmpEQ(ThenLabel, IRB.getInt32(0));
605   IRB.CreateCondBr(Cmp2, ThenBB2, EndBB2);
606 
607   // emscripten_longjmp(%__THREW__.val, %__threwValue.val);
608   IRB.SetInsertPoint(ThenBB2);
609   IRB.CreateCall(EmLongjmpF, {Threw, ThrewValue});
610   IRB.CreateUnreachable();
611 
612   // setTempRet0(%__threwValue.val);
613   IRB.SetInsertPoint(EndBB2);
614   IRB.CreateCall(SetTempRet0F, ThrewValue);
615   IRB.CreateBr(EndBB1);
616 
617   IRB.SetInsertPoint(ElseBB1);
618   IRB.CreateBr(EndBB1);
619 
620   // longjmp_result = getTempRet0();
621   IRB.SetInsertPoint(EndBB1);
622   PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label");
623   LabelPHI->addIncoming(ThenLabel, EndBB2);
624 
625   LabelPHI->addIncoming(IRB.getInt32(-1), ElseBB1);
626 
627   // Output parameter assignment
628   Label = LabelPHI;
629   EndBB = EndBB1;
630   LongjmpResult = IRB.CreateCall(GetTempRet0F, None, "longjmp_result");
631 }
632 
633 void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function &F) {
634   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
635   DT.recalculate(F); // CFG has been changed
636   SSAUpdater SSA;
637   for (BasicBlock &BB : F) {
638     for (Instruction &I : BB) {
639       SSA.Initialize(I.getType(), I.getName());
640       SSA.AddAvailableValue(&BB, &I);
641       for (auto UI = I.use_begin(), UE = I.use_end(); UI != UE;) {
642         Use &U = *UI;
643         ++UI;
644         auto *User = cast<Instruction>(U.getUser());
645         if (auto *UserPN = dyn_cast<PHINode>(User))
646           if (UserPN->getIncomingBlock(U) == &BB)
647             continue;
648 
649         if (DT.dominates(&I, User))
650           continue;
651         SSA.RewriteUseAfterInsertions(U);
652       }
653     }
654   }
655 }
656 
657 // Replace uses of longjmp with emscripten_longjmp. emscripten_longjmp takes
658 // arguments of type {i32, i32} (wasm32) / {i64, i32} (wasm64) and longjmp takes
659 // {jmp_buf*, i32}, so we need a ptrtoint instruction here to make the type
660 // match. jmp_buf* will eventually be lowered to i32/i64 in the wasm backend.
661 static void replaceLongjmpWithEmscriptenLongjmp(Function *LongjmpF,
662                                                 Function *EmLongjmpF) {
663   Module *M = LongjmpF->getParent();
664   SmallVector<CallInst *, 8> ToErase;
665   LLVMContext &C = LongjmpF->getParent()->getContext();
666   IRBuilder<> IRB(C);
667 
668   // For calls to longjmp, replace it with emscripten_longjmp and cast its first
669   // argument (jmp_buf*) to int
670   for (User *U : LongjmpF->users()) {
671     auto *CI = dyn_cast<CallInst>(U);
672     if (CI && CI->getCalledFunction() == LongjmpF) {
673       IRB.SetInsertPoint(CI);
674       Value *JmpBuf =
675           IRB.CreatePtrToInt(CI->getArgOperand(0), getAddrIntType(M), "jmpbuf");
676       IRB.CreateCall(EmLongjmpF, {JmpBuf, CI->getArgOperand(1)});
677       ToErase.push_back(CI);
678     }
679   }
680   for (auto *I : ToErase)
681     I->eraseFromParent();
682 
683   // If we have any remaining uses of longjmp's function pointer, replace it
684   // with (int(*)(jmp_buf*, int))emscripten_longjmp.
