1 //=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file lowers exception-related instructions and setjmp/longjmp 11 /// function calls in order to use Emscripten's JavaScript try and catch 12 /// mechanism. 13 /// 14 /// To handle exceptions and setjmp/longjmps, this scheme relies on JavaScript's 15 /// try and catch syntax and relevant exception-related libraries implemented 16 /// in JavaScript glue code that will be produced by Emscripten. This is similar 17 /// to the current Emscripten asm.js exception handling in fastcomp. For 18 /// fastcomp's EH / SjLj scheme, see these files in fastcomp LLVM branch: 19 /// (Location: https://github.com/kripken/emscripten-fastcomp) 20 /// lib/Target/JSBackend/NaCl/LowerEmExceptionsPass.cpp 21 /// lib/Target/JSBackend/NaCl/LowerEmSetjmp.cpp 22 /// lib/Target/JSBackend/JSBackend.cpp 23 /// lib/Target/JSBackend/CallHandlers.h 24 /// 25 /// * Exception handling 26 /// This pass lowers invokes and landingpads into library functions in JS glue 27 /// code. Invokes are lowered into function wrappers called invoke wrappers that 28 /// exist in JS side, which wraps the original function call with JS try-catch. 29 /// If an exception occurred, cxa_throw() function in JS side sets some 30 /// variables (see below) so we can check whether an exception occurred from 31 /// wasm code and handle it appropriately. 32 /// 33 /// * Setjmp-longjmp handling 34 /// This pass lowers setjmp to a reasonably-performant approach for emscripten. 35 /// The idea is that each block with a setjmp is broken up into two parts: the 36 /// part containing setjmp and the part right after the setjmp. The latter part 37 /// is either reached from the setjmp, or later from a longjmp. To handle the 38 /// longjmp, all calls that might longjmp are also called using invoke wrappers 39 /// and thus JS / try-catch. JS longjmp() function also sets some variables so 40 /// we can check / whether a longjmp occurred from wasm code. Each block with a 41 /// function call that might longjmp is also split up after the longjmp call. 42 /// After the longjmp call, we check whether a longjmp occurred, and if it did, 43 /// which setjmp it corresponds to, and jump to the right post-setjmp block. 44 /// We assume setjmp-longjmp handling always run after EH handling, which means 45 /// we don't expect any exception-related instructions when SjLj runs. 46 /// FIXME Currently this scheme does not support indirect call of setjmp, 47 /// because of the limitation of the scheme itself. fastcomp does not support it 48 /// either. 49 /// 50 /// In detail, this pass does following things: 51 /// 52 /// 1) Assumes the existence of global variables: __THREW__, __threwValue 53 /// __THREW__ and __threwValue will be set in invoke wrappers 54 /// in JS glue code. For what invoke wrappers are, refer to 3). These 55 /// variables are used for both exceptions and setjmp/longjmps. 56 /// __THREW__ indicates whether an exception or a longjmp occurred or not. 0 57 /// means nothing occurred, 1 means an exception occurred, and other numbers 58 /// mean a longjmp occurred. In the case of longjmp, __threwValue variable 59 /// indicates the corresponding setjmp buffer the longjmp corresponds to. 60 /// 61 /// * Exception handling 62 /// 63 /// 2) We assume the existence of setThrew and setTempRet0/getTempRet0 functions 64 /// at link time. 65 /// The global variables in 1) will exist in wasm address space, 66 /// but their values should be set in JS code, so these functions 67 /// as interfaces to JS glue code. These functions are equivalent to the 68 /// following JS functions, which actually exist in asm.js version of JS 69 /// library. 70 /// 71 /// function setThrew(threw, value) { 72 /// if (__THREW__ == 0) { 73 /// __THREW__ = threw; 74 /// __threwValue = value; 75 /// } 76 /// } 77 // 78 /// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code. 79 /// 80 /// In exception handling, getTempRet0 indicates the type of an exception 81 /// caught, and in setjmp/longjmp, it means the second argument to longjmp 82 /// function. 83 /// 84 /// 3) Lower 85 /// invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad 86 /// into 87 /// __THREW__ = 0; 88 /// call @__invoke_SIG(func, arg1, arg2) 89 /// %__THREW__.val = __THREW__; 90 /// __THREW__ = 0; 91 /// if (%__THREW__.val == 1) 92 /// goto %lpad 93 /// else 94 /// goto %invoke.cont 95 /// SIG is a mangled string generated based on the LLVM IR-level function 96 /// signature. After LLVM IR types are lowered to the target wasm types, 97 /// the names for these wrappers will change based on wasm types as well, 98 /// as in invoke_vi (function takes an int and returns void). The bodies of 99 /// these wrappers will be generated in JS glue code, and inside those 100 /// wrappers we use JS try-catch to generate actual exception effects. It 101 /// also calls the original callee function. An example wrapper in JS code 102 /// would look like this: 103 /// function invoke_vi(index,a1) { 104 /// try { 105 /// Module["dynCall_vi"](index,a1); // This calls original callee 106 /// } catch(e) { 107 /// if (typeof e !== 'number' && e !== 'longjmp') throw e; 108 /// asm["setThrew"](1, 0); // setThrew is called here 109 /// } 110 /// } 111 /// If an exception is thrown, __THREW__ will be set to true in a wrapper, 112 /// so we can jump to the right BB based on this value. 113 /// 114 /// 4) Lower 115 /// %val = landingpad catch c1 catch c2 catch c3 ... 