1 //=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file lowers exception-related instructions and setjmp/longjmp 11 /// function calls in order to use Emscripten's JavaScript try and catch 12 /// mechanism. 13 /// 14 /// To handle exceptions and setjmp/longjmps, this scheme relies on JavaScript's 15 /// try and catch syntax and relevant exception-related libraries implemented 16 /// in JavaScript glue code that will be produced by Emscripten. This is similar 17 /// to the current Emscripten asm.js exception handling in fastcomp. For 18 /// fastcomp's EH / SjLj scheme, see these files in fastcomp LLVM branch: 19 /// (Location: https://github.com/kripken/emscripten-fastcomp) 20 /// lib/Target/JSBackend/NaCl/LowerEmExceptionsPass.cpp 21 /// lib/Target/JSBackend/NaCl/LowerEmSetjmp.cpp 22 /// lib/Target/JSBackend/JSBackend.cpp 23 /// lib/Target/JSBackend/CallHandlers.h 24 /// 25 /// * Exception handling 26 /// This pass lowers invokes and landingpads into library functions in JS glue 27 /// code. Invokes are lowered into function wrappers called invoke wrappers that 28 /// exist in JS side, which wraps the original function call with JS try-catch. 29 /// If an exception occurred, cxa_throw() function in JS side sets some 30 /// variables (see below) so we can check whether an exception occurred from 31 /// wasm code and handle it appropriately. 32 /// 33 /// * Setjmp-longjmp handling 34 /// This pass lowers setjmp to a reasonably-performant approach for emscripten. 35 /// The idea is that each block with a setjmp is broken up into two parts: the 36 /// part containing setjmp and the part right after the setjmp. The latter part 37 /// is either reached from the setjmp, or later from a longjmp. To handle the 38 /// longjmp, all calls that might longjmp are also called using invoke wrappers 39 /// and thus JS / try-catch. JS longjmp() function also sets some variables so 40 /// we can check / whether a longjmp occurred from wasm code. Each block with a 41 /// function call that might longjmp is also split up after the longjmp call. 42 /// After the longjmp call, we check whether a longjmp occurred, and if it did, 43 /// which setjmp it corresponds to, and jump to the right post-setjmp block. 44 /// We assume setjmp-longjmp handling always run after EH handling, which means 45 /// we don't expect any exception-related instructions when SjLj runs. 46 /// FIXME Currently this scheme does not support indirect call of setjmp, 47 /// because of the limitation of the scheme itself. fastcomp does not support it 48 /// either. 49 /// 50 /// In detail, this pass does following things: 51 /// 52 /// 1) Assumes the existence of global variables: __THREW__, __threwValue 53 /// __THREW__ and __threwValue will be set in invoke wrappers 54 /// in JS glue code. For what invoke wrappers are, refer to 3). These 55 /// variables are used for both exceptions and setjmp/longjmps. 56 /// __THREW__ indicates whether an exception or a longjmp occurred or not. 0 57 /// means nothing occurred, 1 means an exception occurred, and other numbers 58 /// mean a longjmp occurred. In the case of longjmp, __threwValue variable 59 /// indicates the corresponding setjmp buffer the longjmp corresponds to. 60 /// 61 /// * Exception handling 62 /// 63 /// 2) We assume the existence of setThrew and setTempRet0/getTempRet0 functions 64 /// at link time. 65 /// The global variables in 1) will exist in wasm address space, 66 /// but their values should be set in JS code, so these functions 67 /// as interfaces to JS glue code. These functions are equivalent to the 68 /// following JS functions, which actually exist in asm.js version of JS 69 /// library. 70 /// 71 /// function setThrew(threw, value) { 72 /// if (__THREW__ == 0) { 73 /// __THREW__ = threw; 74 /// __threwValue = value; 75 /// } 76 /// } 77 // 78 /// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code. 79 /// 80 /// In exception handling, getTempRet0 indicates the type of an exception 81 /// caught, and in setjmp/longjmp, it means the second argument to longjmp 82 /// function. 83 /// 84 /// 3) Lower 85 /// invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad 86 /// into 87 /// __THREW__ = 0; 88 /// call @__invoke_SIG(func, arg1, arg2) 89 /// %__THREW__.val = __THREW__; 90 /// __THREW__ = 0; 91 /// if (%__THREW__.val == 1) 92 /// goto %lpad 93 /// else 94 /// goto %invoke.cont 95 /// SIG is a mangled string generated based on the LLVM IR-level function 96 /// signature. After LLVM IR types are lowered to the target wasm types, 97 /// the names for these wrappers will change based on wasm types as well, 98 /// as in invoke_vi (function takes an int and returns void). The bodies of 99 /// these wrappers will be generated in JS glue code, and inside those 100 /// wrappers we use JS try-catch to generate actual exception effects. It 101 /// also calls the original callee function. An example wrapper in JS code 102 /// would look like this: 103 /// function invoke_vi(index,a1) { 104 /// try { 105 /// Module["dynCall_vi"](index,a1); // This calls original callee 106 /// } catch(e) { 107 /// if (typeof e !== 'number' && e !== 'longjmp') throw e; 108 /// asm["setThrew"](1, 0); // setThrew is called here 109 /// } 110 /// } 111 /// If an exception is thrown, __THREW__ will be set to true in a wrapper, 112 /// so we can jump to the right BB based on this value. 113 /// 114 /// 4) Lower 115 /// %val = landingpad catch c1 catch c2 catch c3 ... 116 /// ... use %val ... 117 /// into 118 /// %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...) 