1 //=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file lowers exception-related instructions and setjmp/longjmp 11 /// function calls in order to use Emscripten's JavaScript try and catch 12 /// mechanism. 13 /// 14 /// To handle exceptions and setjmp/longjmps, this scheme relies on JavaScript's 15 /// try and catch syntax and relevant exception-related libraries implemented 16 /// in JavaScript glue code that will be produced by Emscripten. 17 /// 18 /// * Exception handling 19 /// This pass lowers invokes and landingpads into library functions in JS glue 20 /// code. Invokes are lowered into function wrappers called invoke wrappers that 21 /// exist in JS side, which wraps the original function call with JS try-catch. 22 /// If an exception occurred, cxa_throw() function in JS side sets some 23 /// variables (see below) so we can check whether an exception occurred from 24 /// wasm code and handle it appropriately. 25 /// 26 /// * Setjmp-longjmp handling 27 /// This pass lowers setjmp to a reasonably-performant approach for emscripten. 28 /// The idea is that each block with a setjmp is broken up into two parts: the 29 /// part containing setjmp and the part right after the setjmp. The latter part 30 /// is either reached from the setjmp, or later from a longjmp. To handle the 31 /// longjmp, all calls that might longjmp are also called using invoke wrappers 32 /// and thus JS / try-catch. JS longjmp() function also sets some variables so 33 /// we can check / whether a longjmp occurred from wasm code. Each block with a 34 /// function call that might longjmp is also split up after the longjmp call. 35 /// After the longjmp call, we check whether a longjmp occurred, and if it did, 36 /// which setjmp it corresponds to, and jump to the right post-setjmp block. 37 /// We assume setjmp-longjmp handling always run after EH handling, which means 38 /// we don't expect any exception-related instructions when SjLj runs. 39 /// FIXME Currently this scheme does not support indirect call of setjmp, 40 /// because of the limitation of the scheme itself. fastcomp does not support it 41 /// either. 42 /// 43 /// In detail, this pass does following things: 44 /// 45 /// 1) Assumes the existence of global variables: __THREW__, __threwValue 46 /// __THREW__ and __threwValue are defined in compiler-rt in Emscripten. 47 /// These variables are used for both exceptions and setjmp/longjmps. 48 /// __THREW__ indicates whether an exception or a longjmp occurred or not. 0 49 /// means nothing occurred, 1 means an exception occurred, and other numbers 50 /// mean a longjmp occurred. In the case of longjmp, __THREW__ variable 51 /// indicates the corresponding setjmp buffer the longjmp corresponds to. 52 /// __threwValue is 0 for exceptions, and the argument to longjmp in case of 53 /// longjmp. 54 /// 55 /// * Exception handling 56 /// 57 /// 2) We assume the existence of setThrew and setTempRet0/getTempRet0 functions 58 /// at link time. setThrew exists in Emscripten's compiler-rt: 59 /// 60 /// void setThrew(uintptr_t threw, int value) { 61 /// if (__THREW__ == 0) { 62 /// __THREW__ = threw; 63 /// __threwValue = value; 64 /// } 65 /// } 66 // 67 /// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code. 68 /// In exception handling, getTempRet0 indicates the type of an exception 69 /// caught, and in setjmp/longjmp, it means the second argument to longjmp 70 /// function. 71 /// 72 /// 3) Lower 73 /// invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad 74 /// into 75 /// __THREW__ = 0; 76 /// call @__invoke_SIG(func, arg1, arg2) 77 /// %__THREW__.val = __THREW__; 78 /// __THREW__ = 0; 79 /// if (%__THREW__.val == 1) 80 /// goto %lpad 81 /// else 82 /// goto %invoke.cont 83 /// SIG is a mangled string generated based on the LLVM IR-level function 84 /// signature. After LLVM IR types are lowered to the target wasm types, 85 /// the names for these wrappers will change based on wasm types as well, 86 /// as in invoke_vi (function takes an int and returns void). The bodies of 87 /// these wrappers will be generated in JS glue code, and inside those 88 /// wrappers we use JS try-catch to generate actual exception effects. It 89 /// also calls the original callee function. An example wrapper in JS code 90 /// would look like this: 91 /// function invoke_vi(index,a1) { 92 /// try { 93 /// Module["dynCall_vi"](index,a1); // This calls original callee 94 /// } catch(e) { 95 /// if (typeof e !== 'number' && e !== 'longjmp') throw e; 96 /// _setThrew(1, 0); // setThrew is called here 97 /// } 98 /// } 99 /// If an exception is thrown, __THREW__ will be set to true in a wrapper, 100 /// so we can jump to the right BB based on this value. 