1 //=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file lowers exception-related instructions and setjmp/longjmp 11 /// function calls in order to use Emscripten's JavaScript try and catch 12 /// mechanism. 13 /// 14 /// To handle exceptions and setjmp/longjmps, this scheme relies on JavaScript's 15 /// try and catch syntax and relevant exception-related libraries implemented 16 /// in JavaScript glue code that will be produced by Emscripten. 17 /// 18 /// * Exception handling 19 /// This pass lowers invokes and landingpads into library functions in JS glue 20 /// code. Invokes are lowered into function wrappers called invoke wrappers that 21 /// exist in JS side, which wraps the original function call with JS try-catch. 22 /// If an exception occurred, cxa_throw() function in JS side sets some 23 /// variables (see below) so we can check whether an exception occurred from 24 /// wasm code and handle it appropriately. 25 /// 26 /// * Setjmp-longjmp handling 27 /// This pass lowers setjmp to a reasonably-performant approach for emscripten. 28 /// The idea is that each block with a setjmp is broken up into two parts: the 29 /// part containing setjmp and the part right after the setjmp. The latter part 30 /// is either reached from the setjmp, or later from a longjmp. To handle the 31 /// longjmp, all calls that might longjmp are also called using invoke wrappers 32 /// and thus JS / try-catch. JS longjmp() function also sets some variables so 33 /// we can check / whether a longjmp occurred from wasm code. Each block with a 34 /// function call that might longjmp is also split up after the longjmp call. 35 /// After the longjmp call, we check whether a longjmp occurred, and if it did, 36 /// which setjmp it corresponds to, and jump to the right post-setjmp block. 37 /// We assume setjmp-longjmp handling always run after EH handling, which means 38 /// we don't expect any exception-related instructions when SjLj runs. 39 /// FIXME Currently this scheme does not support indirect call of setjmp, 40 /// because of the limitation of the scheme itself. fastcomp does not support it 41 /// either. 42 /// 43 /// In detail, this pass does following things: 44 /// 45 /// 1) Assumes the existence of global variables: __THREW__, __threwValue 46 /// __THREW__ and __threwValue are defined in compiler-rt in Emscripten. 47 /// These variables are used for both exceptions and setjmp/longjmps. 48 /// __THREW__ indicates whether an exception or a longjmp occurred or not. 0 49 /// means nothing occurred, 1 means an exception occurred, and other numbers 50 /// mean a longjmp occurred. In the case of longjmp, __THREW__ variable 51 /// indicates the corresponding setjmp buffer the longjmp corresponds to. 52 /// __threwValue is 0 for exceptions, and the argument to longjmp in case of 53 /// longjmp. 54 /// 55 /// * Exception handling 56 /// 57 /// 2) We assume the existence of setThrew and setTempRet0/getTempRet0 functions 58 /// at link time. setThrew exists in Emscripten's compiler-rt: 59 /// 60 /// void setThrew(uintptr_t threw, int value) { 61 /// if (__THREW__ == 0) { 62 /// __THREW__ = threw; 63 /// __threwValue = value; 64 /// } 65 /// } 66 // 67 /// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code. 68 /// In exception handling, getTempRet0 indicates the type of an exception 69 /// caught, and in setjmp/longjmp, it means the second argument to longjmp 70 /// function. 71 /// 72 /// 3) Lower 73 /// invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad 74 /// into 75 /// __THREW__ = 0; 76 /// call @__invoke_SIG(func, arg1, arg2) 77 /// %__THREW__.val = __THREW__; 78 /// __THREW__ = 0; 79 /// if (%__THREW__.val == 1) 80 /// goto %lpad 81 /// else 82 /// goto %invoke.cont 83 /// SIG is a mangled string generated based on the LLVM IR-level function 84 /// signature. After LLVM IR types are lowered to the target wasm types, 85 /// the names for these wrappers will change based on wasm types as well, 86 /// as in invoke_vi (function takes an int and returns void). The bodies of 87 /// these wrappers will be generated in JS glue code, and inside those 88 /// wrappers we use JS try-catch to generate actual exception effects. It 89 /// also calls the original callee function. An example wrapper in JS code 90 /// would look like this: 91 /// function invoke_vi(index,a1) { 92 /// try { 93 /// Module["dynCall_vi"](index,a1); // This calls original callee 94 /// } catch(e) { 95 /// if (typeof e !== 'number' && e !== 'longjmp') throw e; 96 /// _setThrew(1, 0); // setThrew is called here 97 /// } 98 /// } 99 /// If an exception is thrown, __THREW__ will be set to true in a wrapper, 100 /// so we can jump to the right BB based on this value. 101 /// 102 /// 4) Lower 103 /// %val = landingpad catch c1 catch c2 catch c3 ... 104 /// ... use %val ... 105 /// into 106 /// %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...) 107 /// %val = {%fmc, getTempRet0()} 108 /// ... use %val ... 109 /// Here N is a number calculated based on the number of clauses. 110 /// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code. 111 /// 112 /// 5) Lower 113 /// resume {%a, %b} 114 /// into 115 /// call @__resumeException(%a) 116 /// where __resumeException() is a function in JS glue code. 117 /// 118 /// 6) Lower 119 /// call @llvm.eh.typeid.for(type) (intrinsic) 120 /// into 121 /// call @llvm_eh_typeid_for(type) 122 /// llvm_eh_typeid_for function will be generated in JS glue code. 123 /// 124 /// * Setjmp / Longjmp handling 125 /// 126 /// In case calls to longjmp() exists 127 /// 128 /// 1) Lower 129 /// longjmp(env, val) 130 /// into 131 /// emscripten_longjmp(env, val) 132 /// 133 /// In case calls to setjmp() exists 134 /// 135 /// 2) In the function entry that calls setjmp, initialize setjmpTable and 136 /// sejmpTableSize as follows: 137 /// setjmpTableSize = 4; 138 /// setjmpTable = (int *) malloc(40); 139 /// setjmpTable[0] = 0; 140 /// setjmpTable and setjmpTableSize are used to call saveSetjmp() function in 141 /// Emscripten compiler-rt. 142 /// 143 /// 3) Lower 144 /// setjmp(env) 145 /// into 146 /// setjmpTable = saveSetjmp(env, label, setjmpTable, setjmpTableSize); 147 /// setjmpTableSize = getTempRet0(); 148 /// For each dynamic setjmp call, setjmpTable stores its ID (a number which 149 /// is incrementally assigned from 0) and its label (a unique number that 150 /// represents each callsite of setjmp). When we need more entries in 151 /// setjmpTable, it is reallocated in saveSetjmp() in Emscripten's 152 /// compiler-rt and it will return the new table address, and assign the new 153 /// table size in setTempRet0(). saveSetjmp also stores the setjmp's ID into 154 /// the buffer 'env'. A BB with setjmp is split into two after setjmp call in 155 /// order to make the post-setjmp BB the possible destination of longjmp BB. 156 /// 157 /// 158 /// 4) Lower every call that might longjmp into 159 /// __THREW__ = 0; 160 /// call @__invoke_SIG(func, arg1, arg2) 161 /// %__THREW__.val = __THREW__; 162 /// __THREW__ = 0; 163 /// %__threwValue.val = __threwValue; 164 /// if (%__THREW__.val != 0 & %__threwValue.val != 0) { 165 /// %label = testSetjmp(mem[%__THREW__.val], setjmpTable, 166 /// setjmpTableSize); 167 /// if (%label == 0) 168 /// emscripten_longjmp(%__THREW__.val, %__threwValue.val); 169 /// setTempRet0(%__threwValue.val); 170 /// } else { 171 /// %label = -1; 172 /// } 173 /// longjmp_result = getTempRet0(); 174 /// switch label { 175 /// label 1: goto post-setjmp BB 1 176 /// label 2: goto post-setjmp BB 2 177 /// ... 