1 //=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file lowers exception-related instructions and setjmp/longjmp 11 /// function calls in order to use Emscripten's JavaScript try and catch 12 /// mechanism. 13 /// 14 /// To handle exceptions and setjmp/longjmps, this scheme relies on JavaScript's 15 /// try and catch syntax and relevant exception-related libraries implemented 16 /// in JavaScript glue code that will be produced by Emscripten. 17 /// 18 /// * Exception handling 19 /// This pass lowers invokes and landingpads into library functions in JS glue 20 /// code. Invokes are lowered into function wrappers called invoke wrappers that 21 /// exist in JS side, which wraps the original function call with JS try-catch. 22 /// If an exception occurred, cxa_throw() function in JS side sets some 23 /// variables (see below) so we can check whether an exception occurred from 24 /// wasm code and handle it appropriately. 25 /// 26 /// * Setjmp-longjmp handling 27 /// This pass lowers setjmp to a reasonably-performant approach for emscripten. 28 /// The idea is that each block with a setjmp is broken up into two parts: the 29 /// part containing setjmp and the part right after the setjmp. The latter part 30 /// is either reached from the setjmp, or later from a longjmp. To handle the 31 /// longjmp, all calls that might longjmp are also called using invoke wrappers 32 /// and thus JS / try-catch. JS longjmp() function also sets some variables so 33 /// we can check / whether a longjmp occurred from wasm code. Each block with a 34 /// function call that might longjmp is also split up after the longjmp call. 35 /// After the longjmp call, we check whether a longjmp occurred, and if it did, 36 /// which setjmp it corresponds to, and jump to the right post-setjmp block. 37 /// We assume setjmp-longjmp handling always run after EH handling, which means 38 /// we don't expect any exception-related instructions when SjLj runs. 39 /// FIXME Currently this scheme does not support indirect call of setjmp, 40 /// because of the limitation of the scheme itself. fastcomp does not support it 41 /// either. 42 /// 43 /// In detail, this pass does following things: 44 /// 45 /// 1) Assumes the existence of global variables: __THREW__, __threwValue 46 /// __THREW__ and __threwValue are defined in compiler-rt in Emscripten. 47 /// These variables are used for both exceptions and setjmp/longjmps. 48 /// __THREW__ indicates whether an exception or a longjmp occurred or not. 0 49 /// means nothing occurred, 1 means an exception occurred, and other numbers 50 /// mean a longjmp occurred. In the case of longjmp, __threwValue variable 51 /// indicates the corresponding setjmp buffer the longjmp corresponds to. 52 /// 53 /// * Exception handling 54 /// 55 /// 2) We assume the existence of setThrew and setTempRet0/getTempRet0 functions 56 /// at link time. setThrew exists in Emscripten's compiler-rt: 57 /// 58 /// void setThrew(int threw, int value) { 59 /// if (__THREW__ == 0) { 60 /// __THREW__ = threw; 61 /// __threwValue = value; 62 /// } 63 /// } 64 // 65 /// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code. 66 /// In exception handling, getTempRet0 indicates the type of an exception 67 /// caught, and in setjmp/longjmp, it means the second argument to longjmp 68 /// function. 69 /// 70 /// 3) Lower 71 /// invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad 72 /// into 73 /// __THREW__ = 0; 74 /// call @__invoke_SIG(func, arg1, arg2) 75 /// %__THREW__.val = __THREW__; 76 /// __THREW__ = 0; 77 /// if (%__THREW__.val == 1) 78 /// goto %lpad 79 /// else 80 /// goto %invoke.cont 81 /// SIG is a mangled string generated based on the LLVM IR-level function 82 /// signature. After LLVM IR types are lowered to the target wasm types, 83 /// the names for these wrappers will change based on wasm types as well, 84 /// as in invoke_vi (function takes an int and returns void). The bodies of 85 /// these wrappers will be generated in JS glue code, and inside those 86 /// wrappers we use JS try-catch to generate actual exception effects. It 87 /// also calls the original callee function. An example wrapper in JS code 88 /// would look like this: 89 /// function invoke_vi(index,a1) { 90 /// try { 91 /// Module["dynCall_vi"](index,a1); // This calls original callee 92 /// } catch(e) { 93 /// if (typeof e !== 'number' && e !== 'longjmp') throw e; 94 /// _setThrew(1, 0); // setThrew is called here 95 /// } 96 /// } 97 /// If an exception is thrown, __THREW__ will be set to true in a wrapper, 98 /// so we can jump to the right BB based on this value. 99 /// 100 /// 4) Lower 101 /// %val = landingpad catch c1 catch c2 catch c3 ... 102 /// ... use %val ... 103 /// into 104 /// %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...) 105 /// %val = {%fmc, getTempRet0()} 106 /// ... use %val ... 107 /// Here N is a number calculated based on the number of clauses. 108 /// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code. 109 /// 110 /// 5) Lower 111 /// resume {%a, %b} 112 /// into 113 /// call @__resumeException(%a) 114 /// where __resumeException() is a function in JS glue code. 115 /// 116 /// 6) Lower 117 /// call @llvm.eh.typeid.for(type) (intrinsic) 118 /// into 119 /// call @llvm_eh_typeid_for(type) 120 /// llvm_eh_typeid_for function will be generated in JS glue code. 121 /// 122 /// * Setjmp / Longjmp handling 123 /// 124 /// In case calls to longjmp() exists 125 /// 126 /// 1) Lower 127 /// longjmp(buf, value) 128 /// into 129 /// emscripten_longjmp(buf, value) 130 /// 131 /// In case calls to setjmp() exists 132 /// 133 /// 2) In the function entry that calls setjmp, initialize setjmpTable and 134 /// sejmpTableSize as follows: 135 /// setjmpTableSize = 4; 136 /// setjmpTable = (int *) malloc(40); 137 /// setjmpTable[0] = 0; 138 /// setjmpTable and setjmpTableSize are used to call saveSetjmp() function in 139 /// Emscripten