101 /// 102 /// 4) Lower 103 /// %val = landingpad catch c1 catch c2 catch c3 ... 104 /// ... use %val ... 105 /// into 106 /// %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...) 107 /// %val = {%fmc, getTempRet0()} 108 /// ... use %val ... 109 /// Here N is a number calculated based on the number of clauses. 110 /// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code. 111 /// 112 /// 5) Lower 113 /// resume {%a, %b} 114 /// into 115 /// call @__resumeException(%a) 116 /// where __resumeException() is a function in JS glue code. 117 /// 118 /// 6) Lower 119 /// call @llvm.eh.typeid.for(type) (intrinsic) 120 /// into 121 /// call @llvm_eh_typeid_for(type) 122 /// llvm_eh_typeid_for function will be generated in JS glue code. 123 /// 124 /// * Setjmp / Longjmp handling 125 /// 126 /// In case calls to longjmp() exists 127 /// 128 /// 1) Lower 129 /// longjmp(env, val) 130 /// into 131 /// emscripten_longjmp(env, val) 132 /// 133 /// In case calls to setjmp() exists 134 /// 135 /// 2) In the function entry that calls setjmp, initialize setjmpTable and 136 /// sejmpTableSize as follows: 137 /// setjmpTableSize = 4; 138 /// setjmpTable = (int *) malloc(40); 139 /// setjmpTable[0] = 0; 140 /// setjmpTable and setjmpTableSize are used to call saveSetjmp() function in 141 /// Emscripten compiler-rt. 142 /// 143 /// 3) Lower 144 /// setjmp(env) 145 /// into 146 /// setjmpTable = saveSetjmp(env, label, setjmpTable, setjmpTableSize); 147 /// setjmpTableSize = getTempRet0(); 148 /// For each dynamic setjmp call, setjmpTable stores its ID (a number which 149 /// is incrementally assigned from 0) and its label (a unique number that 150 /// represents each callsite of setjmp). When we need more entries in 151 /// setjmpTable, it is reallocated in saveSetjmp() in Emscripten's 152 /// compiler-rt and it will return the new table address, and assign the new 153 /// table size in setTempRet0(). saveSetjmp also stores the setjmp's ID into 154 /// the buffer 'env'. A BB with setjmp is split into two after setjmp call in 155 /// order to make the post-setjmp BB the possible destination of longjmp BB. 156 /// 157 /// 158 /// 4) Lower every call that might longjmp into 159 /// __THREW__ = 0; 160 /// call @__invoke_SIG(func, arg1, arg2) 161 /// %__THREW__.val = __THREW__; 162 /// __THREW__ = 0; 163 /// %__threwValue.val = __threwValue; 164 /// if (%__THREW__.val != 0 & %__threwValue.val != 0) { 165 /// %label = testSetjmp(mem[%__THREW__.val], setjmpTable, 166 /// setjmpTableSize); 167 /// if (%label == 0) 168 /// emscripten_longjmp(%__THREW__.val, %__threwValue.val); 169 /// setTempRet0(%__threwValue.val); 170 /// } else { 171 /// %label = -1; 172 /// } 173 /// longjmp_result = getTempRet0(); 174 /// switch label { 175 /// label 1: goto post-setjmp BB 1 176 /// label 2: goto post-setjmp BB 2 177 /// ... 178 /// default: goto splitted next BB 179 /// } 180 /// testSetjmp examines setjmpTable to see if there is a matching setjmp 181 /// call. After calling an invoke wrapper, if a longjmp occurred, __THREW__ 182 /// will be the address of matching jmp_buf buffer and __threwValue be the 183 /// second argument to longjmp. mem[%__THREW__.val] is a setjmp ID that is 184 /// stored in saveSetjmp. testSetjmp returns a setjmp label, a unique ID to 185 /// each setjmp callsite. Label 0 means this longjmp buffer does not 186 /// correspond to one of the setjmp callsites in this function, so in this 187 /// case we just chain the longjmp to the caller. Label -1 means no longjmp 188 /// occurred. Otherwise we jump to the right post-setjmp BB based on the 189 /// label. 190 /// 191 ///===----------------------------------------------------------------------===// 192 193 #include "WebAssembly.h" 194 #include "WebAssemblyTargetMachine.h" 195 #include "llvm/ADT/StringExtras.h" 196 #include "llvm/CodeGen/TargetPassConfig.h" 197 #include "llvm/IR/DebugInfoMetadata.h" 198 #include "llvm/IR/Dominators.h" 199 #include "llvm/IR/IRBuilder.h" 200 #include "llvm/Support/CommandLine.h" 201 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 202 #include "llvm/Transforms/Utils/SSAUpdater.h" 203 #include "llvm/Transforms/Utils/SSAUpdaterBulk.h" 204 205 using namespace llvm; 206 207 #define DEBUG_TYPE "wasm-lower-em-ehsjlj" 208 209 // Emscripten's asm.js-style exception handling 210 extern cl::opt<bool> WasmEnableEmEH; 211 // Emscripten's asm.js-style setjmp/longjmp handling 212 extern cl::opt<bool> WasmEnableEmSjLj; 213 // Wasm setjmp/longjmp handling using wasm EH instructions 214 extern