178 /// default: goto splitted next BB 179 /// } 180 /// testSetjmp examines setjmpTable to see if there is a matching setjmp 181 /// call. After calling an invoke wrapper, if a longjmp occurred, __THREW__ 182 /// will be the address of matching jmp_buf buffer and __threwValue be the 183 /// second argument to longjmp. mem[%__THREW__.val] is a setjmp ID that is 184 /// stored in saveSetjmp. testSetjmp returns a setjmp label, a unique ID to 185 /// each setjmp callsite. Label 0 means this longjmp buffer does not 186 /// correspond to one of the setjmp callsites in this function, so in this 187 /// case we just chain the longjmp to the caller. Label -1 means no longjmp 188 /// occurred. Otherwise we jump to the right post-setjmp BB based on the 189 /// label. 190 /// 191 ///===----------------------------------------------------------------------===// 192 193 #include "WebAssembly.h" 194 #include "WebAssemblyTargetMachine.h" 195 #include "llvm/ADT/StringExtras.h" 196 #include "llvm/CodeGen/TargetPassConfig.h" 197 #include "llvm/IR/DebugInfoMetadata.h" 198 #include "llvm/IR/Dominators.h" 199 #include "llvm/IR/IRBuilder.h" 200 #include "llvm/Support/CommandLine.h" 201 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 202 #include "llvm/Transforms/Utils/SSAUpdater.h" 203 #include "llvm/Transforms/Utils/SSAUpdaterBulk.h" 204 205 using namespace llvm; 206 207 #define DEBUG_TYPE "wasm-lower-em-ehsjlj" 208 209 // Emscripten's asm.js-style exception handling 210 extern cl::opt<bool> WasmEnableEmEH; 211 // Emscripten's asm.js-style setjmp/longjmp handling 212 extern cl::opt<bool> WasmEnableEmSjLj; 213 // Wasm setjmp/longjmp handling using wasm EH instructions 214 extern cl::opt<bool> WasmEnableSjLj; 215 216 static cl::list<std::string> 217 EHAllowlist("emscripten-cxx-exceptions-allowed", 218 cl::desc("The list of function names in which Emscripten-style " 219 "exception handling is enabled (see emscripten " 220 "EMSCRIPTEN_CATCHING_ALLOWED options)"), 221 cl::CommaSeparated); 222 223 namespace { 224 class WebAssemblyLowerEmscriptenEHSjLj final : public ModulePass { 225 bool EnableEmEH; // Enable Emscripten exception handling 226 bool EnableEmSjLj; // Enable Emscripten setjmp/longjmp handling 227 bool EnableWasmSjLj; // Enable Wasm setjmp/longjmp handling 228 bool DoSjLj; // Whether we actually perform setjmp/longjmp handling 229 230 GlobalVariable *ThrewGV = nullptr; // __THREW__ (Emscripten) 231 GlobalVariable *ThrewValueGV = nullptr; // __threwValue (Emscripten) 232 Function *GetTempRet0F = nullptr; // getTempRet0() (Emscripten) 233 Function *SetTempRet0F = nullptr; // setTempRet0() (Emscripten) 234 Function *ResumeF = nullptr; // __resumeException() (Emscripten) 235 Function *EHTypeIDF = nullptr; // llvm.eh.typeid.for() (intrinsic) 236 Function *EmLongjmpF = nullptr; // emscripten_longjmp() (Emscripten) 237 Function *SaveSetjmpF = nullptr; // saveSetjmp() (Emscripten) 238 Function *TestSetjmpF = nullptr; // testSetjmp() (Emscripten) 239 240 // __cxa_find_matching_catch_N functions. 241 // Indexed by the number of clauses in an original landingpad instruction. 242 DenseMap<int, Function *> FindMatchingCatches; 243 // Map of <function signature string, invoke_ wrappers> 244 StringMap<Function *> InvokeWrappers; 245 // Set of allowed function names for exception handling 246 std::set<std::string> EHAllowlistSet; 247 // Functions that contains calls to setjmp 248 SmallPtrSet<Function *, 8> SetjmpUsers; 249 250 StringRef getPassName() const override { 251 return "WebAssembly Lower Emscripten Exceptions"; 252 } 253 254 using InstVector = SmallVectorImpl<Instruction *>; 255 bool runEHOnFunction(Function &F); 256 bool runSjLjOnFunction(Function &F); 257 void handleLongjmpableCallsForEmscriptenSjLj( 258 Function &F, InstVector &SetjmpTableInsts, 259 InstVector &SetjmpTableSizeInsts, 260 SmallVectorImpl<PHINode *> &SetjmpRetPHIs); 261 Function *getFindMatchingCatch(Module &M, unsigned NumClauses); 262 263 Value *wrapInvoke(CallBase *CI); 264 void wrapTestSetjmp(BasicBlock *BB, DebugLoc DL, Value *Threw, 265 Value *SetjmpTable, Value *SetjmpTableSize, Value *&Label, 266 Value *&LongjmpResult, BasicBlock *&CallEmLongjmpBB, 267 PHINode *&CallEmLongjmpBBThrewPHI, 268 PHINode *&CallEmLongjmpBBThrewValuePHI, 269 BasicBlock *&EndBB); 270 Function *getInvokeWrapper(CallBase *CI); 271 272 bool areAllExceptionsAllowed() const { return EHAllowlistSet.empty(); } 273 bool supportsException(const Function *F) const { 274 return EnableEmEH && (areAllExceptionsAllowed() || 275 EHAllowlistSet.count(std::string(F->getName()))); 276 } 277 278 void rebuildSSA(Function &F); 279 280 public: 281 static char ID; 282 283 WebAssemblyLowerEmscriptenEHSjLj() 284 : ModulePass(ID), EnableEmEH(WasmEnableEmEH), 285 EnableEmSjLj(WasmEnableEmSjLj), EnableWasmSjLj(WasmEnableSjLj) { 286 assert(!(EnableEmSjLj && EnableWasmSjLj) && 287 "Two SjLj modes cannot be turned on at the same time"); 288 assert(!(EnableEmEH && EnableWasmSjLj) && 289 "Wasm SjLj should be only used with Wasm EH"); 290 EHAllowlistSet.insert(EHAllowlist.begin(), EHAllowlist.end()); 291 } 292 bool runOnModule(Module &M) override; 293 294 void getAnalysisUsage(AnalysisUsage &AU) const override { 295 AU.addRequired<DominatorTreeWrapperPass>(); 296 } 297 }; 298 } // End anonymous namespace 299 300 char WebAssemblyLowerEmscriptenEHSjLj::ID = 0; 301 INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj, DEBUG_TYPE, 302 "WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp", 303 false, false) 304 305 ModulePass *llvm::createWebAssemblyLowerEmscriptenEHSjLj() { 306 return new WebAssemblyLowerEmscriptenEHSjLj(); 307 } 308 309 static bool canThrow(const Value *V) { 310 if (const auto *F = dyn_cast<const Function>(V)) { 311 // Intrinsics cannot throw 312 if (F->isIntrinsic()) 313 return false; 314 StringRef Name = F->getName(); 315 // leave setjmp and longjmp (mostly) alone, we process them properly later 316 if (Name == "setjmp" || Name == "longjmp" || Name == "emscripten_longjmp") 317 return false; 318 return !F->doesNotThrow(); 319 } 320 // not a function, so an indirect call - can throw, we can't tell 321 return true; 322 } 323 324 // Get a global variable with the given name. If it doesn't exist declare it, 325 // which will generate an import and assume that it will exist at link time. 326 static GlobalVariable *getGlobalVariable(Module &M, Type *Ty, 327 WebAssemblyTargetMachine &TM, 328 const char *Name) { 329 auto *GV = dyn_cast<GlobalVariable>(M.getOrInsertGlobal(Name, Ty)); 330 if (!GV) 331 report_fatal_error(Twine("unable to create global: ") + Name); 332 333 // If the target supports TLS, make this variable thread-local. We can't just 334 // unconditionally make it thread-local and depend on 335 // CoalesceFeaturesAndStripAtomics to downgrade it, because stripping TLS has 336 // the side effect of disallowing the object from being linked into a 337 // shared-memory module, which we don't want to be responsible for. 338 auto *Subtarget = TM.getSubtargetImpl(); 339 auto TLS = Subtarget->hasAtomics() && Subtarget->hasBulkMemory() 340 ? GlobalValue::LocalExecTLSModel 341 : GlobalValue::NotThreadLocal; 342 GV->setThreadLocalMode(TLS); 343 return GV; 344 } 345 346 // Simple function name mangler. 