compiler-rt. 140 /// 141 /// 3) Lower 142 /// setjmp(buf) 143 /// into 144 /// setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize); 145 /// setjmpTableSize = getTempRet0(); 146 /// For each dynamic setjmp call, setjmpTable stores its ID (a number which 147 /// is incrementally assigned from 0) and its label (a unique number that 148 /// represents each callsite of setjmp). When we need more entries in 149 /// setjmpTable, it is reallocated in saveSetjmp() in Emscripten's 150 /// compiler-rt and it will return the new table address, and assign the new 151 /// table size in setTempRet0(). saveSetjmp also stores the setjmp's ID into 152 /// the buffer buf. A BB with setjmp is split into two after setjmp call in 153 /// order to make the post-setjmp BB the possible destination of longjmp BB. 154 /// 155 /// 156 /// 4) Lower every call that might longjmp into 157 /// __THREW__ = 0; 158 /// call @__invoke_SIG(func, arg1, arg2) 159 /// %__THREW__.val = __THREW__; 160 /// __THREW__ = 0; 161 /// if (%__THREW__.val != 0 & __threwValue != 0) { 162 /// %label = testSetjmp(mem[%__THREW__.val], setjmpTable, 163 /// setjmpTableSize); 164 /// if (%label == 0) 165 /// emscripten_longjmp(%__THREW__.val, __threwValue); 166 /// setTempRet0(__threwValue); 167 /// } else { 168 /// %label = -1; 169 /// } 170 /// longjmp_result = getTempRet0(); 171 /// switch label { 172 /// label 1: goto post-setjmp BB 1 173 /// label 2: goto post-setjmp BB 2 174 /// ... 175 /// default: goto splitted next BB 176 /// } 177 /// testSetjmp examines setjmpTable to see if there is a matching setjmp 178 /// call. After calling an invoke wrapper, if a longjmp occurred, __THREW__ 179 /// will be the address of matching jmp_buf buffer and __threwValue be the 180 /// second argument to longjmp. mem[__THREW__.val] is a setjmp ID that is 181 /// stored in saveSetjmp. testSetjmp returns a setjmp label, a unique ID to 182 /// each setjmp callsite. Label 0 means this longjmp buffer does not 183 /// correspond to one of the setjmp callsites in this function, so in this 184 /// case we just chain the longjmp to the caller. Label -1 means no longjmp 185 /// occurred. Otherwise we jump to the right post-setjmp BB based on the 186 /// label. 187 /// 188 ///===----------------------------------------------------------------------===// 189 190 #include "WebAssembly.h" 191 #include "WebAssemblyTargetMachine.h" 192 #include "llvm/ADT/StringExtras.h" 193 #include "llvm/CodeGen/TargetPassConfig.h" 194 #include "llvm/IR/DebugInfoMetadata.h" 195 #include "llvm/IR/Dominators.h" 196 #include "llvm/IR/IRBuilder.h" 197 #include "llvm/Support/CommandLine.h" 198 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 199 #include "llvm/Transforms/Utils/SSAUpdater.h" 200 201 using namespace llvm; 202 203 #define DEBUG_TYPE "wasm-lower-em-ehsjlj" 204 205 static cl::list<std::string> 206 EHAllowlist("emscripten-cxx-exceptions-allowed", 207 cl::desc("The list of function names in which Emscripten-style " 208 "exception handling is enabled (see emscripten " 209 "EMSCRIPTEN_CATCHING_ALLOWED options)"), 210 cl::CommaSeparated); 211 212 namespace { 213 class WebAssemblyLowerEmscriptenEHSjLj final : public ModulePass { 214 bool EnableEH; // Enable exception handling 215 bool EnableSjLj; // Enable setjmp/longjmp handling 216 217 GlobalVariable *ThrewGV = nullptr; 218 GlobalVariable *ThrewValueGV = nullptr; 219 Function *GetTempRet0Func = nullptr; 220 Function *SetTempRet0Func = nullptr; 221 Function *ResumeF = nullptr; 222 Function *EHTypeIDF = nullptr; 223 Function *EmLongjmpF = nullptr; 224 Function *SaveSetjmpF = nullptr; 225 Function *TestSetjmpF = nullptr; 226 227 // __cxa_find_matching_catch_N functions. 228 // Indexed by the number of clauses in an original landingpad instruction. 229 DenseMap<int, Function *> FindMatchingCatches; 230 // Map of <function signature string, invoke_ wrappers> 231 StringMap<Function *> InvokeWrappers; 232 // Set of allowed function names for exception handling 233 std::set<std::string> EHAllowlistSet; 234 235 StringRef getPassName() const override { 236 return "WebAssembly Lower Emscripten Exceptions"; 237 } 238 239 bool runEHOnFunction(Function &F); 240 bool runSjLjOnFunction(Function &F); 241 Function *getFindMatchingCatch(Module &M, unsigned NumClauses); 242 243 Value *wrapInvoke(CallBase *CI); 244 void wrapTestSetjmp(BasicBlock *BB, DebugLoc DL, Value *Threw, 245 Value *SetjmpTable, Value *SetjmpTableSize, Value *&Label, 246 Value *&LongjmpResult, BasicBlock *&EndBB); 247 Function *getInvokeWrapper(CallBase *CI); 248 249 bool areAllExceptionsAllowed() const { return EHAllowlistSet.empty(); } 250 bool canLongjmp(Module &M, const Value *Callee) const; 251 bool isEmAsmCall(Module &M, const Value *Callee) const; 252 253 void rebuildSSA(Function &F); 254 255 public: 256 static char ID; 257 258 WebAssemblyLowerEmscriptenEHSjLj(bool EnableEH = true, bool EnableSjLj = true) 259 : ModulePass(ID), EnableEH(EnableEH), EnableSjLj(EnableSjLj) { 260 EHAllowlistSet.insert(EHAllowlist.begin(), EHAllowlist.end()); 261 } 262 bool runOnModule(Module &M) override; 263 264 void getAnalysisUsage(AnalysisUsage &AU) const override { 265 AU.addRequired<DominatorTreeWrapperPass>(); 266 } 267 }; 268 } // End anonymous namespace 269 270 char WebAssemblyLowerEmscriptenEHSjLj::ID = 0; 271 INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj, DEBUG_TYPE, 272 "WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp", 273 false, false) 274 275 ModulePass *llvm::createWebAssemblyLowerEmscriptenEHSjLj(bool EnableEH, 276 bool EnableSjLj) { 277 return new WebAssemblyLowerEmscriptenEHSjLj(EnableEH, EnableSjLj); 278 } 279 280 static bool canThrow(const Value *V) { 281 if (const auto *F = dyn_cast<const Function>(V)) { 282 // Intrinsics cannot throw 283 if (F->isIntrinsic()) 284 return false; 285 StringRef Name = F->getName(); 286 // leave setjmp and longjmp (mostly) alone, we process them