1 //=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file lowers exception-related instructions and setjmp/longjmp 11 /// function calls in order to use Emscripten's JavaScript try and catch 12 /// mechanism. 13 /// 14 /// To handle exceptions and setjmp/longjmps, this scheme relies on JavaScript's 15 /// try and catch syntax and relevant exception-related libraries implemented 16 /// in JavaScript glue code that will be produced by Emscripten. This is similar 17 /// to the current Emscripten asm.js exception handling in fastcomp. For 18 /// fastcomp's EH / SjLj scheme, see these files in fastcomp LLVM branch: 19 /// (Location: https://github.com/kripken/emscripten-fastcomp) 20 /// lib/Target/JSBackend/NaCl/LowerEmExceptionsPass.cpp 21 /// lib/Target/JSBackend/NaCl/LowerEmSetjmp.cpp 22 /// lib/Target/JSBackend/JSBackend.cpp 23 /// lib/Target/JSBackend/CallHandlers.h 24 /// 25 /// * Exception handling 26 /// This pass lowers invokes and landingpads into library functions in JS glue 27 /// code. Invokes are lowered into function wrappers called invoke wrappers that 28 /// exist in JS side, which wraps the original function call with JS try-catch. 29 /// If an exception occurred, cxa_throw() function in JS side sets some 30 /// variables (see below) so we can check whether an exception occurred from 31 /// wasm code and handle it appropriately. 32 /// 33 /// * Setjmp-longjmp handling 34 /// This pass lowers setjmp to a reasonably-performant approach for emscripten. 35 /// The idea is that each block with a setjmp is broken up into two parts: the 36 /// part containing setjmp and the part right after the setjmp. The latter part 37 /// is either reached from the setjmp, or later from a longjmp. To handle the 38 /// longjmp, all calls that might longjmp are also called using invoke wrappers 39 /// and thus JS / try-catch. JS longjmp() function also sets some variables so 40 /// we can check / whether a longjmp occurred from wasm code. Each block with a 41 /// function call that might longjmp is also split up after the longjmp call. 42 /// After the longjmp call, we check whether a longjmp occurred, and if it did, 43 /// which setjmp it corresponds to, and jump to the right post-setjmp block. 44 /// We assume setjmp-longjmp handling always run after EH handling, which means 45 /// we don't expect any exception-related instructions when SjLj runs. 46 /// FIXME Currently this scheme does not support indirect call of setjmp, 47 /// because of the limitation of the scheme itself. fastcomp does not support it 48 /// either. 49 /// 50 /// In detail, this pass does following things: 51 /// 52 /// 1) Assumes the existence of global variables: __THREW__, __threwValue 53 /// __THREW__ and __threwValue will be set in invoke wrappers 54 /// in JS glue code. For what invoke wrappers are, refer to 3). These 55 /// variables are used for both exceptions and setjmp/longjmps. 56 /// __THREW__ indicates whether an exception or a longjmp occurred or not. 0 57 /// means nothing occurred, 1 means an exception occurred, and other numbers 58 /// mean a longjmp occurred. In the case of longjmp, __threwValue variable 59 /// indicates the corresponding setjmp buffer the longjmp corresponds to. 60 /// 61 /// * Exception handling 62 /// 63 /// 2) We assume the existence of setThrew and setTempRet0/getTempRet0 functions 64 /// at link time. 65 /// The global variables in 1) will exist in wasm address space, 66 /// but their values should be set in JS code, so these functions 67 /// as interfaces to JS glue code. These functions are equivalent to the 68 /// following JS functions, which actually exist in asm.js version of JS 69 /// library. 70 /// 71 /// function setThrew(threw, value) { 72 /// if (__THREW__ == 0) { 73 /// __THREW__ = threw; 74 /// __threwValue = value; 75 /// } 76 /// } 77 // 78 /// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code. 79 /// 80 /// In exception handling, getTempRet0 indicates the type of an exception 81 /// caught, and in setjmp/longjmp, it means the second argument to longjmp 82 /// function. 83 /// 84 /// 3) Lower 85 /// invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad 86 /// into 87 /// __THREW__ = 0; 88 /// call @__invoke_SIG(func, arg1, arg2) 89 /// %__THREW__.val = __THREW__; 90 /// __THREW__ = 0; 91 /// if (%__THREW__.val == 1) 92 /// goto %lpad 93 /// else 94 /// goto %invoke.cont 95 /// SIG is a mangled string generated based on the LLVM IR-level function 96 /// signature. After LLVM IR types are lowered to the target wasm types, 97 /// the names for these wrappers will change based on wasm types as well, 98 /// as in invoke_vi (function takes an int and returns void). The bodies of 99 /// these wrappers will be generated in JS glue code, and inside those 100 /// wrappers we use JS try-catch to generate actual exception effects. It 101 /// also calls the original callee function. An example wrapper in JS code 102 /// would look like this: 103 /// function invoke_vi(index,a1) { 104 /// try { 105 /// Module["dynCall_vi"](index,a1); // This calls original callee 106 /// } catch(e) { 107 /// if (typeof e !== 'number' && e !== 'longjmp') throw e; 108 /// asm["setThrew"](1, 0); // setThrew is called here 109 /// } 110 /// } 111 /// If an exception is thrown, __THREW__ will be set to true in a wrapper, 112 /// so we can jump to the right BB based on this value. 113 /// 114 /// 4) Lower 115 /// %val = landingpad catch c1 catch c2 catch c3 ... 116 /// ... use %val ... 