347 // This function simply takes LLVM's string representation of parameter types 348 // and concatenate them with '_'. There are non-alphanumeric characters but llc 349 // is ok with it, and we need to postprocess these names after the lowering 350 // phase anyway. 351 static std::string getSignature(FunctionType *FTy) { 352 std::string Sig; 353 raw_string_ostream OS(Sig); 354 OS << *FTy->getReturnType(); 355 for (Type *ParamTy : FTy->params()) 356 OS << "_" << *ParamTy; 357 if (FTy->isVarArg()) 358 OS << "_..."; 359 Sig = OS.str(); 360 erase_if(Sig, isSpace); 361 // When s2wasm parses .s file, a comma means the end of an argument. So a 362 // mangled function name can contain any character but a comma. 363 std::replace(Sig.begin(), Sig.end(), ',', '.'); 364 return Sig; 365 } 366 367 static Function *getEmscriptenFunction(FunctionType *Ty, const Twine &Name, 368 Module *M) { 369 Function* F = Function::Create(Ty, GlobalValue::ExternalLinkage, Name, M); 370 // Tell the linker that this function is expected to be imported from the 371 // 'env' module. 372 if (!F->hasFnAttribute("wasm-import-module")) { 373 llvm::AttrBuilder B; 374 B.addAttribute("wasm-import-module", "env"); 375 F->addFnAttrs(B); 376 } 377 if (!F->hasFnAttribute("wasm-import-name")) { 378 llvm::AttrBuilder B; 379 B.addAttribute("wasm-import-name", F->getName()); 380 F->addFnAttrs(B); 381 } 382 return F; 383 } 384 385 // Returns an integer type for the target architecture's address space. 386 // i32 for wasm32 and i64 for wasm64. 387 static Type *getAddrIntType(Module *M) { 388 IRBuilder<> IRB(M->getContext()); 389 return IRB.getIntNTy(M->getDataLayout().getPointerSizeInBits()); 390 } 391 392 // Returns an integer pointer type for the target architecture's address space. 393 // i32* for wasm32 and i64* for wasm64. 394 static Type *getAddrPtrType(Module *M) { 395 return Type::getIntNPtrTy(M->getContext(), 396 M->getDataLayout().getPointerSizeInBits()); 397 } 398 399 // Returns an integer whose type is the integer type for the target's address 400 // space. Returns (i32 C) for wasm32 and (i64 C) for wasm64, when C is the 401 // integer. 402 static Value *getAddrSizeInt(Module *M, uint64_t C) { 403 IRBuilder<> IRB(M->getContext()); 404 return IRB.getIntN(M->getDataLayout().getPointerSizeInBits(), C); 405 } 406 407 // Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2. 408 // This is because a landingpad instruction contains two more arguments, a 409 // personality function and a cleanup bit, and __cxa_find_matching_catch_N 410 // functions are named after the number of arguments in the original landingpad 411 // instruction. 412 Function * 413 WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module &M, 414 unsigned NumClauses) { 415 if (FindMatchingCatches.count(NumClauses)) 416 return FindMatchingCatches[NumClauses]; 417 PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext()); 418 SmallVector<Type *, 16> Args(NumClauses, Int8PtrTy); 419 FunctionType *FTy = FunctionType::get(Int8PtrTy, Args, false); 420 Function *F = getEmscriptenFunction( 421 FTy, "__cxa_find_matching_catch_" + Twine(NumClauses + 2), &M); 422 FindMatchingCatches[NumClauses] = F; 423 return F; 424 } 425 426 // Generate invoke wrapper seqence with preamble and postamble 427 // Preamble: 428 // __THREW__ = 0; 429 // Postamble: 430 // %__THREW__.val = __THREW__; __THREW__ = 0; 431 // Returns %__THREW__.val, which indicates whether an exception is thrown (or 432 // whether longjmp occurred), for future use. 433 Value *WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallBase *CI) { 434 Module *M = CI->getModule(); 435 LLVMContext &C = M->getContext(); 436 437 IRBuilder<> IRB(C); 438 IRB.SetInsertPoint(CI); 439 440 // Pre-invoke 441 // __THREW__ = 0; 442 IRB.CreateStore(getAddrSizeInt(M, 0), ThrewGV); 443 444 // Invoke function wrapper in JavaScript 445 SmallVector<Value *, 16> Args; 446 // Put the pointer to the callee as first argument, so it can be called 447 // within the invoke wrapper later 448 Args.push_back(CI->getCalledOperand()); 449 Args.append(CI->arg_begin(), CI->arg_end()); 450 CallInst *NewCall = IRB.CreateCall(getInvokeWrapper(CI), Args); 451 NewCall->takeName(CI); 452 NewCall->setCallingConv(CallingConv::WASM_EmscriptenInvoke); 453 NewCall->setDebugLoc(CI->getDebugLoc()); 454 455 // Because we added the pointer to the callee as first argument, all 456 // argument attribute indices have to be incremented by one. 457 SmallVector<AttributeSet, 8> ArgAttributes; 458 const AttributeList &InvokeAL = CI->getAttributes(); 459 460 // No attributes for the callee pointer. 461 ArgAttributes.push_back(AttributeSet()); 462 // Copy the argument attributes from the original 463 for (unsigned I = 0, E = CI->getNumArgOperands(); I < E; ++I) 464 ArgAttributes.push_back(InvokeAL.getParamAttrs(I)); 465 466 AttrBuilder FnAttrs(InvokeAL.getFnAttrs()); 467 if (FnAttrs.contains(Attribute::AllocSize)) { 468 // The allocsize attribute (if any) referes to parameters by index and needs 469 // to be adjusted. 470 unsigned SizeArg; 471 Optional<unsigned> NEltArg; 472 std::tie(SizeArg, NEltArg) = FnAttrs.getAllocSizeArgs(); 473 SizeArg += 1; 474 if (NEltArg.hasValue()) 475 NEltArg = NEltArg.getValue() + 1; 476 FnAttrs.addAllocSizeAttr(SizeArg, NEltArg); 477 } 478 479 // Reconstruct the AttributesList based on the vector we constructed. 480 AttributeList NewCallAL = AttributeList::get( 481 C, AttributeSet::get(C, FnAttrs), InvokeAL.getRetAttrs(), ArgAttributes); 482 NewCall->setAttributes(NewCallAL); 483 484 CI->replaceAllUsesWith(NewCall); 485 486 // Post-invoke 487 // %__THREW__.val = __THREW__; __THREW__ = 0; 488 Value *Threw = 489 IRB.CreateLoad(getAddrIntType(M), ThrewGV, ThrewGV->getName() + ".val"); 490 IRB.CreateStore(getAddrSizeInt(M, 0), ThrewGV); 491 return Threw; 492 } 493 494 // Get matching invoke wrapper based on callee signature 495 Function *WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallBase *CI) { 496 Module *M = CI->getModule(); 497 SmallVector<Type *, 16> ArgTys; 498 FunctionType *CalleeFTy = CI->getFunctionType(); 499 500 std::string Sig = getSignature(CalleeFTy); 501 if (InvokeWrappers.find(Sig) != InvokeWrappers.end()) 502 return InvokeWrappers[Sig]; 503 504 // Put the pointer to the callee as first argument 505 ArgTys.push_back(PointerType::getUnqual(CalleeFTy)); 506 // Add argument types 507 ArgTys.append(CalleeFTy->param_begin(), CalleeFTy->param_end()); 508 509 FunctionType *FTy = FunctionType::get(CalleeFTy->getReturnType(), ArgTys, 510 CalleeFTy->isVarArg()); 511 Function *F = getEmscriptenFunction(FTy, "__invoke_" + Sig, M); 512 InvokeWrappers[Sig] = F; 513 return F; 514 } 515 516 static bool canLongjmp(const Value *Callee) { 517 if (auto *CalleeF = dyn_cast<Function>(Callee)) 518 if (CalleeF->isIntrinsic()) 519 return false; 520 521 // Attempting to transform inline assembly will result in something like: 522 // call void @__invoke_void(void ()* asm ...) 