119 /// %val = {%fmc, getTempRet0()} 120 /// ... use %val ... 121 /// Here N is a number calculated based on the number of clauses. 122 /// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code. 123 /// 124 /// 5) Lower 125 /// resume {%a, %b} 126 /// into 127 /// call @__resumeException(%a) 128 /// where __resumeException() is a function in JS glue code. 129 /// 130 /// 6) Lower 131 /// call @llvm.eh.typeid.for(type) (intrinsic) 132 /// into 133 /// call @llvm_eh_typeid_for(type) 134 /// llvm_eh_typeid_for function will be generated in JS glue code. 135 /// 136 /// * Setjmp / Longjmp handling 137 /// 138 /// In case calls to longjmp() exists 139 /// 140 /// 1) Lower 141 /// longjmp(buf, value) 142 /// into 143 /// emscripten_longjmp_jmpbuf(buf, value) 144 /// emscripten_longjmp_jmpbuf will be lowered to emscripten_longjmp later. 145 /// 146 /// In case calls to setjmp() exists 147 /// 148 /// 2) In the function entry that calls setjmp, initialize setjmpTable and 149 /// sejmpTableSize as follows: 150 /// setjmpTableSize = 4; 151 /// setjmpTable = (int *) malloc(40); 152 /// setjmpTable[0] = 0; 153 /// setjmpTable and setjmpTableSize are used in saveSetjmp() function in JS 154 /// code. 155 /// 156 /// 3) Lower 157 /// setjmp(buf) 158 /// into 159 /// setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize); 160 /// setjmpTableSize = getTempRet0(); 161 /// For each dynamic setjmp call, setjmpTable stores its ID (a number which 162 /// is incrementally assigned from 0) and its label (a unique number that 163 /// represents each callsite of setjmp). When we need more entries in 164 /// setjmpTable, it is reallocated in saveSetjmp() in JS code and it will 165 /// return the new table address, and assign the new table size in 166 /// setTempRet0(). saveSetjmp also stores the setjmp's ID into the buffer 167 /// buf. A BB with setjmp is split into two after setjmp call in order to 168 /// make the post-setjmp BB the possible destination of longjmp BB. 169 /// 170 /// 171 /// 4) Lower every call that might longjmp into 172 /// __THREW__ = 0; 173 /// call @__invoke_SIG(func, arg1, arg2) 174 /// %__THREW__.val = __THREW__; 175 /// __THREW__ = 0; 176 /// if (%__THREW__.val != 0 & __threwValue != 0) { 177 /// %label = testSetjmp(mem[%__THREW__.val], setjmpTable, 178 /// setjmpTableSize); 179 /// if (%label == 0) 180 /// emscripten_longjmp(%__THREW__.val, __threwValue); 181 /// setTempRet0(__threwValue); 182 /// } else { 183 /// %label = -1; 184 /// } 185 /// longjmp_result = getTempRet0(); 186 /// switch label { 187 /// label 1: goto post-setjmp BB 1 188 /// label 2: goto post-setjmp BB 2 189 /// ... 190 /// default: goto splitted next BB 191 /// } 192 /// testSetjmp examines setjmpTable to see if there is a matching setjmp 193 /// call. After calling an invoke wrapper, if a longjmp occurred, __THREW__ 194 /// will be the address of matching jmp_buf buffer and __threwValue be the 195 /// second argument to longjmp. mem[__THREW__.val] is a setjmp ID that is 196 /// stored in saveSetjmp. testSetjmp returns a setjmp label, a unique ID to 197 /// each setjmp callsite. Label 0 means this longjmp buffer does not 198 /// correspond to one of the setjmp callsites in this function, so in this 199 /// case we just chain the longjmp to the caller. (Here we call 200 /// emscripten_longjmp, which is different from emscripten_longjmp_jmpbuf. 201 /// emscripten_longjmp_jmpbuf takes jmp_buf as its first argument, while 202 /// emscripten_longjmp takes an int. Both of them will eventually be lowered 203 /// to emscripten_longjmp in s2wasm, but here we need two signatures - we 204 /// can't translate an int value to a jmp_buf.) 205 /// Label -1 means no longjmp occurred. Otherwise we jump to the right 206 /// post-setjmp BB based on the label. 207 /// 208 ///===----------------------------------------------------------------------===// 209 210 #include "WebAssembly.h" 211 #include "llvm/IR/CallSite.h" 212 #include "llvm/IR/Dominators.h" 213 #include "llvm/IR/IRBuilder.h" 214 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 215 #include "llvm/Transforms/Utils/SSAUpdater.h" 216 217 using namespace llvm; 218 219 #define DEBUG_TYPE "wasm-lower-em-ehsjlj" 220 221 static cl::list<std::string> 222 EHWhitelist("emscripten-cxx-exceptions-whitelist", 223 cl::desc("The list of function names in which Emscripten-style " 224 "exception handling is enabled (see emscripten " 225 "EMSCRIPTEN_CATCHING_WHITELIST options)"), 226 cl::CommaSeparated); 227 228 namespace { 229 class WebAssemblyLowerEmscriptenEHSjLj final : public ModulePass { 230 static const char *ResumeFName; 231 static const char *EHTypeIDFName; 232 static const char *EmLongjmpFName; 233 static const char *EmLongjmpJmpbufFName; 234 static const char *SaveSetjmpFName; 235 static const char *TestSetjmpFName; 236 static const char *FindMatchingCatchPrefix; 237 static const char *InvokePrefix; 238 239 bool EnableEH; // Enable exception handling 240 bool EnableSjLj; // Enable setjmp/longjmp handling 241 242 GlobalVariable *ThrewGV = nullptr; 243 GlobalVariable *ThrewValueGV = nullptr; 244 Function *GetTempRet0Func = nullptr; 245 Function *SetTempRet0Func = nullptr; 246 Function *ResumeF = nullptr; 247 Function *EHTypeIDF = nullptr; 248 Function *EmLongjmpF = nullptr; 249 Function *EmLongjmpJmpbufF = nullptr; 250 Function *SaveSetjmpF = nullptr; 251 Function *TestSetjmpF = nullptr; 252 253 // __cxa_find_matching_catch_N functions. 254 // Indexed by the number of clauses in an original landingpad instruction. 