1 //=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file lowers exception-related instructions and setjmp/longjmp
11 /// function calls in order to use Emscripten's JavaScript try and catch
12 /// mechanism.
13 ///
14 /// To handle exceptions and setjmp/longjmps, this scheme relies on JavaScript's
15 /// try and catch syntax and relevant exception-related libraries implemented
16 /// in JavaScript glue code that will be produced by Emscripten. This is similar
17 /// to the current Emscripten asm.js exception handling in fastcomp. For
18 /// fastcomp's EH / SjLj scheme, see these files in fastcomp LLVM branch:
19 /// (Location: https://github.com/kripken/emscripten-fastcomp)
20 /// lib/Target/JSBackend/NaCl/LowerEmExceptionsPass.cpp
21 /// lib/Target/JSBackend/NaCl/LowerEmSetjmp.cpp
22 /// lib/Target/JSBackend/JSBackend.cpp
23 /// lib/Target/JSBackend/CallHandlers.h
24 ///
25 /// * Exception handling
26 /// This pass lowers invokes and landingpads into library functions in JS glue
27 /// code. Invokes are lowered into function wrappers called invoke wrappers that
28 /// exist in JS side, which wraps the original function call with JS try-catch.
29 /// If an exception occurred, cxa_throw() function in JS side sets some
30 /// variables (see below) so we can check whether an exception occurred from
31 /// wasm code and handle it appropriately.
32 ///
33 /// * Setjmp-longjmp handling
34 /// This pass lowers setjmp to a reasonably-performant approach for emscripten.
35 /// The idea is that each block with a setjmp is broken up into two parts: the
36 /// part containing setjmp and the part right after the setjmp. The latter part
37 /// is either reached from the setjmp, or later from a longjmp. To handle the
38 /// longjmp, all calls that might longjmp are also called using invoke wrappers
39 /// and thus JS / try-catch. JS longjmp() function also sets some variables so
40 /// we can check / whether a longjmp occurred from wasm code. Each block with a
41 /// function call that might longjmp is also split up after the longjmp call.
42 /// After the longjmp call, we check whether a longjmp occurred, and if it did,
43 /// which setjmp it corresponds to, and jump to the right post-setjmp block.
44 /// We assume setjmp-longjmp handling always run after EH handling, which means
45 /// we don't expect any exception-related instructions when SjLj runs.
46 /// FIXME Currently this scheme does not support indirect call of setjmp,
47 /// because of the limitation of the scheme itself. fastcomp does not support it
48 /// either.
49 ///
50 /// In detail, this pass does following things:
51 ///
52 /// 1) Assumes the existence of global variables: __THREW__, __threwValue
53 ///    __THREW__ and __threwValue will be set in invoke wrappers
54 ///    in JS glue code. For what invoke wrappers are, refer to 3). These
55 ///    variables are used for both exceptions and setjmp/longjmps.
56 ///    __THREW__ indicates whether an exception or a longjmp occurred or not. 0
57 ///    means nothing occurred, 1 means an exception occurred, and other numbers
58 ///    mean a longjmp occurred. In the case of longjmp, __threwValue variable
59 ///    indicates the corresponding setjmp buffer the longjmp corresponds to.
60 ///
61 /// * Exception handling
62 ///
63 /// 2) We assume the existence of setThrew and setTempRet0/getTempRet0 functions
64 ///    at link time.
65 ///    The global variables in 1) will exist in wasm address space,
66 ///    but their values should be set in JS code, so these functions
67 ///    as interfaces to JS glue code. These functions are equivalent to the
68 ///    following JS functions, which actually exist in asm.js version of JS
69 ///    library.
70 ///
71 ///    function setThrew(threw, value) {
72 ///      if (__THREW__ == 0) {
73 ///        __THREW__ = threw;
74 ///        __threwValue = value;
75 ///      }
76 ///    }
77 //
78 ///    setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
79 ///
80 ///    In exception handling, getTempRet0 indicates the type of an exception
81 ///    caught, and in setjmp/longjmp, it means the second argument to longjmp
82 ///    function.
83 ///
84 /// 3) Lower
85 ///      invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad
86 ///    into
87 ///      __THREW__ = 0;
88 ///      call @__invoke_SIG(func, arg1, arg2)
89 ///      %__THREW__.val = __THREW__;
90 ///      __THREW__ = 0;
91 ///      if (%__THREW__.val == 1)
92 ///        goto %lpad
93 ///      else
94 ///         goto %invoke.cont
95 ///    SIG is a mangled string generated based on the LLVM IR-level function
96 ///    signature. After LLVM IR types are lowered to the target wasm types,
97 ///    the names for these wrappers will change based on wasm types as well,
98 ///    as in invoke_vi (function takes an int and returns void). The bodies of
99 ///    these wrappers will be generated in JS glue code, and inside those
100 ///    wrappers we use JS try-catch to generate actual exception effects. It
101 ///    also calls the original callee function. An example wrapper in JS code
102 ///    would look like this:
103 ///      function invoke_vi(index,a1) {
104 ///        try {
105 ///          Module["dynCall_vi"](index,a1); // This calls original callee
106 ///        } catch(e) {
107 ///          if (typeof e !== 'number' && e !== 'longjmp') throw e;
108 ///          asm["setThrew"](1, 0); // setThrew is called here
109 ///        }
110 ///      }
111 ///    If an exception is thrown, __THREW__ will be set to true in a wrapper,
112 ///    so we can jump to the right BB based on this value.
113 ///
114 /// 4) Lower
115 ///      %val = landingpad catch c1 catch c2 catch c3 ...
116 ///      ... use %val ...
117 ///    into
118 ///      %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...)
119 ///      %val = {%fmc, getTempRet0()}
120 ///      ... use %val ...
121 ///    Here N is a number calculated based on the number of clauses.
122 ///    setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
123 ///
124 /// 5) Lower
125 ///      resume {%a, %b}
126 ///    into
127 ///      call @__resumeException(%a)
128 ///    where __resumeException() is a function in JS glue code.
129 ///
130 /// 6) Lower
131 ///      call @llvm.eh.typeid.for(type) (intrinsic)
132 ///    into
133 ///      call @llvm_eh_typeid_for(type)
134 ///    llvm_eh_typeid_for function will be generated in JS glue code.
135 ///
136 /// * Setjmp / Longjmp handling
137 ///
138 /// In case calls to longjmp() exists
139 ///
140 /// 1) Lower
141 ///      longjmp(buf, value)
142 ///    into
143 ///      emscripten_longjmp_jmpbuf(buf, value)
144 ///    emscripten_longjmp_jmpbuf will be lowered to emscripten_longjmp later.