523 // which is invalid because inline assembly blocks do not have addresses 524 // and can't be passed by pointer. The result is a crash with illegal IR. 525 if (isa<InlineAsm>(Callee)) 526 return false; 527 StringRef CalleeName = Callee->getName(); 528 529 // The reason we include malloc/free here is to exclude the malloc/free 530 // calls generated in setjmp prep / cleanup routines. 531 if (CalleeName == "setjmp" || CalleeName == "malloc" || CalleeName == "free") 532 return false; 533 534 // There are functions in Emscripten's JS glue code or compiler-rt 535 if (CalleeName == "__resumeException" || CalleeName == "llvm_eh_typeid_for" || 536 CalleeName == "saveSetjmp" || CalleeName == "testSetjmp" || 537 CalleeName == "getTempRet0" || CalleeName == "setTempRet0") 538 return false; 539 540 // __cxa_find_matching_catch_N functions cannot longjmp 541 if (Callee->getName().startswith("__cxa_find_matching_catch_")) 542 return false; 543 544 // Exception-catching related functions 545 if (CalleeName == "__cxa_begin_catch" || CalleeName == "__cxa_end_catch" || 546 CalleeName == "__cxa_allocate_exception" || CalleeName == "__cxa_throw" || 547 CalleeName == "__clang_call_terminate") 548 return false; 549 550 // Otherwise we don't know 551 return true; 552 } 553 554 static bool isEmAsmCall(const Value *Callee) { 555 StringRef CalleeName = Callee->getName(); 556 // This is an exhaustive list from Emscripten's <emscripten/em_asm.h>. 557 return CalleeName == "emscripten_asm_const_int" || 558 CalleeName == "emscripten_asm_const_double" || 559 CalleeName == "emscripten_asm_const_int_sync_on_main_thread" || 560 CalleeName == "emscripten_asm_const_double_sync_on_main_thread" || 561 CalleeName == "emscripten_asm_const_async_on_main_thread"; 562 } 563 564 // Generate testSetjmp function call seqence with preamble and postamble. 565 // The code this generates is equivalent to the following JavaScript code: 566 // %__threwValue.val = __threwValue; 567 // if (%__THREW__.val != 0 & %__threwValue.val != 0) { 568 // %label = testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize); 569 // if (%label == 0) 570 // emscripten_longjmp(%__THREW__.val, %__threwValue.val); 571 // setTempRet0(%__threwValue.val); 572 // } else { 573 // %label = -1; 574 // } 575 // %longjmp_result = getTempRet0(); 576 // 577 // As output parameters. returns %label, %longjmp_result, and the BB the last 578 // instruction (%longjmp_result = ...) is in. 579 void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp( 580 BasicBlock *BB, DebugLoc DL, Value *Threw, Value *SetjmpTable, 581 Value *SetjmpTableSize, Value *&Label, Value *&LongjmpResult, 582 BasicBlock *&CallEmLongjmpBB, PHINode *&CallEmLongjmpBBThrewPHI, 583 PHINode *&CallEmLongjmpBBThrewValuePHI, BasicBlock *&EndBB) { 584 Function *F = BB->getParent(); 585 Module *M = F->getParent(); 586 LLVMContext &C = M->getContext(); 587 IRBuilder<> IRB(C); 588 IRB.SetCurrentDebugLocation(DL); 589 590 // if (%__THREW__.val != 0 & %__threwValue.val != 0) 591 IRB.SetInsertPoint(BB); 592 BasicBlock *ThenBB1 = BasicBlock::Create(C, "if.then1", F); 593 BasicBlock *ElseBB1 = BasicBlock::Create(C, "if.else1", F); 594 BasicBlock *EndBB1 = BasicBlock::Create(C, "if.end", F); 595 Value *ThrewCmp = IRB.CreateICmpNE(Threw, getAddrSizeInt(M, 0)); 596 Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV, 597 ThrewValueGV->getName() + ".val"); 598 Value *ThrewValueCmp = IRB.CreateICmpNE(ThrewValue, IRB.getInt32(0)); 599 Value *Cmp1 = IRB.CreateAnd(ThrewCmp, ThrewValueCmp, "cmp1"); 600 IRB.CreateCondBr(Cmp1, ThenBB1, ElseBB1); 601 602 // Generate call.em.longjmp BB once and share it within the function 603 if (!CallEmLongjmpBB) { 604 // emscripten_longjmp(%__THREW__.val, %__threwValue.val); 605 CallEmLongjmpBB = BasicBlock::Create(C, "call.em.longjmp", F); 606 IRB.SetInsertPoint(CallEmLongjmpBB); 607 CallEmLongjmpBBThrewPHI = IRB.CreatePHI(getAddrIntType(M), 4, "threw.phi"); 608 CallEmLongjmpBBThrewValuePHI = 609 IRB.CreatePHI(IRB.getInt32Ty(), 4, "threwvalue.phi"); 610 CallEmLongjmpBBThrewPHI->addIncoming(Threw, ThenBB1); 611 CallEmLongjmpBBThrewValuePHI->addIncoming(ThrewValue, ThenBB1); 612 IRB.CreateCall(EmLongjmpF, 613 {CallEmLongjmpBBThrewPHI, CallEmLongjmpBBThrewValuePHI}); 614 IRB.CreateUnreachable(); 615 } else { 616 CallEmLongjmpBBThrewPHI->addIncoming(Threw, ThenBB1); 617 CallEmLongjmpBBThrewValuePHI->addIncoming(ThrewValue, ThenBB1); 618 } 619 620 // %label = testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize); 621 // if (%label == 0) 622 IRB.SetInsertPoint(ThenBB1); 623 BasicBlock *EndBB2 = BasicBlock::Create(C, "if.end2", F); 624 Value *ThrewPtr = 625 IRB.CreateIntToPtr(Threw, getAddrPtrType(M), Threw->getName() + ".p"); 626 Value *LoadedThrew = IRB.CreateLoad(getAddrIntType(M), ThrewPtr, 627 ThrewPtr->getName() + ".loaded"); 628 Value *ThenLabel = IRB.CreateCall( 629 TestSetjmpF, {LoadedThrew, SetjmpTable, SetjmpTableSize}, "label"); 630 Value *Cmp2 = IRB.CreateICmpEQ(ThenLabel, IRB.getInt32(0)); 631 IRB.CreateCondBr(Cmp2, CallEmLongjmpBB, EndBB2); 632 633 // setTempRet0(%__threwValue.val); 634 IRB.SetInsertPoint(EndBB2); 635 IRB.CreateCall(SetTempRet0F, ThrewValue); 636 IRB.CreateBr(EndBB1); 637 638 IRB.SetInsertPoint(ElseBB1); 639 IRB.CreateBr(EndBB1); 640 641 // longjmp_result = getTempRet0(); 642 IRB.SetInsertPoint(EndBB1); 643 PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label"); 644 LabelPHI->addIncoming(ThenLabel, EndBB2); 645 646 LabelPHI->addIncoming(IRB.getInt32(-1), ElseBB1); 647 648 // Output parameter assignment 649 Label = LabelPHI; 650 EndBB = EndBB1; 651 LongjmpResult = IRB.CreateCall(GetTempRet0F, None, "longjmp_result"); 652 } 653 654 void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function &F) { 655 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 656 DT.recalculate(F); // CFG has been changed 657 SSAUpdaterBulk SSA; 658 for (BasicBlock &BB : F) { 659 for (Instruction &I : BB) { 660 unsigned VarID = SSA.AddVariable(I.getName(), I.getType()); 661 SSA.AddAvailableValue(VarID, &BB, &I); 662 for (auto &U : I.uses()) { 663 auto *User = cast<Instruction>(U.getUser()); 664 if (auto *UserPN = dyn_cast<PHINode>(User)) 665 if (UserPN->getIncomingBlock(U) == &BB) 666 continue; 667 if (DT.dominates(&I, User)) 668 continue; 669 SSA.AddUse(VarID, &U); 670 } 671 } 672 } 673 SSA.RewriteAllUses(&DT); 674 } 675 676 // Replace uses of longjmp with emscripten_longjmp. emscripten_longjmp takes 677 // arguments of type {i32, i32} (wasm32) / {i64, i32} (wasm64) and longjmp takes 678 // {jmp_buf*, i32}, so we need a ptrtoint instruction here to make the type 679 // match. jmp_buf* will eventually be lowered to i32/i64 in the wasm backend. 