255 DenseMap<int, Function *> FindMatchingCatches; 256 // Map of <function signature string, invoke_ wrappers> 257 StringMap<Function *> InvokeWrappers; 258 // Set of whitelisted function names for exception handling 259 std::set<std::string> EHWhitelistSet; 260 261 StringRef getPassName() const override { 262 return "WebAssembly Lower Emscripten Exceptions"; 263 } 264 265 bool runEHOnFunction(Function &F); 266 bool runSjLjOnFunction(Function &F); 267 Function *getFindMatchingCatch(Module &M, unsigned NumClauses); 268 269 template <typename CallOrInvoke> Value *wrapInvoke(CallOrInvoke *CI); 270 void wrapTestSetjmp(BasicBlock *BB, Instruction *InsertPt, Value *Threw, 271 Value *SetjmpTable, Value *SetjmpTableSize, Value *&Label, 272 Value *&LongjmpResult, BasicBlock *&EndBB); 273 template <typename CallOrInvoke> Function *getInvokeWrapper(CallOrInvoke *CI); 274 275 bool areAllExceptionsAllowed() const { return EHWhitelistSet.empty(); } 276 bool canLongjmp(Module &M, const Value *Callee) const; 277 278 void rebuildSSA(Function &F); 279 280 public: 281 static char ID; 282 283 WebAssemblyLowerEmscriptenEHSjLj(bool EnableEH = true, bool EnableSjLj = true) 284 : ModulePass(ID), EnableEH(EnableEH), EnableSjLj(EnableSjLj) { 285 EHWhitelistSet.insert(EHWhitelist.begin(), EHWhitelist.end()); 286 } 287 bool runOnModule(Module &M) override; 288 289 void getAnalysisUsage(AnalysisUsage &AU) const override { 290 AU.addRequired<DominatorTreeWrapperPass>(); 291 } 292 }; 293 } // End anonymous namespace 294 295 const char *WebAssemblyLowerEmscriptenEHSjLj::ResumeFName = "__resumeException"; 296 const char *WebAssemblyLowerEmscriptenEHSjLj::EHTypeIDFName = 297 "llvm_eh_typeid_for"; 298 const char *WebAssemblyLowerEmscriptenEHSjLj::EmLongjmpFName = 299 "emscripten_longjmp"; 300 const char *WebAssemblyLowerEmscriptenEHSjLj::EmLongjmpJmpbufFName = 301 "emscripten_longjmp_jmpbuf"; 302 const char *WebAssemblyLowerEmscriptenEHSjLj::SaveSetjmpFName = "saveSetjmp"; 303 const char *WebAssemblyLowerEmscriptenEHSjLj::TestSetjmpFName = "testSetjmp"; 304 const char *WebAssemblyLowerEmscriptenEHSjLj::FindMatchingCatchPrefix = 305 "__cxa_find_matching_catch_"; 306 const char *WebAssemblyLowerEmscriptenEHSjLj::InvokePrefix = "__invoke_"; 307 308 char WebAssemblyLowerEmscriptenEHSjLj::ID = 0; 309 INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj, DEBUG_TYPE, 310 "WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp", 311 false, false) 312 313 ModulePass *llvm::createWebAssemblyLowerEmscriptenEHSjLj(bool EnableEH, 314 bool EnableSjLj) { 315 return new WebAssemblyLowerEmscriptenEHSjLj(EnableEH, EnableSjLj); 316 } 317 318 static bool canThrow(const Value *V) { 319 if (const auto *F = dyn_cast<const Function>(V)) { 320 // Intrinsics cannot throw 321 if (F->isIntrinsic()) 322 return false; 323 StringRef Name = F->getName(); 324 // leave setjmp and longjmp (mostly) alone, we process them properly later 325 if (Name == "setjmp" || Name == "longjmp") 326 return false; 327 return !F->doesNotThrow(); 328 } 329 // not a function, so an indirect call - can throw, we can't tell 330 return true; 331 } 332 333 // Get a global variable with the given name. If it doesn't exist declare it, 334 // which will generate an import and asssumes that it will exist at link time. 335 static GlobalVariable *getGlobalVariableI32(Module &M, IRBuilder<> &IRB, 336 const char *Name) { 337 338 auto* GV = dyn_cast<GlobalVariable>(M.getOrInsertGlobal(Name, IRB.getInt32Ty())); 339 if (!GV) 340 report_fatal_error(Twine("unable to create global: ") + Name); 341 342 return GV; 343 } 344 345 // Simple function name mangler. 346 // This function simply takes LLVM's string representation of parameter types 347 // and concatenate them with '_'. There are non-alphanumeric characters but llc 348 // is ok with it, and we need to postprocess these names after the lowering 349 // phase anyway. 350 static std::string getSignature(FunctionType *FTy) { 351 std::string Sig; 352 raw_string_ostream OS(Sig); 353 OS << *FTy->getReturnType(); 354 for (Type *ParamTy : FTy->params()) 355 OS << "_" << *ParamTy; 356 if (FTy->isVarArg()) 357 OS << "_..."; 358 Sig = OS.str(); 359 Sig.erase(remove_if(Sig, isspace), Sig.end()); 360 // When s2wasm parses .s file, a comma means the end of an argument. So a 361 // mangled function name can contain any character but a comma. 362 std::replace(Sig.begin(), Sig.end(), ',', '.'); 363 return Sig; 364 } 365 366 // Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2. 367 // This is because a landingpad instruction contains two more arguments, a 368 // personality function and a cleanup bit, and __cxa_find_matching_catch_N 369 // functions are named after the number of arguments in the original landingpad 370 // instruction. 371 Function * 372 WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module &M, 373 unsigned NumClauses) { 374 if (FindMatchingCatches.count(NumClauses)) 375 return FindMatchingCatches[NumClauses]; 376 PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext()); 377 SmallVector<Type *, 16> Args(NumClauses, Int8PtrTy); 378 FunctionType *FTy = FunctionType::get(Int8PtrTy, Args, false); 379 Function *F = 380 Function::Create(FTy, GlobalValue::ExternalLinkage, 381 FindMatchingCatchPrefix + Twine(NumClauses + 2), &M); 382 FindMatchingCatches[NumClauses] = F; 383 return F; 384 } 385 386 // Generate invoke wrapper seqence with preamble and postamble 387 // Preamble: 388 // __THREW__ = 0; 389 // Postamble: 390 // %__THREW__.val = __THREW__; __THREW__ = 0; 391 // Returns %__THREW__.val, which indicates whether an exception is thrown (or 392 // whether longjmp occurred), for future use. 393 template <typename CallOrInvoke> 394 Value *WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallOrInvoke *CI) { 395 LLVMContext &C = CI->getModule()->getContext(); 396 397 // If we are calling a function that is noreturn, we must remove that 398 // attribute. The code we insert here does expect it to return, after we 399 // catch the exception. 