properly later 287 if (Name == "setjmp" || Name == "longjmp") 288 return false; 289 return !F->doesNotThrow(); 290 } 291 // not a function, so an indirect call - can throw, we can't tell 292 return true; 293 } 294 295 // Get a global variable with the given name. If it doesn't exist declare it, 296 // which will generate an import and asssumes that it will exist at link time. 297 static GlobalVariable *getGlobalVariableI32(Module &M, IRBuilder<> &IRB, 298 WebAssemblyTargetMachine &TM, 299 const char *Name) { 300 auto Int32Ty = IRB.getInt32Ty(); 301 auto *GV = dyn_cast<GlobalVariable>(M.getOrInsertGlobal(Name, Int32Ty)); 302 if (!GV) 303 report_fatal_error(Twine("unable to create global: ") + Name); 304 305 // If the target supports TLS, make this variable thread-local. We can't just 306 // unconditionally make it thread-local and depend on 307 // CoalesceFeaturesAndStripAtomics to downgrade it, because stripping TLS has 308 // the side effect of disallowing the object from being linked into a 309 // shared-memory module, which we don't want to be responsible for. 310 auto *Subtarget = TM.getSubtargetImpl(); 311 auto TLS = Subtarget->hasAtomics() && Subtarget->hasBulkMemory() 312 ? GlobalValue::LocalExecTLSModel 313 : GlobalValue::NotThreadLocal; 314 GV->setThreadLocalMode(TLS); 315 return GV; 316 } 317 318 // Simple function name mangler. 319 // This function simply takes LLVM's string representation of parameter types 320 // and concatenate them with '_'. There are non-alphanumeric characters but llc 321 // is ok with it, and we need to postprocess these names after the lowering 322 // phase anyway. 323 static std::string getSignature(FunctionType *FTy) { 324 std::string Sig; 325 raw_string_ostream OS(Sig); 326 OS << *FTy->getReturnType(); 327 for (Type *ParamTy : FTy->params()) 328 OS << "_" << *ParamTy; 329 if (FTy->isVarArg()) 330 OS << "_..."; 331 Sig = OS.str(); 332 erase_if(Sig, isSpace); 333 // When s2wasm parses .s file, a comma means the end of an argument. So a 334 // mangled function name can contain any character but a comma. 335 std::replace(Sig.begin(), Sig.end(), ',', '.'); 336 return Sig; 337 } 338 339 static Function *getEmscriptenFunction(FunctionType *Ty, const Twine &Name, 340 Module *M) { 341 Function* F = Function::Create(Ty, GlobalValue::ExternalLinkage, Name, M); 342 // Tell the linker that this function is expected to be imported from the 343 // 'env' module. 344 if (!F->hasFnAttribute("wasm-import-module")) { 345 llvm::AttrBuilder B; 346 B.addAttribute("wasm-import-module", "env"); 347 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 348 } 349 if (!F->hasFnAttribute("wasm-import-name")) { 350 llvm::AttrBuilder B; 351 B.addAttribute("wasm-import-name", F->getName()); 352 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 353 } 354 return F; 355 } 356 357 // Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2. 358 // This is because a landingpad instruction contains two more arguments, a 359 // personality function and a cleanup bit, and __cxa_find_matching_catch_N 360 // functions are named after the number of arguments in the original landingpad 361 // instruction. 362 Function * 363 WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module &M, 364 unsigned NumClauses) { 365 if (FindMatchingCatches.count(NumClauses)) 366 return FindMatchingCatches[NumClauses]; 367 PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext()); 368 SmallVector<Type *, 16> Args(NumClauses, Int8PtrTy); 369 FunctionType *FTy = FunctionType::get(Int8PtrTy, Args, false); 370 Function *F = getEmscriptenFunction( 371 FTy, "__cxa_find_matching_catch_" + Twine(NumClauses + 2), &M); 372 FindMatchingCatches[NumClauses] = F; 373 return F; 374 } 375 376 // Generate invoke wrapper seqence with preamble and postamble 377 // Preamble: 378 // __THREW__ = 0; 379 // Postamble: 380 // %__THREW__.val = __THREW__; __THREW__ = 0; 381 // Returns %__THREW__.val, which indicates whether an exception is thrown (or 382 // whether longjmp occurred), for future use. 383 Value *WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallBase *CI) { 384 LLVMContext &C = CI->getModule()->getContext(); 385 386 // If we are calling a function that is noreturn, we must remove that 387 // attribute. The code we insert here does expect it to return, after we 388 // catch the exception. 389 if (CI->doesNotReturn()) { 390 if (auto *F = CI->getCalledFunction()) 391 F->removeFnAttr(Attribute::NoReturn); 392 CI->removeAttribute(AttributeList::FunctionIndex, Attribute::NoReturn); 393 } 394 395 IRBuilder<> IRB(C); 396 IRB.SetInsertPoint(CI); 397 398 // Pre-invoke 399 // __THREW__ = 0; 400 IRB.CreateStore(IRB.getInt32(0), ThrewGV); 401 402 // Invoke function wrapper in JavaScript 403 SmallVector<Value *, 16> Args; 404 // Put the pointer to the callee as first argument, so it can be called 405 // within the invoke wrapper later 406 Args.push_back(CI->getCalledOperand()); 407 Args.append(CI->arg_begin(), CI->arg_end()); 408 CallInst *NewCall = IRB.CreateCall(getInvokeWrapper(CI), Args); 409 NewCall->takeName(CI); 410 NewCall->setCallingConv(CallingConv::WASM_EmscriptenInvoke); 411 NewCall->setDebugLoc(CI->getDebugLoc()); 412 413 // Because we added the pointer to the callee as first argument, all 414 // argument attribute indices have to be incremented by one. 415 SmallVector<AttributeSet, 8> ArgAttributes; 416 const AttributeList &InvokeAL = CI->getAttributes(); 417 418 // No attributes for the callee pointer. 419 ArgAttributes.push_back(AttributeSet()); 420 // Copy the argument attributes from the original 421 for (unsigned I = 0, E = CI->getNumArgOperands(); I < E; ++I) 422 ArgAttributes.push_back(InvokeAL.getParamAttributes(I)); 423 424 AttrBuilder FnAttrs(InvokeAL.getFnAttributes()); 425 if (FnAttrs.contains(Attribute::AllocSize)) { 426 // The allocsize attribute (if any) referes to parameters by index and needs 427 // to be adjusted. 