cl::opt<bool> WasmEnableSjLj; 215 216 static cl::list<std::string> 217 EHAllowlist("emscripten-cxx-exceptions-allowed", 218 cl::desc("The list of function names in which Emscripten-style " 219 "exception handling is enabled (see emscripten " 220 "EMSCRIPTEN_CATCHING_ALLOWED options)"), 221 cl::CommaSeparated); 222 223 namespace { 224 class WebAssemblyLowerEmscriptenEHSjLj final : public ModulePass { 225 bool EnableEmEH; // Enable Emscripten exception handling 226 bool EnableEmSjLj; // Enable Emscripten setjmp/longjmp handling 227 bool EnableWasmSjLj; // Enable Wasm setjmp/longjmp handling 228 bool DoSjLj; // Whether we actually perform setjmp/longjmp handling 229 230 GlobalVariable *ThrewGV = nullptr; // __THREW__ (Emscripten) 231 GlobalVariable *ThrewValueGV = nullptr; // __threwValue (Emscripten) 232 Function *GetTempRet0F = nullptr; // getTempRet0() (Emscripten) 233 Function *SetTempRet0F = nullptr; // setTempRet0() (Emscripten) 234 Function *ResumeF = nullptr; // __resumeException() (Emscripten) 235 Function *EHTypeIDF = nullptr; // llvm.eh.typeid.for() (intrinsic) 236 Function *EmLongjmpF = nullptr; // emscripten_longjmp() (Emscripten) 237 Function *SaveSetjmpF = nullptr; // saveSetjmp() (Emscripten) 238 Function *TestSetjmpF = nullptr; // testSetjmp() (Emscripten) 239 240 // __cxa_find_matching_catch_N functions. 241 // Indexed by the number of clauses in an original landingpad instruction. 242 DenseMap<int, Function *> FindMatchingCatches; 243 // Map of <function signature string, invoke_ wrappers> 244 StringMap<Function *> InvokeWrappers; 245 // Set of allowed function names for exception handling 246 std::set<std::string> EHAllowlistSet; 247 // Functions that contains calls to setjmp 248 SmallPtrSet<Function *, 8> SetjmpUsers; 249 250 StringRef getPassName() const override { 251 return "WebAssembly Lower Emscripten Exceptions"; 252 } 253 254 using InstVector = SmallVectorImpl<Instruction *>; 255 bool runEHOnFunction(Function &F); 256 bool runSjLjOnFunction(Function &F); 257 void handleLongjmpableCallsForEmscriptenSjLj( 258 Function &F, InstVector &SetjmpTableInsts, 259 InstVector &SetjmpTableSizeInsts, 260 SmallVectorImpl<PHINode *> &SetjmpRetPHIs); 261 Function *getFindMatchingCatch(Module &M, unsigned NumClauses); 262 263 Value *wrapInvoke(CallBase *CI); 264 void wrapTestSetjmp(BasicBlock *BB, DebugLoc DL, Value *Threw, 265 Value *SetjmpTable, Value *SetjmpTableSize, Value *&Label, 266 Value *&LongjmpResult, BasicBlock *&EndBB); 267 Function *getInvokeWrapper(CallBase *CI); 268 269 bool areAllExceptionsAllowed() const { return EHAllowlistSet.empty(); } 270 bool supportsException(const Function *F) const { 271 return EnableEmEH && (areAllExceptionsAllowed() || 272 EHAllowlistSet.count(std::string(F->getName()))); 273 } 274 275 void rebuildSSA(Function &F); 276 277 public: 278 static char ID; 279 280 WebAssemblyLowerEmscriptenEHSjLj() 281 : ModulePass(ID), EnableEmEH(WasmEnableEmEH), 282 EnableEmSjLj(WasmEnableEmSjLj), EnableWasmSjLj(WasmEnableSjLj) { 283 assert(!(EnableEmSjLj && EnableWasmSjLj) && 284 "Two SjLj modes cannot be turned on at the same time"); 285 assert(!(EnableEmEH && EnableWasmSjLj) && 286 "Wasm SjLj should be only used with Wasm EH"); 287 EHAllowlistSet.insert(EHAllowlist.begin(), EHAllowlist.end()); 288 } 289 bool runOnModule(Module &M) override; 290 291 void getAnalysisUsage(AnalysisUsage &AU) const override { 292 AU.addRequired<DominatorTreeWrapperPass>(); 293 } 294 }; 295 } // End anonymous namespace 296 297 char WebAssemblyLowerEmscriptenEHSjLj::ID = 0; 298 INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj, DEBUG_TYPE, 299 "WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp", 300 false, false) 301 302 ModulePass *llvm::createWebAssemblyLowerEmscriptenEHSjLj() { 303 return new WebAssemblyLowerEmscriptenEHSjLj(); 304 } 305 306 static bool canThrow(const Value *V) { 307 if (const auto *F = dyn_cast<const Function>(V)) { 308 // Intrinsics cannot throw 309 if (F->isIntrinsic()) 310 return false; 311 StringRef Name = F->getName(); 312 // leave setjmp and longjmp (mostly) alone, we process them properly later 313 if (Name == "setjmp" || Name == "longjmp" || Name == "emscripten_longjmp") 314 return false; 315 return !F->doesNotThrow(); 316 } 317 // not a function, so an indirect call - can throw, we can't tell 318 return true; 319 } 320 321 // Get a global variable with the given name. If it doesn't exist declare it, 322 // which will generate an import and assume that it will exist at link time. 323 static GlobalVariable *getGlobalVariable(Module &M, Type *Ty, 324 WebAssemblyTargetMachine &TM, 325 const char *Name) { 