400 if (CI->doesNotReturn()) { 401 if (auto *F = dyn_cast<Function>(CI->getCalledValue())) 402 F->removeFnAttr(Attribute::NoReturn); 403 CI->removeAttribute(AttributeList::FunctionIndex, Attribute::NoReturn); 404 } 405 406 IRBuilder<> IRB(C); 407 IRB.SetInsertPoint(CI); 408 409 // Pre-invoke 410 // __THREW__ = 0; 411 IRB.CreateStore(IRB.getInt32(0), ThrewGV); 412 413 // Invoke function wrapper in JavaScript 414 SmallVector<Value *, 16> Args; 415 // Put the pointer to the callee as first argument, so it can be called 416 // within the invoke wrapper later 417 Args.push_back(CI->getCalledValue()); 418 Args.append(CI->arg_begin(), CI->arg_end()); 419 CallInst *NewCall = IRB.CreateCall(getInvokeWrapper(CI), Args); 420 NewCall->takeName(CI); 421 NewCall->setCallingConv(CI->getCallingConv()); 422 NewCall->setDebugLoc(CI->getDebugLoc()); 423 424 // Because we added the pointer to the callee as first argument, all 425 // argument attribute indices have to be incremented by one. 426 SmallVector<AttributeSet, 8> ArgAttributes; 427 const AttributeList &InvokeAL = CI->getAttributes(); 428 429 // No attributes for the callee pointer. 430 ArgAttributes.push_back(AttributeSet()); 431 // Copy the argument attributes from the original 432 for (unsigned I = 0, E = CI->getNumArgOperands(); I < E; ++I) 433 ArgAttributes.push_back(InvokeAL.getParamAttributes(I)); 434 435 AttrBuilder FnAttrs(InvokeAL.getFnAttributes()); 436 if (FnAttrs.contains(Attribute::AllocSize)) { 437 // The allocsize attribute (if any) referes to parameters by index and needs 438 // to be adjusted. 439 unsigned SizeArg; 440 Optional<unsigned> NEltArg; 441 std::tie(SizeArg, NEltArg) = FnAttrs.getAllocSizeArgs(); 442 SizeArg += 1; 443 if (NEltArg.hasValue()) 444 NEltArg = NEltArg.getValue() + 1; 445 FnAttrs.addAllocSizeAttr(SizeArg, NEltArg); 446 } 447 448 // Reconstruct the AttributesList based on the vector we constructed. 449 AttributeList NewCallAL = 450 AttributeList::get(C, AttributeSet::get(C, FnAttrs), 451 InvokeAL.getRetAttributes(), ArgAttributes); 452 NewCall->setAttributes(NewCallAL); 453 454 CI->replaceAllUsesWith(NewCall); 455 456 // Post-invoke 457 // %__THREW__.val = __THREW__; __THREW__ = 0; 458 Value *Threw = 459 IRB.CreateLoad(IRB.getInt32Ty(), ThrewGV, ThrewGV->getName() + ".val"); 460 IRB.CreateStore(IRB.getInt32(0), ThrewGV); 461 return Threw; 462 } 463 464 // Get matching invoke wrapper based on callee signature 465 template <typename CallOrInvoke> 466 Function *WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallOrInvoke *CI) { 467 Module *M = CI->getModule(); 468 SmallVector<Type *, 16> ArgTys; 469 Value *Callee = CI->getCalledValue(); 470 FunctionType *CalleeFTy; 471 if (auto *F = dyn_cast<Function>(Callee)) 472 CalleeFTy = F->getFunctionType(); 473 else { 474 auto *CalleeTy = cast<PointerType>(Callee->getType())->getElementType(); 475 CalleeFTy = dyn_cast<FunctionType>(CalleeTy); 476 } 477 478 std::string Sig = getSignature(CalleeFTy); 479 if (InvokeWrappers.find(Sig) != InvokeWrappers.end()) 480 return InvokeWrappers[Sig]; 481 482 // Put the pointer to the callee as first argument 483 ArgTys.push_back(PointerType::getUnqual(CalleeFTy)); 484 // Add argument types 485 ArgTys.append(CalleeFTy->param_begin(), CalleeFTy->param_end()); 486 487 FunctionType *FTy = FunctionType::get(CalleeFTy->getReturnType(), ArgTys, 488 CalleeFTy->isVarArg()); 489 Function *F = Function::Create(FTy, GlobalValue::ExternalLinkage, 490 InvokePrefix + Sig, M); 491 InvokeWrappers[Sig] = F; 492 return F; 493 } 494 495 bool WebAssemblyLowerEmscriptenEHSjLj::canLongjmp(Module &M, 496 const Value *Callee) const { 497 if (auto *CalleeF = dyn_cast<Function>(Callee)) 498 if (CalleeF->isIntrinsic()) 499 return false; 500 501 // Attempting to transform inline assembly will result in something like: 502 // call void @__invoke_void(void ()* asm ...) 503 // which is invalid because inline assembly blocks do not have addresses 504 // and can't be passed by pointer. The result is a crash with illegal IR. 505 if (isa<InlineAsm>(Callee)) 506 return false; 507 508 // The reason we include malloc/free here is to exclude the malloc/free 509 // calls generated in setjmp prep / cleanup routines. 510 Function *SetjmpF = M.getFunction("setjmp"); 511 Function *MallocF = M.getFunction("malloc"); 512 Function *FreeF = M.getFunction("free"); 513 if (Callee == SetjmpF || Callee == MallocF || Callee == FreeF) 514 return false; 515 516 // There are functions in JS glue code 517 if (Callee == ResumeF || Callee == EHTypeIDF || Callee == SaveSetjmpF || 518 Callee == TestSetjmpF) 519 return false; 520 521 // __cxa_find_matching_catch_N functions cannot longjmp 522 if (Callee->getName().startswith(FindMatchingCatchPrefix)) 523 return false; 524 525 // Exception-catching related functions 526 Function *BeginCatchF = M.getFunction("__cxa_begin_catch"); 527 Function *EndCatchF = M.getFunction("__cxa_end_catch"); 528 Function *AllocExceptionF = M.getFunction("__cxa_allocate_exception"); 529 Function *ThrowF = M.getFunction("__cxa_throw"); 530 Function *TerminateF = M.getFunction("__clang_call_terminate"); 531 if (Callee == BeginCatchF || Callee == EndCatchF || 532 Callee == AllocExceptionF || Callee == ThrowF || Callee == TerminateF || 533 Callee == GetTempRet0Func || Callee == SetTempRet0Func) 534 return false; 535 536 // Otherwise we don't know 537 return true; 538 } 539 540 // Generate testSetjmp function call seqence with preamble and postamble. 