116 /// ... use %val ... 117 /// into 118 /// %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...) 119 /// %val = {%fmc, getTempRet0()} 120 /// ... use %val ... 121 /// Here N is a number calculated based on the number of clauses. 122 /// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code. 123 /// 124 /// 5) Lower 125 /// resume {%a, %b} 126 /// into 127 /// call @__resumeException(%a) 128 /// where __resumeException() is a function in JS glue code. 129 /// 130 /// 6) Lower 131 /// call @llvm.eh.typeid.for(type) (intrinsic) 132 /// into 133 /// call @llvm_eh_typeid_for(type) 134 /// llvm_eh_typeid_for function will be generated in JS glue code. 135 /// 136 /// * Setjmp / Longjmp handling 137 /// 138 /// In case calls to longjmp() exists 139 /// 140 /// 1) Lower 141 /// longjmp(buf, value) 142 /// into 143 /// emscripten_longjmp_jmpbuf(buf, value) 144 /// emscripten_longjmp_jmpbuf will be lowered to emscripten_longjmp later. 145 /// 146 /// In case calls to setjmp() exists 147 /// 148 /// 2) In the function entry that calls setjmp, initialize setjmpTable and 149 /// sejmpTableSize as follows: 150 /// setjmpTableSize = 4; 151 /// setjmpTable = (int *) malloc(40); 152 /// setjmpTable[0] = 0; 153 /// setjmpTable and setjmpTableSize are used in saveSetjmp() function in JS 154 /// code. 155 /// 156 /// 3) Lower 157 /// setjmp(buf) 158 /// into 159 /// setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize); 160 /// setjmpTableSize = getTempRet0(); 161 /// For each dynamic setjmp call, setjmpTable stores its ID (a number which 162 /// is incrementally assigned from 0) and its label (a unique number that 163 /// represents each callsite of setjmp). When we need more entries in 164 /// setjmpTable, it is reallocated in saveSetjmp() in JS code and it will 165 /// return the new table address, and assign the new table size in 166 /// setTempRet0(). saveSetjmp also stores the setjmp's ID into the buffer 167 /// buf. A BB with setjmp is split into two after setjmp call in order to 168 /// make the post-setjmp BB the possible destination of longjmp BB. 169 /// 170 /// 171 /// 4) Lower every call that might longjmp into 172 /// __THREW__ = 0; 173 /// call @__invoke_SIG(func, arg1, arg2) 174 /// %__THREW__.val = __THREW__; 175 /// __THREW__ = 0; 176 /// if (%__THREW__.val != 0 & __threwValue != 0) { 177 /// %label = testSetjmp(mem[%__THREW__.val], setjmpTable, 178 /// setjmpTableSize); 179 /// if (%label == 0) 180 /// emscripten_longjmp(%__THREW__.val, __threwValue); 181 /// setTempRet0(__threwValue); 182 /// } else { 183 /// %label = -1; 184 /// } 185 /// longjmp_result = getTempRet0(); 186 /// switch label { 187 /// label 1: goto post-setjmp BB 1 188 /// label 2: goto post-setjmp BB 2 189 /// ... 190 /// default: goto splitted next BB 191 /// } 192 /// testSetjmp examines setjmpTable to see if there is a matching setjmp 193 /// call. After calling an invoke wrapper, if a longjmp occurred, __THREW__ 194 /// will be the address of matching jmp_buf buffer and __threwValue be the 195 /// second argument to longjmp. mem[__THREW__.val] is a setjmp ID that is 196 /// stored in saveSetjmp. testSetjmp returns a setjmp label, a unique ID to 197 /// each setjmp callsite. Label 0 means this longjmp buffer does not 198 /// correspond to one of the setjmp callsites in this function, so in this 199 /// case we just chain the longjmp to the caller. (Here we call 200 /// emscripten_longjmp, which is different from emscripten_longjmp_jmpbuf. 201 /// emscripten_longjmp_jmpbuf takes jmp_buf as its first argument, while 202 /// emscripten_longjmp takes an int. Both of them will eventually be lowered 203 /// to emscripten_longjmp in s2wasm, but here we need two signatures - we 204 /// can't translate an int value to a jmp_buf.) 205 /// Label -1 means no longjmp occurred. Otherwise we jump to the right 206 /// post-setjmp BB based on the label. 207 /// 208 ///===----------------------------------------------------------------------===// 209 210 #include "WebAssembly.h" 211 #include "llvm/IR/CallSite.h" 212 #include "llvm/IR/Dominators.h" 213 #include "llvm/IR/IRBuilder.h" 214 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 215 #include "llvm/Transforms/Utils/SSAUpdater.h" 216 217 using namespace llvm; 218 219 #define DEBUG_TYPE "wasm-lower-em-ehsjlj" 220 221 static cl::list<std::string> 222 EHWhitelist("emscripten-cxx-exceptions-whitelist", 223 cl::desc("The list of function names in which Emscripten-style " 224 "exception handling is enabled (see emscripten " 225 "EMSCRIPTEN_CATCHING_WHITELIST options)"), 226 cl::CommaSeparated); 227 228 namespace { 229 class WebAssemblyLowerEmscriptenEHSjLj final : public ModulePass { 230 static const char *ResumeFName; 231 static const char *EHTypeIDFName; 232 static const char *EmLongjmpFName; 233 static const char *EmLongjmpJmpbufFName; 234 static const char *SaveSetjmpFName; 235 static const char *TestSetjmpFName; 236 static const char *FindMatchingCatchPrefix; 237 static const char *InvokePrefix; 238 239 bool EnableEH; // Enable exception handling 240 bool EnableSjLj; // Enable setjmp/longjmp handling 241 242 GlobalVariable *ThrewGV = nullptr; 243 GlobalVariable *ThrewValueGV = nullptr; 244 Function *GetTempRet0Func = nullptr; 245 Function *SetTempRet0Func = nullptr; 246 Function *ResumeF = nullptr; 247 Function *EHTypeIDF = nullptr; 248 Function *EmLongjmpF = nullptr; 249 Function *EmLongjmpJmpbufF = nullptr; 250 Function *SaveSetjmpF = nullptr; 251 Function *TestSetjmpF = nullptr; 252 253 // __cxa_find_matching_catch_N functions. 