117 /// into 118 /// %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...) 119 /// %val = {%fmc, getTempRet0()} 120 /// ... use %val ... 121 /// Here N is a number calculated based on the number of clauses. 122 /// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code. 123 /// 124 /// 5) Lower 125 /// resume {%a, %b} 126 /// into 127 /// call @__resumeException(%a) 128 /// where __resumeException() is a function in JS glue code. 129 /// 130 /// 6) Lower 131 /// call @llvm.eh.typeid.for(type) (intrinsic) 132 /// into 133 /// call @llvm_eh_typeid_for(type) 134 /// llvm_eh_typeid_for function will be generated in JS glue code. 135 /// 136 /// * Setjmp / Longjmp handling 137 /// 138 /// In case calls to longjmp() exists 139 /// 140 /// 1) Lower 141 /// longjmp(buf, value) 142 /// into 143 /// emscripten_longjmp_jmpbuf(buf, value) 144 /// emscripten_longjmp_jmpbuf will be lowered to emscripten_longjmp later. 145 /// 146 /// In case calls to setjmp() exists 147 /// 148 /// 2) In the function entry that calls setjmp, initialize setjmpTable and 149 /// sejmpTableSize as follows: 150 /// setjmpTableSize = 4; 151 /// setjmpTable = (int *) malloc(40); 152 /// setjmpTable[0] = 0; 153 /// setjmpTable and setjmpTableSize are used in saveSetjmp() function in JS 154 /// code. 155 /// 156 /// 3) Lower 157 /// setjmp(buf) 158 /// into 159 /// setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize); 160 /// setjmpTableSize = getTempRet0(); 161 /// For each dynamic setjmp call, setjmpTable stores its ID (a number which 162 /// is incrementally assigned from 0) and its label (a unique number that 163 /// represents each callsite of setjmp). When we need more entries in 164 /// setjmpTable, it is reallocated in saveSetjmp() in JS code and it will 165 /// return the new table address, and assign the new table size in 166 /// setTempRet0(). saveSetjmp also stores the setjmp's ID into the buffer 167 /// buf. A BB with setjmp is split into two after setjmp call in order to 168 /// make the post-setjmp BB the possible destination of longjmp BB. 169 /// 170 /// 171 /// 4) Lower every call that might longjmp into 172 /// __THREW__ = 0; 173 /// call @__invoke_SIG(func, arg1, arg2) 174 /// %__THREW__.val = __THREW__; 175 /// __THREW__ = 0; 176 /// if (%__THREW__.val != 0 & __threwValue != 0) { 177 /// %label = testSetjmp(mem[%__THREW__.val], setjmpTable, 178 /// setjmpTableSize); 179 /// if (%label == 0) 180 /// emscripten_longjmp(%__THREW__.val, __threwValue); 181 /// setTempRet0(__threwValue); 182 /// } else { 183 /// %label = -1; 184 /// } 185 /// longjmp_result = getTempRet0(); 186 /// switch label { 187 /// label 1: goto post-setjmp BB 1 188 /// label 2: goto post-setjmp BB 2 189 /// ... 190 /// default: goto splitted next BB 191 /// } 192 /// testSetjmp examines setjmpTable to see if there is a matching setjmp 193 /// call. After calling an invoke wrapper, if a longjmp occurred, __THREW__ 194 /// will be the address of matching jmp_buf buffer and __threwValue be the 195 /// second argument to longjmp. mem[__THREW__.val] is a setjmp ID that is 196 /// stored in saveSetjmp. testSetjmp returns a setjmp label, a unique ID to 197 /// each setjmp callsite. Label 0 means this longjmp buffer does not 198 /// correspond to one of the setjmp callsites in this function, so in this 199 /// case we just chain the longjmp to the caller. (Here we call 200 /// emscripten_longjmp, which is different from emscripten_longjmp_jmpbuf. 201 /// emscripten_longjmp_jmpbuf takes jmp_buf as its first argument, while 202 /// emscripten_longjmp takes an int. Both of them will eventually be lowered 203 /// to emscripten_longjmp in s2wasm, but here we need two signatures - we 204 /// can't translate an int value to a jmp_buf.) 205 /// Label -1 means no longjmp occurred. Otherwise we jump to the right 206 /// post-setjmp BB based on the label. 207 /// 208 ///===----------------------------------------------------------------------===// 209 210 #include "WebAssembly.h" 211 #include "llvm/IR/CallSite.h" 212 #include "llvm/IR/Dominators.h" 213 #include "llvm/IR/IRBuilder.h" 214 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 215 #include "llvm/Transforms/Utils/SSAUpdater.h" 216 217 using namespace llvm; 218 219 #define DEBUG_TYPE "wasm-lower-em-ehsjlj" 220 221 static cl::list<std::string> 222 EHWhitelist("emscripten-cxx-exceptions-whitelist", 223 cl::desc("The list of function names in which Emscripten-style " 224 "exception handling is enabled (see emscripten " 225 "EMSCRIPTEN_CATCHING_WHITELIST options)"), 226 cl::CommaSeparated); 227 228 namespace { 229 class WebAssemblyLowerEmscriptenEHSjLj final : public ModulePass { 230 static const char *ResumeFName; 231 static const char *EHTypeIDFName; 232 static const char *EmLongjmpFName; 233 static const char *EmLongjmpJmpbufFName; 234 static const char *SaveSetjmpFName; 235 static const char *TestSetjmpFName; 236 static const char *FindMatchingCatchPrefix; 237 static const char *InvokePrefix; 238 239 bool EnableEH; // Enable exception handling 240 bool EnableSjLj; // Enable setjmp/longjmp handling 241 242 GlobalVariable *ThrewGV; 243 GlobalVariable *ThrewValueGV; 244 Function *GetTempRet0Func; 245 Function *SetTempRet0Func; 246 Function *ResumeF; 247 Function *EHTypeIDF; 248 Function *EmLongjmpF; 249 Function *EmLongjmpJmpbufF; 250 Function *SaveSetjmpF; 251 Function *TestSetjmpF; 252 253 // __cxa_find_matching_catch_N functions. 254 // Indexed by the number of clauses in an original landingpad instruction. 