685   if (!LongjmpF->uses().empty()) {
686     Value *EmLongjmp =
687         IRB.CreateBitCast(EmLongjmpF, LongjmpF->getType(), "em_longjmp");
688     LongjmpF->replaceAllUsesWith(EmLongjmp);
689   }
690 }
691 
692 bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module &M) {
693   LLVM_DEBUG(dbgs() << "********** Lower Emscripten EH & SjLj **********\n");
694 
695   LLVMContext &C = M.getContext();
696   IRBuilder<> IRB(C);
697 
698   Function *SetjmpF = M.getFunction("setjmp");
699   Function *LongjmpF = M.getFunction("longjmp");
700   bool SetjmpUsed = SetjmpF && !SetjmpF->use_empty();
701   bool LongjmpUsed = LongjmpF && !LongjmpF->use_empty();
702   DoSjLj = EnableEmSjLj && (SetjmpUsed || LongjmpUsed);
703 
704   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
705   assert(TPC && "Expected a TargetPassConfig");
706   auto &TM = TPC->getTM<WebAssemblyTargetMachine>();
707 
708   if (EnableEmEH && TM.Options.ExceptionModel == ExceptionHandling::Wasm)
709     report_fatal_error("-exception-model=wasm not allowed with "
710                        "-enable-emscripten-cxx-exceptions");
711 
712   // Declare (or get) global variables __THREW__, __threwValue, and
713   // getTempRet0/setTempRet0 function which are used in common for both
714   // exception handling and setjmp/longjmp handling
715   ThrewGV = getGlobalVariable(M, getAddrIntType(&M), TM, "__THREW__");
716   ThrewValueGV = getGlobalVariable(M, IRB.getInt32Ty(), TM, "__threwValue");
717   GetTempRet0F = getEmscriptenFunction(
718       FunctionType::get(IRB.getInt32Ty(), false), "getTempRet0", &M);
719   SetTempRet0F = getEmscriptenFunction(
720       FunctionType::get(IRB.getVoidTy(), IRB.getInt32Ty(), false),
721       "setTempRet0", &M);
722   GetTempRet0F->setDoesNotThrow();
723   SetTempRet0F->setDoesNotThrow();
724 
725   bool Changed = false;
726 
727   // Function registration for exception handling
728   if (EnableEmEH) {
729     // Register __resumeException function
730     FunctionType *ResumeFTy =
731         FunctionType::get(IRB.getVoidTy(), IRB.getInt8PtrTy(), false);
732     ResumeF = getEmscriptenFunction(ResumeFTy, "__resumeException", &M);
733 
734     // Register llvm_eh_typeid_for function
735     FunctionType *EHTypeIDTy =
736         FunctionType::get(IRB.getInt32Ty(), IRB.getInt8PtrTy(), false);
737     EHTypeIDF = getEmscriptenFunction(EHTypeIDTy, "llvm_eh_typeid_for", &M);
738   }
739 
740   // Function registration and data pre-gathering for setjmp/longjmp handling
741   if (DoSjLj) {
742     // Register emscripten_longjmp function
743     FunctionType *FTy = FunctionType::get(
744         IRB.getVoidTy(), {getAddrIntType(&M), IRB.getInt32Ty()}, false);
745     EmLongjmpF = getEmscriptenFunction(FTy, "emscripten_longjmp", &M);
746 
747     if (SetjmpF) {
748       // Register saveSetjmp function
749       FunctionType *SetjmpFTy = SetjmpF->getFunctionType();
750       FTy = FunctionType::get(Type::getInt32PtrTy(C),
751                               {SetjmpFTy->getParamType(0), IRB.getInt32Ty(),
752                                Type::getInt32PtrTy(C), IRB.getInt32Ty()},
753                               false);
754       SaveSetjmpF = getEmscriptenFunction(FTy, "saveSetjmp", &M);
755 
756       // Register testSetjmp function
757       FTy = FunctionType::get(
758           IRB.getInt32Ty(),
759           {getAddrIntType(&M), Type::getInt32PtrTy(C), IRB.getInt32Ty()},