254 // Indexed by the number of clauses in an original landingpad instruction. 255 DenseMap<int, Function *> FindMatchingCatches; 256 // Map of <function signature string, invoke_ wrappers> 257 StringMap<Function *> InvokeWrappers; 258 // Set of whitelisted function names for exception handling 259 std::set<std::string> EHWhitelistSet; 260 261 StringRef getPassName() const override { 262 return "WebAssembly Lower Emscripten Exceptions"; 263 } 264 265 bool runEHOnFunction(Function &F); 266 bool runSjLjOnFunction(Function &F); 267 Function *getFindMatchingCatch(Module &M, unsigned NumClauses); 268 269 template <typename CallOrInvoke> Value *wrapInvoke(CallOrInvoke *CI); 270 void wrapTestSetjmp(BasicBlock *BB, Instruction *InsertPt, Value *Threw, 271 Value *SetjmpTable, Value *SetjmpTableSize, Value *&Label, 272 Value *&LongjmpResult, BasicBlock *&EndBB); 273 template <typename CallOrInvoke> Function *getInvokeWrapper(CallOrInvoke *CI); 274 275 bool areAllExceptionsAllowed() const { return EHWhitelistSet.empty(); } 276 bool canLongjmp(Module &M, const Value *Callee) const; 277 278 void rebuildSSA(Function &F); 279 280 public: 281 static char ID; 282 283 WebAssemblyLowerEmscriptenEHSjLj(bool EnableEH = true, bool EnableSjLj = true) 284 : ModulePass(ID), EnableEH(EnableEH), EnableSjLj(EnableSjLj) { 285 EHWhitelistSet.insert(EHWhitelist.begin(), EHWhitelist.end()); 286 } 287 bool runOnModule(Module &M) override; 288 289 void getAnalysisUsage(AnalysisUsage &AU) const override { 290 AU.addRequired<DominatorTreeWrapperPass>(); 291 } 292 }; 293 } // End anonymous namespace 294 295 const char *WebAssemblyLowerEmscriptenEHSjLj::ResumeFName = "__resumeException"; 296 const char *WebAssemblyLowerEmscriptenEHSjLj::EHTypeIDFName = 297 "llvm_eh_typeid_for"; 298 const char *WebAssemblyLowerEmscriptenEHSjLj::EmLongjmpFName = 299 "emscripten_longjmp"; 300 const char *WebAssemblyLowerEmscriptenEHSjLj::EmLongjmpJmpbufFName = 301 "emscripten_longjmp_jmpbuf"; 302 const char *WebAssemblyLowerEmscriptenEHSjLj::SaveSetjmpFName = "saveSetjmp"; 303 const char *WebAssemblyLowerEmscriptenEHSjLj::TestSetjmpFName = "testSetjmp"; 304 const char *WebAssemblyLowerEmscriptenEHSjLj::FindMatchingCatchPrefix = 305 "__cxa_find_matching_catch_"; 306 const char *WebAssemblyLowerEmscriptenEHSjLj::InvokePrefix = "__invoke_"; 307 308 char WebAssemblyLowerEmscriptenEHSjLj::ID = 0; 309 INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj, DEBUG_TYPE, 310 "WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp", 311 false, false) 312 313 ModulePass *llvm::createWebAssemblyLowerEmscriptenEHSjLj(bool EnableEH, 314 bool EnableSjLj) { 315 return new WebAssemblyLowerEmscriptenEHSjLj(EnableEH, EnableSjLj); 316 } 317 318 static bool canThrow(const Value *V) { 319 if (const auto *F = dyn_cast<const Function>(V)) { 320 // Intrinsics cannot throw 321 if (F->isIntrinsic()) 322 return false; 323 StringRef Name = F->getName(); 324 // leave setjmp and longjmp (mostly) alone, we process them properly later 325 if (Name == "setjmp" || Name == "longjmp") 326 return false; 327 return !F->doesNotThrow(); 328 } 329 // not a function, so an indirect call - can throw, we can't tell 330 return true; 331 } 332 333 // Get a global variable with the given name. If it doesn't exist declare it, 334 // which will generate an import and asssumes that it will exist at link time. 335 static GlobalVariable *getGlobalVariableI32(Module &M, IRBuilder<> &IRB, 336 const char *Name) { 337 if (M.getNamedGlobal(Name)) 338 report_fatal_error(Twine("variable name is reserved: ") + Name); 339 340 return new GlobalVariable(M, IRB.getInt32Ty(), false, 341 GlobalValue::ExternalLinkage, nullptr, Name); 342 } 343 344 // Simple function name mangler. 345 // This function simply takes LLVM's string representation of parameter types 346 // and concatenate them with '_'. There are non-alphanumeric characters but llc 347 // is ok with it, and we need to postprocess these names after the lowering 348 // phase anyway. 349 static std::string getSignature(FunctionType *FTy) { 350 std::string Sig; 351 raw_string_ostream OS(Sig); 352 OS << *FTy->getReturnType(); 353 for (Type *ParamTy : FTy->params()) 354 OS << "_" << *ParamTy; 355 if (FTy->isVarArg()) 356 OS << "_..."; 357 Sig = OS.str(); 358 Sig.erase(remove_if(Sig, isspace), Sig.end()); 359 // When s2wasm parses .s file, a comma means the end of an argument. So a 360 // mangled function name can contain any character but a comma. 361 std::replace(Sig.begin(), Sig.end(), ',', '.'); 362 return Sig; 363 } 364 365 // Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2. 366 // This is because a landingpad instruction contains two more arguments, a 367 // personality function and a cleanup bit, and __cxa_find_matching_catch_N 368 // functions are named after the number of arguments in the original landingpad 369 // instruction. 