541 // The code this generates is equivalent to the following JavaScript code: 542 // if (%__THREW__.val != 0 & threwValue != 0) { 543 // %label = _testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize); 544 // if (%label == 0) 545 // emscripten_longjmp(%__THREW__.val, threwValue); 546 // setTempRet0(threwValue); 547 // } else { 548 // %label = -1; 549 // } 550 // %longjmp_result = getTempRet0(); 551 // 552 // As output parameters. returns %label, %longjmp_result, and the BB the last 553 // instruction (%longjmp_result = ...) is in. 554 void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp( 555 BasicBlock *BB, Instruction *InsertPt, Value *Threw, Value *SetjmpTable, 556 Value *SetjmpTableSize, Value *&Label, Value *&LongjmpResult, 557 BasicBlock *&EndBB) { 558 Function *F = BB->getParent(); 559 LLVMContext &C = BB->getModule()->getContext(); 560 IRBuilder<> IRB(C); 561 IRB.SetInsertPoint(InsertPt); 562 563 // if (%__THREW__.val != 0 & threwValue != 0) 564 IRB.SetInsertPoint(BB); 565 BasicBlock *ThenBB1 = BasicBlock::Create(C, "if.then1", F); 566 BasicBlock *ElseBB1 = BasicBlock::Create(C, "if.else1", F); 567 BasicBlock *EndBB1 = BasicBlock::Create(C, "if.end", F); 568 Value *ThrewCmp = IRB.CreateICmpNE(Threw, IRB.getInt32(0)); 569 Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV, 570 ThrewValueGV->getName() + ".val"); 571 Value *ThrewValueCmp = IRB.CreateICmpNE(ThrewValue, IRB.getInt32(0)); 572 Value *Cmp1 = IRB.CreateAnd(ThrewCmp, ThrewValueCmp, "cmp1"); 573 IRB.CreateCondBr(Cmp1, ThenBB1, ElseBB1); 574 575 // %label = _testSetjmp(mem[%__THREW__.val], _setjmpTable, _setjmpTableSize); 576 // if (%label == 0) 577 IRB.SetInsertPoint(ThenBB1); 578 BasicBlock *ThenBB2 = BasicBlock::Create(C, "if.then2", F); 579 BasicBlock *EndBB2 = BasicBlock::Create(C, "if.end2", F); 580 Value *ThrewInt = IRB.CreateIntToPtr(Threw, Type::getInt32PtrTy(C), 581 Threw->getName() + ".i32p"); 582 Value *LoadedThrew = IRB.CreateLoad(IRB.getInt32Ty(), ThrewInt, 583 ThrewInt->getName() + ".loaded"); 584 Value *ThenLabel = IRB.CreateCall( 585 TestSetjmpF, {LoadedThrew, SetjmpTable, SetjmpTableSize}, "label"); 586 Value *Cmp2 = IRB.CreateICmpEQ(ThenLabel, IRB.getInt32(0)); 587 IRB.CreateCondBr(Cmp2, ThenBB2, EndBB2); 588 589 // emscripten_longjmp(%__THREW__.val, threwValue); 590 IRB.SetInsertPoint(ThenBB2); 591 IRB.CreateCall(EmLongjmpF, {Threw, ThrewValue}); 592 IRB.CreateUnreachable(); 593 594 // setTempRet0(threwValue); 595 IRB.SetInsertPoint(EndBB2); 596 IRB.CreateCall(SetTempRet0Func, ThrewValue); 597 IRB.CreateBr(EndBB1); 598 599 IRB.SetInsertPoint(ElseBB1); 600 IRB.CreateBr(EndBB1); 601 602 // longjmp_result = getTempRet0(); 603 IRB.SetInsertPoint(EndBB1); 604 PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label"); 605 LabelPHI->addIncoming(ThenLabel, EndBB2); 606 607 LabelPHI->addIncoming(IRB.getInt32(-1), ElseBB1); 608 609 // Output parameter assignment 610 Label = LabelPHI; 611 EndBB = EndBB1; 612 LongjmpResult = IRB.CreateCall(GetTempRet0Func, None, "longjmp_result"); 613 } 614 615 void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function &F) { 616 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 617 DT.recalculate(F); // CFG has been changed 618 SSAUpdater SSA; 619 for (BasicBlock &BB : F) { 620 for (Instruction &I : BB) { 621 for (auto UI = I.use_begin(), UE = I.use_end(); UI != UE;) { 622 Use &U = *UI; 623 ++UI; 624 SSA.Initialize(I.getType(), I.getName()); 625 SSA.AddAvailableValue(&BB, &I); 626 auto *User = cast<Instruction>(U.getUser()); 627 if (User->getParent() == &BB) 628 continue; 629 630 if (auto *UserPN = dyn_cast<PHINode>(User)) 631 if (UserPN->getIncomingBlock(U) == &BB) 632 continue; 633 634 if (DT.dominates(&I, User)) 635 continue; 636 SSA.RewriteUseAfterInsertions(U); 637 } 638 } 639 } 640 } 641 642 bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module &M) { 643 LLVM_DEBUG(dbgs() << "********** Lower Emscripten EH & SjLj **********\n"); 644 645 LLVMContext &C = M.getContext(); 646 IRBuilder<> IRB(C); 647 648 Function *SetjmpF = M.getFunction("setjmp"); 649 Function *LongjmpF = M.getFunction("longjmp"); 650 bool SetjmpUsed = SetjmpF && !SetjmpF->use_empty(); 651 bool LongjmpUsed = LongjmpF && !LongjmpF->use_empty(); 652 bool DoSjLj = EnableSjLj && (SetjmpUsed || LongjmpUsed); 653 654 // Declare (or get) global variables __THREW__, __threwValue, and 655 // getTempRet0/setTempRet0 function which are used in common for both 656 // exception handling and setjmp/longjmp handling 657 ThrewGV = getGlobalVariableI32(M, IRB, "__THREW__"); 658 ThrewValueGV = getGlobalVariableI32(M, IRB, "__threwValue"); 659 GetTempRet0Func = 660 Function::Create(FunctionType::get(IRB.getInt32Ty(), false), 661 GlobalValue::ExternalLinkage, "getTempRet0", &M); 662 SetTempRet0Func = Function::Create( 663 FunctionType::get(IRB.getVoidTy(), IRB.getInt32Ty(), false), 664 GlobalValue::ExternalLinkage, "setTempRet0", &M); 665 GetTempRet0Func->setDoesNotThrow(); 666 SetTempRet0Func->setDoesNotThrow(); 667 668 bool Changed = false; 669 670 // Exception handling 671 if (EnableEH) { 672 // Register __resumeException function 673 FunctionType *ResumeFTy = 674 FunctionType::get(IRB.getVoidTy(), IRB.getInt8PtrTy(), false); 675 ResumeF = Function::Create(ResumeFTy, GlobalValue::ExternalLinkage, 