326 auto *GV = dyn_cast<GlobalVariable>(M.getOrInsertGlobal(Name, Ty)); 327 if (!GV) 328 report_fatal_error(Twine("unable to create global: ") + Name); 329 330 // If the target supports TLS, make this variable thread-local. We can't just 331 // unconditionally make it thread-local and depend on 332 // CoalesceFeaturesAndStripAtomics to downgrade it, because stripping TLS has 333 // the side effect of disallowing the object from being linked into a 334 // shared-memory module, which we don't want to be responsible for. 335 auto *Subtarget = TM.getSubtargetImpl(); 336 auto TLS = Subtarget->hasAtomics() && Subtarget->hasBulkMemory() 337 ? GlobalValue::LocalExecTLSModel 338 : GlobalValue::NotThreadLocal; 339 GV->setThreadLocalMode(TLS); 340 return GV; 341 } 342 343 // Simple function name mangler. 344 // This function simply takes LLVM's string representation of parameter types 345 // and concatenate them with '_'. There are non-alphanumeric characters but llc 346 // is ok with it, and we need to postprocess these names after the lowering 347 // phase anyway. 348 static std::string getSignature(FunctionType *FTy) { 349 std::string Sig; 350 raw_string_ostream OS(Sig); 351 OS << *FTy->getReturnType(); 352 for (Type *ParamTy : FTy->params()) 353 OS << "_" << *ParamTy; 354 if (FTy->isVarArg()) 355 OS << "_..."; 356 Sig = OS.str(); 357 erase_if(Sig, isSpace); 358 // When s2wasm parses .s file, a comma means the end of an argument. So a 359 // mangled function name can contain any character but a comma. 360 std::replace(Sig.begin(), Sig.end(), ',', '.'); 361 return Sig; 362 } 363 364 static Function *getEmscriptenFunction(FunctionType *Ty, const Twine &Name, 365 Module *M) { 366 Function* F = Function::Create(Ty, GlobalValue::ExternalLinkage, Name, M); 367 // Tell the linker that this function is expected to be imported from the 368 // 'env' module. 369 if (!F->hasFnAttribute("wasm-import-module")) { 370 llvm::AttrBuilder B; 371 B.addAttribute("wasm-import-module", "env"); 372 F->addFnAttrs(B); 373 } 374 if (!F->hasFnAttribute("wasm-import-name")) { 375 llvm::AttrBuilder B; 376 B.addAttribute("wasm-import-name", F->getName()); 377 F->addFnAttrs(B); 378 } 379 return F; 380 } 381 382 // Returns an integer type for the target architecture's address space. 383 // i32 for wasm32 and i64 for wasm64. 384 static Type *getAddrIntType(Module *M) { 385 IRBuilder<> IRB(M->getContext()); 386 return IRB.getIntNTy(M->getDataLayout().getPointerSizeInBits()); 387 } 388 389 // Returns an integer pointer type for the target architecture's address space. 390 // i32* for wasm32 and i64* for wasm64. 391 static Type *getAddrPtrType(Module *M) { 392 return Type::getIntNPtrTy(M->getContext(), 393 M->getDataLayout().getPointerSizeInBits()); 394 } 395 396 // Returns an integer whose type is the integer type for the target's address 397 // space. Returns (i32 C) for wasm32 and (i64 C) for wasm64, when C is the 398 // integer. 399 static Value *getAddrSizeInt(Module *M, uint64_t C) { 400 IRBuilder<> IRB(M->getContext()); 401 return IRB.getIntN(M->getDataLayout().getPointerSizeInBits(), C); 402 } 403 404 // Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2. 405 // This is because a landingpad instruction contains two more arguments, a 406 // personality function and a cleanup bit, and __cxa_find_matching_catch_N 407 // functions are named after the number of arguments in the original landingpad 408 // instruction. 409 Function * 410 WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module &M, 411 unsigned NumClauses) { 412 if (FindMatchingCatches.count(NumClauses)) 413 return FindMatchingCatches[NumClauses]; 414 PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext()); 415 SmallVector<Type *, 16> Args(NumClauses, Int8PtrTy); 416 FunctionType *FTy = FunctionType::get(Int8PtrTy, Args, false); 417 Function *F = getEmscriptenFunction( 418 FTy, "__cxa_find_matching_catch_" + Twine(NumClauses + 2), &M); 419 FindMatchingCatches[NumClauses] = F; 420 return F; 421 } 422 423 // Generate invoke wrapper seqence with preamble and postamble 424 // Preamble: 425 // __THREW__ = 0; 426 // Postamble: 427 // %__THREW__.val = __THREW__; __THREW__ = 0; 428 // Returns %__THREW__.val, which indicates whether an exception is thrown (or 429 // whether longjmp occurred), for future use. 430 Value *WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallBase *CI) { 431 Module *M = CI->getModule(); 432 LLVMContext &C = M->getContext(); 433 434 // If we are calling a function that is noreturn, we must remove that 435 // attribute. The code we insert here does expect it to return, after we 436 // catch the exception. 