760           false);
761       TestSetjmpF = getEmscriptenFunction(FTy, "testSetjmp", &M);
762 
763       // Precompute setjmp users
764       for (User *U : SetjmpF->users()) {
765         auto *UI = cast<Instruction>(U);
766         SetjmpUsers.insert(UI->getFunction());
767       }
768     }
769   }
770 
771   // Exception handling transformation
772   if (EnableEmEH) {
773     for (Function &F : M) {
774       if (F.isDeclaration())
775         continue;
776       Changed |= runEHOnFunction(F);
777     }
778   }
779 
780   // Setjmp/longjmp handling transformation
781   if (DoSjLj) {
782     Changed = true; // We have setjmp or longjmp somewhere
783     if (LongjmpF)
784       replaceLongjmpWithEmscriptenLongjmp(LongjmpF, EmLongjmpF);
785     // Only traverse functions that uses setjmp in order not to insert
786     // unnecessary prep / cleanup code in every function
787     if (SetjmpF)
788       for (Function *F : SetjmpUsers)
789         runSjLjOnFunction(*F);
790   }
791 
792   if (!Changed) {
793     // Delete unused global variables and functions
794     if (ResumeF)
795       ResumeF->eraseFromParent();
796     if (EHTypeIDF)
797       EHTypeIDF->eraseFromParent();
798     if (EmLongjmpF)
799       EmLongjmpF->eraseFromParent();
800     if (SaveSetjmpF)
801       SaveSetjmpF->eraseFromParent();
802     if (TestSetjmpF)
803       TestSetjmpF->eraseFromParent();
804     return false;
805   }
806 
807   return true;
808 }
809 
810 bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function &F) {
811   Module &M = *F.getParent();
812   LLVMContext &C = F.getContext();
813   IRBuilder<> IRB(C);
814   bool Changed = false;
815   SmallVector<Instruction *, 64> ToErase;
816   SmallPtrSet<LandingPadInst *, 32> LandingPads;
817 
818   for (BasicBlock &BB : F) {
819     auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
820     if (!II)
821       continue;
822     Changed = true;
823     LandingPads.insert(II->getLandingPadInst());
824     IRB.SetInsertPoint(II);
825 
826     const Value *Callee = II->getCalledOperand();
827     bool NeedInvoke = supportsException(&F) && canThrow(Callee);
828     if (NeedInvoke) {
829       // Wrap invoke with invoke wrapper and generate preamble/postamble
830       Value *Threw = wrapInvoke(II);
831       ToErase.push_back(II);
832 
833       // If setjmp/longjmp handling is enabled, the thrown value can be not an
834       // exception but a longjmp. If the current function contains calls to
835       // setjmp, it will be appropriately handled in runSjLjOnFunction. But even
836       // if the function does not contain setjmp calls, we shouldn't silently
837       // ignore longjmps; we should rethrow them so they can be correctly
838       // handled in somewhere up the call chain where setjmp is. __THREW__'s
839       // value is 0 when nothing happened, 1 when an exception is thrown, and
840       // other values when longjmp is thrown.
841       //
842       // if (%__THREW__.val == 0 || %__THREW__.val == 1)
843       //   goto %tail
844       // else
845       //   goto %longjmp.rethrow
846       //
847       // longjmp.rethrow: ;; This is longjmp. Rethrow it
848       //   %__threwValue.val = __threwValue
849       //   emscripten_longjmp(%__THREW__.val, %__threwValue.val);
850       //
851       // tail: ;; Nothing happened or an exception is thrown
852       //   ... Continue exception handling ...
