1 //=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// 10 /// \file 11 /// This file lowers exception-related instructions and setjmp/longjmp 12 /// function calls in order to use Emscripten's JavaScript try and catch 13 /// mechanism. 14 /// 15 /// To handle exceptions and setjmp/longjmps, this scheme relies on JavaScript's 16 /// try and catch syntax and relevant exception-related libraries implemented 17 /// in JavaScript glue code that will be produced by Emscripten. This is similar 18 /// to the current Emscripten asm.js exception handling in fastcomp. For 19 /// fastcomp's EH / SjLj scheme, see these files in fastcomp LLVM branch: 20 /// (Location: https://github.com/kripken/emscripten-fastcomp) 21 /// lib/Target/JSBackend/NaCl/LowerEmExceptionsPass.cpp 22 /// lib/Target/JSBackend/NaCl/LowerEmSetjmp.cpp 23 /// lib/Target/JSBackend/JSBackend.cpp 24 /// lib/Target/JSBackend/CallHandlers.h 25 /// 26 /// * Exception handling 27 /// This pass lowers invokes and landingpads into library functions in JS glue 28 /// code. Invokes are lowered into function wrappers called invoke wrappers that 29 /// exist in JS side, which wraps the original function call with JS try-catch. 30 /// If an exception occurred, cxa_throw() function in JS side sets some 31 /// variables (see below) so we can check whether an exception occurred from 32 /// wasm code and handle it appropriately. 33 /// 34 /// * Setjmp-longjmp handling 35 /// This pass lowers setjmp to a reasonably-performant approach for emscripten. 36 /// The idea is that each block with a setjmp is broken up into two parts: the 37 /// part containing setjmp and the part right after the setjmp. The latter part 38 /// is either reached from the setjmp, or later from a longjmp. To handle the 39 /// longjmp, all calls that might longjmp are also called using invoke wrappers 40 /// and thus JS / try-catch. JS longjmp() function also sets some variables so 41 /// we can check / whether a longjmp occurred from wasm code. Each block with a 42 /// function call that might longjmp is also split up after the longjmp call. 43 /// After the longjmp call, we check whether a longjmp occurred, and if it did, 44 /// which setjmp it corresponds to, and jump to the right post-setjmp block. 45 /// We assume setjmp-longjmp handling always run after EH handling, which means 46 /// we don't expect any exception-related instructions when SjLj runs. 47 /// FIXME Currently this scheme does not support indirect call of setjmp, 48 /// because of the limitation of the scheme itself. fastcomp does not support it 49 /// either. 50 /// 51 /// In detail, this pass does following things: 52 /// 53 /// 1) Assumes the existence of global variables: __THREW__, __threwValue 54 /// __THREW__ and __threwValue will be set in invoke wrappers 55 /// in JS glue code. For what invoke wrappers are, refer to 3). These 56 /// variables are used for both exceptions and setjmp/longjmps. 57 /// __THREW__ indicates whether an exception or a longjmp occurred or not. 0 58 /// means nothing occurred, 1 means an exception occurred, and other numbers 59 /// mean a longjmp occurred. In the case of longjmp, __threwValue variable 60 /// indicates the corresponding setjmp buffer the longjmp corresponds to. 61 /// 62 /// * Exception handling 63 /// 64 /// 2) We assume the existence of setThrew and setTempRet0/getTempRet0 functions 65 /// at link time. 66 /// The global variables in 1) will exist in wasm address space, 67 /// but their values should be set in JS code, so these functions 68 /// as interfaces to JS glue code. These functions are equivalent to the 69 /// following JS functions, which actually exist in asm.js version of JS 70 /// library. 71 /// 72 /// function setThrew(threw, value) { 73 /// if (__THREW__ == 0) { 74 /// __THREW__ = threw; 75 /// __threwValue = value; 76 /// } 77 /// } 78 // 79 /// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code. 80 /// 81 /// In exception handling, getTempRet0 indicates the type of an exception 82 /// caught, and in setjmp/longjmp, it means the second argument to longjmp 83 /// function. 84 /// 85 /// 3) Lower 86 /// invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad 87 /// into 88 /// __THREW__ = 0; 89 /// call @__invoke_SIG(func, arg1, arg2) 90 /// %__THREW__.val = __THREW__; 91 /// __THREW__ = 0; 92 /// if (%__THREW__.val == 1) 93 /// goto %lpad 94 /// else 95 /// goto %invoke.cont 96 /// SIG is a mangled string generated based on the LLVM IR-level function 97 /// signature. After LLVM IR types are lowered to the target wasm types, 98 /// the names for these wrappers will change based on wasm types as well, 99 /// as in invoke_vi (function takes an int and returns void). The bodies of 100 /// these wrappers will be generated in JS glue code, and inside those 101 /// wrappers we use JS try-catch to generate actual exception effects. It 102 /// also calls the original callee function. An example wrapper in JS code 103 /// would look like this: 104 /// function invoke_vi(index,a1) { 105 /// try { 106 /// Module["dynCall_vi"](index,a1); // This calls original callee 107 /// } catch(e) { 108 /// if (typeof e !== 'number' && e !== 'longjmp') throw e; 109 /// asm["setThrew"](1, 0); // setThrew is called here 110 /// } 111 /// } 112 /// If an exception is thrown, __THREW__ will be set to true in a wrapper, 113 /// so we can jump to the right BB based on this value. 114 /// 115 /// 4) Lower 116 /// %val = landingpad catch c1 catch c2 catch c3 ... 