680 static void replaceLongjmpWithEmscriptenLongjmp(Function *LongjmpF, 681 Function *EmLongjmpF) { 682 Module *M = LongjmpF->getParent(); 683 SmallVector<CallInst *, 8> ToErase; 684 LLVMContext &C = LongjmpF->getParent()->getContext(); 685 IRBuilder<> IRB(C); 686 687 // For calls to longjmp, replace it with emscripten_longjmp and cast its first 688 // argument (jmp_buf*) to int 689 for (User *U : LongjmpF->users()) { 690 auto *CI = dyn_cast<CallInst>(U); 691 if (CI && CI->getCalledFunction() == LongjmpF) { 692 IRB.SetInsertPoint(CI); 693 Value *Env = 694 IRB.CreatePtrToInt(CI->getArgOperand(0), getAddrIntType(M), "env"); 695 IRB.CreateCall(EmLongjmpF, {Env, CI->getArgOperand(1)}); 696 ToErase.push_back(CI); 697 } 698 } 699 for (auto *I : ToErase) 700 I->eraseFromParent(); 701 702 // If we have any remaining uses of longjmp's function pointer, replace it 703 // with (int(*)(jmp_buf*, int))emscripten_longjmp. 704 if (!LongjmpF->uses().empty()) { 705 Value *EmLongjmp = 706 IRB.CreateBitCast(EmLongjmpF, LongjmpF->getType(), "em_longjmp"); 707 LongjmpF->replaceAllUsesWith(EmLongjmp); 708 } 709 } 710 711 static bool containsLongjmpableCalls(const Function *F) { 712 for (const auto &BB : *F) 713 for (const auto &I : BB) 714 if (const auto *CB = dyn_cast<CallBase>(&I)) 715 if (canLongjmp(CB->getCalledOperand())) 716 return true; 717 return false; 718 } 719 720 bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module &M) { 721 LLVM_DEBUG(dbgs() << "********** Lower Emscripten EH & SjLj **********\n"); 722 723 LLVMContext &C = M.getContext(); 724 IRBuilder<> IRB(C); 725 726 Function *SetjmpF = M.getFunction("setjmp"); 727 Function *LongjmpF = M.getFunction("longjmp"); 728 729 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 730 assert(TPC && "Expected a TargetPassConfig"); 731 auto &TM = TPC->getTM<WebAssemblyTargetMachine>(); 732 733 // Declare (or get) global variables __THREW__, __threwValue, and 734 // getTempRet0/setTempRet0 function which are used in common for both 735 // exception handling and setjmp/longjmp handling 736 ThrewGV = getGlobalVariable(M, getAddrIntType(&M), TM, "__THREW__"); 737 ThrewValueGV = getGlobalVariable(M, IRB.getInt32Ty(), TM, "__threwValue"); 738 GetTempRet0F = getEmscriptenFunction( 739 FunctionType::get(IRB.getInt32Ty(), false), "getTempRet0", &M); 740 SetTempRet0F = getEmscriptenFunction( 741 FunctionType::get(IRB.getVoidTy(), IRB.getInt32Ty(), false), 742 "setTempRet0", &M); 743 GetTempRet0F->setDoesNotThrow(); 744 SetTempRet0F->setDoesNotThrow(); 745 746 bool Changed = false; 747 748 // Function registration for exception handling 749 if (EnableEmEH) { 750 // Register __resumeException function 751 FunctionType *ResumeFTy = 752 FunctionType::get(IRB.getVoidTy(), IRB.getInt8PtrTy(), false); 753 ResumeF = getEmscriptenFunction(ResumeFTy, "__resumeException", &M); 754 ResumeF->addFnAttr(Attribute::NoReturn); 755 756 // Register llvm_eh_typeid_for function 757 FunctionType *EHTypeIDTy = 758 FunctionType::get(IRB.getInt32Ty(), IRB.getInt8PtrTy(), false); 759 EHTypeIDF = getEmscriptenFunction(EHTypeIDTy, "llvm_eh_typeid_for", &M); 760 } 761 762 if (EnableEmSjLj && SetjmpF) { 763 // Precompute setjmp users 764 for (User *U : SetjmpF->users()) { 765 Function *UserF = cast<Instruction>(U)->getFunction(); 766 // If a function that calls setjmp does not contain any other calls that 767 // can longjmp, we don't need to do any transformation on that function, 768 // so can ignore it 769 if (containsLongjmpableCalls(UserF)) 770 SetjmpUsers.insert(UserF); 771 } 772 } 773 774 bool SetjmpUsed = SetjmpF && !SetjmpUsers.empty(); 775 bool LongjmpUsed = LongjmpF && !LongjmpF->use_empty(); 776 DoSjLj = EnableEmSjLj && (SetjmpUsed || LongjmpUsed); 777 778 // Function registration and data pre-gathering for setjmp/longjmp handling 779 if (DoSjLj) { 780 assert(EnableEmSjLj || EnableWasmSjLj); 781 // Register emscripten_longjmp function 782 FunctionType *FTy = FunctionType::get( 783 IRB.getVoidTy(), {getAddrIntType(&M), IRB.getInt32Ty()}, false); 784 EmLongjmpF = getEmscriptenFunction(FTy, "emscripten_longjmp", &M); 785 EmLongjmpF->addFnAttr(Attribute::NoReturn); 786 787 if (SetjmpF) { 788 // Register saveSetjmp function 789 FunctionType *SetjmpFTy = SetjmpF->getFunctionType(); 790 FTy = FunctionType::get(Type::getInt32PtrTy(C), 791 {SetjmpFTy->getParamType(0), IRB.getInt32Ty(), 792 Type::getInt32PtrTy(C), IRB.getInt32Ty()}, 793 false); 794 SaveSetjmpF = getEmscriptenFunction(FTy, "saveSetjmp", &M); 795 796 // Register testSetjmp function 797 FTy = FunctionType::get( 798 IRB.getInt32Ty(), 799 {getAddrIntType(&M), Type::getInt32PtrTy(C), IRB.getInt32Ty()}, 800 false); 801 TestSetjmpF = getEmscriptenFunction(FTy, "testSetjmp", &M); 802 } 803 } 804 805 // Exception handling transformation 806 if (EnableEmEH) { 807 for (Function &F : M) { 808 if (F.isDeclaration()) 809 continue; 810 Changed |= runEHOnFunction(F); 811 } 812 } 813 814 // Setjmp/longjmp handling transformation 815 if (DoSjLj) { 816 Changed = true; // We have setjmp or longjmp somewhere 817 if (LongjmpF) 818 replaceLongjmpWithEmscriptenLongjmp(LongjmpF, EmLongjmpF); 819 // Only traverse functions that uses setjmp in order not to insert 820 // unnecessary prep / cleanup code in every function 821 if (SetjmpF) 822 for (Function *F : SetjmpUsers) 823 runSjLjOnFunction(*F); 824 } 825 826 if (!Changed) { 827 // Delete unused global variables and functions 828 if (ResumeF) 829 ResumeF->eraseFromParent(); 830 if (EHTypeIDF) 831 EHTypeIDF->eraseFromParent(); 832 if (EmLongjmpF) 833 EmLongjmpF->eraseFromParent(); 834 if (SaveSetjmpF) 835 SaveSetjmpF->eraseFromParent(); 836 if (TestSetjmpF) 837 TestSetjmpF->eraseFromParent(); 838 return false; 839 } 840 841 return true; 842 } 843 844 bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function &F) { 845 Module &M = *F.getParent(); 846 LLVMContext &C = F.getContext(); 847 IRBuilder<> IRB(C); 848 bool Changed = false; 849 SmallVector<Instruction *, 64> ToErase; 850 SmallPtrSet<LandingPadInst *, 32> LandingPads; 851 852 // rethrow.longjmp BB that will be shared within the function. 853 BasicBlock *RethrowLongjmpBB = nullptr; 854 // PHI node for the loaded value of __THREW__ global variable in 855 // rethrow.longjmp BB 856 PHINode *RethrowLongjmpBBThrewPHI = nullptr; 857 858 for (BasicBlock &BB : F) { 859 auto *II = dyn_cast<InvokeInst>(BB.getTerminator()); 860 if (!II) 861 continue; 862 Changed = true; 863 LandingPads.insert(II->getLandingPadInst()); 864 IRB.SetInsertPoint(II); 865 866 const Value *Callee = II->getCalledOperand(); 867 bool NeedInvoke = supportsException(&F) && canThrow(Callee); 868 if (NeedInvoke) { 869 // Wrap invoke with invoke wrapper and generate preamble/postamble 870 Value *Threw = wrapInvoke(II); 871 ToErase.push_back(II); 872 873 // If setjmp/longjmp handling is enabled, the thrown value can be not an 874 // exception but a longjmp. If the current function contains calls to 875 // setjmp, it will be appropriately handled in runSjLjOnFunction. But even 876 // if the function does not contain setjmp calls, we shouldn't silently 877 // ignore longjmps; we should rethrow them so they can be correctly 878 // handled in somewhere up the call chain where setjmp is. __THREW__'s 879 // value is 0 when nothing happened, 1 when an exception is thrown, and 880 // other values when longjmp is thrown. 