853       if (DoSjLj && !SetjmpUsers.count(&F) && canLongjmp(Callee)) {
854         BasicBlock *Tail = BasicBlock::Create(C, "tail", &F);
855         BasicBlock *RethrowBB = BasicBlock::Create(C, "longjmp.rethrow", &F);
856         Value *CmpEqOne =
857             IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp.eq.one");
858         Value *CmpEqZero =
859             IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 0), "cmp.eq.zero");
860         Value *Or = IRB.CreateOr(CmpEqZero, CmpEqOne, "or");
861         IRB.CreateCondBr(Or, Tail, RethrowBB);
862         IRB.SetInsertPoint(RethrowBB);
863         Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV,
864                                            ThrewValueGV->getName() + ".val");
865         IRB.CreateCall(EmLongjmpF, {Threw, ThrewValue});
866 
867         IRB.CreateUnreachable();
868         IRB.SetInsertPoint(Tail);
869       }
870 
871       // Insert a branch based on __THREW__ variable
872       Value *Cmp = IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp");
873       IRB.CreateCondBr(Cmp, II->getUnwindDest(), II->getNormalDest());
874 
875     } else {
876       // This can't throw, and we don't need this invoke, just replace it with a
877       // call+branch
878       SmallVector<Value *, 16> Args(II->args());
879       CallInst *NewCall =
880           IRB.CreateCall(II->getFunctionType(), II->getCalledOperand(), Args);
881       NewCall->takeName(II);
882       NewCall->setCallingConv(II->getCallingConv());
883       NewCall->setDebugLoc(II->getDebugLoc());
884       NewCall->setAttributes(II->getAttributes());
885       II->replaceAllUsesWith(NewCall);
886       ToErase.push_back(II);
887 
888       IRB.CreateBr(II->getNormalDest());
889 
890       // Remove any PHI node entries from the exception destination
891       II->getUnwindDest()->removePredecessor(&BB);
892     }
893   }
894 
895   // Process resume instructions
896   for (BasicBlock &BB : F) {
897     // Scan the body of the basic block for resumes
898     for (Instruction &I : BB) {
899       auto *RI = dyn_cast<ResumeInst>(&I);
900       if (!RI)
901         continue;
902       Changed = true;
903 
904       // Split the input into legal values
905       Value *Input = RI->getValue();
906       IRB.SetInsertPoint(RI);
907       Value *Low = IRB.CreateExtractValue(Input, 0, "low");
908       // Create a call to __resumeException function
909       IRB.CreateCall(ResumeF, {Low});
910       // Add a terminator to the block
911       IRB.CreateUnreachable();
912       ToErase.push_back(RI);
913     }
914   }
915 
916   // Process llvm.eh.typeid.for intrinsics
917   for (BasicBlock &BB : F) {
918     for (Instruction &I : BB) {
919       auto *CI = dyn_cast<CallInst>(&I);
920       if (!CI)
921         continue;
922       const Function *Callee = CI->getCalledFunction();
923       if (!Callee)
924         continue;
925       if (Callee->getIntrinsicID() != Intrinsic::eh_typeid_for)
926         continue;
927       Changed = true;
928 
929       IRB.SetInsertPoint(CI);
930       CallInst *NewCI =
931           IRB.CreateCall(EHTypeIDF, CI->getArgOperand(0), "typeid");
932       CI->replaceAllUsesWith(NewCI);
933       ToErase.push_back(CI);
934     }
935   }
936 
937   // Look for orphan landingpads, can occur in blocks with no predecessors
938   for (BasicBlock &BB : F) {
939     Instruction *I = BB.getFirstNonPHI();
940     if (auto *LPI = dyn_cast<LandingPadInst>(I))
941       LandingPads.insert(LPI);
942   }
943   Changed |= !LandingPads.empty();
944 
945   // Handle all the landingpad for this function together, as multiple invokes
946   // may share a single lp
947   for (LandingPadInst *LPI : LandingPads) {
948     IRB.SetInsertPoint(LPI);
949     SmallVector<Value *, 16> FMCArgs;
950     for (unsigned I = 0, E = LPI->getNumClauses(); I < E; ++I) {
951       Constant *Clause = LPI->getClause(I);
952       // TODO Handle filters (= exception specifications).
953       // https://bugs.llvm.org/show_bug.cgi?id=50396
954       if (LPI->isCatch(I))
955         FMCArgs.push_back(Clause);
956     }
957 
958     // Create a call to __cxa_find_matching_catch_N function
959     Function *FMCF = getFindMatchingCatch(M, FMCArgs.size());
960     CallInst *FMCI = IRB.CreateCall(FMCF, FMCArgs, "fmc");
961     Value *Undef = UndefValue::get(LPI->getType());
962     Value *Pair0 = IRB.CreateInsertValue(Undef, FMCI, 0, "pair0");
963     Value *TempRet0 = IRB.CreateCall(GetTempRet0F, None, "tempret0");
964     Value *Pair1 = IRB.CreateInsertValue(Pair0, TempRet0, 1, "pair1");
965 
966     LPI->replaceAllUsesWith(Pair1);
967     ToErase.push_back(LPI);
968   }
969 
970   // Erase everything we no longer need in this function
971   for (Instruction *I : ToErase)
972     I->eraseFromParent();
973 
974   return Changed;
975 }
976 
977 // This tries to get debug info from the instruction before which a new
978 // instruction will be inserted, and if there's no debug info in that
979 // instruction, tries to get the info instead from the previous instruction (if
980 // any). If none of these has debug info and a DISubprogram is provided, it
981 // creates a dummy debug info with the first line of the function, because IR
982 // verifier requires all inlinable callsites should have debug info when both a
983 // caller and callee have DISubprogram. If none of these conditions are met,
984 // returns empty info.