437 if (CI->doesNotReturn()) { 438 if (auto *F = CI->getCalledFunction()) 439 F->removeFnAttr(Attribute::NoReturn); 440 CI->removeFnAttr(Attribute::NoReturn); 441 } 442 443 IRBuilder<> IRB(C); 444 IRB.SetInsertPoint(CI); 445 446 // Pre-invoke 447 // __THREW__ = 0; 448 IRB.CreateStore(getAddrSizeInt(M, 0), ThrewGV); 449 450 // Invoke function wrapper in JavaScript 451 SmallVector<Value *, 16> Args; 452 // Put the pointer to the callee as first argument, so it can be called 453 // within the invoke wrapper later 454 Args.push_back(CI->getCalledOperand()); 455 Args.append(CI->arg_begin(), CI->arg_end()); 456 CallInst *NewCall = IRB.CreateCall(getInvokeWrapper(CI), Args); 457 NewCall->takeName(CI); 458 NewCall->setCallingConv(CallingConv::WASM_EmscriptenInvoke); 459 NewCall->setDebugLoc(CI->getDebugLoc()); 460 461 // Because we added the pointer to the callee as first argument, all 462 // argument attribute indices have to be incremented by one. 463 SmallVector<AttributeSet, 8> ArgAttributes; 464 const AttributeList &InvokeAL = CI->getAttributes(); 465 466 // No attributes for the callee pointer. 467 ArgAttributes.push_back(AttributeSet()); 468 // Copy the argument attributes from the original 469 for (unsigned I = 0, E = CI->getNumArgOperands(); I < E; ++I) 470 ArgAttributes.push_back(InvokeAL.getParamAttrs(I)); 471 472 AttrBuilder FnAttrs(InvokeAL.getFnAttrs()); 473 if (FnAttrs.contains(Attribute::AllocSize)) { 474 // The allocsize attribute (if any) referes to parameters by index and needs 475 // to be adjusted. 476 unsigned SizeArg; 477 Optional<unsigned> NEltArg; 478 std::tie(SizeArg, NEltArg) = FnAttrs.getAllocSizeArgs(); 479 SizeArg += 1; 480 if (NEltArg.hasValue()) 481 NEltArg = NEltArg.getValue() + 1; 482 FnAttrs.addAllocSizeAttr(SizeArg, NEltArg); 483 } 484 485 // Reconstruct the AttributesList based on the vector we constructed. 486 AttributeList NewCallAL = AttributeList::get( 487 C, AttributeSet::get(C, FnAttrs), InvokeAL.getRetAttrs(), ArgAttributes); 488 NewCall->setAttributes(NewCallAL); 489 490 CI->replaceAllUsesWith(NewCall); 491 492 // Post-invoke 493 // %__THREW__.val = __THREW__; __THREW__ = 0; 494 Value *Threw = 495 IRB.CreateLoad(getAddrIntType(M), ThrewGV, ThrewGV->getName() + ".val"); 496 IRB.CreateStore(getAddrSizeInt(M, 0), ThrewGV); 497 return Threw; 498 } 499 500 // Get matching invoke wrapper based on callee signature 501 Function *WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallBase *CI) { 502 Module *M = CI->getModule(); 503 SmallVector<Type *, 16> ArgTys; 504 FunctionType *CalleeFTy = CI->getFunctionType(); 505 506 std::string Sig = getSignature(CalleeFTy); 507 if (InvokeWrappers.find(Sig) != InvokeWrappers.end()) 508 return InvokeWrappers[Sig]; 509 510 // Put the pointer to the callee as first argument 511 ArgTys.push_back(PointerType::getUnqual(CalleeFTy)); 512 // Add argument types 513 ArgTys.append(CalleeFTy->param_begin(), CalleeFTy->param_end()); 514 515 FunctionType *FTy = FunctionType::get(CalleeFTy->getReturnType(), ArgTys, 516 CalleeFTy->isVarArg()); 517 Function *F = getEmscriptenFunction(FTy, "__invoke_" + Sig, M); 518 InvokeWrappers[Sig] = F; 519 return F; 520 } 521 522 static bool canLongjmp(const Value *Callee) { 523 if (auto *CalleeF = dyn_cast<Function>(Callee)) 524 if (CalleeF->isIntrinsic()) 525 return false; 526 527 // Attempting to transform inline assembly will result in something like: 528 // call void @__invoke_void(void ()* asm ...) 529 // which is invalid because inline assembly blocks do not have addresses 530 // and can't be passed by pointer. The result is a crash with illegal IR. 531 if (isa<InlineAsm>(Callee)) 532 return false; 533 StringRef CalleeName = Callee->getName(); 534 535 // The reason we include malloc/free here is to exclude the malloc/free 536 // calls generated in setjmp prep / cleanup routines. 537 if (CalleeName == "setjmp" || CalleeName == "malloc" || CalleeName == "free") 538 return false; 539 540 // There are functions in Emscripten's JS glue code or compiler-rt 541 if (CalleeName == "__resumeException" || CalleeName == "llvm_eh_typeid_for" || 542 CalleeName == "saveSetjmp" || CalleeName == "testSetjmp" || 543 CalleeName == "getTempRet0" || CalleeName == "setTempRet0") 544 return false; 545 546 // __cxa_find_matching_catch_N functions cannot longjmp 547 if (Callee->getName().startswith("__cxa_find_matching_catch_")) 548 return false; 549 550 // Exception-catching related functions 551 if (CalleeName == "__cxa_begin_catch" || CalleeName == "__cxa_end_catch" || 552 CalleeName == "__cxa_allocate_exception" || CalleeName == "__cxa_throw" || 553 CalleeName == "__clang_call_terminate") 554 return false; 555 556 // Otherwise we don't know 557 return true; 558 } 559 560 static bool isEmAsmCall(const Value *Callee) { 561 StringRef CalleeName = Callee->getName(); 562 // This is an exhaustive list from Emscripten's <emscripten/em_asm.h>. 