145 ///
146 /// In case calls to setjmp() exists
147 ///
148 /// 2) In the function entry that calls setjmp, initialize setjmpTable and
149 ///    sejmpTableSize as follows:
150 ///      setjmpTableSize = 4;
151 ///      setjmpTable = (int *) malloc(40);
152 ///      setjmpTable[0] = 0;
153 ///    setjmpTable and setjmpTableSize are used in saveSetjmp() function in JS
154 ///    code.
155 ///
156 /// 3) Lower
157 ///      setjmp(buf)
158 ///    into
159 ///      setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize);
160 ///      setjmpTableSize = getTempRet0();
161 ///    For each dynamic setjmp call, setjmpTable stores its ID (a number which
162 ///    is incrementally assigned from 0) and its label (a unique number that
163 ///    represents each callsite of setjmp). When we need more entries in
164 ///    setjmpTable, it is reallocated in saveSetjmp() in JS code and it will
165 ///    return the new table address, and assign the new table size in
166 ///    setTempRet0(). saveSetjmp also stores the setjmp's ID into the buffer
167 ///    buf. A BB with setjmp is split into two after setjmp call in order to
168 ///    make the post-setjmp BB the possible destination of longjmp BB.
169 ///
170 ///
171 /// 4) Lower every call that might longjmp into
172 ///      __THREW__ = 0;
173 ///      call @__invoke_SIG(func, arg1, arg2)
174 ///      %__THREW__.val = __THREW__;
175 ///      __THREW__ = 0;
176 ///      if (%__THREW__.val != 0 & __threwValue != 0) {
177 ///        %label = testSetjmp(mem[%__THREW__.val], setjmpTable,
178 ///                            setjmpTableSize);
179 ///        if (%label == 0)
180 ///          emscripten_longjmp(%__THREW__.val, __threwValue);
181 ///        setTempRet0(__threwValue);
182 ///      } else {
183 ///        %label = -1;
184 ///      }
185 ///      longjmp_result = getTempRet0();
186 ///      switch label {
187 ///        label 1: goto post-setjmp BB 1
188 ///        label 2: goto post-setjmp BB 2
189 ///        ...
190 ///        default: goto splitted next BB
191 ///      }
192 ///    testSetjmp examines setjmpTable to see if there is a matching setjmp
193 ///    call. After calling an invoke wrapper, if a longjmp occurred, __THREW__
194 ///    will be the address of matching jmp_buf buffer and __threwValue be the
195 ///    second argument to longjmp. mem[__THREW__.val] is a setjmp ID that is
196 ///    stored in saveSetjmp. testSetjmp returns a setjmp label, a unique ID to
197 ///    each setjmp callsite. Label 0 means this longjmp buffer does not
198 ///    correspond to one of the setjmp callsites in this function, so in this
199 ///    case we just chain the longjmp to the caller. (Here we call
200 ///    emscripten_longjmp, which is different from emscripten_longjmp_jmpbuf.
201 ///    emscripten_longjmp_jmpbuf takes jmp_buf as its first argument, while
202 ///    emscripten_longjmp takes an int. Both of them will eventually be lowered
203 ///    to emscripten_longjmp in s2wasm, but here we need two signatures - we
204 ///    can't translate an int value to a jmp_buf.)
205 ///    Label -1 means no longjmp occurred. Otherwise we jump to the right
206 ///    post-setjmp BB based on the label.
207 ///
208 ///===----------------------------------------------------------------------===//
209 
210 #include "WebAssembly.h"
211 #include "llvm/IR/CallSite.h"
212 #include "llvm/IR/Dominators.h"
213 #include "llvm/IR/IRBuilder.h"
214 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
215 #include "llvm/Transforms/Utils/SSAUpdater.h"
216 
217 using namespace llvm;
218 
219 #define DEBUG_TYPE "wasm-lower-em-ehsjlj"
220 
221 static cl::list<std::string>
222     EHWhitelist("emscripten-cxx-exceptions-whitelist",
223                 cl::desc("The list of function names in which Emscripten-style "
224                          "exception handling is enabled (see emscripten "
225                          "EMSCRIPTEN_CATCHING_WHITELIST options)"),
226                 cl::CommaSeparated);
227 
228 namespace {
229 class WebAssemblyLowerEmscriptenEHSjLj final : public ModulePass {
230   static const char *ResumeFName;
231   static const char *EHTypeIDFName;
232   static const char *EmLongjmpFName;
233   static const char *EmLongjmpJmpbufFName;
234   static const char *SaveSetjmpFName;
235   static const char *TestSetjmpFName;
236   static const char *FindMatchingCatchPrefix;
237   static const char *InvokePrefix;
238 
239   bool EnableEH;   // Enable exception handling
240   bool EnableSjLj; // Enable setjmp/longjmp handling
241 
242   GlobalVariable *ThrewGV = nullptr;
243   GlobalVariable *ThrewValueGV = nullptr;
244   Function *GetTempRet0Func = nullptr;
245   Function *SetTempRet0Func = nullptr;
246   Function *ResumeF = nullptr;
247   Function *EHTypeIDF = nullptr;
248   Function *EmLongjmpF = nullptr;
249   Function *EmLongjmpJmpbufF = nullptr;
250   Function *SaveSetjmpF = nullptr;
251   Function *TestSetjmpF = nullptr;
252 
253   // __cxa_find_matching_catch_N functions.
254   // Indexed by the number of clauses in an original landingpad instruction.