881 // 882 // if (%__THREW__.val == 0 || %__THREW__.val == 1) 883 // goto %tail 884 // else 885 // goto %longjmp.rethrow 886 // 887 // rethrow.longjmp: ;; This is longjmp. Rethrow it 888 // %__threwValue.val = __threwValue 889 // emscripten_longjmp(%__THREW__.val, %__threwValue.val); 890 // 891 // tail: ;; Nothing happened or an exception is thrown 892 // ... Continue exception handling ... 893 if (DoSjLj && !SetjmpUsers.count(&F) && canLongjmp(Callee)) { 894 // Create longjmp.rethrow BB once and share it within the function 895 if (!RethrowLongjmpBB) { 896 RethrowLongjmpBB = BasicBlock::Create(C, "rethrow.longjmp", &F); 897 IRB.SetInsertPoint(RethrowLongjmpBB); 898 RethrowLongjmpBBThrewPHI = 899 IRB.CreatePHI(getAddrIntType(&M), 4, "threw.phi"); 900 RethrowLongjmpBBThrewPHI->addIncoming(Threw, &BB); 901 Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV, 902 ThrewValueGV->getName() + ".val"); 903 IRB.CreateCall(EmLongjmpF, {RethrowLongjmpBBThrewPHI, ThrewValue}); 904 IRB.CreateUnreachable(); 905 } else { 906 RethrowLongjmpBBThrewPHI->addIncoming(Threw, &BB); 907 } 908 909 IRB.SetInsertPoint(II); // Restore the insert point back 910 BasicBlock *Tail = BasicBlock::Create(C, "tail", &F); 911 Value *CmpEqOne = 912 IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp.eq.one"); 913 Value *CmpEqZero = 914 IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 0), "cmp.eq.zero"); 915 Value *Or = IRB.CreateOr(CmpEqZero, CmpEqOne, "or"); 916 IRB.CreateCondBr(Or, Tail, RethrowLongjmpBB); 917 IRB.SetInsertPoint(Tail); 918 BB.replaceSuccessorsPhiUsesWith(&BB, Tail); 919 } 920 921 // Insert a branch based on __THREW__ variable 922 Value *Cmp = IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp"); 923 IRB.CreateCondBr(Cmp, II->getUnwindDest(), II->getNormalDest()); 924 925 } else { 926 // This can't throw, and we don't need this invoke, just replace it with a 927 // call+branch 928 SmallVector<Value *, 16> Args(II->args()); 929 CallInst *NewCall = 930 IRB.CreateCall(II->getFunctionType(), II->getCalledOperand(), Args); 931 NewCall->takeName(II); 932 NewCall->setCallingConv(II->getCallingConv()); 933 NewCall->setDebugLoc(II->getDebugLoc()); 934 NewCall->setAttributes(II->getAttributes()); 935 II->replaceAllUsesWith(NewCall); 936 ToErase.push_back(II); 937 938 IRB.CreateBr(II->getNormalDest()); 939 940 // Remove any PHI node entries from the exception destination 941 II->getUnwindDest()->removePredecessor(&BB); 942 } 943 } 944 945 // Process resume instructions 946 for (BasicBlock &BB : F) { 947 // Scan the body of the basic block for resumes 948 for (Instruction &I : BB) { 949 auto *RI = dyn_cast<ResumeInst>(&I); 950 if (!RI) 951 continue; 952 Changed = true; 953 954 // Split the input into legal values 955 Value *Input = RI->getValue(); 956 IRB.SetInsertPoint(RI); 957 Value *Low = IRB.CreateExtractValue(Input, 0, "low"); 958 // Create a call to __resumeException function 959 IRB.CreateCall(ResumeF, {Low}); 960 // Add a terminator to the block 961 IRB.CreateUnreachable(); 962 ToErase.push_back(RI); 963 } 964 } 965 966 // Process llvm.eh.typeid.for intrinsics 967 for (BasicBlock &BB : F) { 968 for (Instruction &I : BB) { 969 auto *CI = dyn_cast<CallInst>(&I); 970 if (!CI) 971 continue; 972 const Function *Callee = CI->getCalledFunction(); 973 if (!Callee) 974 continue; 975 if (Callee->getIntrinsicID() != Intrinsic::eh_typeid_for) 976 continue; 977 Changed = true; 978 979 IRB.SetInsertPoint(CI); 980 CallInst *NewCI = 981 IRB.CreateCall(EHTypeIDF, CI->getArgOperand(0), "typeid"); 982 CI->replaceAllUsesWith(NewCI); 983 ToErase.push_back(CI); 984 } 985 } 986 987 // Look for orphan landingpads, can occur in blocks with no predecessors 988 for (BasicBlock &BB : F) { 989 Instruction *I = BB.getFirstNonPHI(); 990 if (auto *LPI = dyn_cast<LandingPadInst>(I)) 991 LandingPads.insert(LPI); 992 } 993 Changed |= !LandingPads.empty(); 994 995 // Handle all the landingpad for this function together, as multiple invokes 996 // may share a single lp 997 for (LandingPadInst *LPI : LandingPads) { 998 IRB.SetInsertPoint(LPI); 999 SmallVector<Value *, 16> FMCArgs; 1000 for (unsigned I = 0, E = LPI->getNumClauses(); I < E; ++I) { 1001 Constant *Clause = LPI->getClause(I); 1002 // TODO Handle filters (= exception specifications). 1003 // https://bugs.llvm.org/show_bug.cgi?id=50396 1004 if (LPI->isCatch(I)) 1005 FMCArgs.push_back(Clause); 1006 } 1007 1008 // Create a call to __cxa_find_matching_catch_N function 1009 Function *FMCF = getFindMatchingCatch(M, FMCArgs.size()); 1010 CallInst *FMCI = IRB.CreateCall(FMCF, FMCArgs, "fmc"); 1011 Value *Undef = UndefValue::get(LPI->getType()); 1012 Value *Pair0 = IRB.CreateInsertValue(Undef, FMCI, 0, "pair0"); 1013 Value *TempRet0 = IRB.CreateCall(GetTempRet0F, None, "tempret0"); 1014 Value *Pair1 = IRB.CreateInsertValue(Pair0, TempRet0, 1, "pair1"); 1015 1016 LPI->replaceAllUsesWith(Pair1); 1017 ToErase.push_back(LPI); 1018 } 1019 1020 // Erase everything we no longer need in this function 1021 for (Instruction *I : ToErase) 1022 I->eraseFromParent(); 1023 1024 return Changed; 1025 } 1026 1027 // This tries to get debug info from the instruction before which a new 1028 // instruction will be inserted, and if there's no debug info in that 1029 // instruction, tries to get the info instead from the previous instruction (if 1030 // any). If none of these has debug info and a DISubprogram is provided, it 1031 // creates a dummy debug info with the first line of the function, because IR 1032 // verifier requires all inlinable callsites should have debug info when both a 1033 // caller and callee have DISubprogram. If none of these conditions are met, 1034 // returns empty info. 1035 static DebugLoc getOrCreateDebugLoc(const Instruction *InsertBefore, 1036 DISubprogram *SP) { 1037 assert(InsertBefore); 1038 if (InsertBefore->getDebugLoc()) 1039 return InsertBefore->getDebugLoc(); 1040 const Instruction *Prev = InsertBefore->getPrevNode(); 1041 if (Prev && Prev->getDebugLoc()) 1042 return Prev->getDebugLoc(); 1043 if (SP) 1044 return DILocation::get(SP->getContext(), SP->getLine(), 1, SP); 1045 return DebugLoc(); 1046 } 1047 1048 bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function &F) { 1049 assert(EnableEmSjLj || EnableWasmSjLj); 1050 Module &M = *F.getParent(); 1051 LLVMContext &C = F.getContext(); 1052 IRBuilder<> IRB(C); 1053 SmallVector<Instruction *, 64> ToErase; 1054 // Vector of %setjmpTable values 1055 SmallVector<Instruction *, 4> SetjmpTableInsts; 1056 // Vector of %setjmpTableSize values 1057 SmallVector<Instruction *, 4> SetjmpTableSizeInsts; 1058 1059 // Setjmp preparation 1060 1061 // This instruction effectively means %setjmpTableSize = 4. 1062 // We create this as an instruction intentionally, and we don't want to fold 1063 // this instruction to a constant 4, because this value will be used in 1064 // SSAUpdater.AddAvailableValue(...) later. 