117 /// ... use %val ... 118 /// into 119 /// %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...) 120 /// %val = {%fmc, getTempRet0()} 121 /// ... use %val ... 122 /// Here N is a number calculated based on the number of clauses. 123 /// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code. 124 /// 125 /// 5) Lower 126 /// resume {%a, %b} 127 /// into 128 /// call @__resumeException(%a) 129 /// where __resumeException() is a function in JS glue code. 130 /// 131 /// 6) Lower 132 /// call @llvm.eh.typeid.for(type) (intrinsic) 133 /// into 134 /// call @llvm_eh_typeid_for(type) 135 /// llvm_eh_typeid_for function will be generated in JS glue code. 136 /// 137 /// * Setjmp / Longjmp handling 138 /// 139 /// In case calls to longjmp() exists 140 /// 141 /// 1) Lower 142 /// longjmp(buf, value) 143 /// into 144 /// emscripten_longjmp_jmpbuf(buf, value) 145 /// emscripten_longjmp_jmpbuf will be lowered to emscripten_longjmp later. 146 /// 147 /// In case calls to setjmp() exists 148 /// 149 /// 2) In the function entry that calls setjmp, initialize setjmpTable and 150 /// sejmpTableSize as follows: 151 /// setjmpTableSize = 4; 152 /// setjmpTable = (int *) malloc(40); 153 /// setjmpTable[0] = 0; 154 /// setjmpTable and setjmpTableSize are used in saveSetjmp() function in JS 155 /// code. 156 /// 157 /// 3) Lower 158 /// setjmp(buf) 159 /// into 160 /// setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize); 161 /// setjmpTableSize = getTempRet0(); 162 /// For each dynamic setjmp call, setjmpTable stores its ID (a number which 163 /// is incrementally assigned from 0) and its label (a unique number that 164 /// represents each callsite of setjmp). When we need more entries in 165 /// setjmpTable, it is reallocated in saveSetjmp() in JS code and it will 166 /// return the new table address, and assign the new table size in 167 /// setTempRet0(). saveSetjmp also stores the setjmp's ID into the buffer 168 /// buf. A BB with setjmp is split into two after setjmp call in order to 169 /// make the post-setjmp BB the possible destination of longjmp BB. 170 /// 171 /// 172 /// 4) Lower every call that might longjmp into 173 /// __THREW__ = 0; 174 /// call @__invoke_SIG(func, arg1, arg2) 175 /// %__THREW__.val = __THREW__; 176 /// __THREW__ = 0; 177 /// if (%__THREW__.val != 0 & __threwValue != 0) { 178 /// %label = testSetjmp(mem[%__THREW__.val], setjmpTable, 179 /// setjmpTableSize); 180 /// if (%label == 0) 181 /// emscripten_longjmp(%__THREW__.val, __threwValue); 182 /// setTempRet0(__threwValue); 183 /// } else { 184 /// %label = -1; 185 /// } 186 /// longjmp_result = getTempRet0(); 187 /// switch label { 188 /// label 1: goto post-setjmp BB 1 189 /// label 2: goto post-setjmp BB 2 190 /// ... 191 /// default: goto splitted next BB 192 /// } 193 /// testSetjmp examines setjmpTable to see if there is a matching setjmp 194 /// call. After calling an invoke wrapper, if a longjmp occurred, __THREW__ 195 /// will be the address of matching jmp_buf buffer and __threwValue be the 196 /// second argument to longjmp. mem[__THREW__.val] is a setjmp ID that is 197 /// stored in saveSetjmp. testSetjmp returns a setjmp label, a unique ID to 198 /// each setjmp callsite. Label 0 means this longjmp buffer does not 199 /// correspond to one of the setjmp callsites in this function, so in this 200 /// case we just chain the longjmp to the caller. (Here we call 201 /// emscripten_longjmp, which is different from emscripten_longjmp_jmpbuf. 202 /// emscripten_longjmp_jmpbuf takes jmp_buf as its first argument, while 203 /// emscripten_longjmp takes an int. Both of them will eventually be lowered 204 /// to emscripten_longjmp in s2wasm, but here we need two signatures - we 205 /// can't translate an int value to a jmp_buf.) 206 /// Label -1 means no longjmp occurred. Otherwise we jump to the right 207 /// post-setjmp BB based on the label. 208 /// 209 ///===----------------------------------------------------------------------===// 210 211 #include "WebAssembly.h" 212 #include "llvm/IR/CallSite.h" 213 #include "llvm/IR/Dominators.h" 214 #include "llvm/IR/IRBuilder.h" 215 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 216 #include "llvm/Transforms/Utils/SSAUpdater.h" 217 218 using namespace llvm; 219 220 #define DEBUG_TYPE "wasm-lower-em-ehsjlj" 221 222 static cl::list<std::string> 223 EHWhitelist("emscripten-cxx-exceptions-whitelist", 224 cl::desc("The list of function names in which Emscripten-style " 225 "exception handling is enabled (see emscripten " 226 "EMSCRIPTEN_CATCHING_WHITELIST options)"), 227 cl::CommaSeparated); 228 229 namespace { 230 class WebAssemblyLowerEmscriptenEHSjLj final : public ModulePass { 231 static const char *ResumeFName; 232 static const char *EHTypeIDFName; 233 static const char *EmLongjmpFName; 234 static const char *EmLongjmpJmpbufFName; 235 static const char *SaveSetjmpFName; 236 static const char *TestSetjmpFName; 237 static const char *FindMatchingCatchPrefix; 238 static const char *InvokePrefix; 239 240 bool EnableEH; // Enable exception handling 241 bool EnableSjLj; // Enable setjmp/longjmp handling 242 243 GlobalVariable *ThrewGV; 244 GlobalVariable *ThrewValueGV; 245 Function *GetTempRet0Func; 246 Function *SetTempRet0Func; 247 Function *ResumeF; 248 Function *EHTypeIDF; 249 Function *EmLongjmpF; 250 Function *EmLongjmpJmpbufF; 251 Function *SaveSetjmpF; 252 Function *TestSetjmpF; 253 254 // __cxa_find_matching_catch_N functions. 