255   DenseMap<int, Function *> FindMatchingCatches;
256   // Map of <function signature string, invoke_ wrappers>
257   StringMap<Function *> InvokeWrappers;
258   // Set of whitelisted function names for exception handling
259   std::set<std::string> EHWhitelistSet;
260 
261   StringRef getPassName() const override {
262     return "WebAssembly Lower Emscripten Exceptions";
263   }
264 
265   bool runEHOnFunction(Function &F);
266   bool runSjLjOnFunction(Function &F);
267   Function *getFindMatchingCatch(Module &M, unsigned NumClauses);
268 
269   template <typename CallOrInvoke> Value *wrapInvoke(CallOrInvoke *CI);
270   void wrapTestSetjmp(BasicBlock *BB, Instruction *InsertPt, Value *Threw,
271                       Value *SetjmpTable, Value *SetjmpTableSize, Value *&Label,
272                       Value *&LongjmpResult, BasicBlock *&EndBB);
273   template <typename CallOrInvoke> Function *getInvokeWrapper(CallOrInvoke *CI);
274 
275   bool areAllExceptionsAllowed() const { return EHWhitelistSet.empty(); }
276   bool canLongjmp(Module &M, const Value *Callee) const;
277 
278   void rebuildSSA(Function &F);
279 
280 public:
281   static char ID;
282 
283   WebAssemblyLowerEmscriptenEHSjLj(bool EnableEH = true, bool EnableSjLj = true)
284       : ModulePass(ID), EnableEH(EnableEH), EnableSjLj(EnableSjLj) {
285     EHWhitelistSet.insert(EHWhitelist.begin(), EHWhitelist.end());
286   }
287   bool runOnModule(Module &M) override;
288 
289   void getAnalysisUsage(AnalysisUsage &AU) const override {
290     AU.addRequired<DominatorTreeWrapperPass>();
291   }
292 };
293 } // End anonymous namespace
294 
295 const char *WebAssemblyLowerEmscriptenEHSjLj::ResumeFName = "__resumeException";
296 const char *WebAssemblyLowerEmscriptenEHSjLj::EHTypeIDFName =
297     "llvm_eh_typeid_for";
298 const char *WebAssemblyLowerEmscriptenEHSjLj::EmLongjmpFName =
299     "emscripten_longjmp";
300 const char *WebAssemblyLowerEmscriptenEHSjLj::EmLongjmpJmpbufFName =
301     "emscripten_longjmp_jmpbuf";
302 const char *WebAssemblyLowerEmscriptenEHSjLj::SaveSetjmpFName = "saveSetjmp";
303 const char *WebAssemblyLowerEmscriptenEHSjLj::TestSetjmpFName = "testSetjmp";
304 const char *WebAssemblyLowerEmscriptenEHSjLj::FindMatchingCatchPrefix =
305     "__cxa_find_matching_catch_";
306 const char *WebAssemblyLowerEmscriptenEHSjLj::InvokePrefix = "__invoke_";
307 
308 char WebAssemblyLowerEmscriptenEHSjLj::ID = 0;
309 INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj, DEBUG_TYPE,
310                 "WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp",
311                 false, false)
312 
313 ModulePass *llvm::createWebAssemblyLowerEmscriptenEHSjLj(bool EnableEH,
314                                                          bool EnableSjLj) {
315   return new WebAssemblyLowerEmscriptenEHSjLj(EnableEH, EnableSjLj);
316 }
317 
318 static bool canThrow(const Value *V) {
319   if (const auto *F = dyn_cast<const Function>(V)) {
320     // Intrinsics cannot throw
321     if (F->isIntrinsic())
322       return false;
323     StringRef Name = F->getName();
324     // leave setjmp and longjmp (mostly) alone, we process them properly later
325     if (Name == "setjmp" || Name == "longjmp")
326       return false;
327     return !F->doesNotThrow();
328   }
329   // not a function, so an indirect call - can throw, we can't tell
330   return true;
331 }
332 
333 // Get a global variable with the given name.  If it doesn't exist declare it,
334 // which will generate an import and asssumes that it will exist at link time.
335 static GlobalVariable *getGlobalVariableI32(Module &M, IRBuilder<> &IRB,
336                                             const char *Name) {
337 
338   auto* GV = dyn_cast<GlobalVariable>(M.getOrInsertGlobal(Name, IRB.getInt32Ty()));
339   if (!GV)
340     report_fatal_error(Twine("unable to create global: ") + Name);
341 
342   return GV;
343 }
344 
345 // Simple function name mangler.
346 // This function simply takes LLVM's string representation of parameter types
347 // and concatenate them with '_'. There are non-alphanumeric characters but llc
348 // is ok with it, and we need to postprocess these names after the lowering
349 // phase anyway.
350 static std::string getSignature(FunctionType *FTy) {
351   std::string Sig;
352   raw_string_ostream OS(Sig);
353   OS << *FTy->getReturnType();
354   for (Type *ParamTy : FTy->params())
355     OS << "_" << *ParamTy;
356   if (FTy->isVarArg())
357     OS << "_...";
358   Sig = OS.str();
359   Sig.erase(remove_if(Sig, isspace), Sig.end());
360   // When s2wasm parses .s file, a comma means the end of an argument. So a
361   // mangled function name can contain any character but a comma.
362   std::replace(Sig.begin(), Sig.end(), ',', '.');
363   return Sig;
364 }
365 
366 // Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2.
367 // This is because a landingpad instruction contains two more arguments, a
368 // personality function and a cleanup bit, and __cxa_find_matching_catch_N
369 // functions are named after the number of arguments in the original landingpad
370 // instruction.
371 Function *
372 WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module &M,
373                                                        unsigned NumClauses) {
374   if (FindMatchingCatches.count(NumClauses))
375     return FindMatchingCatches[NumClauses];
376   PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext());
377   SmallVector<Type *, 16> Args(NumClauses, Int8PtrTy);
378   FunctionType *FTy = FunctionType::get(Int8PtrTy, Args, false);
379   Function *F =
380       Function::Create(FTy, GlobalValue::ExternalLinkage,
381                        FindMatchingCatchPrefix + Twine(NumClauses + 2), &M);
382   FindMatchingCatches[NumClauses] = F;
383   return F;
384 }
385 
386 // Generate invoke wrapper seqence with preamble and postamble
387 // Preamble:
388 // __THREW__ = 0;
389 // Postamble:
390 // %__THREW__.val = __THREW__; __THREW__ = 0;
391 // Returns %__THREW__.val, which indicates whether an exception is thrown (or
392 // whether longjmp occurred), for future use.
393 template <typename CallOrInvoke>
394 Value *WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallOrInvoke *CI) {
395   LLVMContext &C = CI->getModule()->getContext();
396 
397   // If we are calling a function that is noreturn, we must remove that
398   // attribute. The code we insert here does expect it to return, after we
399   // catch the exception.
400   if (CI->doesNotReturn()) {
401     if (auto *F = dyn_cast<Function>(CI->getCalledValue()))
402       F->removeFnAttr(Attribute::NoReturn);
403     CI->removeAttribute(AttributeList::FunctionIndex, Attribute::NoReturn);
404   }
405 
406   IRBuilder<> IRB(C);
407   IRB.SetInsertPoint(CI);
408 
409   // Pre-invoke
410   // __THREW__ = 0;
411   IRB.CreateStore(IRB.getInt32(0), ThrewGV);
412 
413   // Invoke function wrapper in JavaScript
414   SmallVector<Value *, 16> Args;
415   // Put the pointer to the callee as first argument, so it can be called
416   // within the invoke wrapper later
417   Args.push_back(CI->getCalledValue());
418   Args.append(CI->arg_begin(), CI->arg_end());
419   CallInst *NewCall = IRB.CreateCall(getInvokeWrapper(CI), Args);
420   NewCall->takeName(CI);
421   NewCall->setCallingConv(CI->getCallingConv());
422   NewCall->setDebugLoc(CI->getDebugLoc());
423 
424   // Because we added the pointer to the callee as first argument, all
425   // argument attribute indices have to be incremented by one.