370 Function * 371 WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module &M, 372 unsigned NumClauses) { 373 if (FindMatchingCatches.count(NumClauses)) 374 return FindMatchingCatches[NumClauses]; 375 PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext()); 376 SmallVector<Type *, 16> Args(NumClauses, Int8PtrTy); 377 FunctionType *FTy = FunctionType::get(Int8PtrTy, Args, false); 378 Function *F = 379 Function::Create(FTy, GlobalValue::ExternalLinkage, 380 FindMatchingCatchPrefix + Twine(NumClauses + 2), &M); 381 FindMatchingCatches[NumClauses] = F; 382 return F; 383 } 384 385 // Generate invoke wrapper seqence with preamble and postamble 386 // Preamble: 387 // __THREW__ = 0; 388 // Postamble: 389 // %__THREW__.val = __THREW__; __THREW__ = 0; 390 // Returns %__THREW__.val, which indicates whether an exception is thrown (or 391 // whether longjmp occurred), for future use. 392 template <typename CallOrInvoke> 393 Value *WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallOrInvoke *CI) { 394 LLVMContext &C = CI->getModule()->getContext(); 395 396 // If we are calling a function that is noreturn, we must remove that 397 // attribute. The code we insert here does expect it to return, after we 398 // catch the exception. 399 if (CI->doesNotReturn()) { 400 if (auto *F = dyn_cast<Function>(CI->getCalledValue())) 401 F->removeFnAttr(Attribute::NoReturn); 402 CI->removeAttribute(AttributeList::FunctionIndex, Attribute::NoReturn); 403 } 404 405 IRBuilder<> IRB(C); 406 IRB.SetInsertPoint(CI); 407 408 // Pre-invoke 409 // __THREW__ = 0; 410 IRB.CreateStore(IRB.getInt32(0), ThrewGV); 411 412 // Invoke function wrapper in JavaScript 413 SmallVector<Value *, 16> Args; 414 // Put the pointer to the callee as first argument, so it can be called 415 // within the invoke wrapper later 416 Args.push_back(CI->getCalledValue()); 417 Args.append(CI->arg_begin(), CI->arg_end()); 418 CallInst *NewCall = IRB.CreateCall(getInvokeWrapper(CI), Args); 419 NewCall->takeName(CI); 420 NewCall->setCallingConv(CI->getCallingConv()); 421 NewCall->setDebugLoc(CI->getDebugLoc()); 422 423 // Because we added the pointer to the callee as first argument, all 424 // argument attribute indices have to be incremented by one. 425 SmallVector<AttributeSet, 8> ArgAttributes; 426 const AttributeList &InvokeAL = CI->getAttributes(); 427 428 // No attributes for the callee pointer. 429 ArgAttributes.push_back(AttributeSet()); 430 // Copy the argument attributes from the original 431 for (unsigned I = 0, E = CI->getNumArgOperands(); I < E; ++I) 432 ArgAttributes.push_back(InvokeAL.getParamAttributes(I)); 433 434 // Reconstruct the AttributesList based on the vector we constructed. 435 AttributeList NewCallAL = 436 AttributeList::get(C, InvokeAL.getFnAttributes(), 437 InvokeAL.getRetAttributes(), ArgAttributes); 438 NewCall->setAttributes(NewCallAL); 439 440 CI->replaceAllUsesWith(NewCall); 441 442 // Post-invoke 443 // %__THREW__.val = __THREW__; __THREW__ = 0; 444 Value *Threw = 445 IRB.CreateLoad(IRB.getInt32Ty(), ThrewGV, ThrewGV->getName() + ".val"); 446 IRB.CreateStore(IRB.getInt32(0), ThrewGV); 447 return Threw; 448 } 449 450 // Get matching invoke wrapper based on callee signature 451 template <typename CallOrInvoke> 452 Function *WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallOrInvoke *CI) { 453 Module *M = CI->getModule(); 454 SmallVector<Type *, 16> ArgTys; 455 Value *Callee = CI->getCalledValue(); 456 FunctionType *CalleeFTy; 457 if (auto *F = dyn_cast<Function>(Callee)) 458 CalleeFTy = F->getFunctionType(); 459 else { 460 auto *CalleeTy = cast<PointerType>(Callee->getType())->getElementType(); 461 CalleeFTy = dyn_cast<FunctionType>(CalleeTy); 462 } 463 464 std::string Sig = getSignature(CalleeFTy); 465 if (InvokeWrappers.find(Sig) != InvokeWrappers.end()) 466 return InvokeWrappers[Sig]; 467 468 // Put the pointer to the callee as first argument 469 ArgTys.push_back(PointerType::getUnqual(CalleeFTy)); 470 // Add argument types 471 ArgTys.append(CalleeFTy->param_begin(), CalleeFTy->param_end()); 472 473 FunctionType *FTy = FunctionType::get(CalleeFTy->getReturnType(), ArgTys, 474 CalleeFTy->isVarArg()); 475 Function *F = Function::Create(FTy, GlobalValue::ExternalLinkage, 476 InvokePrefix + Sig, M); 477 InvokeWrappers[Sig] = F; 478 return F; 479 } 480 481 bool WebAssemblyLowerEmscriptenEHSjLj::canLongjmp(Module &M, 482 const Value *Callee) const { 483 if (auto *CalleeF = dyn_cast<Function>(Callee)) 484 if (CalleeF->isIntrinsic()) 485 return false; 486 487 // The reason we include malloc/free here is to exclude the malloc/free 488 // calls generated in setjmp prep / cleanup routines. 489 Function *SetjmpF = M.getFunction("setjmp"); 490 Function *MallocF = M.getFunction("malloc"); 491 Function *FreeF = M.getFunction("free"); 492 if (Callee == SetjmpF || Callee == MallocF || Callee == FreeF) 493 return false; 494 495 // There are functions in JS glue code 496 if (Callee == ResumeF || Callee == EHTypeIDF || Callee == SaveSetjmpF || 497 Callee == TestSetjmpF) 498 return false; 499 500 // __cxa_find_matching_catch_N functions cannot longjmp 501 if (Callee->getName().startswith(FindMatchingCatchPrefix)) 502 return false; 503 504 // Exception-catching related functions 505 Function *BeginCatchF = M.getFunction("__cxa_begin_catch"); 506 Function *EndCatchF = M.getFunction("__cxa_end_catch"); 507 Function *AllocExceptionF = M.getFunction("__cxa_allocate_exception"); 508 Function *ThrowF = M.getFunction("__cxa_throw"); 509 Function *TerminateF = M.getFunction("__clang_call_terminate"); 510 if (Callee == BeginCatchF || Callee == EndCatchF || 511 Callee == AllocExceptionF || Callee == ThrowF || Callee == TerminateF || 512 Callee == GetTempRet0Func || Callee == SetTempRet0Func) 513 return false; 514 515 // Otherwise we don't know 516 return true; 517 } 518 519 // Generate testSetjmp function call seqence with preamble and postamble. 