985 static DebugLoc getOrCreateDebugLoc(const Instruction *InsertBefore,
986                                     DISubprogram *SP) {
987   assert(InsertBefore);
988   if (InsertBefore->getDebugLoc())
989     return InsertBefore->getDebugLoc();
990   const Instruction *Prev = InsertBefore->getPrevNode();
991   if (Prev && Prev->getDebugLoc())
992     return Prev->getDebugLoc();
993   if (SP)
994     return DILocation::get(SP->getContext(), SP->getLine(), 1, SP);
995   return DebugLoc();
996 }
997 
998 bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function &F) {
999   Module &M = *F.getParent();
1000   LLVMContext &C = F.getContext();
1001   IRBuilder<> IRB(C);
1002   SmallVector<Instruction *, 64> ToErase;
1003   // Vector of %setjmpTable values
1004   SmallVector<Instruction *, 4> SetjmpTableInsts;
1005   // Vector of %setjmpTableSize values
1006   SmallVector<Instruction *, 4> SetjmpTableSizeInsts;
1007 
1008   // Setjmp preparation
1009 
1010   // This instruction effectively means %setjmpTableSize = 4.
1011   // We create this as an instruction intentionally, and we don't want to fold
1012   // this instruction to a constant 4, because this value will be used in
1013   // SSAUpdater.AddAvailableValue(...) later.
1014   BasicBlock *Entry = &F.getEntryBlock();
1015   DebugLoc FirstDL = getOrCreateDebugLoc(&*Entry->begin(), F.getSubprogram());
1016   BinaryOperator *SetjmpTableSize =
1017       BinaryOperator::Create(Instruction::Add, IRB.getInt32(4), IRB.getInt32(0),
1018                              "setjmpTableSize", &*Entry->getFirstInsertionPt());
1019   SetjmpTableSize->setDebugLoc(FirstDL);
1020   // setjmpTable = (int *) malloc(40);
1021   Instruction *SetjmpTable = CallInst::CreateMalloc(
1022       SetjmpTableSize, IRB.getInt32Ty(), IRB.getInt32Ty(), IRB.getInt32(40),
1023       nullptr, nullptr, "setjmpTable");
1024   SetjmpTable->setDebugLoc(FirstDL);
1025   // CallInst::CreateMalloc may return a bitcast instruction if the result types
1026   // mismatch. We need to set the debug loc for the original call too.
1027   auto *MallocCall = SetjmpTable->stripPointerCasts();
1028   if (auto *MallocCallI = dyn_cast<Instruction>(MallocCall)) {
1029     MallocCallI->setDebugLoc(FirstDL);
1030   }
1031   // setjmpTable[0] = 0;
1032   IRB.SetInsertPoint(SetjmpTableSize);
1033   IRB.CreateStore(IRB.getInt32(0), SetjmpTable);
1034   SetjmpTableInsts.push_back(SetjmpTable);
1035   SetjmpTableSizeInsts.push_back(SetjmpTableSize);
1036 
1037   // Setjmp transformation
1038   SmallVector<PHINode *, 4> SetjmpRetPHIs;
1039   Function *SetjmpF = M.getFunction("setjmp");
1040   for (User *U : SetjmpF->users()) {
1041     auto *CI = dyn_cast<CallInst>(U);
1042     if (!CI)
1043       report_fatal_error("Does not support indirect calls to setjmp");
1044 
1045     BasicBlock *BB = CI->getParent();
1046     if (BB->getParent() != &F) // in other function
1047       continue;
1048 
1049     // The tail is everything right after the call, and will be reached once
1050     // when setjmp is called, and later when longjmp returns to the setjmp
1051     BasicBlock *Tail = SplitBlock(BB, CI->getNextNode());
1052     // Add a phi to the tail, which will be the output of setjmp, which
1053     // indicates if this is the first call or a longjmp back. The phi directly
1054     // uses the right value based on where we arrive from
1055     IRB.SetInsertPoint(Tail->getFirstNonPHI());
1056     PHINode *SetjmpRet = IRB.CreatePHI(IRB.getInt32Ty(), 2, "setjmp.ret");
1057 
1058     // setjmp initial call returns 0
1059     SetjmpRet->addIncoming(IRB.getInt32(0), BB);
1060     // The proper output is now this, not the setjmp call itself
1061     CI->replaceAllUsesWith(SetjmpRet);
1062     // longjmp returns to the setjmp will add themselves to this phi
1063     SetjmpRetPHIs.push_back(SetjmpRet);
1064 
1065     // Fix call target
1066     // Our index in the function is our place in the array + 1 to avoid index
1067     // 0, because index 0 means the longjmp is not ours to handle.