426   SmallVector<AttributeSet, 8> ArgAttributes;
427   const AttributeList &InvokeAL = CI->getAttributes();
428 
429   // No attributes for the callee pointer.
430   ArgAttributes.push_back(AttributeSet());
431   // Copy the argument attributes from the original
432   for (unsigned I = 0, E = CI->getNumArgOperands(); I < E; ++I)
433     ArgAttributes.push_back(InvokeAL.getParamAttributes(I));
434 
435   AttrBuilder FnAttrs(InvokeAL.getFnAttributes());
436   if (FnAttrs.contains(Attribute::AllocSize)) {
437     // The allocsize attribute (if any) referes to parameters by index and needs
438     // to be adjusted.
439     unsigned SizeArg;
440     Optional<unsigned> NEltArg;
441     std::tie(SizeArg, NEltArg) = FnAttrs.getAllocSizeArgs();
442     SizeArg += 1;
443     if (NEltArg.hasValue())
444       NEltArg = NEltArg.getValue() + 1;
445     FnAttrs.addAllocSizeAttr(SizeArg, NEltArg);
446   }
447 
448   // Reconstruct the AttributesList based on the vector we constructed.
449   AttributeList NewCallAL =
450       AttributeList::get(C, AttributeSet::get(C, FnAttrs),
451                          InvokeAL.getRetAttributes(), ArgAttributes);
452   NewCall->setAttributes(NewCallAL);
453 
454   CI->replaceAllUsesWith(NewCall);
455 
456   // Post-invoke
457   // %__THREW__.val = __THREW__; __THREW__ = 0;
458   Value *Threw =
459       IRB.CreateLoad(IRB.getInt32Ty(), ThrewGV, ThrewGV->getName() + ".val");
460   IRB.CreateStore(IRB.getInt32(0), ThrewGV);
461   return Threw;
462 }
463 
464 // Get matching invoke wrapper based on callee signature
465 template <typename CallOrInvoke>
466 Function *WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallOrInvoke *CI) {
467   Module *M = CI->getModule();
468   SmallVector<Type *, 16> ArgTys;
469   Value *Callee = CI->getCalledValue();
470   FunctionType *CalleeFTy;
471   if (auto *F = dyn_cast<Function>(Callee))
472     CalleeFTy = F->getFunctionType();
473   else {
474     auto *CalleeTy = cast<PointerType>(Callee->getType())->getElementType();
475     CalleeFTy = dyn_cast<FunctionType>(CalleeTy);
476   }
477 
478   std::string Sig = getSignature(CalleeFTy);
479   if (InvokeWrappers.find(Sig) != InvokeWrappers.end())
480     return InvokeWrappers[Sig];
481 
482   // Put the pointer to the callee as first argument
483   ArgTys.push_back(PointerType::getUnqual(CalleeFTy));
484   // Add argument types
485   ArgTys.append(CalleeFTy->param_begin(), CalleeFTy->param_end());
486 
487   FunctionType *FTy = FunctionType::get(CalleeFTy->getReturnType(), ArgTys,
488                                         CalleeFTy->isVarArg());
489   Function *F = Function::Create(FTy, GlobalValue::ExternalLinkage,
490                                  InvokePrefix + Sig, M);
491   InvokeWrappers[Sig] = F;
492   return F;
493 }
494 
495 bool WebAssemblyLowerEmscriptenEHSjLj::canLongjmp(Module &M,
496                                                   const Value *Callee) const {
497   if (auto *CalleeF = dyn_cast<Function>(Callee))
498     if (CalleeF->isIntrinsic())
499       return false;
500 
501   // Attempting to transform inline assembly will result in something like:
502   //     call void @__invoke_void(void ()* asm ...)
503   // which is invalid because inline assembly blocks do not have addresses
504   // and can't be passed by pointer. The result is a crash with illegal IR.
505   if (isa<InlineAsm>(Callee))
506     return false;
507 
508   // The reason we include malloc/free here is to exclude the malloc/free
509   // calls generated in setjmp prep / cleanup routines.
510   Function *SetjmpF = M.getFunction("setjmp");
511   Function *MallocF = M.getFunction("malloc");
512   Function *FreeF = M.getFunction("free");
513   if (Callee == SetjmpF || Callee == MallocF || Callee == FreeF)
514     return false;
515 
516   // There are functions in JS glue code
517   if (Callee == ResumeF || Callee == EHTypeIDF || Callee == SaveSetjmpF ||
518       Callee == TestSetjmpF)
519     return false;
520 
521   // __cxa_find_matching_catch_N functions cannot longjmp
522   if (Callee->getName().startswith(FindMatchingCatchPrefix))
523     return false;
524 
525   // Exception-catching related functions
526   Function *BeginCatchF = M.getFunction("__cxa_begin_catch");
527   Function *EndCatchF = M.getFunction("__cxa_end_catch");
528   Function *AllocExceptionF = M.getFunction("__cxa_allocate_exception");
529   Function *ThrowF = M.getFunction("__cxa_throw");
530   Function *TerminateF = M.getFunction("__clang_call_terminate");
531   if (Callee == BeginCatchF || Callee == EndCatchF ||
532       Callee == AllocExceptionF || Callee == ThrowF || Callee == TerminateF ||
533       Callee == GetTempRet0Func || Callee == SetTempRet0Func)
534     return false;
535 
536   // Otherwise we don't know
537   return true;
538 }
539 
540 // Generate testSetjmp function call seqence with preamble and postamble.
541 // The code this generates is equivalent to the following JavaScript code:
542 // if (%__THREW__.val != 0 & threwValue != 0) {
543 //   %label = _testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize);
544 //   if (%label == 0)
545 //     emscripten_longjmp(%__THREW__.val, threwValue);
546 //   setTempRet0(threwValue);
547 // } else {
548 //   %label = -1;
549 // }
550 // %longjmp_result = getTempRet0();
551 //
552 // As output parameters. returns %label, %longjmp_result, and the BB the last
553 // instruction (%longjmp_result = ...) is in.