676 ResumeFName, &M); 677 678 // Register llvm_eh_typeid_for function 679 FunctionType *EHTypeIDTy = 680 FunctionType::get(IRB.getInt32Ty(), IRB.getInt8PtrTy(), false); 681 EHTypeIDF = Function::Create(EHTypeIDTy, GlobalValue::ExternalLinkage, 682 EHTypeIDFName, &M); 683 684 for (Function &F : M) { 685 if (F.isDeclaration()) 686 continue; 687 Changed |= runEHOnFunction(F); 688 } 689 } 690 691 // Setjmp/longjmp handling 692 if (DoSjLj) { 693 Changed = true; // We have setjmp or longjmp somewhere 694 695 if (LongjmpF) { 696 // Replace all uses of longjmp with emscripten_longjmp_jmpbuf, which is 697 // defined in JS code 698 EmLongjmpJmpbufF = Function::Create(LongjmpF->getFunctionType(), 699 GlobalValue::ExternalLinkage, 700 EmLongjmpJmpbufFName, &M); 701 702 LongjmpF->replaceAllUsesWith(EmLongjmpJmpbufF); 703 } 704 705 if (SetjmpF) { 706 // Register saveSetjmp function 707 FunctionType *SetjmpFTy = SetjmpF->getFunctionType(); 708 SmallVector<Type *, 4> Params = {SetjmpFTy->getParamType(0), 709 IRB.getInt32Ty(), Type::getInt32PtrTy(C), 710 IRB.getInt32Ty()}; 711 FunctionType *FTy = 712 FunctionType::get(Type::getInt32PtrTy(C), Params, false); 713 SaveSetjmpF = Function::Create(FTy, GlobalValue::ExternalLinkage, 714 SaveSetjmpFName, &M); 715 716 // Register testSetjmp function 717 Params = {IRB.getInt32Ty(), Type::getInt32PtrTy(C), IRB.getInt32Ty()}; 718 FTy = FunctionType::get(IRB.getInt32Ty(), Params, false); 719 TestSetjmpF = Function::Create(FTy, GlobalValue::ExternalLinkage, 720 TestSetjmpFName, &M); 721 722 FTy = FunctionType::get(IRB.getVoidTy(), 723 {IRB.getInt32Ty(), IRB.getInt32Ty()}, false); 724 EmLongjmpF = Function::Create(FTy, GlobalValue::ExternalLinkage, 725 EmLongjmpFName, &M); 726 727 // Only traverse functions that uses setjmp in order not to insert 728 // unnecessary prep / cleanup code in every function 729 SmallPtrSet<Function *, 8> SetjmpUsers; 730 for (User *U : SetjmpF->users()) { 731 auto *UI = cast<Instruction>(U); 732 SetjmpUsers.insert(UI->getFunction()); 733 } 734 for (Function *F : SetjmpUsers) 735 runSjLjOnFunction(*F); 736 } 737 } 738 739 if (!Changed) { 740 // Delete unused global variables and functions 741 if (ResumeF) 742 ResumeF->eraseFromParent(); 743 if (EHTypeIDF) 744 EHTypeIDF->eraseFromParent(); 745 if (EmLongjmpF) 746 EmLongjmpF->eraseFromParent(); 747 if (SaveSetjmpF) 748 SaveSetjmpF->eraseFromParent(); 749 if (TestSetjmpF) 750 TestSetjmpF->eraseFromParent(); 751 return false; 752 } 753 754 return true; 755 } 756 757 bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function &F) { 758 Module &M = *F.getParent(); 759 LLVMContext &C = F.getContext(); 760 IRBuilder<> IRB(C); 761 bool Changed = false; 762 SmallVector<Instruction *, 64> ToErase; 763 SmallPtrSet<LandingPadInst *, 32> LandingPads; 764 bool AllowExceptions = 765 areAllExceptionsAllowed() || EHWhitelistSet.count(F.getName()); 766 767 for (BasicBlock &BB : F) { 768 auto *II = dyn_cast<InvokeInst>(BB.getTerminator()); 769 if (!II) 770 continue; 771 Changed = true; 772 LandingPads.insert(II->getLandingPadInst()); 773 IRB.SetInsertPoint(II); 774 775 bool NeedInvoke = AllowExceptions && canThrow(II->getCalledValue()); 776 if (NeedInvoke) { 777 // Wrap invoke with invoke wrapper and generate preamble/postamble 778 Value *Threw = wrapInvoke(II); 779 ToErase.push_back(II); 780 781 // Insert a branch based on __THREW__ variable 782 Value *Cmp = IRB.CreateICmpEQ(Threw, IRB.getInt32(1), "cmp"); 783 IRB.CreateCondBr(Cmp, II->getUnwindDest(), II->getNormalDest()); 784 785 } else { 786 // This can't throw, and we don't need this invoke, just replace it with a 787 // call+branch 788 SmallVector<Value *, 16> Args(II->arg_begin(), II->arg_end()); 789 CallInst *NewCall = 790 IRB.CreateCall(II->getFunctionType(), II->getCalledValue(), Args); 791 NewCall->takeName(II); 792 NewCall->setCallingConv(II->getCallingConv()); 793 NewCall->setDebugLoc(II->getDebugLoc()); 794 NewCall->setAttributes(II->getAttributes()); 795 II->replaceAllUsesWith(NewCall); 796 ToErase.push_back(II); 797 798 IRB.CreateBr(II->getNormalDest()); 799 800 // Remove any PHI node entries from the exception destination 801 II->getUnwindDest()->removePredecessor(&BB); 802 } 803 } 804 805 // Process resume instructions 806 for (BasicBlock &BB : F) { 807 // Scan the body of the basic block for resumes 808 for (Instruction &I : BB) { 809 auto *RI = dyn_cast<ResumeInst>(&I); 810 if (!RI) 811 continue; 812 813 // Split the input into legal values 814 Value *Input = RI->getValue(); 815 IRB.SetInsertPoint(RI); 816 Value *Low = IRB.CreateExtractValue(Input, 0, "low"); 817 // Create a call to __resumeException function 818 IRB.CreateCall(ResumeF, {Low}); 819 // Add a terminator to the block 820 IRB.CreateUnreachable(); 821 ToErase.push_back(RI); 822 } 823 } 824 825 // Process llvm.eh.typeid.for intrinsics 826 for (BasicBlock &BB : F) { 827 for (Instruction &I : BB) { 828 auto *CI = dyn_cast<CallInst>(&I); 829 if (!CI) 830 continue; 831 const Function *Callee = CI->getCalledFunction(); 832 if (!Callee) 833 continue; 834 if (Callee->getIntrinsicID() != Intrinsic::eh_typeid_for) 835 continue; 836 837 IRB.SetInsertPoint(CI); 838 CallInst *NewCI = 839 IRB.CreateCall(EHTypeIDF, CI->getArgOperand(0), "typeid"); 840 CI->replaceAllUsesWith(NewCI); 841 ToErase.push_back(CI); 842 } 843 } 844 845 // Look for orphan landingpads, can occur in blocks with no predecessors 846 for (BasicBlock &BB : F) { 847 Instruction *I = BB.getFirstNonPHI(); 848 if (auto *LPI = dyn_cast<LandingPadInst>(I)) 849 LandingPads.insert(LPI); 850 } 851 852 // Handle all the landingpad for this function together, as multiple invokes 853 // may share a single lp 854 for (LandingPadInst *LPI : LandingPads) { 855 IRB.SetInsertPoint(LPI); 856 SmallVector<Value *, 16> FMCArgs; 857 for (unsigned I = 0, E = LPI->getNumClauses(); I < E; ++I) { 858 Constant *Clause = LPI->getClause(I); 859 // As a temporary workaround for the lack of aggregate varargs support 860 // in the interface between JS and wasm, break out filter operands into 861 // their component elements. 