255 // Indexed by the number of clauses in an original landingpad instruction. 256 DenseMap<int, Function *> FindMatchingCatches; 257 // Map of <function signature string, invoke_ wrappers> 258 StringMap<Function *> InvokeWrappers; 259 // Set of whitelisted function names for exception handling 260 std::set<std::string> EHWhitelistSet; 261 262 StringRef getPassName() const override { 263 return "WebAssembly Lower Emscripten Exceptions"; 264 } 265 266 bool runEHOnFunction(Function &F); 267 bool runSjLjOnFunction(Function &F); 268 Function *getFindMatchingCatch(Module &M, unsigned NumClauses); 269 270 template <typename CallOrInvoke> Value *wrapInvoke(CallOrInvoke *CI); 271 void wrapTestSetjmp(BasicBlock *BB, Instruction *InsertPt, Value *Threw, 272 Value *SetjmpTable, Value *SetjmpTableSize, Value *&Label, 273 Value *&LongjmpResult, BasicBlock *&EndBB); 274 template <typename CallOrInvoke> Function *getInvokeWrapper(CallOrInvoke *CI); 275 276 bool areAllExceptionsAllowed() const { return EHWhitelistSet.empty(); } 277 bool canLongjmp(Module &M, const Value *Callee) const; 278 279 void rebuildSSA(Function &F); 280 281 public: 282 static char ID; 283 284 WebAssemblyLowerEmscriptenEHSjLj(bool EnableEH = true, bool EnableSjLj = true) 285 : ModulePass(ID), EnableEH(EnableEH), EnableSjLj(EnableSjLj), 286 ThrewGV(nullptr), ThrewValueGV(nullptr), GetTempRet0Func(nullptr), 287 SetTempRet0Func(nullptr), ResumeF(nullptr), EHTypeIDF(nullptr), 288 EmLongjmpF(nullptr), EmLongjmpJmpbufF(nullptr), SaveSetjmpF(nullptr), 289 TestSetjmpF(nullptr) { 290 EHWhitelistSet.insert(EHWhitelist.begin(), EHWhitelist.end()); 291 } 292 bool runOnModule(Module &M) override; 293 294 void getAnalysisUsage(AnalysisUsage &AU) const override { 295 AU.addRequired<DominatorTreeWrapperPass>(); 296 } 297 }; 298 } // End anonymous namespace 299 300 const char *WebAssemblyLowerEmscriptenEHSjLj::ResumeFName = "__resumeException"; 301 const char *WebAssemblyLowerEmscriptenEHSjLj::EHTypeIDFName = 302 "llvm_eh_typeid_for"; 303 const char *WebAssemblyLowerEmscriptenEHSjLj::EmLongjmpFName = 304 "emscripten_longjmp"; 305 const char *WebAssemblyLowerEmscriptenEHSjLj::EmLongjmpJmpbufFName = 306 "emscripten_longjmp_jmpbuf"; 307 const char *WebAssemblyLowerEmscriptenEHSjLj::SaveSetjmpFName = "saveSetjmp"; 308 const char *WebAssemblyLowerEmscriptenEHSjLj::TestSetjmpFName = "testSetjmp"; 309 const char *WebAssemblyLowerEmscriptenEHSjLj::FindMatchingCatchPrefix = 310 "__cxa_find_matching_catch_"; 311 const char *WebAssemblyLowerEmscriptenEHSjLj::InvokePrefix = "__invoke_"; 312 313 char WebAssemblyLowerEmscriptenEHSjLj::ID = 0; 314 INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj, DEBUG_TYPE, 315 "WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp", 316 false, false) 317 318 ModulePass *llvm::createWebAssemblyLowerEmscriptenEHSjLj(bool EnableEH, 319 bool EnableSjLj) { 320 return new WebAssemblyLowerEmscriptenEHSjLj(EnableEH, EnableSjLj); 321 } 322 323 static bool canThrow(const Value *V) { 324 if (const auto *F = dyn_cast<const Function>(V)) { 325 // Intrinsics cannot throw 326 if (F->isIntrinsic()) 327 return false; 328 StringRef Name = F->getName(); 329 // leave setjmp and longjmp (mostly) alone, we process them properly later 330 if (Name == "setjmp" || Name == "longjmp") 331 return false; 332 return !F->doesNotThrow(); 333 } 334 // not a function, so an indirect call - can throw, we can't tell 335 return true; 336 } 337 338 // Get a global variable with the given name. If it doesn't exist declare it, 339 // which will generate an import and asssumes that it will exist at link time. 340 static GlobalVariable *getGlobalVariableI32(Module &M, IRBuilder<> &IRB, 341 const char *Name) { 342 if (M.getNamedGlobal(Name)) 343 report_fatal_error(Twine("variable name is reserved: ") + Name); 344 345 return new GlobalVariable(M, IRB.getInt32Ty(), false, 346 GlobalValue::ExternalLinkage, nullptr, Name); 347 } 348 349 // Simple function name mangler. 350 // This function simply takes LLVM's string representation of parameter types 351 // and concatenate them with '_'. There are non-alphanumeric characters but llc 352 // is ok with it, and we need to postprocess these names after the lowering 353 // phase anyway. 354 static std::string getSignature(FunctionType *FTy) { 355 std::string Sig; 356 raw_string_ostream OS(Sig); 357 OS << *FTy->getReturnType(); 358 for (Type *ParamTy : FTy->params()) 359 OS << "_" << *ParamTy; 360 if (FTy->isVarArg()) 361 OS << "_..."; 362 Sig = OS.str(); 363 Sig.erase(remove_if(Sig, isspace), Sig.end()); 364 // When s2wasm parses .s file, a comma means the end of an argument. So a 365 // mangled function name can contain any character but a comma. 366 std::replace(Sig.begin(), Sig.end(), ',', '.'); 367 return Sig; 368 } 369 370 // Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2. 371 // This is because a landingpad instruction contains two more arguments, a 372 // personality function and a cleanup bit, and __cxa_find_matching_catch_N 373 // functions are named after the number of arguments in the original landingpad 374 // instruction. 