255 DenseMap<int, Function *> FindMatchingCatches; 256 // Map of <function signature string, invoke_ wrappers> 257 StringMap<Function *> InvokeWrappers; 258 // Set of whitelisted function names for exception handling 259 std::set<std::string> EHWhitelistSet; 260 261 StringRef getPassName() const override { 262 return "WebAssembly Lower Emscripten Exceptions"; 263 } 264 265 bool runEHOnFunction(Function &F); 266 bool runSjLjOnFunction(Function &F); 267 Function *getFindMatchingCatch(Module &M, unsigned NumClauses); 268 269 template <typename CallOrInvoke> Value *wrapInvoke(CallOrInvoke *CI); 270 void wrapTestSetjmp(BasicBlock *BB, Instruction *InsertPt, Value *Threw, 271 Value *SetjmpTable, Value *SetjmpTableSize, Value *&Label, 272 Value *&LongjmpResult, BasicBlock *&EndBB); 273 template <typename CallOrInvoke> Function *getInvokeWrapper(CallOrInvoke *CI); 274 275 bool areAllExceptionsAllowed() const { return EHWhitelistSet.empty(); } 276 bool canLongjmp(Module &M, const Value *Callee) const; 277 278 void rebuildSSA(Function &F); 279 280 public: 281 static char ID; 282 283 WebAssemblyLowerEmscriptenEHSjLj(bool EnableEH = true, bool EnableSjLj = true) 284 : ModulePass(ID), EnableEH(EnableEH), EnableSjLj(EnableSjLj), 285 ThrewGV(nullptr), ThrewValueGV(nullptr), GetTempRet0Func(nullptr), 286 SetTempRet0Func(nullptr), ResumeF(nullptr), EHTypeIDF(nullptr), 287 EmLongjmpF(nullptr), EmLongjmpJmpbufF(nullptr), SaveSetjmpF(nullptr), 288 TestSetjmpF(nullptr) { 289 EHWhitelistSet.insert(EHWhitelist.begin(), EHWhitelist.end()); 290 } 291 bool runOnModule(Module &M) override; 292 293 void getAnalysisUsage(AnalysisUsage &AU) const override { 294 AU.addRequired<DominatorTreeWrapperPass>(); 295 } 296 }; 297 } // End anonymous namespace 298 299 const char *WebAssemblyLowerEmscriptenEHSjLj::ResumeFName = "__resumeException"; 300 const char *WebAssemblyLowerEmscriptenEHSjLj::EHTypeIDFName = 301 "llvm_eh_typeid_for"; 302 const char *WebAssemblyLowerEmscriptenEHSjLj::EmLongjmpFName = 303 "emscripten_longjmp"; 304 const char *WebAssemblyLowerEmscriptenEHSjLj::EmLongjmpJmpbufFName = 305 "emscripten_longjmp_jmpbuf"; 306 const char *WebAssemblyLowerEmscriptenEHSjLj::SaveSetjmpFName = "saveSetjmp"; 307 const char *WebAssemblyLowerEmscriptenEHSjLj::TestSetjmpFName = "testSetjmp"; 308 const char *WebAssemblyLowerEmscriptenEHSjLj::FindMatchingCatchPrefix = 309 "__cxa_find_matching_catch_"; 310 const char *WebAssemblyLowerEmscriptenEHSjLj::InvokePrefix = "__invoke_"; 311 312 char WebAssemblyLowerEmscriptenEHSjLj::ID = 0; 313 INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj, DEBUG_TYPE, 314 "WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp", 315 false, false) 316 317 ModulePass *llvm::createWebAssemblyLowerEmscriptenEHSjLj(bool EnableEH, 318 bool EnableSjLj) { 319 return new WebAssemblyLowerEmscriptenEHSjLj(EnableEH, EnableSjLj); 320 } 321 322 static bool canThrow(const Value *V) { 323 if (const auto *F = dyn_cast<const Function>(V)) { 324 // Intrinsics cannot throw 325 if (F->isIntrinsic()) 326 return false; 327 StringRef Name = F->getName(); 328 // leave setjmp and longjmp (mostly) alone, we process them properly later 329 if (Name == "setjmp" || Name == "longjmp") 330 return false; 331 return !F->doesNotThrow(); 332 } 333 // not a function, so an indirect call - can throw, we can't tell 334 return true; 335 } 336 337 // Get a global variable with the given name. If it doesn't exist declare it, 338 // which will generate an import and asssumes that it will exist at link time. 339 static GlobalVariable *getGlobalVariableI32(Module &M, IRBuilder<> &IRB, 340 const char *Name) { 341 if (M.getNamedGlobal(Name)) 342 report_fatal_error(Twine("variable name is reserved: ") + Name); 343 344 return new GlobalVariable(M, IRB.getInt32Ty(), false, 345 GlobalValue::ExternalLinkage, nullptr, Name); 346 } 347 348 // Simple function name mangler. 349 // This function simply takes LLVM's string representation of parameter types 350 // and concatenate them with '_'. There are non-alphanumeric characters but llc 351 // is ok with it, and we need to postprocess these names after the lowering 352 // phase anyway. 353 static std::string getSignature(FunctionType *FTy) { 354 std::string Sig; 355 raw_string_ostream OS(Sig); 356 OS << *FTy->getReturnType(); 357 for (Type *ParamTy : FTy->params()) 358 OS << "_" << *ParamTy; 359 if (FTy->isVarArg()) 360 OS << "_..."; 361 Sig = OS.str(); 362 Sig.erase(remove_if(Sig, isspace), Sig.end()); 363 // When s2wasm parses .s file, a comma means the end of an argument. So a 364 // mangled function name can contain any character but a comma. 365 std::replace(Sig.begin(), Sig.end(), ',', '.'); 366 return Sig; 367 } 368 369 // Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2. 370 // This is because a landingpad instruction contains two more arguments, a 371 // personality function and a cleanup bit, and __cxa_find_matching_catch_N 372 // functions are named after the number of arguments in the original landingpad 373 // instruction. 