862 if (LPI->isFilter(I)) { 863 auto *ATy = cast<ArrayType>(Clause->getType()); 864 for (unsigned J = 0, E = ATy->getNumElements(); J < E; ++J) { 865 Value *EV = IRB.CreateExtractValue(Clause, makeArrayRef(J), "filter"); 866 FMCArgs.push_back(EV); 867 } 868 } else 869 FMCArgs.push_back(Clause); 870 } 871 872 // Create a call to __cxa_find_matching_catch_N function 873 Function *FMCF = getFindMatchingCatch(M, FMCArgs.size()); 874 CallInst *FMCI = IRB.CreateCall(FMCF, FMCArgs, "fmc"); 875 Value *Undef = UndefValue::get(LPI->getType()); 876 Value *Pair0 = IRB.CreateInsertValue(Undef, FMCI, 0, "pair0"); 877 Value *TempRet0 = IRB.CreateCall(GetTempRet0Func, None, "tempret0"); 878 Value *Pair1 = IRB.CreateInsertValue(Pair0, TempRet0, 1, "pair1"); 879 880 LPI->replaceAllUsesWith(Pair1); 881 ToErase.push_back(LPI); 882 } 883 884 // Erase everything we no longer need in this function 885 for (Instruction *I : ToErase) 886 I->eraseFromParent(); 887 888 return Changed; 889 } 890 891 bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function &F) { 892 Module &M = *F.getParent(); 893 LLVMContext &C = F.getContext(); 894 IRBuilder<> IRB(C); 895 SmallVector<Instruction *, 64> ToErase; 896 // Vector of %setjmpTable values 897 std::vector<Instruction *> SetjmpTableInsts; 898 // Vector of %setjmpTableSize values 899 std::vector<Instruction *> SetjmpTableSizeInsts; 900 901 // Setjmp preparation 902 903 // This instruction effectively means %setjmpTableSize = 4. 904 // We create this as an instruction intentionally, and we don't want to fold 905 // this instruction to a constant 4, because this value will be used in 906 // SSAUpdater.AddAvailableValue(...) later. 907 BasicBlock &EntryBB = F.getEntryBlock(); 908 BinaryOperator *SetjmpTableSize = BinaryOperator::Create( 909 Instruction::Add, IRB.getInt32(4), IRB.getInt32(0), "setjmpTableSize", 910 &*EntryBB.getFirstInsertionPt()); 911 // setjmpTable = (int *) malloc(40); 912 Instruction *SetjmpTable = CallInst::CreateMalloc( 913 SetjmpTableSize, IRB.getInt32Ty(), IRB.getInt32Ty(), IRB.getInt32(40), 914 nullptr, nullptr, "setjmpTable"); 915 // setjmpTable[0] = 0; 916 IRB.SetInsertPoint(SetjmpTableSize); 917 IRB.CreateStore(IRB.getInt32(0), SetjmpTable); 918 SetjmpTableInsts.push_back(SetjmpTable); 919 SetjmpTableSizeInsts.push_back(SetjmpTableSize); 920 921 // Setjmp transformation 922 std::vector<PHINode *> SetjmpRetPHIs; 923 Function *SetjmpF = M.getFunction("setjmp"); 924 for (User *U : SetjmpF->users()) { 925 auto *CI = dyn_cast<CallInst>(U); 926 if (!CI) 927 report_fatal_error("Does not support indirect calls to setjmp"); 928 929 BasicBlock *BB = CI->getParent(); 930 if (BB->getParent() != &F) // in other function 931 continue; 932 933 // The tail is everything right after the call, and will be reached once 934 // when setjmp is called, and later when longjmp returns to the setjmp 935 BasicBlock *Tail = SplitBlock(BB, CI->getNextNode()); 936 // Add a phi to the tail, which will be the output of setjmp, which 937 // indicates if this is the first call or a longjmp back. The phi directly 938 // uses the right value based on where we arrive from 939 IRB.SetInsertPoint(Tail->getFirstNonPHI()); 940 PHINode *SetjmpRet = IRB.CreatePHI(IRB.getInt32Ty(), 2, "setjmp.ret"); 941 942 // setjmp initial call returns 0 943 SetjmpRet->addIncoming(IRB.getInt32(0), BB); 944 // The proper output is now this, not the setjmp call itself 945 CI->replaceAllUsesWith(SetjmpRet); 946 // longjmp returns to the setjmp will add themselves to this phi 947 SetjmpRetPHIs.push_back(SetjmpRet); 948 949 // Fix call target 950 // Our index in the function is our place in the array + 1 to avoid index 951 // 0, because index 0 means the longjmp is not ours to handle. 952 IRB.SetInsertPoint(CI); 953 Value *Args[] = {CI->getArgOperand(0), IRB.getInt32(SetjmpRetPHIs.size()), 954 SetjmpTable, SetjmpTableSize}; 955 Instruction *NewSetjmpTable = 956 IRB.CreateCall(SaveSetjmpF, Args, "setjmpTable"); 957 Instruction *NewSetjmpTableSize = 958 IRB.CreateCall(GetTempRet0Func, None, "setjmpTableSize"); 959 SetjmpTableInsts.push_back(NewSetjmpTable); 960 SetjmpTableSizeInsts.push_back(NewSetjmpTableSize); 961 ToErase.push_back(CI); 962 } 963 964 // Update each call that can longjmp so it can return to a setjmp where 965 // relevant. 