428 unsigned SizeArg; 429 Optional<unsigned> NEltArg; 430 std::tie(SizeArg, NEltArg) = FnAttrs.getAllocSizeArgs(); 431 SizeArg += 1; 432 if (NEltArg.hasValue()) 433 NEltArg = NEltArg.getValue() + 1; 434 FnAttrs.addAllocSizeAttr(SizeArg, NEltArg); 435 } 436 437 // Reconstruct the AttributesList based on the vector we constructed. 438 AttributeList NewCallAL = 439 AttributeList::get(C, AttributeSet::get(C, FnAttrs), 440 InvokeAL.getRetAttributes(), ArgAttributes); 441 NewCall->setAttributes(NewCallAL); 442 443 CI->replaceAllUsesWith(NewCall); 444 445 // Post-invoke 446 // %__THREW__.val = __THREW__; __THREW__ = 0; 447 Value *Threw = 448 IRB.CreateLoad(IRB.getInt32Ty(), ThrewGV, ThrewGV->getName() + ".val"); 449 IRB.CreateStore(IRB.getInt32(0), ThrewGV); 450 return Threw; 451 } 452 453 // Get matching invoke wrapper based on callee signature 454 Function *WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallBase *CI) { 455 Module *M = CI->getModule(); 456 SmallVector<Type *, 16> ArgTys; 457 FunctionType *CalleeFTy = CI->getFunctionType(); 458 459 std::string Sig = getSignature(CalleeFTy); 460 if (InvokeWrappers.find(Sig) != InvokeWrappers.end()) 461 return InvokeWrappers[Sig]; 462 463 // Put the pointer to the callee as first argument 464 ArgTys.push_back(PointerType::getUnqual(CalleeFTy)); 465 // Add argument types 466 ArgTys.append(CalleeFTy->param_begin(), CalleeFTy->param_end()); 467 468 FunctionType *FTy = FunctionType::get(CalleeFTy->getReturnType(), ArgTys, 469 CalleeFTy->isVarArg()); 470 Function *F = getEmscriptenFunction(FTy, "__invoke_" + Sig, M); 471 InvokeWrappers[Sig] = F; 472 return F; 473 } 474 475 bool WebAssemblyLowerEmscriptenEHSjLj::canLongjmp(Module &M, 476 const Value *Callee) const { 477 if (auto *CalleeF = dyn_cast<Function>(Callee)) 478 if (CalleeF->isIntrinsic()) 479 return false; 480 481 // Attempting to transform inline assembly will result in something like: 482 // call void @__invoke_void(void ()* asm ...) 483 // which is invalid because inline assembly blocks do not have addresses 484 // and can't be passed by pointer. The result is a crash with illegal IR. 485 if (isa<InlineAsm>(Callee)) 486 return false; 487 StringRef CalleeName = Callee->getName(); 488 489 // The reason we include malloc/free here is to exclude the malloc/free 490 // calls generated in setjmp prep / cleanup routines. 491 if (CalleeName == "setjmp" || CalleeName == "malloc" || CalleeName == "free") 492 return false; 493 494 // There are functions in Emscripten's JS glue code or compiler-rt 495 if (CalleeName == "__resumeException" || CalleeName == "llvm_eh_typeid_for" || 496 CalleeName == "saveSetjmp" || CalleeName == "testSetjmp" || 497 CalleeName == "getTempRet0" || CalleeName == "setTempRet0") 498 return false; 499 500 // __cxa_find_matching_catch_N functions cannot longjmp 501 if (Callee->getName().startswith("__cxa_find_matching_catch_")) 502 return false; 503 504 // Exception-catching related functions 505 if (CalleeName == "__cxa_begin_catch" || CalleeName == "__cxa_end_catch" || 506 CalleeName == "__cxa_allocate_exception" || CalleeName == "__cxa_throw" || 507 CalleeName == "__clang_call_terminate") 508 return false; 509 510 // Otherwise we don't know 511 return true; 512 } 513 514 bool WebAssemblyLowerEmscriptenEHSjLj::isEmAsmCall(Module &M, 515 const Value *Callee) const { 516 StringRef CalleeName = Callee->getName(); 517 // This is an exhaustive list from Emscripten's <emscripten/em_asm.h>. 518 return CalleeName == "emscripten_asm_const_int" || 519 CalleeName == "emscripten_asm_const_double" || 520 CalleeName == "emscripten_asm_const_int_sync_on_main_thread" || 521 CalleeName == "emscripten_asm_const_double_sync_on_main_thread" || 522 CalleeName == "emscripten_asm_const_async_on_main_thread"; 523 } 524 525 // Generate testSetjmp function call seqence with preamble and postamble. 526 // The code this generates is equivalent to the following JavaScript code: 527 // if (%__THREW__.val != 0 & threwValue != 0) { 528 // %label = _testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize); 529 // if (%label == 0) 530 // emscripten_longjmp(%__THREW__.val, threwValue); 531 // setTempRet0(threwValue); 532 // } else { 533 // %label = -1; 534 // } 535 // %longjmp_result = getTempRet0(); 536 // 537 // As output parameters. returns %label, %longjmp_result, and the BB the last 538 // instruction (%longjmp_result = ...) is in. 539 void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp( 540 BasicBlock *BB, DebugLoc DL, Value *Threw, Value *SetjmpTable, 541 Value *SetjmpTableSize, Value *&Label, Value *&LongjmpResult, 542 BasicBlock *&EndBB) { 543 Function *F = BB->getParent(); 544 LLVMContext &C = BB->getModule()->getContext(); 545 IRBuilder<> IRB(C); 546 IRB.SetCurrentDebugLocation(DL); 547 548 // if (%__THREW__.val != 0 & threwValue != 0) 549 IRB.SetInsertPoint(BB); 550 BasicBlock *ThenBB1 = BasicBlock::Create(C, "if.then1", F); 551 BasicBlock *ElseBB1 = BasicBlock::Create(C, "if.else1", F); 552 BasicBlock *EndBB1 = BasicBlock::Create(C, "if.end", F); 553 Value *ThrewCmp = IRB.CreateICmpNE(Threw, IRB.getInt32(0)); 554 Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV, 555 ThrewValueGV->getName() + ".val"); 556 Value *ThrewValueCmp = IRB.CreateICmpNE(ThrewValue, IRB.getInt32(0)); 557 Value *Cmp1 = IRB.CreateAnd(ThrewCmp, ThrewValueCmp, "cmp1"); 558 IRB.CreateCondBr(Cmp1, ThenBB1, ElseBB1); 559 560 // %label = _testSetjmp(mem[%__THREW__.val], _setjmpTable, _setjmpTableSize); 561 // if (%label == 0) 562 IRB.SetInsertPoint(ThenBB1); 563 BasicBlock *ThenBB2 = BasicBlock::Create(C, "if.then2", F); 564 BasicBlock *EndBB2 = BasicBlock::Create(C, "if.end2", F); 565 Value *ThrewInt = IRB.CreateIntToPtr(Threw, Type::getInt32PtrTy(C), 566 Threw->getName() + ".i32p"); 567 Value *LoadedThrew = IRB.CreateLoad(IRB.getInt32Ty(), ThrewInt, 568 ThrewInt->getName() + ".loaded"); 569 Value *ThenLabel = IRB.CreateCall( 570 