374 Function * 375 WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module &M, 376 unsigned NumClauses) { 377 if (FindMatchingCatches.count(NumClauses)) 378 return FindMatchingCatches[NumClauses]; 379 PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext()); 380 SmallVector<Type *, 16> Args(NumClauses, Int8PtrTy); 381 FunctionType *FTy = FunctionType::get(Int8PtrTy, Args, false); 382 Function *F = 383 Function::Create(FTy, GlobalValue::ExternalLinkage, 384 FindMatchingCatchPrefix + Twine(NumClauses + 2), &M); 385 FindMatchingCatches[NumClauses] = F; 386 return F; 387 } 388 389 // Generate invoke wrapper seqence with preamble and postamble 390 // Preamble: 391 // __THREW__ = 0; 392 // Postamble: 393 // %__THREW__.val = __THREW__; __THREW__ = 0; 394 // Returns %__THREW__.val, which indicates whether an exception is thrown (or 395 // whether longjmp occurred), for future use. 396 template <typename CallOrInvoke> 397 Value *WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallOrInvoke *CI) { 398 LLVMContext &C = CI->getModule()->getContext(); 399 400 // If we are calling a function that is noreturn, we must remove that 401 // attribute. The code we insert here does expect it to return, after we 402 // catch the exception. 403 if (CI->doesNotReturn()) { 404 if (auto *F = dyn_cast<Function>(CI->getCalledValue())) 405 F->removeFnAttr(Attribute::NoReturn); 406 CI->removeAttribute(AttributeList::FunctionIndex, Attribute::NoReturn); 407 } 408 409 IRBuilder<> IRB(C); 410 IRB.SetInsertPoint(CI); 411 412 // Pre-invoke 413 // __THREW__ = 0; 414 IRB.CreateStore(IRB.getInt32(0), ThrewGV); 415 416 // Invoke function wrapper in JavaScript 417 SmallVector<Value *, 16> Args; 418 // Put the pointer to the callee as first argument, so it can be called 419 // within the invoke wrapper later 420 Args.push_back(CI->getCalledValue()); 421 Args.append(CI->arg_begin(), CI->arg_end()); 422 CallInst *NewCall = IRB.CreateCall(getInvokeWrapper(CI), Args); 423 NewCall->takeName(CI); 424 NewCall->setCallingConv(CI->getCallingConv()); 425 NewCall->setDebugLoc(CI->getDebugLoc()); 426 427 // Because we added the pointer to the callee as first argument, all 428 // argument attribute indices have to be incremented by one. 429 SmallVector<AttributeSet, 8> ArgAttributes; 430 const AttributeList &InvokeAL = CI->getAttributes(); 431 432 // No attributes for the callee pointer. 433 ArgAttributes.push_back(AttributeSet()); 434 // Copy the argument attributes from the original 435 for (unsigned i = 0, e = CI->getNumArgOperands(); i < e; ++i) 436 ArgAttributes.push_back(InvokeAL.getParamAttributes(i)); 437 438 // Reconstruct the AttributesList based on the vector we constructed. 439 AttributeList NewCallAL = 440 AttributeList::get(C, InvokeAL.getFnAttributes(), 441 InvokeAL.getRetAttributes(), ArgAttributes); 442 NewCall->setAttributes(NewCallAL); 443 444 CI->replaceAllUsesWith(NewCall); 445 446 // Post-invoke 447 // %__THREW__.val = __THREW__; __THREW__ = 0; 448 Value *Threw = 449 IRB.CreateLoad(IRB.getInt32Ty(), ThrewGV, ThrewGV->getName() + ".val"); 450 IRB.CreateStore(IRB.getInt32(0), ThrewGV); 451 return Threw; 452 } 453 454 // Get matching invoke wrapper based on callee signature 455 template <typename CallOrInvoke> 456 Function *WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallOrInvoke *CI) { 457 Module *M = CI->getModule(); 458 SmallVector<Type *, 16> ArgTys; 459 Value *Callee = CI->getCalledValue(); 460 FunctionType *CalleeFTy; 461 if (auto *F = dyn_cast<Function>(Callee)) 462 CalleeFTy = F->getFunctionType(); 463 else { 464 auto *CalleeTy = cast<PointerType>(Callee->getType())->getElementType(); 465 CalleeFTy = dyn_cast<FunctionType>(CalleeTy); 466 } 467 468 std::string Sig = getSignature(CalleeFTy); 469 if (InvokeWrappers.find(Sig) != InvokeWrappers.end()) 470 return InvokeWrappers[Sig]; 471 472 // Put the pointer to the callee as first argument 473 ArgTys.push_back(PointerType::getUnqual(CalleeFTy)); 474 // Add argument types 475 ArgTys.append(CalleeFTy->param_begin(), CalleeFTy->param_end()); 476 477 FunctionType *FTy = FunctionType::get(CalleeFTy->getReturnType(), ArgTys, 478 CalleeFTy->isVarArg()); 479 Function *F = Function::Create(FTy, GlobalValue::ExternalLinkage, 480 InvokePrefix + Sig, M); 481 InvokeWrappers[Sig] = F; 482 return F; 483 } 484 485 bool WebAssemblyLowerEmscriptenEHSjLj::canLongjmp(Module &M, 486 const Value *Callee) const { 487 if (auto *CalleeF = dyn_cast<Function>(Callee)) 488 if (CalleeF->isIntrinsic()) 489 return false; 490 491 // The reason we include malloc/free here is to exclude the malloc/free 492 // calls generated in setjmp prep / cleanup routines. 493 Function *SetjmpF = M.getFunction("setjmp"); 494 Function *MallocF = M.getFunction("malloc"); 495 Function *FreeF = M.getFunction("free"); 496 if (Callee == SetjmpF || Callee == MallocF || Callee == FreeF) 497 return false; 498 499 // There are functions in JS glue code 500 if (Callee == ResumeF || Callee == EHTypeIDF || Callee == SaveSetjmpF || 501 Callee == TestSetjmpF) 502 return false; 503 504 // __cxa_find_matching_catch_N functions cannot longjmp 505 if (Callee->getName().startswith(FindMatchingCatchPrefix)) 506 return false; 507 508 // Exception-catching related functions 509 Function *BeginCatchF = M.getFunction("__cxa_begin_catch"); 510 Function *EndCatchF = M.getFunction("__cxa_end_catch"); 511 Function *AllocExceptionF = M.getFunction("__cxa_allocate_exception"); 512 Function *ThrowF = M.getFunction("__cxa_throw"); 513 Function *TerminateF = M.getFunction("__clang_call_terminate"); 514 if (Callee == BeginCatchF || Callee == EndCatchF || 515 Callee == AllocExceptionF || Callee == ThrowF || Callee == TerminateF || 516 Callee == GetTempRet0Func || Callee == SetTempRet0Func) 517 return false; 518 519 // Otherwise we don't know 520 return true; 521 } 522 523 // Generate testSetjmp function call seqence with preamble and postamble. 