1065 BasicBlock *Entry = &F.getEntryBlock(); 1066 DebugLoc FirstDL = getOrCreateDebugLoc(&*Entry->begin(), F.getSubprogram()); 1067 SplitBlock(Entry, &*Entry->getFirstInsertionPt()); 1068 1069 BinaryOperator *SetjmpTableSize = 1070 BinaryOperator::Create(Instruction::Add, IRB.getInt32(4), IRB.getInt32(0), 1071 "setjmpTableSize", Entry->getTerminator()); 1072 SetjmpTableSize->setDebugLoc(FirstDL); 1073 // setjmpTable = (int *) malloc(40); 1074 Instruction *SetjmpTable = CallInst::CreateMalloc( 1075 SetjmpTableSize, IRB.getInt32Ty(), IRB.getInt32Ty(), IRB.getInt32(40), 1076 nullptr, nullptr, "setjmpTable"); 1077 SetjmpTable->setDebugLoc(FirstDL); 1078 // CallInst::CreateMalloc may return a bitcast instruction if the result types 1079 // mismatch. We need to set the debug loc for the original call too. 1080 auto *MallocCall = SetjmpTable->stripPointerCasts(); 1081 if (auto *MallocCallI = dyn_cast<Instruction>(MallocCall)) { 1082 MallocCallI->setDebugLoc(FirstDL); 1083 } 1084 // setjmpTable[0] = 0; 1085 IRB.SetInsertPoint(SetjmpTableSize); 1086 IRB.CreateStore(IRB.getInt32(0), SetjmpTable); 1087 SetjmpTableInsts.push_back(SetjmpTable); 1088 SetjmpTableSizeInsts.push_back(SetjmpTableSize); 1089 1090 // Setjmp transformation 1091 SmallVector<PHINode *, 4> SetjmpRetPHIs; 1092 Function *SetjmpF = M.getFunction("setjmp"); 1093 for (User *U : SetjmpF->users()) { 1094 auto *CI = dyn_cast<CallInst>(U); 1095 if (!CI) 1096 report_fatal_error("Does not support indirect calls to setjmp"); 1097 1098 BasicBlock *BB = CI->getParent(); 1099 if (BB->getParent() != &F) // in other function 1100 continue; 1101 1102 // The tail is everything right after the call, and will be reached once 1103 // when setjmp is called, and later when longjmp returns to the setjmp 1104 BasicBlock *Tail = SplitBlock(BB, CI->getNextNode()); 1105 // Add a phi to the tail, which will be the output of setjmp, which 1106 // indicates if this is the first call or a longjmp back. The phi directly 1107 // uses the right value based on where we arrive from 1108 IRB.SetInsertPoint(Tail->getFirstNonPHI()); 1109 PHINode *SetjmpRet = IRB.CreatePHI(IRB.getInt32Ty(), 2, "setjmp.ret"); 1110 1111 // setjmp initial call returns 0 1112 SetjmpRet->addIncoming(IRB.getInt32(0), BB); 1113 // The proper output is now this, not the setjmp call itself 1114 CI->replaceAllUsesWith(SetjmpRet); 1115 // longjmp returns to the setjmp will add themselves to this phi 1116 SetjmpRetPHIs.push_back(SetjmpRet); 1117 1118 // Fix call target 1119 // Our index in the function is our place in the array + 1 to avoid index 1120 // 0, because index 0 means the longjmp is not ours to handle. 1121 IRB.SetInsertPoint(CI); 1122 Value *Args[] = {CI->getArgOperand(0), IRB.getInt32(SetjmpRetPHIs.size()), 1123 SetjmpTable, SetjmpTableSize}; 1124 Instruction *NewSetjmpTable = 1125 IRB.CreateCall(SaveSetjmpF, Args, "setjmpTable"); 1126 Instruction *NewSetjmpTableSize = 1127 IRB.CreateCall(GetTempRet0F, None, "setjmpTableSize"); 1128 SetjmpTableInsts.push_back(NewSetjmpTable); 1129 SetjmpTableSizeInsts.push_back(NewSetjmpTableSize); 1130 ToErase.push_back(CI); 1131 } 1132 1133 // Handle longjmp calls. 1134 handleLongjmpableCallsForEmscriptenSjLj(F, SetjmpTableInsts, 1135 SetjmpTableSizeInsts, SetjmpRetPHIs); 1136 1137 // Erase everything we no longer need in this function 1138 for (Instruction *I : ToErase) 1139 I->eraseFromParent(); 1140 1141 // Free setjmpTable buffer before each return instruction + function-exiting 1142 // call 1143 SmallVector<Instruction *, 16> ExitingInsts; 1144 for (BasicBlock &BB : F) { 1145 Instruction *TI = BB.getTerminator(); 1146 if (isa<ReturnInst>(TI)) 1147 ExitingInsts.push_back(TI); 1148 // Any 'call' instruction with 'noreturn' attribute exits the function at 1149 // this point. If this throws but unwinds to another EH pad within this 1150 // function instead of exiting, this would have been an 'invoke', which 1151 // happens if we use Wasm EH or Wasm SjLJ. 1152 for (auto &I : BB) { 1153 if (auto *CI = dyn_cast<CallInst>(&I)) { 1154 bool IsNoReturn = CI->hasFnAttr(Attribute::NoReturn); 1155 if (auto *CalleeF = dyn_cast<Function>(CI->getCalledOperand())) 1156 IsNoReturn |= CalleeF->hasFnAttribute(Attribute::NoReturn); 1157 if (IsNoReturn) 1158 ExitingInsts.push_back(&I); 1159 } 1160 } 1161 } 1162 for (auto *I : ExitingInsts) { 1163 DebugLoc DL = getOrCreateDebugLoc(I, F.getSubprogram()); 1164 auto *Free = CallInst::CreateFree(SetjmpTable, I); 1165 Free->setDebugLoc(DL); 1166 // CallInst::CreateFree may create a bitcast instruction if its argument 1167 // types mismatch. We need to set the debug loc for the bitcast too. 1168 if (auto *FreeCallI = dyn_cast<CallInst>(Free)) { 1169 if (auto *BitCastI = dyn_cast<BitCastInst>(FreeCallI->getArgOperand(0))) 1170 BitCastI->setDebugLoc(DL); 1171 } 1172 } 1173 1174 // Every call to saveSetjmp can change setjmpTable and setjmpTableSize 1175 // (when buffer reallocation occurs) 1176 // entry: 1177 // setjmpTableSize = 4; 1178 // setjmpTable = (int *) malloc(40); 1179 // setjmpTable[0] = 0; 1180 // ... 1181 // somebb: 1182 // setjmpTable = saveSetjmp(env, label, setjmpTable, setjmpTableSize); 1183 // setjmpTableSize = getTempRet0(); 1184 // So we need to make sure the SSA for these variables is valid so that every 1185 // saveSetjmp and testSetjmp calls have the correct arguments. 1186 SSAUpdater SetjmpTableSSA; 1187 SSAUpdater SetjmpTableSizeSSA; 1188 SetjmpTableSSA.Initialize(Type::getInt32PtrTy(C), "setjmpTable"); 1189 SetjmpTableSizeSSA.Initialize(Type::getInt32Ty(C), "setjmpTableSize"); 1190 for (Instruction *I : SetjmpTableInsts) 1191 SetjmpTableSSA.AddAvailableValue(I->getParent(), I); 1192 for (Instruction *I : SetjmpTableSizeInsts) 1193 SetjmpTableSizeSSA.AddAvailableValue(I->getParent(), I); 1194 1195 for (auto &U : make_early_inc_range(SetjmpTable->uses())) 1196 if (auto *I = dyn_cast<Instruction>(U.getUser())) 1197 if (I->getParent() != Entry) 1198 SetjmpTableSSA.RewriteUse(U); 1199 for (auto &U : make_early_inc_range(SetjmpTableSize->uses())) 1200 if (auto *I = dyn_cast<Instruction>(U.getUser())) 1201 if (I->getParent() != Entry) 1202 SetjmpTableSizeSSA.RewriteUse(U); 1203 1204 // Finally, our modifications to the cfg can break dominance of SSA variables. 1205 // For example, in this code, 1206 // if (x()) { .. setjmp() .. } 1207 // if (y()) { .. longjmp() .. } 1208 // We must split the longjmp block, and it can jump into the block splitted 1209 // from setjmp one. But that means that when we split the setjmp block, it's 1210 // first part no longer dominates its second part - there is a theoretically 1211 // possible control flow path where x() is false, then y() is true and we 1212 // reach the second part of the setjmp block, without ever reaching the first 1213 // part. So, we rebuild SSA form here. 1214 rebuildSSA(F); 1215 return true; 1216 } 1217 1218 // Update each call that can longjmp so it can return to a setjmp where 1219 // relevant. 1220 void WebAssemblyLowerEmscriptenEHSjLj::handleLongjmpableCallsForEmscriptenSjLj( 1221 Function &F, InstVector &SetjmpTableInsts, InstVector &SetjmpTableSizeInsts, 1222 SmallVectorImpl<PHINode *> &SetjmpRetPHIs) { 1223 Module &M = *F.getParent(); 1224 LLVMContext &C = F.getContext(); 1225 IRBuilder<> IRB(C); 1226 SmallVector<Instruction *, 64> ToErase; 1227 1228 // We need to pass setjmpTable and setjmpTableSize to testSetjmp function. 