563 return CalleeName == "emscripten_asm_const_int" || 564 CalleeName == "emscripten_asm_const_double" || 565 CalleeName == "emscripten_asm_const_int_sync_on_main_thread" || 566 CalleeName == "emscripten_asm_const_double_sync_on_main_thread" || 567 CalleeName == "emscripten_asm_const_async_on_main_thread"; 568 } 569 570 // Generate testSetjmp function call seqence with preamble and postamble. 571 // The code this generates is equivalent to the following JavaScript code: 572 // %__threwValue.val = __threwValue; 573 // if (%__THREW__.val != 0 & %__threwValue.val != 0) { 574 // %label = testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize); 575 // if (%label == 0) 576 // emscripten_longjmp(%__THREW__.val, %__threwValue.val); 577 // setTempRet0(%__threwValue.val); 578 // } else { 579 // %label = -1; 580 // } 581 // %longjmp_result = getTempRet0(); 582 // 583 // As output parameters. returns %label, %longjmp_result, and the BB the last 584 // instruction (%longjmp_result = ...) is in. 585 void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp( 586 BasicBlock *BB, DebugLoc DL, Value *Threw, Value *SetjmpTable, 587 Value *SetjmpTableSize, Value *&Label, Value *&LongjmpResult, 588 BasicBlock *&EndBB) { 589 Function *F = BB->getParent(); 590 Module *M = F->getParent(); 591 LLVMContext &C = M->getContext(); 592 IRBuilder<> IRB(C); 593 IRB.SetCurrentDebugLocation(DL); 594 595 // if (%__THREW__.val != 0 & %__threwValue.val != 0) 596 IRB.SetInsertPoint(BB); 597 BasicBlock *ThenBB1 = BasicBlock::Create(C, "if.then1", F); 598 BasicBlock *ElseBB1 = BasicBlock::Create(C, "if.else1", F); 599 BasicBlock *EndBB1 = BasicBlock::Create(C, "if.end", F); 600 Value *ThrewCmp = IRB.CreateICmpNE(Threw, getAddrSizeInt(M, 0)); 601 Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV, 602 ThrewValueGV->getName() + ".val"); 603 Value *ThrewValueCmp = IRB.CreateICmpNE(ThrewValue, IRB.getInt32(0)); 604 Value *Cmp1 = IRB.CreateAnd(ThrewCmp, ThrewValueCmp, "cmp1"); 605 IRB.CreateCondBr(Cmp1, ThenBB1, ElseBB1); 606 607 // %label = testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize); 608 // if (%label == 0) 609 IRB.SetInsertPoint(ThenBB1); 610 BasicBlock *ThenBB2 = BasicBlock::Create(C, "if.then2", F); 611 BasicBlock *EndBB2 = BasicBlock::Create(C, "if.end2", F); 612 Value *ThrewPtr = 613 IRB.CreateIntToPtr(Threw, getAddrPtrType(M), Threw->getName() + ".p"); 614 Value *LoadedThrew = IRB.CreateLoad(getAddrIntType(M), ThrewPtr, 615 ThrewPtr->getName() + ".loaded"); 616 Value *ThenLabel = IRB.CreateCall( 617 TestSetjmpF, {LoadedThrew, SetjmpTable, SetjmpTableSize}, "label"); 618 Value *Cmp2 = IRB.CreateICmpEQ(ThenLabel, IRB.getInt32(0)); 619 IRB.CreateCondBr(Cmp2, ThenBB2, EndBB2); 620 621 // emscripten_longjmp(%__THREW__.val, %__threwValue.val); 622 IRB.SetInsertPoint(ThenBB2); 623 IRB.CreateCall(EmLongjmpF, {Threw, ThrewValue}); 624 IRB.CreateUnreachable(); 625 626 // setTempRet0(%__threwValue.val); 627 IRB.SetInsertPoint(EndBB2); 628 IRB.CreateCall(SetTempRet0F, ThrewValue); 629 IRB.CreateBr(EndBB1); 630 631 IRB.SetInsertPoint(ElseBB1); 632 IRB.CreateBr(EndBB1); 633 634 // longjmp_result = getTempRet0(); 635 IRB.SetInsertPoint(EndBB1); 636 PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label"); 637 LabelPHI->addIncoming(ThenLabel, EndBB2); 638 639 LabelPHI->addIncoming(IRB.getInt32(-1), ElseBB1); 640 641 // Output parameter assignment 642 Label = LabelPHI; 643 EndBB = EndBB1; 644 LongjmpResult = IRB.CreateCall(GetTempRet0F, None, "longjmp_result"); 645 } 646 647 void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function &F) { 648 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 649 DT.recalculate(F); // CFG has been changed 650 SSAUpdaterBulk SSA; 651 for (BasicBlock &BB : F) { 652 for (Instruction &I : BB) { 653 unsigned VarID = SSA.AddVariable(I.getName(), I.getType()); 654 SSA.AddAvailableValue(VarID, &BB, &I); 655 for (auto &U : I.uses()) { 656 auto *User = cast<Instruction>(U.getUser()); 657 if (auto *UserPN = dyn_cast<PHINode>(User)) 658 if (UserPN->getIncomingBlock(U) == &BB) 659 continue; 660 if (DT.dominates(&I, User)) 661 continue; 662 SSA.AddUse(VarID, &U); 663 } 664 } 665 } 666 SSA.RewriteAllUses(&DT); 667 } 668 669 // Replace uses of longjmp with emscripten_longjmp. emscripten_longjmp takes 670 // arguments of type {i32, i32} (wasm32) / {i64, i32} (wasm64) and longjmp takes 671 // {jmp_buf*, i32}, so we need a ptrtoint instruction here to make the type 672 // match. jmp_buf* will eventually be lowered to i32/i64 in the wasm backend. 