1068     IRB.SetInsertPoint(CI);
1069     Value *Args[] = {CI->getArgOperand(0), IRB.getInt32(SetjmpRetPHIs.size()),
1070                      SetjmpTable, SetjmpTableSize};
1071     Instruction *NewSetjmpTable =
1072         IRB.CreateCall(SaveSetjmpF, Args, "setjmpTable");
1073     Instruction *NewSetjmpTableSize =
1074         IRB.CreateCall(GetTempRet0F, None, "setjmpTableSize");
1075     SetjmpTableInsts.push_back(NewSetjmpTable);
1076     SetjmpTableSizeInsts.push_back(NewSetjmpTableSize);
1077     ToErase.push_back(CI);
1078   }
1079 
1080   // Update each call that can longjmp so it can return to a setjmp where
1081   // relevant.
1082 
1083   // Because we are creating new BBs while processing and don't want to make
1084   // all these newly created BBs candidates again for longjmp processing, we
1085   // first make the vector of candidate BBs.
1086   std::vector<BasicBlock *> BBs;
1087   for (BasicBlock &BB : F)
1088     BBs.push_back(&BB);
1089 
1090   // BBs.size() will change within the loop, so we query it every time
1091   for (unsigned I = 0; I < BBs.size(); I++) {
1092     BasicBlock *BB = BBs[I];
1093     for (Instruction &I : *BB) {
1094       assert(!isa<InvokeInst>(&I));
1095       auto *CI = dyn_cast<CallInst>(&I);
1096       if (!CI)
1097         continue;
1098 
1099       const Value *Callee = CI->getCalledOperand();
1100       if (!canLongjmp(Callee))
1101         continue;
1102       if (isEmAsmCall(Callee))
1103         report_fatal_error("Cannot use EM_ASM* alongside setjmp/longjmp in " +
1104                                F.getName() +
1105                                ". Please consider using EM_JS, or move the "
1106                                "EM_ASM into another function.",
1107                            false);
1108 
1109       Value *Threw = nullptr;
1110       BasicBlock *Tail;
1111       if (Callee->getName().startswith("__invoke_")) {
1112         // If invoke wrapper has already been generated for this call in
1113         // previous EH phase, search for the load instruction
1114         // %__THREW__.val = __THREW__;
1115         // in postamble after the invoke wrapper call
1116         LoadInst *ThrewLI = nullptr;
1117         StoreInst *ThrewResetSI = nullptr;
1118         for (auto I = std::next(BasicBlock::iterator(CI)), IE = BB->end();
1119              I != IE; ++I) {
1120           if (auto *LI = dyn_cast<LoadInst>(I))
1121             if (auto *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()))
1122               if (GV == ThrewGV) {
1123                 Threw = ThrewLI = LI;
1124                 break;
1125               }
1126         }
1127         // Search for the store instruction after the load above
1128         // __THREW__ = 0;
1129         for (auto I = std::next(BasicBlock::iterator(ThrewLI)), IE = BB->end();
1130              I != IE; ++I) {
1131           if (auto *SI = dyn_cast<StoreInst>(I)) {
1132             if (auto *GV = dyn_cast<GlobalVariable>(SI->getPointerOperand())) {
1133               if (GV == ThrewGV &&
1134                   SI->getValueOperand() == getAddrSizeInt(&M, 0)) {
1135                 ThrewResetSI = SI;
1136                 break;
1137               }
1138             }
1139           }
1140         }
1141         assert(Threw && ThrewLI && "Cannot find __THREW__ load after invoke");
1142         assert(ThrewResetSI && "Cannot find __THREW__ store after invoke");
1143         Tail = SplitBlock(BB, ThrewResetSI->getNextNode());
1144 
1145       } else {
1146         // Wrap call with invoke wrapper and generate preamble/postamble
1147         Threw = wrapInvoke(CI);
1148         ToErase.push_back(CI);
1149         Tail = SplitBlock(BB, CI->getNextNode());
1150 
1151         // If exception handling is enabled, the thrown value can be not a
1152         // longjmp but an exception, in which case we shouldn't silently ignore
1153         // exceptions; we should rethrow them.