TestSetjmpF, {LoadedThrew, SetjmpTable, SetjmpTableSize}, "label"); 571 Value *Cmp2 = IRB.CreateICmpEQ(ThenLabel, IRB.getInt32(0)); 572 IRB.CreateCondBr(Cmp2, ThenBB2, EndBB2); 573 574 // emscripten_longjmp(%__THREW__.val, threwValue); 575 IRB.SetInsertPoint(ThenBB2); 576 IRB.CreateCall(EmLongjmpF, {Threw, ThrewValue}); 577 IRB.CreateUnreachable(); 578 579 // setTempRet0(threwValue); 580 IRB.SetInsertPoint(EndBB2); 581 IRB.CreateCall(SetTempRet0Func, ThrewValue); 582 IRB.CreateBr(EndBB1); 583 584 IRB.SetInsertPoint(ElseBB1); 585 IRB.CreateBr(EndBB1); 586 587 // longjmp_result = getTempRet0(); 588 IRB.SetInsertPoint(EndBB1); 589 PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label"); 590 LabelPHI->addIncoming(ThenLabel, EndBB2); 591 592 LabelPHI->addIncoming(IRB.getInt32(-1), ElseBB1); 593 594 // Output parameter assignment 595 Label = LabelPHI; 596 EndBB = EndBB1; 597 LongjmpResult = IRB.CreateCall(GetTempRet0Func, None, "longjmp_result"); 598 } 599 600 void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function &F) { 601 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 602 DT.recalculate(F); // CFG has been changed 603 SSAUpdater SSA; 604 for (BasicBlock &BB : F) { 605 for (Instruction &I : BB) { 606 SSA.Initialize(I.getType(), I.getName()); 607 SSA.AddAvailableValue(&BB, &I); 608 for (auto UI = I.use_begin(), UE = I.use_end(); UI != UE;) { 609 Use &U = *UI; 610 ++UI; 611 auto *User = cast<Instruction>(U.getUser()); 612 if (auto *UserPN = dyn_cast<PHINode>(User)) 613 if (UserPN->getIncomingBlock(U) == &BB) 614 continue; 615 616 if (DT.dominates(&I, User)) 617 continue; 618 SSA.RewriteUseAfterInsertions(U); 619 } 620 } 621 } 622 } 623 624 // Replace uses of longjmp with emscripten_longjmp. emscripten_longjmp takes 625 // arguments of type {i32, i32} and longjmp takes {jmp_buf*, i32}, so we need a 626 // ptrtoint instruction here to make the type match. jmp_buf* will eventually be 627 // lowered to i32 in the wasm backend. 628 static void replaceLongjmpWithEmscriptenLongjmp(Function *LongjmpF, 629 Function *EmLongjmpF) { 630 SmallVector<CallInst *, 8> ToErase; 631 LLVMContext &C = LongjmpF->getParent()->getContext(); 632 IRBuilder<> IRB(C); 633 634 // For calls to longjmp, replace it with emscripten_longjmp and cast its first 635 // argument (jmp_buf*) to int 636 for (User *U : LongjmpF->users()) { 637 auto *CI = dyn_cast<CallInst>(U); 638 if (CI && CI->getCalledFunction() == LongjmpF) { 639 IRB.SetInsertPoint(CI); 640 Value *Jmpbuf = 641 IRB.CreatePtrToInt(CI->getArgOperand(0), IRB.getInt32Ty(), "jmpbuf"); 642 IRB.CreateCall(EmLongjmpF, {Jmpbuf, CI->getArgOperand(1)}); 643 ToErase.push_back(CI); 644 } 645 } 646 for (auto *I : ToErase) 647 I->eraseFromParent(); 648 649 // If we have any remaining uses of longjmp's function pointer, replace it 650 // with (int(*)(jmp_buf*, int))emscripten_longjmp. 651 if (!LongjmpF->uses().empty()) { 652 Value *EmLongjmp = 653 IRB.CreateBitCast(EmLongjmpF, LongjmpF->getType(), "em_longjmp"); 654 LongjmpF->replaceAllUsesWith(EmLongjmp); 655 } 656 } 657 658 bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module &M) { 659 LLVM_DEBUG(dbgs() << "********** Lower Emscripten EH & SjLj **********\n"); 660 661 LLVMContext &C = M.getContext(); 662 IRBuilder<> IRB(C); 663 664 Function *SetjmpF = M.getFunction("setjmp"); 665 Function *LongjmpF = M.getFunction("longjmp"); 666 bool SetjmpUsed = SetjmpF && !SetjmpF->use_empty(); 667 bool LongjmpUsed = LongjmpF && !LongjmpF->use_empty(); 668 bool DoSjLj = EnableSjLj && (SetjmpUsed || LongjmpUsed); 669 670 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 671 assert(TPC && "Expected a TargetPassConfig"); 672 auto &TM = TPC->getTM<WebAssemblyTargetMachine>(); 673 674 if ((EnableEH || DoSjLj) && 675 Triple(M.getTargetTriple()).getArch() == Triple::wasm64) 676 report_fatal_error("Emscripten EH/SjLj is not supported with wasm64 yet"); 677 if (EnableEH && TM.Options.ExceptionModel == ExceptionHandling::Wasm) 678 report_fatal_error("-exception-model=wasm not allowed with " 679 "-enable-emscripten-cxx-exceptions"); 680 681 // Declare (or get) global variables __THREW__, __threwValue, and 682 // getTempRet0/setTempRet0 function which are used in common for both 683 // exception handling and setjmp/longjmp handling 684 ThrewGV = getGlobalVariableI32(M, IRB, TM, "__THREW__"); 685 ThrewValueGV = getGlobalVariableI32(M, IRB, TM, "__threwValue"); 686 GetTempRet0Func = getEmscriptenFunction( 687 FunctionType::get(IRB.getInt32Ty(), false), "getTempRet0", &M); 688 SetTempRet0Func = getEmscriptenFunction( 689 FunctionType::get(IRB.getVoidTy(), IRB.getInt32Ty(), false), 690 "setTempRet0", &M); 691 GetTempRet0Func->setDoesNotThrow(); 692 SetTempRet0Func->setDoesNotThrow(); 693 694 bool Changed = false; 695 696 // Exception handling 697 if (EnableEH) { 698 // Register __resumeException function 699 FunctionType *ResumeFTy = 700 FunctionType::get(IRB.getVoidTy(), IRB.getInt8PtrTy(), false); 701 ResumeF = getEmscriptenFunction(ResumeFTy, "__resumeException", &M); 702 703 // Register llvm_eh_typeid_for function 704 FunctionType *EHTypeIDTy = 705 FunctionType::get(IRB.getInt32Ty(), IRB.getInt8PtrTy(), false); 706 EHTypeIDF = getEmscriptenFunction(EHTypeIDTy, "llvm_eh_typeid_for", &M); 707 708 for (Function &F : M) { 709 if (F.isDeclaration()) 710 continue; 711 Changed |= runEHOnFunction(F); 712 } 713 } 714 715 // Setjmp/longjmp handling 716 if (DoSjLj) { 717 Changed = true; // We have setjmp or longjmp somewhere 718 719 // Register emscripten_longjmp function 720 FunctionType *FTy = FunctionType::get( 721 IRB.getVoidTy(), {IRB.getInt32Ty(), IRB.getInt32Ty()}, false); 722 EmLongjmpF = getEmscriptenFunction(FTy, "emscripten_longjmp", &M); 723 724 if (LongjmpF) 725 replaceLongjmpWithEmscriptenLongjmp(LongjmpF, EmLongjmpF); 726 727 if (SetjmpF) { 728 // Register saveSetjmp function 729 FunctionType *SetjmpFTy = SetjmpF->getFunctionType(); 730 FTy = FunctionType::get(Type::getInt32PtrTy(C), 