524 // The code this generates is equivalent to the following JavaScript code: 525 // if (%__THREW__.val != 0 & threwValue != 0) { 526 // %label = _testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize); 527 // if (%label == 0) 528 // emscripten_longjmp(%__THREW__.val, threwValue); 529 // setTempRet0(threwValue); 530 // } else { 531 // %label = -1; 532 // } 533 // %longjmp_result = getTempRet0(); 534 // 535 // As output parameters. returns %label, %longjmp_result, and the BB the last 536 // instruction (%longjmp_result = ...) is in. 537 void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp( 538 BasicBlock *BB, Instruction *InsertPt, Value *Threw, Value *SetjmpTable, 539 Value *SetjmpTableSize, Value *&Label, Value *&LongjmpResult, 540 BasicBlock *&EndBB) { 541 Function *F = BB->getParent(); 542 LLVMContext &C = BB->getModule()->getContext(); 543 IRBuilder<> IRB(C); 544 IRB.SetInsertPoint(InsertPt); 545 546 // if (%__THREW__.val != 0 & threwValue != 0) 547 IRB.SetInsertPoint(BB); 548 BasicBlock *ThenBB1 = BasicBlock::Create(C, "if.then1", F); 549 BasicBlock *ElseBB1 = BasicBlock::Create(C, "if.else1", F); 550 BasicBlock *EndBB1 = BasicBlock::Create(C, "if.end", F); 551 Value *ThrewCmp = IRB.CreateICmpNE(Threw, IRB.getInt32(0)); 552 Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV, 553 ThrewValueGV->getName() + ".val"); 554 Value *ThrewValueCmp = IRB.CreateICmpNE(ThrewValue, IRB.getInt32(0)); 555 Value *Cmp1 = IRB.CreateAnd(ThrewCmp, ThrewValueCmp, "cmp1"); 556 IRB.CreateCondBr(Cmp1, ThenBB1, ElseBB1); 557 558 // %label = _testSetjmp(mem[%__THREW__.val], _setjmpTable, _setjmpTableSize); 559 // if (%label == 0) 560 IRB.SetInsertPoint(ThenBB1); 561 BasicBlock *ThenBB2 = BasicBlock::Create(C, "if.then2", F); 562 BasicBlock *EndBB2 = BasicBlock::Create(C, "if.end2", F); 563 Value *ThrewInt = IRB.CreateIntToPtr(Threw, Type::getInt32PtrTy(C), 564 Threw->getName() + ".i32p"); 565 Value *LoadedThrew = IRB.CreateLoad(IRB.getInt32Ty(), ThrewInt, 566 ThrewInt->getName() + ".loaded"); 567 Value *ThenLabel = IRB.CreateCall( 568 TestSetjmpF, {LoadedThrew, SetjmpTable, SetjmpTableSize}, "label"); 569 Value *Cmp2 = IRB.CreateICmpEQ(ThenLabel, IRB.getInt32(0)); 570 IRB.CreateCondBr(Cmp2, ThenBB2, EndBB2); 571 572 // emscripten_longjmp(%__THREW__.val, threwValue); 573 IRB.SetInsertPoint(ThenBB2); 574 IRB.CreateCall(EmLongjmpF, {Threw, ThrewValue}); 575 IRB.CreateUnreachable(); 576 577 // setTempRet0(threwValue); 578 IRB.SetInsertPoint(EndBB2); 579 IRB.CreateCall(SetTempRet0Func, ThrewValue); 580 IRB.CreateBr(EndBB1); 581 582 IRB.SetInsertPoint(ElseBB1); 583 IRB.CreateBr(EndBB1); 584 585 // longjmp_result = getTempRet0(); 586 IRB.SetInsertPoint(EndBB1); 587 PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label"); 588 LabelPHI->addIncoming(ThenLabel, EndBB2); 589 590 LabelPHI->addIncoming(IRB.getInt32(-1), ElseBB1); 591 592 // Output parameter assignment 593 Label = LabelPHI; 594 EndBB = EndBB1; 595 LongjmpResult = IRB.CreateCall(GetTempRet0Func, None, "longjmp_result"); 596 } 597 598 void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function &F) { 599 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 600 DT.recalculate(F); // CFG has been changed 601 SSAUpdater SSA; 602 for (BasicBlock &BB : F) { 603 for (Instruction &I : BB) { 604 for (auto UI = I.use_begin(), UE = I.use_end(); UI != UE;) { 605 Use &U = *UI; 606 ++UI; 607 SSA.Initialize(I.getType(), I.getName()); 608 SSA.AddAvailableValue(&BB, &I); 609 Instruction *User = cast<Instruction>(U.getUser()); 610 if (User->getParent() == &BB) 611 continue; 612 613 if (PHINode *UserPN = dyn_cast<PHINode>(User)) 614 if (UserPN->getIncomingBlock(U) == &BB) 615 continue; 616 617 if (DT.dominates(&I, User)) 618 continue; 619 SSA.RewriteUseAfterInsertions(U); 620 } 621 } 622 } 623 } 624 625 bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module &M) { 626 LLVM_DEBUG(dbgs() << "********** Lower Emscripten EH & SjLj **********\n"); 627 628 LLVMContext &C = M.getContext(); 629 IRBuilder<> IRB(C); 630 631 Function *SetjmpF = M.getFunction("setjmp"); 632 Function *LongjmpF = M.getFunction("longjmp"); 633 bool SetjmpUsed = SetjmpF && !SetjmpF->use_empty(); 634 bool LongjmpUsed = LongjmpF && !LongjmpF->use_empty(); 635 bool DoSjLj = EnableSjLj && (SetjmpUsed || LongjmpUsed); 636 637 // Declare (or get) global variables __THREW__, __threwValue, and 638 // getTempRet0/setTempRet0 function which are used in common for both 639 // exception handling and setjmp/longjmp handling 640 ThrewGV = getGlobalVariableI32(M, IRB, "__THREW__"); 641 ThrewValueGV = getGlobalVariableI32(M, IRB, "__threwValue"); 642 GetTempRet0Func = 643 Function::Create(FunctionType::get(IRB.getInt32Ty(), false), 644 GlobalValue::ExternalLinkage, "getTempRet0", &M); 645 SetTempRet0Func = Function::Create( 646 FunctionType::get(IRB.getVoidTy(), IRB.getInt32Ty(), false), 647 GlobalValue::ExternalLinkage, "setTempRet0", &M); 648 GetTempRet0Func->setDoesNotThrow(); 649 SetTempRet0Func->setDoesNotThrow(); 650 651 bool Changed = false; 652 653 // Exception handling 654 if (EnableEH) { 655 // Register __resumeException function 656 FunctionType *ResumeFTy = 657 FunctionType::get(IRB.getVoidTy(), IRB.getInt8PtrTy(), false); 658 ResumeF = Function::Create(ResumeFTy, GlobalValue::ExternalLinkage, 659 ResumeFName, &M); 660 661 // Register llvm_eh_typeid_for function 662 FunctionType *EHTypeIDTy = 663 FunctionType::get(IRB.getInt32Ty(), IRB.getInt8PtrTy(), false); 664 EHTypeIDF = Function::Create(EHTypeIDTy, GlobalValue::ExternalLinkage, 665 EHTypeIDFName, &M); 666 667 for (Function &F : M) { 668 if (F.isDeclaration()) 669 continue; 670 Changed |= runEHOnFunction(F); 671 } 672 } 673 674 // Setjmp/longjmp handling 675 if (DoSjLj) { 676 Changed = true; // We have setjmp or longjmp somewhere 677 678 if (LongjmpF) { 679 // Replace all uses of longjmp with emscripten_longjmp_jmpbuf, which is 680 // defined in JS code 681 EmLongjmpJmpbufF = Function::Create(LongjmpF->getFunctionType(), 682 GlobalValue::ExternalLinkage, 683 EmLongjmpJmpbufFName, &M); 684 685 LongjmpF->replaceAllUsesWith(EmLongjmpJmpbufF); 686 } 687 688 if (SetjmpF) { 689 // Register saveSetjmp function 690 FunctionType *SetjmpFTy = SetjmpF->getFunctionType(); 691 SmallVector<Type *, 4> Params = {SetjmpFTy->getParamType(0), 692 IRB.getInt32Ty(), Type::getInt32PtrTy(C), 693 IRB.getInt32Ty()}; 694 FunctionType *FTy = 695 FunctionType::get(Type::getInt32PtrTy(C), Params, false); 696 SaveSetjmpF = Function::Create(FTy, GlobalValue::ExternalLinkage, 697 SaveSetjmpFName, &M); 698 699 // Register testSetjmp function 700 Params = {IRB.getInt32Ty(), Type::getInt32PtrTy(C), IRB.getInt32Ty()}; 701 FTy = FunctionType::get(IRB.getInt32Ty(), Params, false); 702 TestSetjmpF = Function::Create(FTy, GlobalValue::ExternalLinkage, 703 TestSetjmpFName, &M); 704 705 FTy = FunctionType::get(IRB.getVoidTy(), 706 {IRB.getInt32Ty(), IRB.getInt32Ty()}, false); 707 EmLongjmpF = Function::Create(FTy, GlobalValue::ExternalLinkage, 708 EmLongjmpFName, &M); 709 710 // Only traverse functions that uses setjmp in order not to insert 711 // unnecessary prep / cleanup code in every function 712 SmallPtrSet<Function *, 8> SetjmpUsers; 713 for (User *U : SetjmpF->users()) { 714 auto *UI = cast<Instruction>(U); 715 SetjmpUsers.insert(UI->getFunction()); 716 } 717 for (Function *F : SetjmpUsers) 718 runSjLjOnFunction(*F); 719 } 720 } 721 722 if (!Changed) { 723 // Delete unused global variables and functions 724 if (ResumeF) 725 ResumeF->eraseFromParent(); 726 if (EHTypeIDF) 727 EHTypeIDF->eraseFromParent(); 728 if (EmLongjmpF) 729 EmLongjmpF->eraseFromParent(); 730 if (SaveSetjmpF) 731 SaveSetjmpF->eraseFromParent(); 732 if (TestSetjmpF) 733 TestSetjmpF->eraseFromParent(); 734 return false; 735 } 736 737 return true; 738 } 739 740 bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function &F) { 741 Module &M = *F.getParent(); 742 LLVMContext &C = F.getContext(); 743 IRBuilder<> IRB(C); 744 bool Changed = false; 745 SmallVector<Instruction *, 64> ToErase; 746 SmallPtrSet<LandingPadInst *, 32> LandingPads; 747 bool AllowExceptions = 748 areAllExceptionsAllowed() || EHWhitelistSet.count(F.getName()); 749 750 for (BasicBlock &BB : F) { 751 auto *II = dyn_cast<InvokeInst>(BB.getTerminator()); 752 if (!II) 753 continue; 754 Changed = true; 755 LandingPads.insert(II->getLandingPadInst()); 756 IRB.SetInsertPoint(II); 757 758 bool NeedInvoke = AllowExceptions && canThrow(II->getCalledValue()); 759 if (NeedInvoke) { 760 // Wrap invoke with invoke wrapper and generate preamble/postamble 761 Value *Threw = wrapInvoke(II); 762 ToErase.push_back(II); 763 764 // Insert a branch based on __THREW__ variable 765 Value *Cmp = IRB.CreateICmpEQ(Threw, IRB.getInt32(1), "cmp"); 766 IRB.CreateCondBr(Cmp, II->getUnwindDest(), II->getNormalDest()); 767 768 } else { 769 // This can't throw, and we don't need this invoke, just replace it with a 770 // call+branch 771 SmallVector<Value *, 16> Args(II->arg_begin(), II->arg_end()); 772 CallInst *NewCall = 773 IRB.CreateCall(II->getFunctionType(), II->getCalledValue(), Args); 774 NewCall->takeName(II); 775 NewCall->setCallingConv(II->getCallingConv()); 776 NewCall->setDebugLoc(II->getDebugLoc()); 777 NewCall->setAttributes(II->getAttributes()); 778 II->replaceAllUsesWith(NewCall); 779 ToErase.push_back(II); 780 781 IRB.CreateBr(II->getNormalDest()); 782 783 // Remove any PHI node entries from the exception destination 784 II->getUnwindDest()->removePredecessor(&BB); 785 } 786 } 787 788 // Process resume instructions 789 for (BasicBlock &BB : F) { 790 // Scan the body of the basic block for resumes 791 for (Instruction &I : BB) { 792 auto *RI = dyn_cast<ResumeInst>(&I); 793 if (!RI) 794 continue; 795 796 // Split the input into legal values 797 Value *Input = RI->getValue(); 798 IRB.SetInsertPoint(RI); 799 Value *Low = IRB.CreateExtractValue(Input, 0, "low"); 800 // Create a call to __resumeException function 801 IRB.CreateCall(ResumeF, {Low}); 802 // Add a terminator to the block 803 IRB.CreateUnreachable(); 804 ToErase.push_back(RI); 805 } 806 } 807 808 // Process llvm.eh.typeid.for intrinsics 809 for (BasicBlock &BB : F) { 810 for (Instruction &I : BB) { 811 auto *CI = dyn_cast<CallInst>(&I); 812 if (!CI) 813 continue; 814 const Function *Callee = CI->getCalledFunction(); 815 if (!Callee) 816 continue; 817 if (Callee->getIntrinsicID() != Intrinsic::eh_typeid_for) 818 continue; 819 820 IRB.SetInsertPoint(CI); 821 CallInst *NewCI = 822 IRB.CreateCall(EHTypeIDF, CI->getArgOperand(0), "typeid"); 823 CI->replaceAllUsesWith(NewCI); 824 ToErase.push_back(CI); 825 } 826 } 827 828 // Look for orphan landingpads, can occur in blocks with no predecessors 829 for (BasicBlock &BB : F) { 830 Instruction *I = BB.getFirstNonPHI(); 831 if (auto *LPI = dyn_cast<LandingPadInst>(I)) 832 LandingPads.insert(LPI); 833 } 834 835 // Handle all the landingpad for this function together, as multiple invokes 836 // may share a single lp 837 for (LandingPadInst *LPI : LandingPads) { 838 IRB.SetInsertPoint(LPI); 839 SmallVector<Value *, 16> FMCArgs; 840 for (unsigned i = 0, e = LPI->getNumClauses(); i < e; ++i) { 841 Constant *Clause = LPI->getClause(i); 842 // As a temporary workaround for the lack of aggregate varargs support 843 // in the interface between JS and wasm, break out filter operands into 844 // their component elements. 