554 void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp(
555     BasicBlock *BB, Instruction *InsertPt, Value *Threw, Value *SetjmpTable,
556     Value *SetjmpTableSize, Value *&Label, Value *&LongjmpResult,
557     BasicBlock *&EndBB) {
558   Function *F = BB->getParent();
559   LLVMContext &C = BB->getModule()->getContext();
560   IRBuilder<> IRB(C);
561   IRB.SetInsertPoint(InsertPt);
562 
563   // if (%__THREW__.val != 0 & threwValue != 0)
564   IRB.SetInsertPoint(BB);
565   BasicBlock *ThenBB1 = BasicBlock::Create(C, "if.then1", F);
566   BasicBlock *ElseBB1 = BasicBlock::Create(C, "if.else1", F);
567   BasicBlock *EndBB1 = BasicBlock::Create(C, "if.end", F);
568   Value *ThrewCmp = IRB.CreateICmpNE(Threw, IRB.getInt32(0));
569   Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV,
570                                      ThrewValueGV->getName() + ".val");
571   Value *ThrewValueCmp = IRB.CreateICmpNE(ThrewValue, IRB.getInt32(0));
572   Value *Cmp1 = IRB.CreateAnd(ThrewCmp, ThrewValueCmp, "cmp1");
573   IRB.CreateCondBr(Cmp1, ThenBB1, ElseBB1);
574 
575   // %label = _testSetjmp(mem[%__THREW__.val], _setjmpTable, _setjmpTableSize);
576   // if (%label == 0)
577   IRB.SetInsertPoint(ThenBB1);
578   BasicBlock *ThenBB2 = BasicBlock::Create(C, "if.then2", F);
579   BasicBlock *EndBB2 = BasicBlock::Create(C, "if.end2", F);
580   Value *ThrewInt = IRB.CreateIntToPtr(Threw, Type::getInt32PtrTy(C),
581                                        Threw->getName() + ".i32p");
582   Value *LoadedThrew = IRB.CreateLoad(IRB.getInt32Ty(), ThrewInt,
583                                       ThrewInt->getName() + ".loaded");
584   Value *ThenLabel = IRB.CreateCall(
585       TestSetjmpF, {LoadedThrew, SetjmpTable, SetjmpTableSize}, "label");
586   Value *Cmp2 = IRB.CreateICmpEQ(ThenLabel, IRB.getInt32(0));
587   IRB.CreateCondBr(Cmp2, ThenBB2, EndBB2);
588 
589   // emscripten_longjmp(%__THREW__.val, threwValue);
590   IRB.SetInsertPoint(ThenBB2);
591   IRB.CreateCall(EmLongjmpF, {Threw, ThrewValue});
592   IRB.CreateUnreachable();
593 
594   // setTempRet0(threwValue);
595   IRB.SetInsertPoint(EndBB2);
596   IRB.CreateCall(SetTempRet0Func, ThrewValue);
597   IRB.CreateBr(EndBB1);
598 
599   IRB.SetInsertPoint(ElseBB1);
600   IRB.CreateBr(EndBB1);
601 
602   // longjmp_result = getTempRet0();
603   IRB.SetInsertPoint(EndBB1);
604   PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label");
605   LabelPHI->addIncoming(ThenLabel, EndBB2);
606 
607   LabelPHI->addIncoming(IRB.getInt32(-1), ElseBB1);
608 
609   // Output parameter assignment
610   Label = LabelPHI;
611   EndBB = EndBB1;
612   LongjmpResult = IRB.CreateCall(GetTempRet0Func, None, "longjmp_result");
613 }
614 
615 void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function &F) {
616   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
617   DT.recalculate(F); // CFG has been changed
618   SSAUpdater SSA;
619   for (BasicBlock &BB : F) {
620     for (Instruction &I : BB) {
621       for (auto UI = I.use_begin(), UE = I.use_end(); UI != UE;) {
622         Use &U = *UI;
623         ++UI;
624         SSA.Initialize(I.getType(), I.getName());
625         SSA.AddAvailableValue(&BB, &I);
626         auto *User = cast<Instruction>(U.getUser());
627         if (User->getParent() == &BB)
628           continue;
629 
630         if (auto *UserPN = dyn_cast<PHINode>(User))
631           if (UserPN->getIncomingBlock(U) == &BB)
632             continue;
633 
634         if (DT.dominates(&I, User))
635           continue;
636         SSA.RewriteUseAfterInsertions(U);
637       }
638     }
639   }
640 }
641 
642 bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module &M) {
643   LLVM_DEBUG(dbgs() << "********** Lower Emscripten EH & SjLj **********\n");
644 
645   LLVMContext &C = M.getContext();
646   IRBuilder<> IRB(C);
647 
648   Function *SetjmpF = M.getFunction("setjmp");
649   Function *LongjmpF = M.getFunction("longjmp");
650   bool SetjmpUsed = SetjmpF && !SetjmpF->use_empty();
651   bool LongjmpUsed = LongjmpF && !LongjmpF->use_empty();
652   bool DoSjLj = EnableSjLj && (SetjmpUsed || LongjmpUsed);
653 
654   // Declare (or get) global variables __THREW__, __threwValue, and
655   // getTempRet0/setTempRet0 function which are used in common for both
656   // exception handling and setjmp/longjmp handling
657   ThrewGV = getGlobalVariableI32(M, IRB, "__THREW__");
658   ThrewValueGV = getGlobalVariableI32(M, IRB, "__threwValue");
659   GetTempRet0Func =
660       Function::Create(FunctionType::get(IRB.getInt32Ty(), false),
661                        GlobalValue::ExternalLinkage, "getTempRet0", &M);
662   SetTempRet0Func = Function::Create(
663       FunctionType::get(IRB.getVoidTy(), IRB.getInt32Ty(), false),
664       GlobalValue::ExternalLinkage, "setTempRet0", &M);
665   GetTempRet0Func->setDoesNotThrow();
666   SetTempRet0Func->setDoesNotThrow();
667 
668   bool Changed = false;
669 
670   // Exception handling
671   if (EnableEH) {
672     // Register __resumeException function
673     FunctionType *ResumeFTy =
674         FunctionType::get(IRB.getVoidTy(), IRB.getInt8PtrTy(), false);
675     ResumeF = Function::Create(ResumeFTy, GlobalValue::ExternalLinkage,
676                                ResumeFName, &M);
677 
678     // Register llvm_eh_typeid_for function
679     FunctionType *EHTypeIDTy =
680         FunctionType::get(IRB.getInt32Ty(), IRB.getInt8PtrTy(), false);
681     EHTypeIDF = Function::Create(EHTypeIDTy, GlobalValue::ExternalLinkage,
682                                  EHTypeIDFName, &M);
683 
684     for (Function &F : M) {
685       if (F.isDeclaration())
686         continue;
687       Changed |= runEHOnFunction(F);
688     }
689   }
690 
691   // Setjmp/longjmp handling
692   if (DoSjLj) {
693     Changed = true; // We have setjmp or longjmp somewhere
694 
695     if (LongjmpF) {
696       // Replace all uses of longjmp with emscripten_longjmp_jmpbuf, which is
697       // defined in JS code
698       EmLongjmpJmpbufF = Function::Create(LongjmpF->getFunctionType(),
699                                           GlobalValue::ExternalLinkage,
700                                           EmLongjmpJmpbufFName, &M);