375 Function * 376 WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module &M, 377 unsigned NumClauses) { 378 if (FindMatchingCatches.count(NumClauses)) 379 return FindMatchingCatches[NumClauses]; 380 PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext()); 381 SmallVector<Type *, 16> Args(NumClauses, Int8PtrTy); 382 FunctionType *FTy = FunctionType::get(Int8PtrTy, Args, false); 383 Function *F = 384 Function::Create(FTy, GlobalValue::ExternalLinkage, 385 FindMatchingCatchPrefix + Twine(NumClauses + 2), &M); 386 FindMatchingCatches[NumClauses] = F; 387 return F; 388 } 389 390 // Generate invoke wrapper seqence with preamble and postamble 391 // Preamble: 392 // __THREW__ = 0; 393 // Postamble: 394 // %__THREW__.val = __THREW__; __THREW__ = 0; 395 // Returns %__THREW__.val, which indicates whether an exception is thrown (or 396 // whether longjmp occurred), for future use. 397 template <typename CallOrInvoke> 398 Value *WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallOrInvoke *CI) { 399 LLVMContext &C = CI->getModule()->getContext(); 400 401 // If we are calling a function that is noreturn, we must remove that 402 // attribute. The code we insert here does expect it to return, after we 403 // catch the exception. 404 if (CI->doesNotReturn()) { 405 if (auto *F = dyn_cast<Function>(CI->getCalledValue())) 406 F->removeFnAttr(Attribute::NoReturn); 407 CI->removeAttribute(AttributeList::FunctionIndex, Attribute::NoReturn); 408 } 409 410 IRBuilder<> IRB(C); 411 IRB.SetInsertPoint(CI); 412 413 // Pre-invoke 414 // __THREW__ = 0; 415 IRB.CreateStore(IRB.getInt32(0), ThrewGV); 416 417 // Invoke function wrapper in JavaScript 418 SmallVector<Value *, 16> Args; 419 // Put the pointer to the callee as first argument, so it can be called 420 // within the invoke wrapper later 421 Args.push_back(CI->getCalledValue()); 422 Args.append(CI->arg_begin(), CI->arg_end()); 423 CallInst *NewCall = IRB.CreateCall(getInvokeWrapper(CI), Args); 424 NewCall->takeName(CI); 425 NewCall->setCallingConv(CI->getCallingConv()); 426 NewCall->setDebugLoc(CI->getDebugLoc()); 427 428 // Because we added the pointer to the callee as first argument, all 429 // argument attribute indices have to be incremented by one. 430 SmallVector<AttributeSet, 8> ArgAttributes; 431 const AttributeList &InvokeAL = CI->getAttributes(); 432 433 // No attributes for the callee pointer. 434 ArgAttributes.push_back(AttributeSet()); 435 // Copy the argument attributes from the original 436 for (unsigned i = 0, e = CI->getNumArgOperands(); i < e; ++i) 437 ArgAttributes.push_back(InvokeAL.getParamAttributes(i)); 438 439 // Reconstruct the AttributesList based on the vector we constructed. 440 AttributeList NewCallAL = 441 AttributeList::get(C, InvokeAL.getFnAttributes(), 442 InvokeAL.getRetAttributes(), ArgAttributes); 443 NewCall->setAttributes(NewCallAL); 444 445 CI->replaceAllUsesWith(NewCall); 446 447 // Post-invoke 448 // %__THREW__.val = __THREW__; __THREW__ = 0; 449 Value *Threw = IRB.CreateLoad(ThrewGV, ThrewGV->getName() + ".val"); 450 IRB.CreateStore(IRB.getInt32(0), ThrewGV); 451 return Threw; 452 } 453 454 // Get matching invoke wrapper based on callee signature 455 template <typename CallOrInvoke> 456 Function *WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallOrInvoke *CI) { 457 Module *M = CI->getModule(); 458 SmallVector<Type *, 16> ArgTys; 459 Value *Callee = CI->getCalledValue(); 460 FunctionType *CalleeFTy; 461 if (auto *F = dyn_cast<Function>(Callee)) 462 CalleeFTy = F->getFunctionType(); 463 else { 464 auto *CalleeTy = cast<PointerType>(Callee->getType())->getElementType(); 465 CalleeFTy = dyn_cast<FunctionType>(CalleeTy); 466 } 467 468 std::string Sig = getSignature(CalleeFTy); 469 if (InvokeWrappers.find(Sig) != InvokeWrappers.end()) 470 return InvokeWrappers[Sig]; 471 472 // Put the pointer to the callee as first argument 473 ArgTys.push_back(PointerType::getUnqual(CalleeFTy)); 474 // Add argument types 475 ArgTys.append(CalleeFTy->param_begin(), CalleeFTy->param_end()); 476 477 FunctionType *FTy = FunctionType::get(CalleeFTy->getReturnType(), ArgTys, 478 CalleeFTy->isVarArg()); 479 Function *F = Function::Create(FTy, GlobalValue::ExternalLinkage, 480 InvokePrefix + Sig, M); 481 InvokeWrappers[Sig] = F; 482 return F; 483 } 484 485 bool WebAssemblyLowerEmscriptenEHSjLj::canLongjmp(Module &M, 486 const Value *Callee) const { 487 if (auto *CalleeF = dyn_cast<Function>(Callee)) 488 if (CalleeF->isIntrinsic()) 489 return false; 490 491 // The reason we include malloc/free here is to exclude the malloc/free 492 // calls generated in setjmp prep / cleanup routines. 493 Function *SetjmpF = M.getFunction("setjmp"); 494 Function *MallocF = M.getFunction("malloc"); 495 Function *FreeF = M.getFunction("free"); 496 if (Callee == SetjmpF || Callee == MallocF || Callee == FreeF) 497 return false; 498 499 // There are functions in JS glue code 500 if (Callee == ResumeF || Callee == EHTypeIDF || Callee == SaveSetjmpF || 501 Callee == TestSetjmpF) 502 return false; 503 504 // __cxa_find_matching_catch_N functions cannot longjmp 505 if (Callee->getName().startswith(FindMatchingCatchPrefix)) 506 return false; 507 508 // Exception-catching related functions 509 Function *BeginCatchF = M.getFunction("__cxa_begin_catch"); 510 Function *EndCatchF = M.getFunction("__cxa_end_catch"); 511 Function *AllocExceptionF = M.getFunction("__cxa_allocate_exception"); 512 Function *ThrowF = M.getFunction("__cxa_throw"); 513 Function *TerminateF = M.getFunction("__clang_call_terminate"); 514 if (Callee == BeginCatchF || Callee == EndCatchF || 515 Callee == AllocExceptionF || Callee == ThrowF || Callee == TerminateF || 516 Callee == GetTempRet0Func || Callee == SetTempRet0Func) 517 return false; 518 519 // Otherwise we don't know 520 return true; 521 } 522 523 // Generate testSetjmp function call seqence with preamble and postamble. 