731 {SetjmpFTy->getParamType(0), IRB.getInt32Ty(), 732 Type::getInt32PtrTy(C), IRB.getInt32Ty()}, 733 false); 734 SaveSetjmpF = getEmscriptenFunction(FTy, "saveSetjmp", &M); 735 736 // Register testSetjmp function 737 FTy = FunctionType::get( 738 IRB.getInt32Ty(), 739 {IRB.getInt32Ty(), Type::getInt32PtrTy(C), IRB.getInt32Ty()}, false); 740 TestSetjmpF = getEmscriptenFunction(FTy, "testSetjmp", &M); 741 742 // Only traverse functions that uses setjmp in order not to insert 743 // unnecessary prep / cleanup code in every function 744 SmallPtrSet<Function *, 8> SetjmpUsers; 745 for (User *U : SetjmpF->users()) { 746 auto *UI = cast<Instruction>(U); 747 SetjmpUsers.insert(UI->getFunction()); 748 } 749 for (Function *F : SetjmpUsers) 750 runSjLjOnFunction(*F); 751 } 752 } 753 754 if (!Changed) { 755 // Delete unused global variables and functions 756 if (ResumeF) 757 ResumeF->eraseFromParent(); 758 if (EHTypeIDF) 759 EHTypeIDF->eraseFromParent(); 760 if (EmLongjmpF) 761 EmLongjmpF->eraseFromParent(); 762 if (SaveSetjmpF) 763 SaveSetjmpF->eraseFromParent(); 764 if (TestSetjmpF) 765 TestSetjmpF->eraseFromParent(); 766 return false; 767 } 768 769 return true; 770 } 771 772 bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function &F) { 773 Module &M = *F.getParent(); 774 LLVMContext &C = F.getContext(); 775 IRBuilder<> IRB(C); 776 bool Changed = false; 777 SmallVector<Instruction *, 64> ToErase; 778 SmallPtrSet<LandingPadInst *, 32> LandingPads; 779 bool AllowExceptions = areAllExceptionsAllowed() || 780 EHAllowlistSet.count(std::string(F.getName())); 781 782 for (BasicBlock &BB : F) { 783 auto *II = dyn_cast<InvokeInst>(BB.getTerminator()); 784 if (!II) 785 continue; 786 Changed = true; 787 LandingPads.insert(II->getLandingPadInst()); 788 IRB.SetInsertPoint(II); 789 790 bool NeedInvoke = AllowExceptions && canThrow(II->getCalledOperand()); 791 if (NeedInvoke) { 792 // Wrap invoke with invoke wrapper and generate preamble/postamble 793 Value *Threw = wrapInvoke(II); 794 ToErase.push_back(II); 795 796 // Insert a branch based on __THREW__ variable 797 Value *Cmp = IRB.CreateICmpEQ(Threw, IRB.getInt32(1), "cmp"); 798 IRB.CreateCondBr(Cmp, II->getUnwindDest(), II->getNormalDest()); 799 800 } else { 801 // This can't throw, and we don't need this invoke, just replace it with a 802 // call+branch 803 SmallVector<Value *, 16> Args(II->args()); 804 CallInst *NewCall = 805 IRB.CreateCall(II->getFunctionType(), II->getCalledOperand(), Args); 806 NewCall->takeName(II); 807 NewCall->setCallingConv(II->getCallingConv()); 808 NewCall->setDebugLoc(II->getDebugLoc()); 809 NewCall->setAttributes(II->getAttributes()); 810 II->replaceAllUsesWith(NewCall); 811 ToErase.push_back(II); 812 813 IRB.CreateBr(II->getNormalDest()); 814 815 // Remove any PHI node entries from the exception destination 816 II->getUnwindDest()->removePredecessor(&BB); 817 } 818 } 819 820 // Process resume instructions 821 for (BasicBlock &BB : F) { 822 // Scan the body of the basic block for resumes 823 for (Instruction &I : BB) { 824 auto *RI = dyn_cast<ResumeInst>(&I); 825 if (!RI) 826 continue; 827 Changed = true; 828 829 // Split the input into legal values 830 Value *Input = RI->getValue(); 831 IRB.SetInsertPoint(RI); 832 Value *Low = IRB.CreateExtractValue(Input, 0, "low"); 833 // Create a call to __resumeException function 834 IRB.CreateCall(ResumeF, {Low}); 835 // Add a terminator to the block 836 IRB.CreateUnreachable(); 837 ToErase.push_back(RI); 838 } 839 } 840 841 // Process llvm.eh.typeid.for intrinsics 842 for (BasicBlock &BB : F) { 843 for (Instruction &I : BB) { 844 auto *CI = dyn_cast<CallInst>(&I); 845 if (!CI) 846 continue; 847 const Function *Callee = CI->getCalledFunction(); 848 if (!Callee) 849 continue; 850 if (Callee->getIntrinsicID() != Intrinsic::eh_typeid_for) 851 continue; 852 Changed = true; 853 854 IRB.SetInsertPoint(CI); 855 CallInst *NewCI = 856 IRB.CreateCall(EHTypeIDF, CI->getArgOperand(0), "typeid"); 857 CI->replaceAllUsesWith(NewCI); 858 ToErase.push_back(CI); 859 } 860 } 861 862 // Look for orphan landingpads, can occur in blocks with no predecessors 863 for (BasicBlock &BB : F) { 864 Instruction *I = BB.getFirstNonPHI(); 865 if (auto *LPI = dyn_cast<LandingPadInst>(I)) 866 LandingPads.insert(LPI); 867 } 868 Changed |= !LandingPads.empty(); 869 870 // Handle all the landingpad for this function together, as multiple invokes 871 // may share a single lp 872 for (LandingPadInst *LPI : LandingPads) { 873 IRB.SetInsertPoint(LPI); 874 SmallVector<Value *, 16> FMCArgs; 875 for (unsigned I = 0, E = LPI->getNumClauses(); I < E; ++I) { 876 Constant *Clause = LPI->getClause(I); 877 // As a temporary workaround for the lack of aggregate varargs support 878 // in the interface between JS and wasm, break out filter operands into 879 // their component elements. 880 if (LPI->isFilter(I)) { 881 auto *ATy = cast<ArrayType>(Clause->getType()); 882 for (unsigned J = 0, E = ATy->getNumElements(); J < E; ++J) { 883 Value *EV = IRB.CreateExtractValue(Clause, makeArrayRef(J), "filter"); 884 FMCArgs.push_back(EV); 885 } 886 } else 887 FMCArgs.push_back(Clause); 888 } 889 890 // Create a call to __cxa_find_matching_catch_N function 891 Function *FMCF = getFindMatchingCatch(M, FMCArgs.size()); 892 CallInst *FMCI = IRB.CreateCall(FMCF, FMCArgs, "fmc"); 893 Value *Undef = UndefValue::get(LPI->getType()); 894 Value *Pair0 = IRB.CreateInsertValue(Undef, FMCI, 0, "pair0"); 895 Value *TempRet0 = IRB.CreateCall(GetTempRet0Func, None, "tempret0"); 896 Value *Pair1 = IRB.CreateInsertValue(Pair0, TempRet0, 1, "pair1"); 897 898 LPI->replaceAllUsesWith(Pair1); 899 ToErase.push_back(LPI); 900 } 901 902 // Erase everything we no longer need in this function 903 for (Instruction *I : ToErase) 904 I->eraseFromParent(); 905 906 return Changed; 907 } 908 909 // This tries to get debug info from the instruction before which a new 910 // instruction will be