701 
702       LongjmpF->replaceAllUsesWith(EmLongjmpJmpbufF);
703     }
704 
705     if (SetjmpF) {
706       // Register saveSetjmp function
707       FunctionType *SetjmpFTy = SetjmpF->getFunctionType();
708       SmallVector<Type *, 4> Params = {SetjmpFTy->getParamType(0),
709                                        IRB.getInt32Ty(), Type::getInt32PtrTy(C),
710                                        IRB.getInt32Ty()};
711       FunctionType *FTy =
712           FunctionType::get(Type::getInt32PtrTy(C), Params, false);
713       SaveSetjmpF = Function::Create(FTy, GlobalValue::ExternalLinkage,
714                                      SaveSetjmpFName, &M);
715 
716       // Register testSetjmp function
717       Params = {IRB.getInt32Ty(), Type::getInt32PtrTy(C), IRB.getInt32Ty()};
718       FTy = FunctionType::get(IRB.getInt32Ty(), Params, false);
719       TestSetjmpF = Function::Create(FTy, GlobalValue::ExternalLinkage,
720                                      TestSetjmpFName, &M);
721 
722       FTy = FunctionType::get(IRB.getVoidTy(),
723                               {IRB.getInt32Ty(), IRB.getInt32Ty()}, false);
724       EmLongjmpF = Function::Create(FTy, GlobalValue::ExternalLinkage,
725                                     EmLongjmpFName, &M);
726 
727       // Only traverse functions that uses setjmp in order not to insert
728       // unnecessary prep / cleanup code in every function
729       SmallPtrSet<Function *, 8> SetjmpUsers;
730       for (User *U : SetjmpF->users()) {
731         auto *UI = cast<Instruction>(U);
732         SetjmpUsers.insert(UI->getFunction());
733       }
734       for (Function *F : SetjmpUsers)
735         runSjLjOnFunction(*F);
736     }
737   }
738 
739   if (!Changed) {
740     // Delete unused global variables and functions
741     if (ResumeF)
742       ResumeF->eraseFromParent();
743     if (EHTypeIDF)
744       EHTypeIDF->eraseFromParent();
745     if (EmLongjmpF)
746       EmLongjmpF->eraseFromParent();
747     if (SaveSetjmpF)
748       SaveSetjmpF->eraseFromParent();
749     if (TestSetjmpF)
750       TestSetjmpF->eraseFromParent();
751     return false;
752   }
753 
754   return true;
755 }
756 
757 bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function &F) {
758   Module &M = *F.getParent();
759   LLVMContext &C = F.getContext();
760   IRBuilder<> IRB(C);
761   bool Changed = false;
762   SmallVector<Instruction *, 64> ToErase;
763   SmallPtrSet<LandingPadInst *, 32> LandingPads;
764   bool AllowExceptions =
765       areAllExceptionsAllowed() || EHWhitelistSet.count(F.getName());
766 
767   for (BasicBlock &BB : F) {
768     auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
769     if (!II)
770       continue;
771     Changed = true;
772     LandingPads.insert(II->getLandingPadInst());
773     IRB.SetInsertPoint(II);
774 
775     bool NeedInvoke = AllowExceptions && canThrow(II->getCalledValue());
776     if (NeedInvoke) {
777       // Wrap invoke with invoke wrapper and generate preamble/postamble
778       Value *Threw = wrapInvoke(II);
779       ToErase.push_back(II);
780 
781       // Insert a branch based on __THREW__ variable
782       Value *Cmp = IRB.CreateICmpEQ(Threw, IRB.getInt32(1), "cmp");
783       IRB.CreateCondBr(Cmp, II->getUnwindDest(), II->getNormalDest());
784 
785     } else {
786       // This can't throw, and we don't need this invoke, just replace it with a
787       // call+branch
788       SmallVector<Value *, 16> Args(II->arg_begin(), II->arg_end());
789       CallInst *NewCall =
790           IRB.CreateCall(II->getFunctionType(), II->getCalledValue(), Args);
791       NewCall->takeName(II);
792       NewCall->setCallingConv(II->getCallingConv());
793       NewCall->setDebugLoc(II->getDebugLoc());
794       NewCall->setAttributes(II->getAttributes());
795       II->replaceAllUsesWith(NewCall);
796       ToErase.push_back(II);
797 
798       IRB.CreateBr(II->getNormalDest());
799 
800       // Remove any PHI node entries from the exception destination
801       II->getUnwindDest()->removePredecessor(&BB);
802     }
803   }
804 
805   // Process resume instructions
806   for (BasicBlock &BB : F) {
807     // Scan the body of the basic block for resumes
808     for (Instruction &I : BB) {
809       auto *RI = dyn_cast<ResumeInst>(&I);
810       if (!RI)
811         continue;
812 
813       // Split the input into legal values
814       Value *Input = RI->getValue();
815       IRB.SetInsertPoint(RI);
816       Value *Low = IRB.CreateExtractValue(Input, 0, "low");
817       // Create a call to __resumeException function
818       IRB.CreateCall(ResumeF, {Low});
819       // Add a terminator to the block
820       IRB.CreateUnreachable();
821       ToErase.push_back(RI);
822     }
823   }
824 
825   // Process llvm.eh.typeid.for intrinsics
826   for (BasicBlock &BB : F) {
827     for (Instruction &I : BB) {
828       auto *CI = dyn_cast<CallInst>(&I);
829       if (!CI)
830         continue;
831       const Function *Callee = CI->getCalledFunction();
832       if (!Callee)
833         continue;
834       if (Callee->getIntrinsicID() != Intrinsic::eh_typeid_for)
835         continue;
836 
837       IRB.SetInsertPoint(CI);
838       CallInst *NewCI =
839           IRB.CreateCall(EHTypeIDF, CI->getArgOperand(0), "typeid");
840       CI->replaceAllUsesWith(NewCI);
841       ToErase.push_back(CI);
842     }
843   }
844 
845   // Look for orphan landingpads, can occur in blocks with no predecessors
846   for (BasicBlock &BB : F) {
847     Instruction *I = BB.getFirstNonPHI();
848     if (auto *LPI = dyn_cast<LandingPadInst>(I))
849       LandingPads.insert(LPI);
850   }
851 
852   // Handle all the landingpad for this function together, as multiple invokes
853   // may share a single lp
854   for (LandingPadInst *LPI : LandingPads) {
855     IRB.SetInsertPoint(LPI);
856     SmallVector<Value *, 16> FMCArgs;
857     for (unsigned I = 0, E = LPI->getNumClauses(); I < E; ++I) {
858       Constant *Clause = LPI->getClause(I);
859       // As a temporary workaround for the lack of aggregate varargs support
860       // in the interface between JS and wasm, break out filter operands into
861       // their component elements.