524 // The code this generates is equivalent to the following JavaScript code: 525 // if (%__THREW__.val != 0 & threwValue != 0) { 526 // %label = _testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize); 527 // if (%label == 0) 528 // emscripten_longjmp(%__THREW__.val, threwValue); 529 // setTempRet0(threwValue); 530 // } else { 531 // %label = -1; 532 // } 533 // %longjmp_result = getTempRet0(); 534 // 535 // As output parameters. returns %label, %longjmp_result, and the BB the last 536 // instruction (%longjmp_result = ...) is in. 537 void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp( 538 BasicBlock *BB, Instruction *InsertPt, Value *Threw, Value *SetjmpTable, 539 Value *SetjmpTableSize, Value *&Label, Value *&LongjmpResult, 540 BasicBlock *&EndBB) { 541 Function *F = BB->getParent(); 542 LLVMContext &C = BB->getModule()->getContext(); 543 IRBuilder<> IRB(C); 544 IRB.SetInsertPoint(InsertPt); 545 546 // if (%__THREW__.val != 0 & threwValue != 0) 547 IRB.SetInsertPoint(BB); 548 BasicBlock *ThenBB1 = BasicBlock::Create(C, "if.then1", F); 549 BasicBlock *ElseBB1 = BasicBlock::Create(C, "if.else1", F); 550 BasicBlock *EndBB1 = BasicBlock::Create(C, "if.end", F); 551 Value *ThrewCmp = IRB.CreateICmpNE(Threw, IRB.getInt32(0)); 552 Value *ThrewValue = 553 IRB.CreateLoad(ThrewValueGV, ThrewValueGV->getName() + ".val"); 554 Value *ThrewValueCmp = IRB.CreateICmpNE(ThrewValue, IRB.getInt32(0)); 555 Value *Cmp1 = IRB.CreateAnd(ThrewCmp, ThrewValueCmp, "cmp1"); 556 IRB.CreateCondBr(Cmp1, ThenBB1, ElseBB1); 557 558 // %label = _testSetjmp(mem[%__THREW__.val], _setjmpTable, _setjmpTableSize); 559 // if (%label == 0) 560 IRB.SetInsertPoint(ThenBB1); 561 BasicBlock *ThenBB2 = BasicBlock::Create(C, "if.then2", F); 562 BasicBlock *EndBB2 = BasicBlock::Create(C, "if.end2", F); 563 Value *ThrewInt = IRB.CreateIntToPtr(Threw, Type::getInt32PtrTy(C), 564 Threw->getName() + ".i32p"); 565 Value *LoadedThrew = 566 IRB.CreateLoad(ThrewInt, ThrewInt->getName() + ".loaded"); 567 Value *ThenLabel = IRB.CreateCall( 568 TestSetjmpF, {LoadedThrew, SetjmpTable, SetjmpTableSize}, "label"); 569 Value *Cmp2 = IRB.CreateICmpEQ(ThenLabel, IRB.getInt32(0)); 570 IRB.CreateCondBr(Cmp2, ThenBB2, EndBB2); 571 572 // emscripten_longjmp(%__THREW__.val, threwValue); 573 IRB.SetInsertPoint(ThenBB2); 574 IRB.CreateCall(EmLongjmpF, {Threw, ThrewValue}); 575 IRB.CreateUnreachable(); 576 577 // setTempRet0(threwValue); 578 IRB.SetInsertPoint(EndBB2); 579 IRB.CreateCall(SetTempRet0Func, ThrewValue); 580 IRB.CreateBr(EndBB1); 581 582 IRB.SetInsertPoint(ElseBB1); 583 IRB.CreateBr(EndBB1); 584 585 // longjmp_result = getTempRet0(); 586 IRB.SetInsertPoint(EndBB1); 587 PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label"); 588 LabelPHI->addIncoming(ThenLabel, EndBB2); 589 590 LabelPHI->addIncoming(IRB.getInt32(-1), ElseBB1); 591 592 // Output parameter assignment 593 Label = LabelPHI; 594 EndBB = EndBB1; 595 LongjmpResult = IRB.CreateCall(GetTempRet0Func, None, "longjmp_result"); 596 } 597 598 void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function &F) { 599 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 600 DT.recalculate(F); // CFG has been changed 601 SSAUpdater SSA; 602 for (BasicBlock &BB : F) { 603 for (Instruction &I : BB) { 604 for (auto UI = I.use_begin(), UE = I.use_end(); UI != UE;) { 605 Use &U = *UI; 606 ++UI; 607 SSA.Initialize(I.getType(), I.getName()); 608 SSA.AddAvailableValue(&BB, &I); 609 Instruction *User = cast<Instruction>(U.getUser()); 610 if (User->getParent() == &BB) 611 continue; 612 613 if (PHINode *UserPN = dyn_cast<PHINode>(User)) 614 if (UserPN->getIncomingBlock(U) == &BB) 615 continue; 616 617 if (DT.dominates(&I, User)) 618 continue; 619 SSA.RewriteUseAfterInsertions(U); 620 } 621 } 622 } 623 } 624 625 bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module &M) { 626 LLVMContext &C = M.getContext(); 627 IRBuilder<> IRB(C); 628 629 Function *SetjmpF = M.getFunction("setjmp"); 630 Function *LongjmpF = M.getFunction("longjmp"); 631 bool SetjmpUsed = SetjmpF && !SetjmpF->use_empty(); 632 bool LongjmpUsed = LongjmpF && !LongjmpF->use_empty(); 633 bool DoSjLj = EnableSjLj && (SetjmpUsed || LongjmpUsed); 634 635 // Declare (or get) global variables __THREW__, __threwValue, and 636 // getTempRet0/setTempRet0 function which are used in common for both 637 // exception handling and setjmp/longjmp handling 638 ThrewGV = getGlobalVariableI32(M, IRB, "__THREW__"); 639 ThrewValueGV = getGlobalVariableI32(M, IRB, "__threwValue"); 640 GetTempRet0Func = 641 Function::Create(FunctionType::get(IRB.getInt32Ty(), false), 642 GlobalValue::ExternalLinkage, "getTempRet0", &M); 643 SetTempRet0Func = Function::Create( 644 FunctionType::get(IRB.getVoidTy(), IRB.getInt32Ty(), false), 645 GlobalValue::ExternalLinkage, "setTempRet0", &M); 646 GetTempRet0Func->setDoesNotThrow(); 647 SetTempRet0Func->setDoesNotThrow(); 648 649 bool Changed = false; 650 651 // Exception handling 652 if (EnableEH) { 653 // Register __resumeException function 654 FunctionType *ResumeFTy = 655 FunctionType::get(IRB.getVoidTy(), IRB.getInt8PtrTy(), false); 656 ResumeF = Function::Create(ResumeFTy, GlobalValue::ExternalLinkage, 657 ResumeFName, &M); 658 659 // Register llvm_eh_typeid_for function 660 FunctionType *EHTypeIDTy = 661 FunctionType::get(IRB.getInt32Ty(), IRB.getInt8PtrTy(), false); 662 EHTypeIDF = Function::Create(EHTypeIDTy, GlobalValue::ExternalLinkage, 