1229 // These values are defined in the beginning of the function and also in each 1230 // setjmp callsite, but we don't know which values we should use at this 1231 // point. So here we arbitraily use the ones defined in the beginning of the 1232 // function, and SSAUpdater will later update them to the correct values. 1233 Instruction *SetjmpTable = *SetjmpTableInsts.begin(); 1234 Instruction *SetjmpTableSize = *SetjmpTableSizeInsts.begin(); 1235 1236 // call.em.longjmp BB that will be shared within the function. 1237 BasicBlock *CallEmLongjmpBB = nullptr; 1238 // PHI node for the loaded value of __THREW__ global variable in 1239 // call.em.longjmp BB 1240 PHINode *CallEmLongjmpBBThrewPHI = nullptr; 1241 // PHI node for the loaded value of __threwValue global variable in 1242 // call.em.longjmp BB 1243 PHINode *CallEmLongjmpBBThrewValuePHI = nullptr; 1244 // rethrow.exn BB that will be shared within the function. 1245 BasicBlock *RethrowExnBB = nullptr; 1246 1247 // Because we are creating new BBs while processing and don't want to make 1248 // all these newly created BBs candidates again for longjmp processing, we 1249 // first make the vector of candidate BBs. 1250 std::vector<BasicBlock *> BBs; 1251 for (BasicBlock &BB : F) 1252 BBs.push_back(&BB); 1253 1254 // BBs.size() will change within the loop, so we query it every time 1255 for (unsigned I = 0; I < BBs.size(); I++) { 1256 BasicBlock *BB = BBs[I]; 1257 for (Instruction &I : *BB) { 1258 if (isa<InvokeInst>(&I)) 1259 report_fatal_error("When using Wasm EH with Emscripten SjLj, there is " 1260 "a restriction that `setjmp` function call and " 1261 "exception cannot be used within the same function"); 1262 auto *CI = dyn_cast<CallInst>(&I); 1263 if (!CI) 1264 continue; 1265 1266 const Value *Callee = CI->getCalledOperand(); 1267 if (!canLongjmp(Callee)) 1268 continue; 1269 if (isEmAsmCall(Callee)) 1270 report_fatal_error("Cannot use EM_ASM* alongside setjmp/longjmp in " + 1271 F.getName() + 1272 ". Please consider using EM_JS, or move the " 1273 "EM_ASM into another function.", 1274 false); 1275 1276 Value *Threw = nullptr; 1277 BasicBlock *Tail; 1278 if (Callee->getName().startswith("__invoke_")) { 1279 // If invoke wrapper has already been generated for this call in 1280 // previous EH phase, search for the load instruction 1281 // %__THREW__.val = __THREW__; 1282 // in postamble after the invoke wrapper call 1283 LoadInst *ThrewLI = nullptr; 1284 StoreInst *ThrewResetSI = nullptr; 1285 for (auto I = std::next(BasicBlock::iterator(CI)), IE = BB->end(); 1286 I != IE; ++I) { 1287 if (auto *LI = dyn_cast<LoadInst>(I)) 1288 if (auto *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand())) 1289 if (GV == ThrewGV) { 1290 Threw = ThrewLI = LI; 1291 break; 1292 } 1293 } 1294 // Search for the store instruction after the load above 1295 // __THREW__ = 0; 1296 for (auto I = std::next(BasicBlock::iterator(ThrewLI)), IE = BB->end(); 1297 I != IE; ++I) { 1298 if (auto *SI = dyn_cast<StoreInst>(I)) { 1299 if (auto *GV = dyn_cast<GlobalVariable>(SI->getPointerOperand())) { 1300 if (GV == ThrewGV && 1301 SI->getValueOperand() == getAddrSizeInt(&M, 0)) { 1302 ThrewResetSI = SI; 1303 break; 1304 } 1305 } 1306 } 1307 } 1308 assert(Threw && ThrewLI && "Cannot find __THREW__ load after invoke"); 1309 assert(ThrewResetSI && "Cannot find __THREW__ store after invoke"); 1310 Tail = SplitBlock(BB, ThrewResetSI->getNextNode()); 1311 1312 } else { 1313 // Wrap call with invoke wrapper and generate preamble/postamble 1314 Threw = wrapInvoke(CI); 1315 ToErase.push_back(CI); 1316 Tail = SplitBlock(BB, CI->getNextNode()); 1317 1318 // If exception handling is enabled, the thrown value can be not a 1319 // longjmp but an exception, in which case we shouldn't silently ignore 1320 // exceptions; we should rethrow them. 1321 // __THREW__'s value is 0 when nothing happened, 1 when an exception is 1322 // thrown, other values when longjmp is thrown. 1323 // 1324 // if (%__THREW__.val == 1) 1325 // goto %eh.rethrow 1326 // else 1327 // goto %normal 1328 // 1329 // eh.rethrow: ;; Rethrow exception 1330 // %exn = call @__cxa_find_matching_catch_2() ;; Retrieve thrown ptr 1331 // __resumeException(%exn) 1332 // 1333 // normal: 1334 // <-- Insertion point. Will insert sjlj handling code from here 1335 // goto %tail 1336 // 1337 // tail: 1338 // ... 1339 if (supportsException(&F) && canThrow(Callee)) { 1340 // We will add a new conditional branch. So remove the branch created 1341 // when we split the BB 1342 ToErase.push_back(BB->getTerminator()); 1343 1344 // Generate rethrow.exn BB once and share it within the function 1345 if (!RethrowExnBB) { 1346 RethrowExnBB = BasicBlock::Create(C, "rethrow.exn", &F); 1347 IRB.SetInsertPoint(RethrowExnBB); 1348 CallInst *Exn = 1349 IRB.CreateCall(getFindMatchingCatch(M, 0), {}, "exn"); 1350 IRB.CreateCall(ResumeF, {Exn}); 1351 IRB.CreateUnreachable(); 1352 } 1353 1354 IRB.SetInsertPoint(CI); 1355 BasicBlock *NormalBB = BasicBlock::Create(C, "normal", &F); 1356 Value *CmpEqOne = 1357 IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp.eq.one"); 1358 IRB.CreateCondBr(CmpEqOne, RethrowExnBB, NormalBB); 1359 1360 IRB.SetInsertPoint(NormalBB); 1361 IRB.CreateBr(Tail); 1362 BB = NormalBB; // New insertion point to insert testSetjmp() 1363 } 1364 } 1365 1366 // We need to replace the terminator in Tail - SplitBlock makes BB go 1367 // straight to Tail, we need to check if a longjmp occurred, and go to the 1368 // right setjmp-tail if so 1369 ToErase.push_back(BB->getTerminator()); 1370 1371 // Generate a function call to testSetjmp function and preamble/postamble 1372 // code to figure out (1) whether longjmp occurred (2) if longjmp 1373 // occurred, which setjmp it corresponds to 1374 Value *Label = nullptr; 1375 Value *LongjmpResult = nullptr; 1376 BasicBlock *EndBB = nullptr; 1377 wrapTestSetjmp(BB, CI->getDebugLoc(), Threw, SetjmpTable, SetjmpTableSize, 1378 Label, LongjmpResult, CallEmLongjmpBB, 1379 CallEmLongjmpBBThrewPHI, CallEmLongjmpBBThrewValuePHI, 1380 EndBB); 1381 assert(Label && LongjmpResult && EndBB); 1382 1383 // Create switch instruction 1384 IRB.SetInsertPoint(EndBB); 1385 IRB.SetCurrentDebugLocation(EndBB->getInstList().back().getDebugLoc()); 1386 SwitchInst *SI = IRB.CreateSwitch(Label, Tail, SetjmpRetPHIs.size()); 1387 // -1 means no longjmp happened, continue normally (will hit the default 1388 // switch case). 0 means a longjmp that is not ours to handle, needs a 1389 // rethrow. Otherwise the index is the same as the index in P+1 (to avoid 1390 // 0). 1391 for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) { 1392 SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent()); 1393 SetjmpRetPHIs[I]->addIncoming(LongjmpResult, EndBB); 1394 } 1395 1396 // We are splitting the block here, and must continue to find other calls 1397 // in the block - which is now split. so continue to traverse in the Tail 1398 BBs.push_back(Tail); 1399 } 1400 } 1401 1402 for (Instruction *I : ToErase) 1403 I->eraseFromParent(); 1404 } 1405