673 static void replaceLongjmpWithEmscriptenLongjmp(Function *LongjmpF, 674 Function *EmLongjmpF) { 675 Module *M = LongjmpF->getParent(); 676 SmallVector<CallInst *, 8> ToErase; 677 LLVMContext &C = LongjmpF->getParent()->getContext(); 678 IRBuilder<> IRB(C); 679 680 // For calls to longjmp, replace it with emscripten_longjmp and cast its first 681 // argument (jmp_buf*) to int 682 for (User *U : LongjmpF->users()) { 683 auto *CI = dyn_cast<CallInst>(U); 684 if (CI && CI->getCalledFunction() == LongjmpF) { 685 IRB.SetInsertPoint(CI); 686 Value *Env = 687 IRB.CreatePtrToInt(CI->getArgOperand(0), getAddrIntType(M), "env"); 688 IRB.CreateCall(EmLongjmpF, {Env, CI->getArgOperand(1)}); 689 ToErase.push_back(CI); 690 } 691 } 692 for (auto *I : ToErase) 693 I->eraseFromParent(); 694 695 // If we have any remaining uses of longjmp's function pointer, replace it 696 // with (int(*)(jmp_buf*, int))emscripten_longjmp. 697 if (!LongjmpF->uses().empty()) { 698 Value *EmLongjmp = 699 IRB.CreateBitCast(EmLongjmpF, LongjmpF->getType(), "em_longjmp"); 700 LongjmpF->replaceAllUsesWith(EmLongjmp); 701 } 702 } 703 704 static bool containsLongjmpableCalls(const Function *F) { 705 for (const auto &BB : *F) 706 for (const auto &I : BB) 707 if (const auto *CB = dyn_cast<CallBase>(&I)) 708 if (canLongjmp(CB->getCalledOperand())) 709 return true; 710 return false; 711 } 712 713 bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module &M) { 714 LLVM_DEBUG(dbgs() << "********** Lower Emscripten EH & SjLj **********\n"); 715 716 LLVMContext &C = M.getContext(); 717 IRBuilder<> IRB(C); 718 719 Function *SetjmpF = M.getFunction("setjmp"); 720 Function *LongjmpF = M.getFunction("longjmp"); 721 722 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 723 assert(TPC && "Expected a TargetPassConfig"); 724 auto &TM = TPC->getTM<WebAssemblyTargetMachine>(); 725 726 // Declare (or get) global variables __THREW__, __threwValue, and 727 // getTempRet0/setTempRet0 function which are used in common for both 728 // exception handling and setjmp/longjmp handling 729 ThrewGV = getGlobalVariable(M, getAddrIntType(&M), TM, "__THREW__"); 730 ThrewValueGV = getGlobalVariable(M, IRB.getInt32Ty(), TM, "__threwValue"); 731 GetTempRet0F = getEmscriptenFunction( 732 FunctionType::get(IRB.getInt32Ty(), false), "getTempRet0", &M); 733 SetTempRet0F = getEmscriptenFunction( 734 FunctionType::get(IRB.getVoidTy(), IRB.getInt32Ty(), false), 735 "setTempRet0", &M); 736 GetTempRet0F->setDoesNotThrow(); 737 SetTempRet0F->setDoesNotThrow(); 738 739 bool Changed = false; 740 741 // Function registration for exception handling 742 if (EnableEmEH) { 743 // Register __resumeException function 744 FunctionType *ResumeFTy = 745 FunctionType::get(IRB.getVoidTy(), IRB.getInt8PtrTy(), false); 746 ResumeF = getEmscriptenFunction(ResumeFTy, "__resumeException", &M); 747 748 // Register llvm_eh_typeid_for function 749 FunctionType *EHTypeIDTy = 750 FunctionType::get(IRB.getInt32Ty(), IRB.getInt8PtrTy(), false); 751 EHTypeIDF = getEmscriptenFunction(EHTypeIDTy, "llvm_eh_typeid_for", &M); 752 } 753 754 if (EnableEmSjLj && SetjmpF) { 755 // Precompute setjmp users 756 for (User *U : SetjmpF->users()) { 757 Function *UserF = cast<Instruction>(U)->getFunction(); 758 // If a function that calls setjmp does not contain any other calls that 759 // can longjmp, we don't need to do any transformation on that function, 760 // so can ignore it 761 if (containsLongjmpableCalls(UserF)) 762 SetjmpUsers.insert(UserF); 763 } 764 } 765 766 bool SetjmpUsed = SetjmpF && !SetjmpUsers.empty(); 767 bool LongjmpUsed = LongjmpF && !LongjmpF->use_empty(); 768 DoSjLj = EnableEmSjLj && (SetjmpUsed || LongjmpUsed); 769 770 // Function registration and data pre-gathering for setjmp/longjmp handling 771 if (DoSjLj) { 772 assert(EnableEmSjLj || EnableWasmSjLj); 773 // Register emscripten_longjmp function 774 FunctionType *FTy = FunctionType::get( 775 IRB.getVoidTy(), {getAddrIntType(&M), IRB.getInt32Ty()}, false); 776 EmLongjmpF = getEmscriptenFunction(FTy, "emscripten_longjmp", &M); 777 778 if (SetjmpF) { 779 // Register saveSetjmp function 780 FunctionType *SetjmpFTy = SetjmpF->getFunctionType(); 781 FTy = FunctionType::get(Type::getInt32PtrTy(C), 782 {SetjmpFTy->getParamType(0), IRB.getInt32Ty(), 783 Type::getInt32PtrTy(C), IRB.getInt32Ty()}, 784 false); 785 SaveSetjmpF = getEmscriptenFunction(FTy, "saveSetjmp", &M); 786 787 // Register testSetjmp