663 EHTypeIDFName, &M); 664 665 for (Function &F : M) { 666 if (F.isDeclaration()) 667 continue; 668 Changed |= runEHOnFunction(F); 669 } 670 } 671 672 // Setjmp/longjmp handling 673 if (DoSjLj) { 674 Changed = true; // We have setjmp or longjmp somewhere 675 676 if (LongjmpF) { 677 // Replace all uses of longjmp with emscripten_longjmp_jmpbuf, which is 678 // defined in JS code 679 EmLongjmpJmpbufF = Function::Create(LongjmpF->getFunctionType(), 680 GlobalValue::ExternalLinkage, 681 EmLongjmpJmpbufFName, &M); 682 683 LongjmpF->replaceAllUsesWith(EmLongjmpJmpbufF); 684 } 685 686 if (SetjmpF) { 687 // Register saveSetjmp function 688 FunctionType *SetjmpFTy = SetjmpF->getFunctionType(); 689 SmallVector<Type *, 4> Params = {SetjmpFTy->getParamType(0), 690 IRB.getInt32Ty(), Type::getInt32PtrTy(C), 691 IRB.getInt32Ty()}; 692 FunctionType *FTy = 693 FunctionType::get(Type::getInt32PtrTy(C), Params, false); 694 SaveSetjmpF = Function::Create(FTy, GlobalValue::ExternalLinkage, 695 SaveSetjmpFName, &M); 696 697 // Register testSetjmp function 698 Params = {IRB.getInt32Ty(), Type::getInt32PtrTy(C), IRB.getInt32Ty()}; 699 FTy = FunctionType::get(IRB.getInt32Ty(), Params, false); 700 TestSetjmpF = Function::Create(FTy, GlobalValue::ExternalLinkage, 701 TestSetjmpFName, &M); 702 703 FTy = FunctionType::get(IRB.getVoidTy(), 704 {IRB.getInt32Ty(), IRB.getInt32Ty()}, false); 705 EmLongjmpF = Function::Create(FTy, GlobalValue::ExternalLinkage, 706 EmLongjmpFName, &M); 707 708 // Only traverse functions that uses setjmp in order not to insert 709 // unnecessary prep / cleanup code in every function 710 SmallPtrSet<Function *, 8> SetjmpUsers; 711 for (User *U : SetjmpF->users()) { 712 auto *UI = cast<Instruction>(U); 713 SetjmpUsers.insert(UI->getFunction()); 714 } 715 for (Function *F : SetjmpUsers) 716 runSjLjOnFunction(*F); 717 } 718 } 719 720 if (!Changed) { 721 // Delete unused global variables and functions 722 if (ResumeF) 723 ResumeF->eraseFromParent(); 724 if (EHTypeIDF) 725 EHTypeIDF->eraseFromParent(); 726 if (EmLongjmpF) 727 EmLongjmpF->eraseFromParent(); 728 if (SaveSetjmpF) 729 SaveSetjmpF->eraseFromParent(); 730 if (TestSetjmpF) 731 TestSetjmpF->eraseFromParent(); 732 return false; 733 } 734 735 return true; 736 } 737 738 bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function &F) { 739 Module &M = *F.getParent(); 740 LLVMContext &C = F.getContext(); 741 IRBuilder<> IRB(C); 742 bool Changed = false; 743 SmallVector<Instruction *, 64> ToErase; 744 SmallPtrSet<LandingPadInst *, 32> LandingPads; 745 bool AllowExceptions = 746 areAllExceptionsAllowed() || EHWhitelistSet.count(F.getName()); 747 748 for (BasicBlock &BB : F) { 749 auto *II = dyn_cast<InvokeInst>(BB.getTerminator()); 750 if (!II) 751 continue; 752 Changed = true; 753 LandingPads.insert(II->getLandingPadInst()); 754 IRB.SetInsertPoint(II); 755 756 bool NeedInvoke = AllowExceptions && canThrow(II->getCalledValue()); 757 if (NeedInvoke) { 758 // Wrap invoke with invoke wrapper and generate preamble/postamble 759 Value *Threw = wrapInvoke(II); 760 ToErase.push_back(II); 761 762 // Insert a branch based on __THREW__ variable 763 Value *Cmp = IRB.CreateICmpEQ(Threw, IRB.getInt32(1), "cmp"); 764 IRB.CreateCondBr(Cmp, II->getUnwindDest(), II->getNormalDest()); 765 766 } else { 767 // This can't throw, and we don't need this invoke, just replace it with a 768 // call+branch 769 SmallVector<Value *, 16> Args(II->arg_begin(), II->arg_end()); 770 CallInst *NewCall = IRB.CreateCall(II->getCalledValue(), Args); 771 NewCall->takeName(II); 772 NewCall->setCallingConv(II->getCallingConv()); 773 NewCall->setDebugLoc(II->getDebugLoc()); 774 NewCall->setAttributes(II->getAttributes()); 775 II->replaceAllUsesWith(NewCall); 776 ToErase.push_back(II); 777 778 IRB.CreateBr(II->getNormalDest()); 779 780 // Remove any PHI node entries from the exception destination 781 II->getUnwindDest()->removePredecessor(&BB); 782 } 783 } 784 785 // Process resume instructions 786 for (BasicBlock &BB : F) { 787 // Scan the body of the basic block for resumes 788 for (Instruction &I : BB) { 789 auto *RI = dyn_cast<ResumeInst>(&I); 790 if (!RI) 791 continue; 792 793 // Split the input into legal values 794 Value *Input = RI->getValue(); 795 IRB.SetInsertPoint(RI); 796 Value *Low = IRB.CreateExtractValue(Input, 0, "low"); 797 // Create a call to __resumeException function 798 IRB.CreateCall(ResumeF, {Low}); 799 // Add a terminator to the block 800 IRB.CreateUnreachable(); 801 ToErase.push_back(RI); 802 } 803 } 804 805 // Process llvm.eh.typeid.for intrinsics 806 for (BasicBlock &BB : F) { 807 for (Instruction &I : BB) { 808 auto *CI = dyn_cast<CallInst>(&I); 809 if (!CI) 810 continue; 811 const Function *Callee = CI->getCalledFunction(); 812 if (!Callee) 813 continue; 814 if (Callee->getIntrinsicID() != Intrinsic::eh_typeid_for) 815 continue; 816 817 IRB.SetInsertPoint(CI); 818 CallInst *NewCI = 819 IRB.CreateCall(EHTypeIDF, CI->getArgOperand(0), "typeid"); 820 CI->replaceAllUsesWith(NewCI); 821 ToErase.push_back(CI); 822 } 823 } 824 825 // Look for orphan landingpads, can occur in blocks with no predecessors 826 for (BasicBlock &BB : F) { 827 Instruction *I = BB.getFirstNonPHI(); 828 if (auto *LPI = dyn_cast<LandingPadInst>(I)) 829 LandingPads.insert(LPI); 830 } 831 832 // Handle all the landingpad for this function together, as multiple invokes 833 // may share a single lp 834 for (LandingPadInst *LPI : LandingPads) { 835 IRB.SetInsertPoint(LPI); 836 SmallVector<Value *, 16> FMCArgs; 837 for (unsigned i = 0, e = LPI->getNumClauses(); i < e; ++i) { 838 Constant *Clause = LPI->getClause(i); 839 // As a temporary workaround for the lack of aggregate varargs support 840 // in the interface between JS and wasm, break out filter operands into 841 // their component elements. 