1154         // __THREW__'s value is 0 when nothing happened, 1 when an exception is
1155         // thrown, other values when longjmp is thrown.
1156         //
1157         // if (%__THREW__.val == 1)
1158         //   goto %eh.rethrow
1159         // else
1160         //   goto %normal
1161         //
1162         // eh.rethrow: ;; Rethrow exception
1163         //   %exn = call @__cxa_find_matching_catch_2() ;; Retrieve thrown ptr
1164         //   __resumeException(%exn)
1165         //
1166         // normal:
1167         //   <-- Insertion point. Will insert sjlj handling code from here
1168         //   goto %tail
1169         //
1170         // tail:
1171         //   ...
1172         if (supportsException(&F) && canThrow(Callee)) {
1173           IRB.SetInsertPoint(CI);
1174           // We will add a new conditional branch. So remove the branch created
1175           // when we split the BB
1176           ToErase.push_back(BB->getTerminator());
1177           BasicBlock *NormalBB = BasicBlock::Create(C, "normal", &F);
1178           BasicBlock *RethrowBB = BasicBlock::Create(C, "eh.rethrow", &F);
1179           Value *CmpEqOne =
1180               IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp.eq.one");
1181           IRB.CreateCondBr(CmpEqOne, RethrowBB, NormalBB);
1182           IRB.SetInsertPoint(RethrowBB);
1183           CallInst *Exn = IRB.CreateCall(getFindMatchingCatch(M, 0), {}, "exn");
1184           IRB.CreateCall(ResumeF, {Exn});
1185           IRB.CreateUnreachable();
1186           IRB.SetInsertPoint(NormalBB);
1187           IRB.CreateBr(Tail);
1188           BB = NormalBB; // New insertion point to insert testSetjmp()
1189         }
1190       }
1191 
1192       // We need to replace the terminator in Tail - SplitBlock makes BB go
1193       // straight to Tail, we need to check if a longjmp occurred, and go to the
1194       // right setjmp-tail if so
1195       ToErase.push_back(BB->getTerminator());
1196 
1197       // Generate a function call to testSetjmp function and preamble/postamble
1198       // code to figure out (1) whether longjmp occurred (2) if longjmp
1199       // occurred, which setjmp it corresponds to
1200       Value *Label = nullptr;
1201       Value *LongjmpResult = nullptr;
1202       BasicBlock *EndBB = nullptr;
1203       wrapTestSetjmp(BB, CI->getDebugLoc(), Threw, SetjmpTable, SetjmpTableSize,
1204                      Label, LongjmpResult, EndBB);
1205       assert(Label && LongjmpResult && EndBB);
1206 
1207       // Create switch instruction
1208       IRB.SetInsertPoint(EndBB);
1209       IRB.SetCurrentDebugLocation(EndBB->getInstList().back().getDebugLoc());
1210       SwitchInst *SI = IRB.CreateSwitch(Label, Tail, SetjmpRetPHIs.size());
1211       // -1 means no longjmp happened, continue normally (will hit the default
1212       // switch case). 0 means a longjmp that is not ours to handle, needs a
1213       // rethrow. Otherwise the index is the same as the index in P+1 (to avoid
1214       // 0).