845 if (LPI->isFilter(i)) { 846 auto *ATy = cast<ArrayType>(Clause->getType()); 847 for (unsigned j = 0, e = ATy->getNumElements(); j < e; ++j) { 848 Value *EV = IRB.CreateExtractValue(Clause, makeArrayRef(j), "filter"); 849 FMCArgs.push_back(EV); 850 } 851 } else 852 FMCArgs.push_back(Clause); 853 } 854 855 // Create a call to __cxa_find_matching_catch_N function 856 Function *FMCF = getFindMatchingCatch(M, FMCArgs.size()); 857 CallInst *FMCI = IRB.CreateCall(FMCF, FMCArgs, "fmc"); 858 Value *Undef = UndefValue::get(LPI->getType()); 859 Value *Pair0 = IRB.CreateInsertValue(Undef, FMCI, 0, "pair0"); 860 Value *TempRet0 = IRB.CreateCall(GetTempRet0Func, None, "tempret0"); 861 Value *Pair1 = IRB.CreateInsertValue(Pair0, TempRet0, 1, "pair1"); 862 863 LPI->replaceAllUsesWith(Pair1); 864 ToErase.push_back(LPI); 865 } 866 867 // Erase everything we no longer need in this function 868 for (Instruction *I : ToErase) 869 I->eraseFromParent(); 870 871 return Changed; 872 } 873 874 bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function &F) { 875 Module &M = *F.getParent(); 876 LLVMContext &C = F.getContext(); 877 IRBuilder<> IRB(C); 878 SmallVector<Instruction *, 64> ToErase; 879 // Vector of %setjmpTable values 880 std::vector<Instruction *> SetjmpTableInsts; 881 // Vector of %setjmpTableSize values 882 std::vector<Instruction *> SetjmpTableSizeInsts; 883 884 // Setjmp preparation 885 886 // This instruction effectively means %setjmpTableSize = 4. 887 // We create this as an instruction intentionally, and we don't want to fold 888 // this instruction to a constant 4, because this value will be used in 889 // SSAUpdater.AddAvailableValue(...) later. 890 BasicBlock &EntryBB = F.getEntryBlock(); 891 BinaryOperator *SetjmpTableSize = BinaryOperator::Create( 892 Instruction::Add, IRB.getInt32(4), IRB.getInt32(0), "setjmpTableSize", 893 &*EntryBB.getFirstInsertionPt()); 894 // setjmpTable = (int *) malloc(40); 895 Instruction *SetjmpTable = CallInst::CreateMalloc( 896 SetjmpTableSize, IRB.getInt32Ty(), IRB.getInt32Ty(), IRB.getInt32(40), 897 nullptr, nullptr, "setjmpTable"); 898 // setjmpTable[0] = 0; 899 IRB.SetInsertPoint(SetjmpTableSize); 900 IRB.CreateStore(IRB.getInt32(0), SetjmpTable); 901 SetjmpTableInsts.push_back(SetjmpTable); 902 SetjmpTableSizeInsts.push_back(SetjmpTableSize); 903 904 // Setjmp transformation 905 std::vector<PHINode *> SetjmpRetPHIs; 906 Function *SetjmpF = M.getFunction("setjmp"); 907 for (User *U : SetjmpF->users()) { 908 auto *CI = dyn_cast<CallInst>(U); 909 if (!CI) 910 report_fatal_error("Does not support indirect calls to setjmp"); 911 912 BasicBlock *BB = CI->getParent(); 913 if (BB->getParent() != &F) // in other function 914 continue; 915 916 // The tail is everything right after the call, and will be reached once 917 // when setjmp is called, and later when longjmp returns to the setjmp 918 BasicBlock *Tail = SplitBlock(BB, CI->getNextNode()); 919 // Add a phi to the tail, which will be the output of setjmp, which 920 // indicates if this is the first call or a longjmp back. The phi directly 921 // uses the right value based on where we arrive from 922 IRB.SetInsertPoint(Tail->getFirstNonPHI()); 923 PHINode *SetjmpRet = IRB.CreatePHI(IRB.getInt32Ty(), 2, "setjmp.ret"); 924 925 // setjmp initial call returns 0 926 SetjmpRet->addIncoming(IRB.getInt32(0), BB); 927 // The proper output is now this, not the setjmp call itself 928 CI->replaceAllUsesWith(SetjmpRet); 929 // longjmp returns to the setjmp will add themselves to this phi 930 SetjmpRetPHIs.push_back(SetjmpRet); 931 932 // Fix call target 933 // Our index in the function is our place in the array + 1 to avoid index 934 // 0, because index 0 means the longjmp is not ours to handle. 935 IRB.SetInsertPoint(CI); 936 Value *Args[] = {CI->getArgOperand(0), IRB.getInt32(SetjmpRetPHIs.size()), 937 SetjmpTable, SetjmpTableSize}; 938 Instruction *NewSetjmpTable = 939 IRB.CreateCall(SaveSetjmpF, Args, "setjmpTable"); 940 Instruction *NewSetjmpTableSize = 941 IRB.CreateCall(GetTempRet0Func, None, "setjmpTableSize"); 942 SetjmpTableInsts.push_back(NewSetjmpTable); 943 SetjmpTableSizeInsts.push_back(NewSetjmpTableSize); 944 ToErase.push_back(CI); 945 } 946 947 // Update each call that can longjmp so it can return to a setjmp where 948 // relevant. 949 950 // Because we are creating new BBs while processing and don't want to make 951 // all these newly created BBs candidates again for longjmp processing, we 952 // first make the vector of candidate BBs. 953 std::vector<BasicBlock *> BBs; 954 for (BasicBlock &BB : F) 955 BBs.push_back(&BB); 956 957 // BBs.size() will change within the loop, so we query it every time 958 for (unsigned i = 0; i < BBs.size(); i++) { 959 BasicBlock *BB = BBs[i]; 960 for (Instruction &I : *BB) { 961 assert(!isa<InvokeInst>(&I)); 962 auto *CI = dyn_cast<CallInst>(&I); 963 if (!CI) 964 continue; 965 966 const Value *Callee = CI->getCalledValue(); 967 if (!canLongjmp(M, Callee)) 968 continue; 969 970 Value *Threw = nullptr; 971 BasicBlock *Tail; 972 if (Callee->getName().startswith(InvokePrefix)) { 973 // If invoke wrapper has already