842 if (LPI->isFilter(i)) { 843 auto *ATy = cast<ArrayType>(Clause->getType()); 844 for (unsigned j = 0, e = ATy->getNumElements(); j < e; ++j) { 845 Value *EV = IRB.CreateExtractValue(Clause, makeArrayRef(j), "filter"); 846 FMCArgs.push_back(EV); 847 } 848 } else 849 FMCArgs.push_back(Clause); 850 } 851 852 // Create a call to __cxa_find_matching_catch_N function 853 Function *FMCF = getFindMatchingCatch(M, FMCArgs.size()); 854 CallInst *FMCI = IRB.CreateCall(FMCF, FMCArgs, "fmc"); 855 Value *Undef = UndefValue::get(LPI->getType()); 856 Value *Pair0 = IRB.CreateInsertValue(Undef, FMCI, 0, "pair0"); 857 Value *TempRet0 = IRB.CreateCall(GetTempRet0Func, None, "tempret0"); 858 Value *Pair1 = IRB.CreateInsertValue(Pair0, TempRet0, 1, "pair1"); 859 860 LPI->replaceAllUsesWith(Pair1); 861 ToErase.push_back(LPI); 862 } 863 864 // Erase everything we no longer need in this function 865 for (Instruction *I : ToErase) 866 I->eraseFromParent(); 867 868 return Changed; 869 } 870 871 bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function &F) { 872 Module &M = *F.getParent(); 873 LLVMContext &C = F.getContext(); 874 IRBuilder<> IRB(C); 875 SmallVector<Instruction *, 64> ToErase; 876 // Vector of %setjmpTable values 877 std::vector<Instruction *> SetjmpTableInsts; 878 // Vector of %setjmpTableSize values 879 std::vector<Instruction *> SetjmpTableSizeInsts; 880 881 // Setjmp preparation 882 883 // This instruction effectively means %setjmpTableSize = 4. 884 // We create this as an instruction intentionally, and we don't want to fold 885 // this instruction to a constant 4, because this value will be used in 886 // SSAUpdater.AddAvailableValue(...) later. 887 BasicBlock &EntryBB = F.getEntryBlock(); 888 BinaryOperator *SetjmpTableSize = BinaryOperator::Create( 889 Instruction::Add, IRB.getInt32(4), IRB.getInt32(0), "setjmpTableSize", 890 &*EntryBB.getFirstInsertionPt()); 891 // setjmpTable = (int *) malloc(40); 892 Instruction *SetjmpTable = CallInst::CreateMalloc( 893 SetjmpTableSize, IRB.getInt32Ty(), IRB.getInt32Ty(), IRB.getInt32(40), 894 nullptr, nullptr, "setjmpTable"); 895 // setjmpTable[0] = 0; 896 IRB.SetInsertPoint(SetjmpTableSize); 897 IRB.CreateStore(IRB.getInt32(0), SetjmpTable); 898 SetjmpTableInsts.push_back(SetjmpTable); 899 SetjmpTableSizeInsts.push_back(SetjmpTableSize); 900 901 // Setjmp transformation 902 std::vector<PHINode *> SetjmpRetPHIs; 903 Function *SetjmpF = M.getFunction("setjmp"); 904 for (User *U : SetjmpF->users()) { 905 auto *CI = dyn_cast<CallInst>(U); 906 if (!CI) 907 report_fatal_error("Does not support indirect calls to setjmp"); 908 909 BasicBlock *BB = CI->getParent(); 910 if (BB->getParent() != &F) // in other function 911 continue; 912 913 // The tail is everything right after the call, and will be reached once 914 // when setjmp is called, and later when longjmp returns to the setjmp 915 BasicBlock *Tail = SplitBlock(BB, CI->getNextNode()); 916 // Add a phi to the tail, which will be the output of setjmp, which 917 // indicates if this is the first call or a longjmp back. The phi directly 918 // uses the right value based on where we arrive from 919 IRB.SetInsertPoint(Tail->getFirstNonPHI()); 920 PHINode *SetjmpRet = IRB.CreatePHI(IRB.getInt32Ty(), 2, "setjmp.ret"); 921 922 // setjmp initial call returns 0 923 SetjmpRet->addIncoming(IRB.getInt32(0), BB); 924 // The proper output is now this, not the setjmp call itself 925 CI->replaceAllUsesWith(SetjmpRet); 926 // longjmp returns to the setjmp will add themselves to this phi 927 SetjmpRetPHIs.push_back(SetjmpRet); 928 929 // Fix call target 930 // Our index in the function is our place in the array + 1 to avoid index 931 // 0, because index 0 means the longjmp is not ours to handle. 932 IRB.SetInsertPoint(CI); 933 Value *Args[] = {CI->getArgOperand(0), IRB.getInt32(SetjmpRetPHIs.size()), 934 SetjmpTable, SetjmpTableSize}; 935 Instruction *NewSetjmpTable = 936 IRB.CreateCall(SaveSetjmpF, Args, "setjmpTable"); 937 Instruction *NewSetjmpTableSize = 938 IRB.CreateCall(GetTempRet0Func, None, "setjmpTableSize"); 939 SetjmpTableInsts.push_back(NewSetjmpTable); 940 SetjmpTableSizeInsts.push_back(NewSetjmpTableSize); 941 ToErase.push_back(CI); 942 } 943 944 // Update each call that can longjmp so it can return to a setjmp where 945 // relevant. 946 947 // Because we are creating new BBs while processing and don't want to make 948 // all these newly created BBs candidates again for longjmp processing, we 949 // first make the vector of candidate BBs. 950 std::vector<BasicBlock *> BBs; 951 for (BasicBlock &BB : F) 952 BBs.push_back(&BB); 953 954 // BBs.size() will change within the loop, so we query it every time 955 for (unsigned i = 0; i < BBs.size(); i++) { 956 BasicBlock *BB = BBs[i]; 957 for (Instruction &I : *BB) { 958 assert(!isa<InvokeInst>(&I)); 959 auto *CI = dyn_cast<CallInst>(&I); 960 if (!CI) 961 continue; 962 963 const Value *Callee = CI->getCalledValue(); 964 if (!canLongjmp(M, Callee)) 965 continue; 966 967 Value *Threw = nullptr; 968 BasicBlock *Tail; 969 if (Callee->getName().startswith(InvokePrefix)) { 970 // If invoke wrapper has already been generated