520 // The code this generates is equivalent to the following JavaScript code: 521 // if (%__THREW__.val != 0 & threwValue != 0) { 522 // %label = _testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize); 523 // if (%label == 0) 524 // emscripten_longjmp(%__THREW__.val, threwValue); 525 // setTempRet0(threwValue); 526 // } else { 527 // %label = -1; 528 // } 529 // %longjmp_result = getTempRet0(); 530 // 531 // As output parameters. returns %label, %longjmp_result, and the BB the last 532 // instruction (%longjmp_result = ...) is in. 533 void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp( 534 BasicBlock *BB, Instruction *InsertPt, Value *Threw, Value *SetjmpTable, 535 Value *SetjmpTableSize, Value *&Label, Value *&LongjmpResult, 536 BasicBlock *&EndBB) { 537 Function *F = BB->getParent(); 538 LLVMContext &C = BB->getModule()->getContext(); 539 IRBuilder<> IRB(C); 540 IRB.SetInsertPoint(InsertPt); 541 542 // if (%__THREW__.val != 0 & threwValue != 0) 543 IRB.SetInsertPoint(BB); 544 BasicBlock *ThenBB1 = BasicBlock::Create(C, "if.then1", F); 545 BasicBlock *ElseBB1 = BasicBlock::Create(C, "if.else1", F); 546 BasicBlock *EndBB1 = BasicBlock::Create(C, "if.end", F); 547 Value *ThrewCmp = IRB.CreateICmpNE(Threw, IRB.getInt32(0)); 548 Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV, 549 ThrewValueGV->getName() + ".val"); 550 Value *ThrewValueCmp = IRB.CreateICmpNE(ThrewValue, IRB.getInt32(0)); 551 Value *Cmp1 = IRB.CreateAnd(ThrewCmp, ThrewValueCmp, "cmp1"); 552 IRB.CreateCondBr(Cmp1, ThenBB1, ElseBB1); 553 554 // %label = _testSetjmp(mem[%__THREW__.val], _setjmpTable, _setjmpTableSize); 555 // if (%label == 0) 556 IRB.SetInsertPoint(ThenBB1); 557 BasicBlock *ThenBB2 = BasicBlock::Create(C, "if.then2", F); 558 BasicBlock *EndBB2 = BasicBlock::Create(C, "if.end2", F); 559 Value *ThrewInt = IRB.CreateIntToPtr(Threw, Type::getInt32PtrTy(C), 560 Threw->getName() + ".i32p"); 561 Value *LoadedThrew = IRB.CreateLoad(IRB.getInt32Ty(), ThrewInt, 562 ThrewInt->getName() + ".loaded"); 563 Value *ThenLabel = IRB.CreateCall( 564 TestSetjmpF, {LoadedThrew, SetjmpTable, SetjmpTableSize}, "label"); 565 Value *Cmp2 = IRB.CreateICmpEQ(ThenLabel, IRB.getInt32(0)); 566 IRB.CreateCondBr(Cmp2, ThenBB2, EndBB2); 567 568 // emscripten_longjmp(%__THREW__.val, threwValue); 569 IRB.SetInsertPoint(ThenBB2); 570 IRB.CreateCall(EmLongjmpF, {Threw, ThrewValue}); 571 IRB.CreateUnreachable(); 572 573 // setTempRet0(threwValue); 574 IRB.SetInsertPoint(EndBB2); 575 IRB.CreateCall(SetTempRet0Func, ThrewValue); 576 IRB.CreateBr(EndBB1); 577 578 IRB.SetInsertPoint(ElseBB1); 579 IRB.CreateBr(EndBB1); 580 581 // longjmp_result = getTempRet0(); 582 IRB.SetInsertPoint(EndBB1); 583 PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label"); 584 LabelPHI->addIncoming(ThenLabel, EndBB2); 585 586 LabelPHI->addIncoming(IRB.getInt32(-1), ElseBB1); 587 588 // Output parameter assignment 589 Label = LabelPHI; 590 EndBB = EndBB1; 591 LongjmpResult = IRB.CreateCall(GetTempRet0Func, None, "longjmp_result"); 592 } 593 594 void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function &F) { 595 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 596 DT.recalculate(F); // CFG has been changed 597 SSAUpdater SSA; 598 for (BasicBlock &BB : F) { 599 for (Instruction &I : BB) { 600 for (auto UI = I.use_begin(), UE = I.use_end(); UI != UE;) { 601 Use &U = *UI; 602 ++UI; 603 SSA.Initialize(I.getType(), I.getName()); 604 SSA.AddAvailableValue(&BB, &I); 605 auto *User = cast<Instruction>(U.getUser()); 606 if (User->getParent() == &BB) 607 continue; 608 609 if (auto *UserPN = dyn_cast<PHINode>(User)) 610 if (UserPN->getIncomingBlock(U) == &BB) 611 continue; 612 613 if (DT.dominates(&I, User)) 614 continue; 615 SSA.RewriteUseAfterInsertions(U); 616 } 617 } 618 } 619 } 620 621 bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module &M) { 622 LLVM_DEBUG(dbgs() << "********** Lower Emscripten EH & SjLj **********\n"); 623 624 LLVMContext &C = M.getContext(); 625 IRBuilder<> IRB(C); 626 627 Function *SetjmpF = M.getFunction("setjmp"); 628 Function *LongjmpF = M.getFunction("longjmp"); 629 bool SetjmpUsed = SetjmpF && !SetjmpF->use_empty(); 630 bool LongjmpUsed = LongjmpF && !LongjmpF->use_empty(); 631 bool DoSjLj = EnableSjLj && (SetjmpUsed || LongjmpUsed); 632 633 // Declare (or get) global variables __THREW__, __threwValue, and 634 // getTempRet0/setTempRet0 function which are used in common for both 635 // exception handling and setjmp/longjmp handling 636 ThrewGV = getGlobalVariableI32(M, IRB, "__THREW__"); 637 ThrewValueGV = getGlobalVariableI32(M, IRB, "__threwValue"); 638 GetTempRet0Func = 639 Function::Create(FunctionType::get(IRB.getInt32Ty(), false), 640 GlobalValue::ExternalLinkage, "getTempRet0", &M); 641 SetTempRet0Func = Function::Create( 642 FunctionType::get(IRB.getVoidTy(), IRB.getInt32Ty(), false), 643 GlobalValue::ExternalLinkage, "setTempRet0", &M); 644 GetTempRet0Func->setDoesNotThrow(); 645 SetTempRet0Func->setDoesNotThrow(); 646 647 bool Changed = false; 648 649 // Exception handling 650 if (EnableEH) { 651 // Register __resumeException function 652 FunctionType *ResumeFTy = 653 FunctionType::get(IRB.getVoidTy(), IRB.getInt8PtrTy(), false); 654 ResumeF = Function::Create(ResumeFTy, GlobalValue::ExternalLinkage, 655 ResumeFName, &M); 656 657 // Register llvm_eh_typeid_for function 658 FunctionType *EHTypeIDTy = 659 FunctionType::get(IRB.getInt32Ty(), IRB.getInt8PtrTy(), false); 660 EHTypeIDF = Function::Create(EHTypeIDTy, GlobalValue::ExternalLinkage, 661 