966 967 // Because we are creating new BBs while processing and don't want to make 968 // all these newly created BBs candidates again for longjmp processing, we 969 // first make the vector of candidate BBs. 970 std::vector<BasicBlock *> BBs; 971 for (BasicBlock &BB : F) 972 BBs.push_back(&BB); 973 974 // BBs.size() will change within the loop, so we query it every time 975 for (unsigned I = 0; I < BBs.size(); I++) { 976 BasicBlock *BB = BBs[I]; 977 for (Instruction &I : *BB) { 978 assert(!isa<InvokeInst>(&I)); 979 auto *CI = dyn_cast<CallInst>(&I); 980 if (!CI) 981 continue; 982 983 const Value *Callee = CI->getCalledValue(); 984 if (!canLongjmp(M, Callee)) 985 continue; 986 987 Value *Threw = nullptr; 988 BasicBlock *Tail; 989 if (Callee->getName().startswith(InvokePrefix)) { 990 // If invoke wrapper has already been generated for this call in 991 // previous EH phase, search for the load instruction 992 // %__THREW__.val = __THREW__; 993 // in postamble after the invoke wrapper call 994 LoadInst *ThrewLI = nullptr; 995 StoreInst *ThrewResetSI = nullptr; 996 for (auto I = std::next(BasicBlock::iterator(CI)), IE = BB->end(); 997 I != IE; ++I) { 998 if (auto *LI = dyn_cast<LoadInst>(I)) 999 if (auto *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand())) 1000 if (GV == ThrewGV) { 1001 Threw = ThrewLI = LI; 1002 break; 1003 } 1004 } 1005 // Search for the store instruction after the load above 1006 // __THREW__ = 0; 1007 for (auto I = std::next(BasicBlock::iterator(ThrewLI)), IE = BB->end(); 1008 I != IE; ++I) { 1009 if (auto *SI = dyn_cast<StoreInst>(I)) 1010 if (auto *GV = dyn_cast<GlobalVariable>(SI->getPointerOperand())) 1011 if (GV == ThrewGV && SI->getValueOperand() == IRB.getInt32(0)) { 1012 ThrewResetSI = SI; 1013 break; 1014 } 1015 } 1016 assert(Threw && ThrewLI && "Cannot find __THREW__ load after invoke"); 1017 assert(ThrewResetSI && "Cannot find __THREW__ store after invoke"); 1018 Tail = SplitBlock(BB, ThrewResetSI->getNextNode()); 1019 1020 } else { 1021 // Wrap call with invoke wrapper and generate preamble/postamble 1022 Threw = wrapInvoke(CI); 1023 ToErase.push_back(CI); 1024 Tail = SplitBlock(BB, CI->getNextNode()); 1025 } 1026 1027 // We need to replace the terminator in Tail - SplitBlock makes BB go 1028 // straight to Tail, we need to check if a longjmp occurred, and go to the 1029 // right setjmp-tail if so 1030 ToErase.push_back(BB->getTerminator()); 1031 1032 // Generate a function call to testSetjmp function and preamble/postamble 1033 // code to figure out (1) whether longjmp occurred (2) if longjmp 1034 // occurred, which setjmp it corresponds to 1035 Value *Label = nullptr; 1036 Value *LongjmpResult = nullptr; 1037 BasicBlock *EndBB = nullptr; 1038 wrapTestSetjmp(BB, CI, Threw, SetjmpTable, SetjmpTableSize, Label, 1039 LongjmpResult, EndBB); 1040 assert(Label && LongjmpResult && EndBB); 1041 1042 // Create switch instruction 1043 IRB.SetInsertPoint(EndBB); 1044 SwitchInst *SI = IRB.CreateSwitch(Label, Tail, SetjmpRetPHIs.size()); 1045 // -1 means no longjmp happened, continue normally (will hit the default 1046 // switch case). 0 means a longjmp that is not ours to handle, needs a 1047 // rethrow. Otherwise the index is the same as the index in P+1 (to avoid 1048 // 0). 1049 for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) { 1050 SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent()); 1051 SetjmpRetPHIs[I]->addIncoming(LongjmpResult, EndBB); 1052 } 1053 1054 // We are splitting the block here, and must continue to find other calls 1055 // in the block - which is now split. so continue to traverse in the Tail 1056 BBs.push_back(Tail); 1057 } 1058 } 1059 1060 // Erase everything we no longer need in this function 1061 for (Instruction *I : ToErase) 1062 I->eraseFromParent(); 1063 1064 // Free setjmpTable buffer before each return instruction 1065 for (BasicBlock &BB : F) { 1066 Instruction *TI = BB.getTerminator(); 1067 if (isa<ReturnInst>(TI)) 1068 CallInst::CreateFree(SetjmpTable, TI); 1069 } 1070 1071 // Every call to saveSetjmp can change setjmpTable and setjmpTableSize 1072 // (when buffer reallocation occurs) 1073 // entry: 1074 // setjmpTableSize = 4; 1075 // setjmpTable = (int *) malloc(40); 1076 // setjmpTable[0] = 0; 1077 // ... 1078 // somebb: 1079 // setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize); 1080 // setjmpTableSize = getTempRet0(); 1081 // So we need to make sure the SSA for these variables is valid so that every 1082 // saveSetjmp and testSetjmp calls have the correct arguments. 1083 SSAUpdater SetjmpTableSSA; 1084 SSAUpdater SetjmpTableSizeSSA; 1085 SetjmpTableSSA.Initialize(Type::getInt32PtrTy(C), "setjmpTable"); 1086 SetjmpTableSizeSSA.Initialize(Type::getInt32Ty(C), "setjmpTableSize"); 1087 for (Instruction *I : SetjmpTableInsts) 1088 SetjmpTableSSA.AddAvailableValue(I->getParent(), I); 1089 for (Instruction *I : SetjmpTableSizeInsts) 1090 SetjmpTableSizeSSA.AddAvailableValue(I->getParent(), I); 1091 1092 for (auto UI = SetjmpTable->use_begin(), UE = SetjmpTable->use_end(); 1093 UI != UE;) { 1094 // Grab the use before incrementing the iterator. 1095 Use &U = *UI; 1096 // Increment the iterator before removing the use from the list. 1097 ++UI; 1098 if (auto *I = dyn_cast<Instruction>(U.getUser())) 1099 if (I->getParent() != &EntryBB) 1100 SetjmpTableSSA.RewriteUse(U); 1101 } 1102 for (auto UI = SetjmpTableSize->use_begin(), UE = SetjmpTableSize->use_end(); 1103 UI != UE;) { 1104 Use &U = *UI; 1105 ++UI; 1106 if (auto *I = dyn_cast<Instruction>(U.getUser())) 1107 if (I->getParent() != &EntryBB) 1108 SetjmpTableSizeSSA.RewriteUse(U); 1109 } 1110 1111 // Finally, our modifications to the cfg can break dominance of SSA variables. 1112 // For example, in this code, 1113 // if (x()) { .. setjmp() .. } 1114 // if (y()) { .. longjmp() .. } 1115 // We must split the longjmp block, and it can jump into the block splitted 1116 // from setjmp one. But that means that when we split the setjmp block, it's 1117 // first part no longer dominates its second part - there is a theoretically 1118 // possible control flow path where x() is false, then y() is true and we 1119 // reach the second part of the setjmp block, without ever reaching the first 1120 // part. So, we rebuild SSA form here. 1121 rebuildSSA(F); 1122 return true; 1123 } 1124