for this call in 971 // previous EH phase, search for the load instruction 972 // %__THREW__.val = __THREW__; 973 // in postamble after the invoke wrapper call 974 LoadInst *ThrewLI = nullptr; 975 StoreInst *ThrewResetSI = nullptr; 976 for (auto I = std::next(BasicBlock::iterator(CI)), IE = BB->end(); 977 I != IE; ++I) { 978 if (auto *LI = dyn_cast<LoadInst>(I)) 979 if (auto *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand())) 980 if (GV == ThrewGV) { 981 Threw = ThrewLI = LI; 982 break; 983 } 984 } 985 // Search for the store instruction after the load above 986 // __THREW__ = 0; 987 for (auto I = std::next(BasicBlock::iterator(ThrewLI)), IE = BB->end(); 988 I != IE; ++I) { 989 if (auto *SI = dyn_cast<StoreInst>(I)) 990 if (auto *GV = dyn_cast<GlobalVariable>(SI->getPointerOperand())) 991 if (GV == ThrewGV && SI->getValueOperand() == IRB.getInt32(0)) { 992 ThrewResetSI = SI; 993 break; 994 } 995 } 996 assert(Threw && ThrewLI && "Cannot find __THREW__ load after invoke"); 997 assert(ThrewResetSI && "Cannot find __THREW__ store after invoke"); 998 Tail = SplitBlock(BB, ThrewResetSI->getNextNode()); 999 1000 } else { 1001 // Wrap call with invoke wrapper and generate preamble/postamble 1002 Threw = wrapInvoke(CI); 1003 ToErase.push_back(CI); 1004 Tail = SplitBlock(BB, CI->getNextNode()); 1005 } 1006 1007 // We need to replace the terminator in Tail - SplitBlock makes BB go 1008 // straight to Tail, we need to check if a longjmp occurred, and go to the 1009 // right setjmp-tail if so 1010 ToErase.push_back(BB->getTerminator()); 1011 1012 // Generate a function call to testSetjmp function and preamble/postamble 1013 // code to figure out (1) whether longjmp occurred (2) if longjmp 1014 // occurred, which setjmp it corresponds to 1015 Value *Label = nullptr; 1016 Value *LongjmpResult = nullptr; 1017 BasicBlock *EndBB = nullptr; 1018 wrapTestSetjmp(BB, CI, Threw, SetjmpTable, SetjmpTableSize, Label, 1019 LongjmpResult, EndBB); 1020 assert(Label && LongjmpResult && EndBB); 1021 1022 // Create switch instruction 1023 IRB.SetInsertPoint(EndBB); 1024 SwitchInst *SI = IRB.CreateSwitch(Label, Tail, SetjmpRetPHIs.size()); 1025 // -1 means no longjmp happened, continue normally (will hit the default 1026 // switch case). 0 means a longjmp that is not ours to handle, needs a 1027 // rethrow. Otherwise the index is the same as the index in P+1 (to avoid 1028 // 0). 1029 for (unsigned i = 0; i < SetjmpRetPHIs.size(); i++) { 1030 SI->addCase(IRB.getInt32(i + 1), SetjmpRetPHIs[i]->getParent()); 1031 SetjmpRetPHIs[i]->addIncoming(LongjmpResult, EndBB); 1032 } 1033 1034 // We are splitting the block here, and must continue to find other calls 1035 // in the block - which is now split. so continue to traverse in the Tail 1036 BBs.push_back(Tail); 1037 } 1038 } 1039 1040 // Erase everything we no longer need in this function 1041 for (Instruction *I : ToErase) 1042 I->eraseFromParent(); 1043 1044 // Free setjmpTable buffer before each return instruction 1045 for (BasicBlock &BB : F) { 1046 Instruction *TI = BB.getTerminator(); 1047 if (isa<ReturnInst>(TI)) 1048 CallInst::CreateFree(SetjmpTable, TI); 1049 } 1050 1051 // Every call to saveSetjmp can change setjmpTable and setjmpTableSize 1052 // (when buffer reallocation occurs) 1053 // entry: 1054 // setjmpTableSize = 4; 1055 // setjmpTable = (int *) malloc(40); 1056 // setjmpTable[0] = 0; 1057 // ... 1058 // somebb: 1059 // setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize); 1060 // setjmpTableSize = getTempRet0(); 1061 // So we need to make sure the SSA for these variables is valid so that every 1062 // saveSetjmp and testSetjmp calls have the correct arguments. 1063 SSAUpdater SetjmpTableSSA; 1064 SSAUpdater SetjmpTableSizeSSA; 1065 SetjmpTableSSA.Initialize(Type::getInt32PtrTy(C), "setjmpTable"); 1066 SetjmpTableSizeSSA.Initialize(Type::getInt32Ty(C), "setjmpTableSize"); 1067 for (Instruction *I : SetjmpTableInsts) 1068 SetjmpTableSSA.AddAvailableValue(I->getParent(), I); 1069 for (Instruction *I : SetjmpTableSizeInsts) 1070 SetjmpTableSizeSSA.AddAvailableValue(I->getParent(), I); 1071 1072 for (auto UI = SetjmpTable->use_begin(), UE = SetjmpTable->use_end(); 1073 UI != UE;) { 1074 // Grab the use before incrementing the iterator. 1075 Use &U = *UI; 1076 // Increment the iterator before removing the use from the list. 1077 ++UI; 1078 if (Instruction *I = dyn_cast<Instruction>(U.getUser())) 1079 if (I->getParent() != &EntryBB) 1080 SetjmpTableSSA.RewriteUse(U); 1081 } 1082 for (auto UI = SetjmpTableSize->use_begin(), UE = SetjmpTableSize->use_end(); 1083 UI != UE;) { 1084 Use &U = *UI; 1085 ++UI; 1086 if (Instruction *I = dyn_cast<Instruction>(U.getUser())) 1087 if (I->getParent() != &EntryBB) 1088 SetjmpTableSizeSSA.RewriteUse(U); 1089 } 1090 1091 // Finally, our modifications to the cfg can break dominance of SSA variables. 1092 // For example, in this code, 1093 // if (x()) { .. setjmp() .. } 1094 // if (y()) { .. longjmp() .. } 1095 // We must split the longjmp block, and it can jump into the block splitted 1096 // from setjmp one. But that means that when we split the setjmp block, it's 1097 // first part no longer dominates its second part - there is a theoretically 1098 // possible control flow path where x() is false, then y() is true and we 1099 // reach the second part of the setjmp block, without ever reaching the first 1100 // part. So, we rebuild SSA form here. 1101 rebuildSSA(F); 1102 return true; 1103 } 1104