EHTypeIDFName, &M); 662 663 for (Function &F : M) { 664 if (F.isDeclaration()) 665 continue; 666 Changed |= runEHOnFunction(F); 667 } 668 } 669 670 // Setjmp/longjmp handling 671 if (DoSjLj) { 672 Changed = true; // We have setjmp or longjmp somewhere 673 674 if (LongjmpF) { 675 // Replace all uses of longjmp with emscripten_longjmp_jmpbuf, which is 676 // defined in JS code 677 EmLongjmpJmpbufF = Function::Create(LongjmpF->getFunctionType(), 678 GlobalValue::ExternalLinkage, 679 EmLongjmpJmpbufFName, &M); 680 681 LongjmpF->replaceAllUsesWith(EmLongjmpJmpbufF); 682 } 683 684 if (SetjmpF) { 685 // Register saveSetjmp function 686 FunctionType *SetjmpFTy = SetjmpF->getFunctionType(); 687 SmallVector<Type *, 4> Params = {SetjmpFTy->getParamType(0), 688 IRB.getInt32Ty(), Type::getInt32PtrTy(C), 689 IRB.getInt32Ty()}; 690 FunctionType *FTy = 691 FunctionType::get(Type::getInt32PtrTy(C), Params, false); 692 SaveSetjmpF = Function::Create(FTy, GlobalValue::ExternalLinkage, 693 SaveSetjmpFName, &M); 694 695 // Register testSetjmp function 696 Params = {IRB.getInt32Ty(), Type::getInt32PtrTy(C), IRB.getInt32Ty()}; 697 FTy = FunctionType::get(IRB.getInt32Ty(), Params, false); 698 TestSetjmpF = Function::Create(FTy, GlobalValue::ExternalLinkage, 699 TestSetjmpFName, &M); 700 701 FTy = FunctionType::get(IRB.getVoidTy(), 702 {IRB.getInt32Ty(), IRB.getInt32Ty()}, false); 703 EmLongjmpF = Function::Create(FTy, GlobalValue::ExternalLinkage, 704 EmLongjmpFName, &M); 705 706 // Only traverse functions that uses setjmp in order not to insert 707 // unnecessary prep / cleanup code in every function 708 SmallPtrSet<Function *, 8> SetjmpUsers; 709 for (User *U : SetjmpF->users()) { 710 auto *UI = cast<Instruction>(U); 711 SetjmpUsers.insert(UI->getFunction()); 712 } 713 for (Function *F : SetjmpUsers) 714 runSjLjOnFunction(*F); 715 } 716 } 717 718 if (!Changed) { 719 // Delete unused global variables and functions 720 if (ResumeF) 721 ResumeF->eraseFromParent(); 722 if (EHTypeIDF) 723 EHTypeIDF->eraseFromParent(); 724 if (EmLongjmpF) 725 EmLongjmpF->eraseFromParent(); 726 if (SaveSetjmpF) 727 SaveSetjmpF->eraseFromParent(); 728 if (TestSetjmpF) 729 TestSetjmpF->eraseFromParent(); 730 return false; 731 } 732 733 return true; 734 } 735 736 bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function &F) { 737 Module &M = *F.getParent(); 738 LLVMContext &C = F.getContext(); 739 IRBuilder<> IRB(C); 740 bool Changed = false; 741 SmallVector<Instruction *, 64> ToErase; 742 SmallPtrSet<LandingPadInst *, 32> LandingPads; 743 bool AllowExceptions = 744 areAllExceptionsAllowed() || EHWhitelistSet.count(F.getName()); 745 746 for (BasicBlock &BB : F) { 747 auto *II = dyn_cast<InvokeInst>(BB.getTerminator()); 748 if (!II) 749 continue; 750 Changed = true; 751 LandingPads.insert(II->getLandingPadInst()); 752 IRB.SetInsertPoint(II); 753 754 bool NeedInvoke = AllowExceptions && canThrow(II->getCalledValue()); 755 if (NeedInvoke) { 756 // Wrap invoke with invoke wrapper and generate preamble/postamble 757 Value *Threw = wrapInvoke(II); 758 ToErase.push_back(II); 759 760 // Insert a branch based on __THREW__ variable 761 Value *Cmp = IRB.CreateICmpEQ(Threw, IRB.getInt32(1), "cmp"); 762 IRB.CreateCondBr(Cmp, II->getUnwindDest(), II->getNormalDest()); 763 764 } else { 765 // This can't throw, and we don't need this invoke, just replace it with a 766 // call+branch 767 SmallVector<Value *, 16> Args(II->arg_begin(), II->arg_end()); 768 CallInst *NewCall = 769 IRB.CreateCall(II->getFunctionType(), II->getCalledValue(), Args); 770 NewCall->takeName(II); 771 NewCall->setCallingConv(II->getCallingConv()); 772 NewCall->setDebugLoc(II->getDebugLoc()); 773 NewCall->setAttributes(II->getAttributes()); 774 II->replaceAllUsesWith(NewCall); 775 ToErase.push_back(II); 776 777 IRB.CreateBr(II->getNormalDest()); 778 779 // Remove any PHI node entries from the exception destination 780 II->getUnwindDest()->removePredecessor(&BB); 781 } 782 } 783 784 // Process resume instructions 785 for (BasicBlock &BB : F) { 786 // Scan the body of the basic block for resumes 787 for (Instruction &I : BB) { 788 auto *RI = dyn_cast<ResumeInst>(&I); 789 if (!RI) 790 continue; 791 792 // Split the input into legal values 793 Value *Input = RI->getValue(); 794 IRB.SetInsertPoint(RI); 795 Value *Low = IRB.CreateExtractValue(Input, 0, "low"); 796 // Create a call to __resumeException function 797 IRB.CreateCall(ResumeF, {Low}); 798 // Add a terminator to the block 799 IRB.CreateUnreachable(); 800 ToErase.push_back(RI); 801 } 802 } 803 804 // Process llvm.eh.typeid.for intrinsics 805 for (BasicBlock &BB : F) { 806 for (Instruction &I : BB) { 807 auto *CI = dyn_cast<CallInst>(&I); 808 if (!CI) 809 continue; 810 const Function *Callee = CI->getCalledFunction(); 811 if (!Callee) 812 continue; 813 if (Callee->getIntrinsicID() != Intrinsic::eh_typeid_for) 814 continue; 815 816 IRB.SetInsertPoint(CI); 817 CallInst *NewCI = 818 IRB.CreateCall(EHTypeIDF, CI->getArgOperand(0), "typeid"); 819 CI->replaceAllUsesWith(NewCI); 820 ToErase.push_back(CI); 821 } 822 } 823 824 // Look for orphan landingpads, can occur in blocks with no predecessors 825 for (BasicBlock &BB : F) { 826 Instruction *I = BB.getFirstNonPHI(); 827 if (auto *LPI = dyn_cast<LandingPadInst>(I)) 828 LandingPads.insert(LPI); 829 } 830 831 // Handle all the landingpad for this function together, as multiple invokes 832 // may share a single lp 833 for (LandingPadInst *LPI : LandingPads) { 834 IRB.SetInsertPoint(LPI); 835 SmallVector<Value *, 16> FMCArgs; 836 for (unsigned I = 0, E = LPI->getNumClauses(); I < E; ++I) { 837 Constant *Clause = LPI->getClause(I); 838 // As a temporary workaround for the lack of aggregate varargs support 839 // in the interface between JS and wasm, break out filter operands into 840 // their component elements. 