been generated for this call in 974 // previous EH phase, search for the load instruction 975 // %__THREW__.val = __THREW__; 976 // in postamble after the invoke wrapper call 977 LoadInst *ThrewLI = nullptr; 978 StoreInst *ThrewResetSI = nullptr; 979 for (auto I = std::next(BasicBlock::iterator(CI)), IE = BB->end(); 980 I != IE; ++I) { 981 if (auto *LI = dyn_cast<LoadInst>(I)) 982 if (auto *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand())) 983 if (GV == ThrewGV) { 984 Threw = ThrewLI = LI; 985 break; 986 } 987 } 988 // Search for the store instruction after the load above 989 // __THREW__ = 0; 990 for (auto I = std::next(BasicBlock::iterator(ThrewLI)), IE = BB->end(); 991 I != IE; ++I) { 992 if (auto *SI = dyn_cast<StoreInst>(I)) 993 if (auto *GV = dyn_cast<GlobalVariable>(SI->getPointerOperand())) 994 if (GV == ThrewGV && SI->getValueOperand() == IRB.getInt32(0)) { 995 ThrewResetSI = SI; 996 break; 997 } 998 } 999 assert(Threw && ThrewLI && "Cannot find __THREW__ load after invoke"); 1000 assert(ThrewResetSI && "Cannot find __THREW__ store after invoke"); 1001 Tail = SplitBlock(BB, ThrewResetSI->getNextNode()); 1002 1003 } else { 1004 // Wrap call with invoke wrapper and generate preamble/postamble 1005 Threw = wrapInvoke(CI); 1006 ToErase.push_back(CI); 1007 Tail = SplitBlock(BB, CI->getNextNode()); 1008 } 1009 1010 // We need to replace the terminator in Tail - SplitBlock makes BB go 1011 // straight to Tail, we need to check if a longjmp occurred, and go to the 1012 // right setjmp-tail if so 1013 ToErase.push_back(BB->getTerminator()); 1014 1015 // Generate a function call to testSetjmp function and preamble/postamble 1016 // code to figure out (1) whether longjmp occurred (2) if longjmp 1017 // occurred, which setjmp it corresponds to 1018 Value *Label = nullptr; 1019 Value *LongjmpResult = nullptr; 1020 BasicBlock *EndBB = nullptr; 1021 wrapTestSetjmp(BB, CI, Threw, SetjmpTable, SetjmpTableSize, Label, 1022 LongjmpResult, EndBB); 1023 assert(Label && LongjmpResult && EndBB); 1024 1025 // Create switch instruction 1026 IRB.SetInsertPoint(EndBB); 1027 SwitchInst *SI = IRB.CreateSwitch(Label, Tail, SetjmpRetPHIs.size()); 1028 // -1 means no longjmp happened, continue normally (will hit the default 1029 // switch case). 0 means a longjmp that is not ours to handle, needs a 1030 // rethrow. Otherwise the index is the same as the index in P+1 (to avoid 1031 // 0). 1032 for (unsigned i = 0; i < SetjmpRetPHIs.size(); i++) { 1033 SI->addCase(IRB.getInt32(i + 1), SetjmpRetPHIs[i]->getParent()); 1034 SetjmpRetPHIs[i]->addIncoming(LongjmpResult, EndBB); 1035 } 1036 1037 // We are splitting the block here, and must continue to find other calls 1038 // in the block - which is now split. so continue to traverse in the Tail 1039 BBs.push_back(Tail); 1040 } 1041 } 1042 1043 // Erase everything we no longer need in this function 1044 for (Instruction *I : ToErase) 1045 I->eraseFromParent(); 1046 1047 // Free setjmpTable buffer before each return instruction 1048 for (BasicBlock &BB : F) { 1049 Instruction *TI = BB.getTerminator(); 1050 if (isa<ReturnInst>(TI)) 1051 CallInst::CreateFree(SetjmpTable, TI); 1052 } 1053 1054 // Every call to saveSetjmp can change setjmpTable and setjmpTableSize 1055 // (when buffer reallocation occurs) 1056 // entry: 1057 // setjmpTableSize = 4; 1058 // setjmpTable = (int *) malloc(40); 1059 // setjmpTable[0] = 0; 1060 // ... 1061 // somebb: 1062 // setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize); 1063 // setjmpTableSize = getTempRet0(); 1064 // So we need to make sure the SSA for these variables is valid so that every 1065 // saveSetjmp and testSetjmp calls have the correct arguments. 1066 SSAUpdater SetjmpTableSSA; 1067 SSAUpdater SetjmpTableSizeSSA; 1068 SetjmpTableSSA.Initialize(Type::getInt32PtrTy(C), "setjmpTable"); 1069 SetjmpTableSizeSSA.Initialize(Type::getInt32Ty(C), "setjmpTableSize"); 1070 for (Instruction *I : SetjmpTableInsts) 1071 SetjmpTableSSA.AddAvailableValue(I->getParent(), I); 1072 for (Instruction *I : SetjmpTableSizeInsts) 1073 SetjmpTableSizeSSA.AddAvailableValue(I->getParent(), I); 1074 1075 for (auto UI = SetjmpTable->use_begin(), UE = SetjmpTable->use_end(); 1076 UI != UE;) { 1077 // Grab the use before incrementing the iterator. 1078 Use &U = *UI; 1079 // Increment the iterator before removing the use from the list. 1080 ++UI; 1081 if (Instruction *I = dyn_cast<Instruction>(U.getUser())) 1082 if (I->getParent() != &EntryBB) 1083 SetjmpTableSSA.RewriteUse(U); 1084 } 1085 for (auto UI = SetjmpTableSize->use_begin(), UE = SetjmpTableSize->use_end(); 1086 UI != UE;) { 1087 Use &U = *UI; 1088 ++UI; 1089 if (Instruction *I = dyn_cast<Instruction>(U.getUser())) 1090 if (I->getParent() != &EntryBB) 1091 SetjmpTableSizeSSA.RewriteUse(U); 1092 } 1093 1094 // Finally, our modifications to the cfg can break dominance of SSA variables. 1095 // For example, in this code, 1096 // if (x()) { .. setjmp() .. } 1097 // if (y()) { .. longjmp() .. } 1098 // We must split the longjmp block, and it can jump into the block splitted 1099 // from setjmp one. But that means that when we split the setjmp block, it's 1100 // first part no longer dominates its second part - there is a theoretically 1101 // possible control flow path where x() is false, then y() is true and we 1102 // reach the second part of the setjmp block, without ever reaching the first 1103 // part. So, we rebuild SSA form here. 1104 rebuildSSA(F); 1105 return true; 1106 } 1107