862       if (LPI->isFilter(I)) {
863         auto *ATy = cast<ArrayType>(Clause->getType());
864         for (unsigned J = 0, E = ATy->getNumElements(); J < E; ++J) {
865           Value *EV = IRB.CreateExtractValue(Clause, makeArrayRef(J), "filter");
866           FMCArgs.push_back(EV);
867         }
868       } else
869         FMCArgs.push_back(Clause);
870     }
871 
872     // Create a call to __cxa_find_matching_catch_N function
873     Function *FMCF = getFindMatchingCatch(M, FMCArgs.size());
874     CallInst *FMCI = IRB.CreateCall(FMCF, FMCArgs, "fmc");
875     Value *Undef = UndefValue::get(LPI->getType());
876     Value *Pair0 = IRB.CreateInsertValue(Undef, FMCI, 0, "pair0");
877     Value *TempRet0 = IRB.CreateCall(GetTempRet0Func, None, "tempret0");
878     Value *Pair1 = IRB.CreateInsertValue(Pair0, TempRet0, 1, "pair1");
879 
880     LPI->replaceAllUsesWith(Pair1);
881     ToErase.push_back(LPI);
882   }
883 
884   // Erase everything we no longer need in this function
885   for (Instruction *I : ToErase)
886     I->eraseFromParent();
887 
888   return Changed;
889 }
890 
891 bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function &F) {
892   Module &M = *F.getParent();
893   LLVMContext &C = F.getContext();
894   IRBuilder<> IRB(C);
895   SmallVector<Instruction *, 64> ToErase;
896   // Vector of %setjmpTable values
897   std::vector<Instruction *> SetjmpTableInsts;
898   // Vector of %setjmpTableSize values
899   std::vector<Instruction *> SetjmpTableSizeInsts;
900 
901   // Setjmp preparation
902 
903   // This instruction effectively means %setjmpTableSize = 4.
904   // We create this as an instruction intentionally, and we don't want to fold
905   // this instruction to a constant 4, because this value will be used in
906   // SSAUpdater.AddAvailableValue(...) later.
907   BasicBlock &EntryBB = F.getEntryBlock();
908   BinaryOperator *SetjmpTableSize = BinaryOperator::Create(
909       Instruction::Add, IRB.getInt32(4), IRB.getInt32(0), "setjmpTableSize",
910       &*EntryBB.getFirstInsertionPt());
911   // setjmpTable = (int *) malloc(40);
912   Instruction *SetjmpTable = CallInst::CreateMalloc(
913       SetjmpTableSize, IRB.getInt32Ty(), IRB.getInt32Ty(), IRB.getInt32(40),
914       nullptr, nullptr, "setjmpTable");
915   // setjmpTable[0] = 0;
916   IRB.SetInsertPoint(SetjmpTableSize);
917   IRB.CreateStore(IRB.getInt32(0), SetjmpTable);
918   SetjmpTableInsts.push_back(SetjmpTable);
919   SetjmpTableSizeInsts.push_back(SetjmpTableSize);
920 
921   // Setjmp transformation
922   std::vector<PHINode *> SetjmpRetPHIs;
923   Function *SetjmpF = M.getFunction("setjmp");
924   for (User *U : SetjmpF->users()) {
925     auto *CI = dyn_cast<CallInst>(U);
926     if (!CI)
927       report_fatal_error("Does not support indirect calls to setjmp");
928 
929     BasicBlock *BB = CI->getParent();
930     if (BB->getParent() != &F) // in other function
931       continue;
932 
933     // The tail is everything right after the call, and will be reached once
934     // when setjmp is called, and later when longjmp returns to the setjmp
935     BasicBlock *Tail = SplitBlock(BB, CI->getNextNode());
936     // Add a phi to the tail, which will be the output of setjmp, which
937     // indicates if this is the first call or a longjmp back. The phi directly
938     // uses the right value based on where we arrive from
939     IRB.SetInsertPoint(Tail->getFirstNonPHI());
940     PHINode *SetjmpRet = IRB.CreatePHI(IRB.getInt32Ty(), 2, "setjmp.ret");
941 
942     // setjmp initial call returns 0
943     SetjmpRet->addIncoming(IRB.getInt32(0), BB);
944     // The proper output is now this, not the setjmp call itself
945     CI->replaceAllUsesWith(SetjmpRet);
946     // longjmp returns to the setjmp will add themselves to this phi
947     SetjmpRetPHIs.push_back(SetjmpRet);
948 
949     // Fix call target
950     // Our index in the function is our place in the array + 1 to avoid index
951     // 0, because index 0 means the longjmp is not ours to handle.
952     IRB.SetInsertPoint(CI);
953     Value *Args[] = {CI->getArgOperand(0), IRB.getInt32(SetjmpRetPHIs.size()),
954                      SetjmpTable, SetjmpTableSize};
955     Instruction *NewSetjmpTable =
956         IRB.CreateCall(SaveSetjmpF, Args, "setjmpTable");
957     Instruction *NewSetjmpTableSize =
958         IRB.CreateCall(GetTempRet0Func, None, "setjmpTableSize");
959     SetjmpTableInsts.push_back(NewSetjmpTable);
960     SetjmpTableSizeInsts.push_back(NewSetjmpTableSize);
961     ToErase.push_back(CI);
962   }
963 
964   // Update each call that can longjmp so it can return to a setjmp where
965   // relevant.
966 
967   // Because we are creating new BBs while processing and don't want to make
968   // all these newly created BBs candidates again for longjmp processing, we
969   // first make the vector of candidate BBs.