841 if (LPI->isFilter(I)) { 842 auto *ATy = cast<ArrayType>(Clause->getType()); 843 for (unsigned J = 0, E = ATy->getNumElements(); J < E; ++J) { 844 Value *EV = IRB.CreateExtractValue(Clause, makeArrayRef(J), "filter"); 845 FMCArgs.push_back(EV); 846 } 847 } else 848 FMCArgs.push_back(Clause); 849 } 850 851 // Create a call to __cxa_find_matching_catch_N function 852 Function *FMCF = getFindMatchingCatch(M, FMCArgs.size()); 853 CallInst *FMCI = IRB.CreateCall(FMCF, FMCArgs, "fmc"); 854 Value *Undef = UndefValue::get(LPI->getType()); 855 Value *Pair0 = IRB.CreateInsertValue(Undef, FMCI, 0, "pair0"); 856 Value *TempRet0 = IRB.CreateCall(GetTempRet0Func, None, "tempret0"); 857 Value *Pair1 = IRB.CreateInsertValue(Pair0, TempRet0, 1, "pair1"); 858 859 LPI->replaceAllUsesWith(Pair1); 860 ToErase.push_back(LPI); 861 } 862 863 // Erase everything we no longer need in this function 864 for (Instruction *I : ToErase) 865 I->eraseFromParent(); 866 867 return Changed; 868 } 869 870 bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function &F) { 871 Module &M = *F.getParent(); 872 LLVMContext &C = F.getContext(); 873 IRBuilder<> IRB(C); 874 SmallVector<Instruction *, 64> ToErase; 875 // Vector of %setjmpTable values 876 std::vector<Instruction *> SetjmpTableInsts; 877 // Vector of %setjmpTableSize values 878 std::vector<Instruction *> SetjmpTableSizeInsts; 879 880 // Setjmp preparation 881 882 // This instruction effectively means %setjmpTableSize = 4. 883 // We create this as an instruction intentionally, and we don't want to fold 884 // this instruction to a constant 4, because this value will be used in 885 // SSAUpdater.AddAvailableValue(...) later. 886 BasicBlock &EntryBB = F.getEntryBlock(); 887 BinaryOperator *SetjmpTableSize = BinaryOperator::Create( 888 Instruction::Add, IRB.getInt32(4), IRB.getInt32(0), "setjmpTableSize", 889 &*EntryBB.getFirstInsertionPt()); 890 // setjmpTable = (int *) malloc(40); 891 Instruction *SetjmpTable = CallInst::CreateMalloc( 892 SetjmpTableSize, IRB.getInt32Ty(), IRB.getInt32Ty(), IRB.getInt32(40), 893 nullptr, nullptr, "setjmpTable"); 894 // setjmpTable[0] = 0; 895 IRB.SetInsertPoint(SetjmpTableSize); 896 IRB.CreateStore(IRB.getInt32(0), SetjmpTable); 897 SetjmpTableInsts.push_back(SetjmpTable); 898 SetjmpTableSizeInsts.push_back(SetjmpTableSize); 899 900 // Setjmp transformation 901 std::vector<PHINode *> SetjmpRetPHIs; 902 Function *SetjmpF = M.getFunction("setjmp"); 903 for (User *U : SetjmpF->users()) { 904 auto *CI = dyn_cast<CallInst>(U); 905 if (!CI) 906 report_fatal_error("Does not support indirect calls to setjmp"); 907 908 BasicBlock *BB = CI->getParent(); 909 if (BB->getParent() != &F) // in other function 910 continue; 911 912 // The tail is everything right after the call, and will be reached once 913 // when setjmp is called, and later when longjmp returns to the setjmp 914 BasicBlock *Tail = SplitBlock(BB, CI->getNextNode()); 915 // Add a phi to the tail, which will be the output of setjmp, which 916 // indicates if this is the first call or a longjmp back. The phi directly 917 // uses the right value based on where we arrive from 918 IRB.SetInsertPoint(Tail->getFirstNonPHI()); 919 PHINode *SetjmpRet = IRB.CreatePHI(IRB.getInt32Ty(), 2, "setjmp.ret"); 920 921 // setjmp initial call returns 0 922 SetjmpRet->addIncoming(IRB.getInt32(0), BB); 923 // The proper output is now this, not the setjmp call itself 924 CI->replaceAllUsesWith(SetjmpRet); 925 // longjmp returns to the setjmp will add themselves to this phi 926 SetjmpRetPHIs.push_back(SetjmpRet); 927 928 // Fix call target 929 // Our index in the function is our place in the array + 1 to avoid index 930 // 0, because index 0 means the longjmp is not ours to handle. 931 IRB.SetInsertPoint(CI); 932 Value *Args[] = {CI->getArgOperand(0), IRB.getInt32(SetjmpRetPHIs.size()), 933 SetjmpTable, SetjmpTableSize}; 934 Instruction *NewSetjmpTable = 935 IRB.CreateCall(SaveSetjmpF, Args, "setjmpTable"); 936 Instruction *NewSetjmpTableSize = 937 IRB.CreateCall(GetTempRet0Func, None, "setjmpTableSize"); 938 SetjmpTableInsts.push_back(NewSetjmpTable); 939 SetjmpTableSizeInsts.push_back(NewSetjmpTableSize); 940 ToErase.push_back(CI); 941 } 942 943 // Update each call that can longjmp so it can return to a setjmp where 944 // relevant. 945 946 // Because we are creating new BBs while processing and don't want to make 947 // all these newly created BBs candidates again for longjmp processing, we 948 // first make the vector of candidate BBs. 949 std::vector<BasicBlock *> BBs; 950 for (BasicBlock &BB : F) 951 BBs.push_back(&BB); 952 953 // BBs.size() will change within the loop, so we query it every time 954 for (unsigned I = 0; I < BBs.size(); I++) { 955 BasicBlock *BB = BBs[I]; 956 for (Instruction &I : *BB) { 957 assert(!isa<InvokeInst>(&I)); 958 auto *CI = dyn_cast<CallInst>(&I); 959 if (!CI) 960 continue; 961 962 const Value *Callee = CI->getCalledValue(); 963 if (!canLongjmp(M, Callee)) 964 continue; 965 966 Value *Threw = nullptr; 967 BasicBlock *Tail; 968 if (Callee->getName().startswith(InvokePrefix)) { 969 // If invoke wrapper has already been