1215       for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) {
1216         SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent());
1217         SetjmpRetPHIs[I]->addIncoming(LongjmpResult, EndBB);
1218       }
1219 
1220       // We are splitting the block here, and must continue to find other calls
1221       // in the block - which is now split. so continue to traverse in the Tail
1222       BBs.push_back(Tail);
1223     }
1224   }
1225 
1226   // Erase everything we no longer need in this function
1227   for (Instruction *I : ToErase)
1228     I->eraseFromParent();
1229 
1230   // Free setjmpTable buffer before each return instruction
1231   for (BasicBlock &BB : F) {
1232     Instruction *TI = BB.getTerminator();
1233     if (isa<ReturnInst>(TI)) {
1234       DebugLoc DL = getOrCreateDebugLoc(TI, F.getSubprogram());
1235       auto *Free = CallInst::CreateFree(SetjmpTable, TI);
1236       Free->setDebugLoc(DL);
1237       // CallInst::CreateFree may create a bitcast instruction if its argument
1238       // types mismatch. We need to set the debug loc for the bitcast too.
1239       if (auto *FreeCallI = dyn_cast<CallInst>(Free)) {
1240         if (auto *BitCastI = dyn_cast<BitCastInst>(FreeCallI->getArgOperand(0)))
1241           BitCastI->setDebugLoc(DL);
1242       }
1243     }
1244   }
1245 
1246   // Every call to saveSetjmp can change setjmpTable and setjmpTableSize
1247   // (when buffer reallocation occurs)
1248   // entry:
1249   //   setjmpTableSize = 4;
1250   //   setjmpTable = (int *) malloc(40);
1251   //   setjmpTable[0] = 0;
1252   // ...
1253   // somebb:
1254   //   setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize);
1255   //   setjmpTableSize = getTempRet0();
1256   // So we need to make sure the SSA for these variables is valid so that every
1257   // saveSetjmp and testSetjmp calls have the correct arguments.
1258   SSAUpdater SetjmpTableSSA;
1259   SSAUpdater SetjmpTableSizeSSA;
1260   SetjmpTableSSA.Initialize(Type::getInt32PtrTy(C), "setjmpTable");
1261   SetjmpTableSizeSSA.Initialize(Type::getInt32Ty(C), "setjmpTableSize");
1262   for (Instruction *I : SetjmpTableInsts)
1263     SetjmpTableSSA.AddAvailableValue(I->getParent(), I);
1264   for (Instruction *I : SetjmpTableSizeInsts)
1265     SetjmpTableSizeSSA.AddAvailableValue(I->getParent(), I);
1266 
1267   for (auto UI = SetjmpTable->use_begin(), UE = SetjmpTable->use_end();
1268        UI != UE;) {
1269     // Grab the use before incrementing the iterator.
1270     Use &U = *UI;
1271     // Increment the iterator before removing the use from the list.
1272     ++UI;
1273     if (auto *I = dyn_cast<Instruction>(U.getUser()))
1274       if (I->getParent() != Entry)
1275         SetjmpTableSSA.RewriteUse(U);
1276   }
1277   for (auto UI = SetjmpTableSize->use_begin(), UE = SetjmpTableSize->use_end();
1278        UI != UE;) {
1279     Use &U = *UI;
1280     ++UI;
1281     if (auto *I = dyn_cast<Instruction>(U.getUser()))
1282       if (I->getParent() != Entry)
1283         SetjmpTableSizeSSA.RewriteUse(U);
1284   }
1285 
1286   // Finally, our modifications to the cfg can break dominance of SSA variables.
1287   // For example, in this code,
1288   // if (x()) { .. setjmp() .. }
1289   // if (y()) { .. longjmp() .. }
1290   // We must split the longjmp block, and it can jump into the block splitted
1291   // from setjmp one. But that means that when we split the setjmp block, it's
1292   // first part no longer dominates its second part - there is a theoretically
1293   // possible control flow path where x() is false, then y() is true and we
1294   // reach the second part of the setjmp block, without ever reaching the first
1295   // part. So, we rebuild SSA form here.
1296   rebuildSSA(F);
1297   return true;
1298 }
1299