970   std::vector<BasicBlock *> BBs;
971   for (BasicBlock &BB : F)
972     BBs.push_back(&BB);
973 
974   // BBs.size() will change within the loop, so we query it every time
975   for (unsigned I = 0; I < BBs.size(); I++) {
976     BasicBlock *BB = BBs[I];
977     for (Instruction &I : *BB) {
978       assert(!isa<InvokeInst>(&I));
979       auto *CI = dyn_cast<CallInst>(&I);
980       if (!CI)
981         continue;
982 
983       const Value *Callee = CI->getCalledValue();
984       if (!canLongjmp(M, Callee))
985         continue;
986 
987       Value *Threw = nullptr;
988       BasicBlock *Tail;
989       if (Callee->getName().startswith(InvokePrefix)) {
990         // If invoke wrapper has already been generated for this call in
991         // previous EH phase, search for the load instruction
992         // %__THREW__.val = __THREW__;
993         // in postamble after the invoke wrapper call
994         LoadInst *ThrewLI = nullptr;
995         StoreInst *ThrewResetSI = nullptr;
996         for (auto I = std::next(BasicBlock::iterator(CI)), IE = BB->end();
997              I != IE; ++I) {
998           if (auto *LI = dyn_cast<LoadInst>(I))
999             if (auto *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()))
1000               if (GV == ThrewGV) {
1001                 Threw = ThrewLI = LI;
1002                 break;
1003               }
1004         }
1005         // Search for the store instruction after the load above
1006         // __THREW__ = 0;
1007         for (auto I = std::next(BasicBlock::iterator(ThrewLI)), IE = BB->end();
1008              I != IE; ++I) {
1009           if (auto *SI = dyn_cast<StoreInst>(I))
1010             if (auto *GV = dyn_cast<GlobalVariable>(SI->getPointerOperand()))
1011               if (GV == ThrewGV && SI->getValueOperand() == IRB.getInt32(0)) {
1012                 ThrewResetSI = SI;
1013                 break;
1014               }
1015         }
1016         assert(Threw && ThrewLI && "Cannot find __THREW__ load after invoke");
1017         assert(ThrewResetSI && "Cannot find __THREW__ store after invoke");
1018         Tail = SplitBlock(BB, ThrewResetSI->getNextNode());
1019 
1020       } else {
1021         // Wrap call with invoke wrapper and generate preamble/postamble
1022         Threw = wrapInvoke(CI);
1023         ToErase.push_back(CI);
1024         Tail = SplitBlock(BB, CI->getNextNode());
1025       }
1026 
1027       // We need to replace the terminator in Tail - SplitBlock makes BB go
1028       // straight to Tail, we need to check if a longjmp occurred, and go to the
1029       // right setjmp-tail if so
1030       ToErase.push_back(BB->getTerminator());
1031 
1032       // Generate a function call to testSetjmp function and preamble/postamble
1033       // code to figure out (1) whether longjmp occurred (2) if longjmp
1034       // occurred, which setjmp it corresponds to
1035       Value *Label = nullptr;
1036       Value *LongjmpResult = nullptr;
1037       BasicBlock *EndBB = nullptr;
1038       wrapTestSetjmp(BB, CI, Threw, SetjmpTable, SetjmpTableSize, Label,
1039                      LongjmpResult, EndBB);
1040       assert(Label && LongjmpResult && EndBB);
1041 
1042       // Create switch instruction
1043       IRB.SetInsertPoint(EndBB);
1044       SwitchInst *SI = IRB.CreateSwitch(Label, Tail, SetjmpRetPHIs.size());
1045       // -1 means no longjmp happened, continue normally (will hit the default
1046       // switch case). 0 means a longjmp that is not ours to handle, needs a
1047       // rethrow. Otherwise the index is the same as the index in P+1 (to avoid
1048       // 0).
1049       for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) {
1050         SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent());
1051         SetjmpRetPHIs[I]->addIncoming(LongjmpResult, EndBB);
1052       }
1053 
1054       // We are splitting the block here, and must continue to find other calls
1055       // in the block - which is now split. so continue to traverse in the Tail
1056       BBs.push_back(Tail);
1057     }
1058   }
1059 
1060   // Erase everything we no longer need in this function
1061   for (Instruction *I : ToErase)
1062     I->eraseFromParent();
1063 
1064   // Free setjmpTable buffer before each return instruction
1065   for (BasicBlock &BB : F) {
1066     Instruction *TI = BB.getTerminator();
1067     if (isa<ReturnInst>(TI))
1068       CallInst::CreateFree(SetjmpTable, TI);
1069   }
1070 
1071   // Every call to saveSetjmp can change setjmpTable and setjmpTableSize
1072   // (when buffer reallocation occurs)
1073   // entry:
1074   //   setjmpTableSize = 4;
1075   //   setjmpTable = (int *) malloc(40);
1076   //   setjmpTable[0] = 0;
1077   // ...
1078   // somebb:
1079   //   setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize);
1080   //   setjmpTableSize = getTempRet0();
1081   // So we need to make sure the SSA for these variables is valid so that every
1082   // saveSetjmp and testSetjmp calls have the correct arguments.
1083   SSAUpdater SetjmpTableSSA;
1084   SSAUpdater SetjmpTableSizeSSA;
1085   SetjmpTableSSA.Initialize(Type::getInt32PtrTy(C), "setjmpTable");
1086   SetjmpTableSizeSSA.Initialize(Type::getInt32Ty(C), "setjmpTableSize");
1087   for (Instruction *I : SetjmpTableInsts)
1088     SetjmpTableSSA.AddAvailableValue(I->getParent(), I);
1089   for (Instruction *I : SetjmpTableSizeInsts)
1090     SetjmpTableSizeSSA.AddAvailableValue(I->getParent(), I);
1091 
1092   for (auto UI = SetjmpTable->use_begin(), UE = SetjmpTable->use_end();
1093        UI != UE;) {
1094     // Grab the use before incrementing the iterator.
1095     Use &U = *UI;
1096     // Increment the iterator before removing the use from the list.
1097     ++UI;
1098     if (auto *I = dyn_cast<Instruction>(U.getUser()))
1099       if (I->getParent() != &EntryBB)
1100         SetjmpTableSSA.RewriteUse(U);
1101   }
1102   for (auto UI = SetjmpTableSize->use_begin(), UE = SetjmpTableSize->use_end();
1103        UI != UE;) {
1104     Use &U = *UI;
1105     ++UI;
1106     if (auto *I = dyn_cast<Instruction>(U.getUser()))
1107       if (I->getParent() != &EntryBB)
1108         SetjmpTableSizeSSA.RewriteUse(U);
1109   }
1110 
1111   // Finally, our modifications to the cfg can break dominance of SSA variables.
1112   // For example, in this code,
1113   // if (x()) { .. setjmp() .. }
1114   // if (y()) { .. longjmp() .. }
1115   // We must split the longjmp block, and it can jump into the block splitted
1116   // from setjmp one. But that means that when we split the setjmp block, it's
1117   // first part no longer dominates its second part - there is a theoretically
1118   // possible control flow path where x() is false, then y() is true and we
1119   // reach the second part of the setjmp block, without ever reaching the first
1120   // part. So, we rebuild SSA form here.
1121   rebuildSSA(F);
1122   return true;
1123 }
1124