generated for this call in 970 // previous EH phase, search for the load instruction 971 // %__THREW__.val = __THREW__; 972 // in postamble after the invoke wrapper call 973 LoadInst *ThrewLI = nullptr; 974 StoreInst *ThrewResetSI = nullptr; 975 for (auto I = std::next(BasicBlock::iterator(CI)), IE = BB->end(); 976 I != IE; ++I) { 977 if (auto *LI = dyn_cast<LoadInst>(I)) 978 if (auto *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand())) 979 if (GV == ThrewGV) { 980 Threw = ThrewLI = LI; 981 break; 982 } 983 } 984 // Search for the store instruction after the load above 985 // __THREW__ = 0; 986 for (auto I = std::next(BasicBlock::iterator(ThrewLI)), IE = BB->end(); 987 I != IE; ++I) { 988 if (auto *SI = dyn_cast<StoreInst>(I)) 989 if (auto *GV = dyn_cast<GlobalVariable>(SI->getPointerOperand())) 990 if (GV == ThrewGV && SI->getValueOperand() == IRB.getInt32(0)) { 991 ThrewResetSI = SI; 992 break; 993 } 994 } 995 assert(Threw && ThrewLI && "Cannot find __THREW__ load after invoke"); 996 assert(ThrewResetSI && "Cannot find __THREW__ store after invoke"); 997 Tail = SplitBlock(BB, ThrewResetSI->getNextNode()); 998 999 } else { 1000 // Wrap call with invoke wrapper and generate preamble/postamble 1001 Threw = wrapInvoke(CI); 1002 ToErase.push_back(CI); 1003 Tail = SplitBlock(BB, CI->getNextNode()); 1004 } 1005 1006 // We need to replace the terminator in Tail - SplitBlock makes BB go 1007 // straight to Tail, we need to check if a longjmp occurred, and go to the 1008 // right setjmp-tail if so 1009 ToErase.push_back(BB->getTerminator()); 1010 1011 // Generate a function call to testSetjmp function and preamble/postamble 1012 // code to figure out (1) whether longjmp occurred (2) if longjmp 1013 // occurred, which setjmp it corresponds to 1014 Value *Label = nullptr; 1015 Value *LongjmpResult = nullptr; 1016 BasicBlock *EndBB = nullptr; 1017 wrapTestSetjmp(BB, CI, Threw, SetjmpTable, SetjmpTableSize, Label, 1018 LongjmpResult, EndBB); 1019 assert(Label && LongjmpResult && EndBB); 1020 1021 // Create switch instruction 1022 IRB.SetInsertPoint(EndBB); 1023 SwitchInst *SI = IRB.CreateSwitch(Label, Tail, SetjmpRetPHIs.size()); 1024 // -1 means no longjmp happened, continue normally (will hit the default 1025 // switch case). 0 means a longjmp that is not ours to handle, needs a 1026 // rethrow. Otherwise the index is the same as the index in P+1 (to avoid 1027 // 0). 1028 for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) { 1029 SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent()); 1030 SetjmpRetPHIs[I]->addIncoming(LongjmpResult, EndBB); 1031 } 1032 1033 // We are splitting the block here, and must continue to find other calls 1034 // in the block - which is now split. so continue to traverse in the Tail 1035 BBs.push_back(Tail); 1036 } 1037 } 1038 1039 // Erase everything we no longer need in this function 1040 for (Instruction *I : ToErase) 1041 I->eraseFromParent(); 1042 1043 // Free setjmpTable buffer before each return instruction 1044 for (BasicBlock &BB : F) { 1045 Instruction *TI = BB.getTerminator(); 1046 if (isa<ReturnInst>(TI)) 1047 CallInst::CreateFree(SetjmpTable, TI); 1048 } 1049 1050 // Every call to saveSetjmp can change setjmpTable and setjmpTableSize 1051 // (when buffer reallocation occurs) 1052 // entry: 1053 // setjmpTableSize = 4; 1054 // setjmpTable = (int *) malloc(40); 1055 // setjmpTable[0] = 0; 1056 // ... 1057 // somebb: 1058 // setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize); 1059 // setjmpTableSize = getTempRet0(); 1060 // So we need to make sure the SSA for these variables is valid so that every 1061 // saveSetjmp and testSetjmp calls have the correct arguments. 1062 SSAUpdater SetjmpTableSSA; 1063 SSAUpdater SetjmpTableSizeSSA; 1064 SetjmpTableSSA.Initialize(Type::getInt32PtrTy(C), "setjmpTable"); 1065 SetjmpTableSizeSSA.Initialize(Type::getInt32Ty(C), "setjmpTableSize"); 1066 for (Instruction *I : SetjmpTableInsts) 1067 SetjmpTableSSA.AddAvailableValue(I->getParent(), I); 1068 for (Instruction *I : SetjmpTableSizeInsts) 1069 SetjmpTableSizeSSA.AddAvailableValue(I->getParent(), I); 1070 1071 for (auto UI = SetjmpTable->use_begin(), UE = SetjmpTable->use_end(); 1072 UI != UE;) { 1073 // Grab the use before incrementing the iterator. 1074 Use &U = *UI; 1075 // Increment the iterator before removing the use from the list. 1076 ++UI; 1077 if (auto *I = dyn_cast<Instruction>(U.getUser())) 1078 if (I->getParent() != &EntryBB) 1079 SetjmpTableSSA.RewriteUse(U); 1080 } 1081 for (auto UI = SetjmpTableSize->use_begin(), UE = SetjmpTableSize->use_end(); 1082 UI != UE;) { 1083 Use &U = *UI; 1084 ++UI; 1085 if (auto *I = dyn_cast<Instruction>(U.getUser())) 1086 if (I->getParent() != &EntryBB) 1087 SetjmpTableSizeSSA.RewriteUse(U); 1088 } 1089 1090 // Finally, our modifications to the cfg can break dominance of SSA variables. 1091 // For example, in this code, 1092 // if (x()) { .. setjmp() .. } 1093 // if (y()) { .. longjmp() .. } 1094 // We must split the longjmp block, and it can jump into the block splitted 1095 // from setjmp one. But that means that when we split the setjmp block, it's 1096 // first part no longer dominates its second part - there is a theoretically 1097 // possible control flow path where x() is false, then y() is true and we 1098 // reach the second part of the setjmp block, without ever reaching the first 1099 // part. So, we rebuild SSA form here. 1100 rebuildSSA(F); 1101 return true; 1102 } 1103