inserted, and if there's no debug info in that 911 // instruction, tries to get the info instead from the previous instruction (if 912 // any). If none of these has debug info and a DISubprogram is provided, it 913 // creates a dummy debug info with the first line of the function, because IR 914 // verifier requires all inlinable callsites should have debug info when both a 915 // caller and callee have DISubprogram. If none of these conditions are met, 916 // returns empty info. 917 static DebugLoc getOrCreateDebugLoc(const Instruction *InsertBefore, 918 DISubprogram *SP) { 919 assert(InsertBefore); 920 if (InsertBefore->getDebugLoc()) 921 return InsertBefore->getDebugLoc(); 922 const Instruction *Prev = InsertBefore->getPrevNode(); 923 if (Prev && Prev->getDebugLoc()) 924 return Prev->getDebugLoc(); 925 if (SP) 926 return DILocation::get(SP->getContext(), SP->getLine(), 1, SP); 927 return DebugLoc(); 928 } 929 930 bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function &F) { 931 Module &M = *F.getParent(); 932 LLVMContext &C = F.getContext(); 933 IRBuilder<> IRB(C); 934 SmallVector<Instruction *, 64> ToErase; 935 // Vector of %setjmpTable values 936 std::vector<Instruction *> SetjmpTableInsts; 937 // Vector of %setjmpTableSize values 938 std::vector<Instruction *> SetjmpTableSizeInsts; 939 940 // Setjmp preparation 941 942 // This instruction effectively means %setjmpTableSize = 4. 943 // We create this as an instruction intentionally, and we don't want to fold 944 // this instruction to a constant 4, because this value will be used in 945 // SSAUpdater.AddAvailableValue(...) later. 946 BasicBlock &EntryBB = F.getEntryBlock(); 947 DebugLoc FirstDL = getOrCreateDebugLoc(&*EntryBB.begin(), F.getSubprogram()); 948 BinaryOperator *SetjmpTableSize = BinaryOperator::Create( 949 Instruction::Add, IRB.getInt32(4), IRB.getInt32(0), "setjmpTableSize", 950 &*EntryBB.getFirstInsertionPt()); 951 SetjmpTableSize->setDebugLoc(FirstDL); 952 // setjmpTable = (int *) malloc(40); 953 Instruction *SetjmpTable = CallInst::CreateMalloc( 954 SetjmpTableSize, IRB.getInt32Ty(), IRB.getInt32Ty(), IRB.getInt32(40), 955 nullptr, nullptr, "setjmpTable"); 956 SetjmpTable->setDebugLoc(FirstDL); 957 // CallInst::CreateMalloc may return a bitcast instruction if the result types 958 // mismatch. We need to set the debug loc for the original call too. 959 auto *MallocCall = SetjmpTable->stripPointerCasts(); 960 if (auto *MallocCallI = dyn_cast<Instruction>(MallocCall)) { 961 MallocCallI->setDebugLoc(FirstDL); 962 } 963 // setjmpTable[0] = 0; 964 IRB.SetInsertPoint(SetjmpTableSize); 965 IRB.CreateStore(IRB.getInt32(0), SetjmpTable); 966 SetjmpTableInsts.push_back(SetjmpTable); 967 SetjmpTableSizeInsts.push_back(SetjmpTableSize); 968 969 // Setjmp transformation 970 std::vector<PHINode *> SetjmpRetPHIs; 971 Function *SetjmpF = M.getFunction("setjmp"); 972 for (User *U : SetjmpF->users()) { 973 auto *CI = dyn_cast<CallInst>(U); 974 if (!CI) 975 report_fatal_error("Does not support indirect calls to setjmp"); 976 977 BasicBlock *BB = CI->getParent(); 978 if (BB->getParent() != &F) // in other function 979 continue; 980 981 // The tail is everything right after the call, and will be reached once 982 // when setjmp is called, and later when longjmp returns to the setjmp 983 BasicBlock *Tail = SplitBlock(BB, CI->getNextNode()); 984 // Add a phi to the tail, which will be the output of setjmp, which 985 // indicates if this is the first call or a longjmp back. The phi directly 986 // uses the right value based on where we arrive from 987 IRB.SetInsertPoint(Tail->getFirstNonPHI()); 988 PHINode *SetjmpRet = IRB.CreatePHI(IRB.getInt32Ty(), 2, "setjmp.ret"); 989 990 // setjmp initial call returns 0 991 SetjmpRet->addIncoming(IRB.getInt32(0), BB); 992 // The proper output is now this, not the setjmp call itself 993 CI->replaceAllUsesWith(SetjmpRet); 994 // longjmp returns to the setjmp will add themselves to this phi 995 SetjmpRetPHIs.push_back(SetjmpRet); 996 997 // Fix call target 998 // Our index in the function is our place in the array + 1 to avoid index 999 // 0, because index 0 means the longjmp is not ours to handle. 1000 IRB.SetInsertPoint(CI); 1001 Value *Args[] = {CI->getArgOperand(0), IRB.getInt32(SetjmpRetPHIs.size()), 1002 SetjmpTable, SetjmpTableSize}; 1003 Instruction *NewSetjmpTable = 1004 IRB.CreateCall(SaveSetjmpF, Args, "setjmpTable"); 1005 Instruction *NewSetjmpTableSize = 1006 IRB.CreateCall(GetTempRet0Func, None, "setjmpTableSize"); 1007 SetjmpTableInsts.push_back(NewSetjmpTable); 1008 SetjmpTableSizeInsts.push_back(NewSetjmpTableSize); 1009 ToErase.push_back(CI); 1010 } 1011 1012 // Update each call that can longjmp so it can return to a setjmp where 1013 // relevant. 1014 1015 // Because we are creating new BBs while processing and don't want to make 1016 // all these newly created BBs candidates again for longjmp processing, we 1017 // first make the vector of candidate BBs. 1018 std::vector<BasicBlock *> BBs; 1019 for (BasicBlock &BB : F) 1020 BBs.push_back(&BB); 1021 1022 // BBs.size() will change within the loop, so we query it every time 1023 for (unsigned I = 0; I < BBs.size(); I++) { 1024 BasicBlock *BB = BBs[I]; 1025 for (Instruction &I : *BB) { 1026 assert(!isa<InvokeInst>(&I)); 1027 auto *CI = dyn_cast<CallInst>(&I); 1028 if (!CI) 1029 continue; 1030 1031 const Value *Callee = CI->getCalledOperand(); 1032 if (!canLongjmp(M, Callee)) 1033 continue; 1034 if (isEmAsmCall(M, Callee)) 1035 report_fatal_error("Cannot use EM_ASM* alongside setjmp/longjmp in " + 1036 F.getName() + 1037 ". Please consider using EM_JS, or move the " 1038 "EM_ASM into another function.", 1039 false); 1040 1041 Value *Threw = nullptr; 1042 BasicBlock *Tail; 1043 if (Callee->getName().startswith("__invoke_")) { 1044 // If invoke wrapper has already been generated for this call in 1045 // previous EH phase, search for the load instruction 1046 // %__THREW__.val = __THREW__; 1047 // in postamble after the invoke wrapper call 1048 LoadInst *ThrewLI = nullptr; 1049 StoreInst *ThrewResetSI = nullptr; 1050 for (auto I = std::next(BasicBlock::iterator(CI)), IE = BB->end(); 1051 I != IE; ++I) { 1052 if (auto *LI = dyn_cast<LoadInst>(I)) 1053 if (auto *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand())) 1054 if (GV == ThrewGV) { 1055 Threw = ThrewLI = LI; 1056 break; 1057 } 1058 } 1059 // Search for the store instruction after the load above 1060 // __THREW__ = 0; 1061 for (auto I = std::next(BasicBlock::iterator(ThrewLI)), IE = BB->end(); 1062 I != IE; ++I) { 1063 if (auto *SI = dyn_cast<StoreInst>(I)) 1064 if (auto *GV = dyn_cast<GlobalVariable>(SI->getPointerOperand())) 1065 if (GV == ThrewGV && SI->getValueOperand() == IRB.getInt32(0)) { 1066 ThrewResetSI = SI; 1067 break; 1068 } 1069 } 1070 assert(Threw && ThrewLI && "Cannot find __THREW__ load after invoke"); 1071 assert(ThrewResetSI && "Cannot find __THREW__ store after invoke"); 1072 Tail = SplitBlock(BB, ThrewResetSI->getNextNode()); 1073 1074 } else { 1075 // Wrap call with invoke wrapper and generate preamble/postamble 1076 Threw = wrapInvoke(CI); 1077 ToErase.push_back(CI); 1078 Tail = SplitBlock(BB, CI->getNextNode()); 1079 } 1080 1081 // We need to replace the terminator in Tail - SplitBlock makes BB go 1082 // straight to Tail, we need to check if a longjmp occurred, and go to the 1083 // right setjmp-tail if so 1084 ToErase.push_back(BB->getTerminator()); 1085 1086 // Generate a function call to testSetjmp function and preamble/postamble 1087 // code to figure out (1) whether longjmp occurred (2) if longjmp 1088 // occurred, which setjmp it corresponds to 1089 Value *Label = nullptr; 1090 Value *LongjmpResult = nullptr; 1091 BasicBlock *EndBB = nullptr; 1092 wrapTestSetjmp(BB, CI->getDebugLoc(), Threw, SetjmpTable, SetjmpTableSize, 1093 Label, LongjmpResult, EndBB); 1094 assert(Label && LongjmpResult && EndBB); 1095 1096 // Create switch instruction 1097 IRB.SetInsertPoint(EndBB); 1098 IRB.SetCurrentDebugLocation(EndBB->getInstList().back().getDebugLoc()); 1099 SwitchInst *SI = IRB.CreateSwitch(Label, Tail, SetjmpRetPHIs.size()); 1100 // -1 means no longjmp happened, continue normally (will hit the default 1101 // switch case). 0 means a longjmp that is not ours to handle, needs a 1102 // rethrow. Otherwise the index is the same as the index in P+1 (to avoid 1103 // 0). 1104 for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) { 1105 SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent()); 1106 SetjmpRetPHIs[I]->addIncoming(LongjmpResult, EndBB); 1107 } 1108 1109 // We are splitting the block here, and must continue to find other calls 1110 // in the block - which is now split. so continue to traverse in the Tail 1111 BBs.push_back(Tail); 1112 } 1113 } 1114 1115 // Erase everything we no longer need in this function 1116 for (Instruction *I : ToErase) 1117 I->eraseFromParent(); 1118 1119 // Free setjmpTable buffer before each return instruction 1120 for (BasicBlock &BB : F) { 1121 Instruction *TI = BB.getTerminator(); 1122 if (isa<ReturnInst>(TI)) { 1123 DebugLoc DL = getOrCreateDebugLoc(TI, F.getSubprogram()); 1124 auto *Free = CallInst::CreateFree(SetjmpTable, TI); 1125 Free->setDebugLoc(DL); 1126 // CallInst::CreateFree may create a bitcast instruction if its argument 1127 // types mismatch. We need to set the debug loc for the bitcast too. 1128 if (auto *FreeCallI = dyn_cast<CallInst>(Free)) { 1129 if (auto *BitCastI = dyn_cast<BitCastInst>(FreeCallI->getArgOperand(0))) 1130 BitCastI->setDebugLoc(DL); 1131 } 1132 } 1133 } 1134 1135 // Every call to saveSetjmp can change setjmpTable and setjmpTableSize 1136 // (when buffer reallocation occurs) 1137 // entry: 1138 // setjmpTableSize = 4; 1139 // setjmpTable = (int *) malloc(40); 1140 // setjmpTable[0] = 0; 1141 // ... 1142 // somebb: 1143 // setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize); 1144 // setjmpTableSize = getTempRet0(); 1145 // So we need to make sure the SSA for these variables is valid so that every 1146 // saveSetjmp and testSetjmp calls have the correct arguments. 1147 SSAUpdater SetjmpTableSSA; 1148 SSAUpdater SetjmpTableSizeSSA; 1149 SetjmpTableSSA.Initialize(Type::getInt32PtrTy(C), "setjmpTable"); 1150 SetjmpTableSizeSSA.Initialize(Type::getInt32Ty(C), "setjmpTableSize"); 1151 for (Instruction *I : SetjmpTableInsts) 1152 SetjmpTableSSA.AddAvailableValue(I->getParent(), I); 1153 for (Instruction *I : SetjmpTableSizeInsts) 1154 SetjmpTableSizeSSA.AddAvailableValue(I->getParent(), I); 1155 1156 for (auto UI = SetjmpTable->use_begin(), UE = SetjmpTable->use_end(); 1157 UI != UE;) { 1158 // Grab the use before incrementing the iterator. 1159 Use &U = *UI; 1160 // Increment the iterator before removing the use from the list. 1161 ++UI; 1162 if (auto *I = dyn_cast<Instruction>(U.getUser())) 1163 if (I->getParent() != &EntryBB) 1164 SetjmpTableSSA.RewriteUse(U); 1165 } 1166 for (auto UI = SetjmpTableSize->use_begin(), UE = SetjmpTableSize->use_end(); 1167 UI != UE;) { 1168 Use &U = *UI; 1169 ++UI; 1170 if (auto *I = dyn_cast<Instruction>(U.getUser())) 1171 if (I->getParent() != &EntryBB) 1172 SetjmpTableSizeSSA.RewriteUse(U); 1173 } 1174 1175 // Finally, our modifications to the cfg can break dominance of SSA variables. 1176 // For example, in this code, 1177 // if (x()) { .. setjmp() .. } 1178 // if (y()) { .. longjmp() .. } 1179 // We must split the longjmp block, and it can jump into the block splitted 1180 // from setjmp one. But that means that when we split the setjmp block, it's 1181 // first part no longer dominates its second part - there is a theoretically 1182 // possible control flow path where x() is false, then y() is true and we 1183 // reach the second part of the setjmp block, without ever reaching the first 1184 // part. So, we rebuild SSA form here. 1185 rebuildSSA(F); 1186 return true; 1187 } 1188