function 788 FTy = FunctionType::get( 789 IRB.getInt32Ty(), 790 {getAddrIntType(&M), Type::getInt32PtrTy(C), IRB.getInt32Ty()}, 791 false); 792 TestSetjmpF = getEmscriptenFunction(FTy, "testSetjmp", &M); 793 } 794 } 795 796 // Exception handling transformation 797 if (EnableEmEH) { 798 for (Function &F : M) { 799 if (F.isDeclaration()) 800 continue; 801 Changed |= runEHOnFunction(F); 802 } 803 } 804 805 // Setjmp/longjmp handling transformation 806 if (DoSjLj) { 807 Changed = true; // We have setjmp or longjmp somewhere 808 if (LongjmpF) 809 replaceLongjmpWithEmscriptenLongjmp(LongjmpF, EmLongjmpF); 810 // Only traverse functions that uses setjmp in order not to insert 811 // unnecessary prep / cleanup code in every function 812 if (SetjmpF) 813 for (Function *F : SetjmpUsers) 814 runSjLjOnFunction(*F); 815 } 816 817 if (!Changed) { 818 // Delete unused global variables and functions 819 if (ResumeF) 820 ResumeF->eraseFromParent(); 821 if (EHTypeIDF) 822 EHTypeIDF->eraseFromParent(); 823 if (EmLongjmpF) 824 EmLongjmpF->eraseFromParent(); 825 if (SaveSetjmpF) 826 SaveSetjmpF->eraseFromParent(); 827 if (TestSetjmpF) 828 TestSetjmpF->eraseFromParent(); 829 return false; 830 } 831 832 return true; 833 } 834 835 bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function &F) { 836 Module &M = *F.getParent(); 837 LLVMContext &C = F.getContext(); 838 IRBuilder<> IRB(C); 839 bool Changed = false; 840 SmallVector<Instruction *, 64> ToErase; 841 SmallPtrSet<LandingPadInst *, 32> LandingPads; 842 843 for (BasicBlock &BB : F) { 844 auto *II = dyn_cast<InvokeInst>(BB.getTerminator()); 845 if (!II) 846 continue; 847 Changed = true; 848 LandingPads.insert(II->getLandingPadInst()); 849 IRB.SetInsertPoint(II); 850 851 const Value *Callee = II->getCalledOperand(); 852 bool NeedInvoke = supportsException(&F) && canThrow(Callee); 853 if (NeedInvoke) { 854 // Wrap invoke with invoke wrapper and generate preamble/postamble 855 Value *Threw = wrapInvoke(II); 856 ToErase.push_back(II); 857 858 // If setjmp/longjmp handling is enabled, the thrown value can be not an 859 // exception but a longjmp. If the current function contains calls to 860 // setjmp, it will be appropriately handled in runSjLjOnFunction. But even 861 // if the function does not contain setjmp calls, we shouldn't silently 862 // ignore longjmps; we should rethrow them so they can be correctly 863 // handled in somewhere up the call chain where setjmp is. __THREW__'s 864 // value is 0 when nothing happened, 1 when an exception is thrown, and 865 // other values when longjmp is thrown. 866 // 867 // if (%__THREW__.val == 0 || %__THREW__.val == 1) 868 // goto %tail 869 // else 870 // goto %longjmp.rethrow 871 // 872 // longjmp.rethrow: ;; This is longjmp. Rethrow it 873 // %__threwValue.val = __threwValue 874 // emscripten_longjmp(%__THREW__.val, %__threwValue.val); 875 // 876 // tail: ;; Nothing happened or an exception is thrown 877 // ... Continue exception handling ... 878 if (DoSjLj && !SetjmpUsers.count(&F) && canLongjmp(Callee)) { 879 BasicBlock *Tail = BasicBlock::Create(C, "tail", &F); 880 BasicBlock *RethrowBB = BasicBlock::Create(C, "longjmp.rethrow", &F); 881 Value *CmpEqOne = 882 IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp.eq.one"); 883 Value *CmpEqZero = 884 IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 0), "cmp.eq.zero"); 885 Value *Or = IRB.CreateOr(CmpEqZero, CmpEqOne, "or"); 886 IRB.CreateCondBr(Or, Tail, RethrowBB); 887 IRB.SetInsertPoint(RethrowBB); 888 Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV, 889 ThrewValueGV->getName() + ".val"); 890 IRB.CreateCall(EmLongjmpF, {Threw, ThrewValue}); 891 892 IRB.CreateUnreachable(); 893 IRB.SetInsertPoint(Tail); 894 BB.replaceSuccessorsPhiUsesWith(&BB, Tail); 895 } 896 897 // Insert a branch based on __THREW__ variable 898 Value *Cmp = IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp"); 899 IRB.CreateCondBr(Cmp, II->getUnwindDest(), II->getNormalDest()); 900 901 } else { 902 // This can't throw, and we don't need this invoke, just replace it with a 903 // call+branch 904 SmallVector<Value *, 16> Args(II->args()); 905 CallInst *NewCall = 906 IRB.CreateCall(II->getFunctionType(), II->getCalledOperand(), Args); 907 NewCall->takeName(II); 908 NewCall->setCallingConv(II->getCallingConv()); 909 NewCall->setDebugLoc(II->getDebugLoc()); 910 NewCall->setAttributes(II->getAttributes()); 911 II->replaceAllUsesWith(NewCall); 912 ToErase.push_back(II); 913 914 IRB.CreateBr(II->getNormalDest()); 915 916 // Remove any PHI node entries from the exception destination 917 II->getUnwindDest()->removePredecessor(&BB); 918 } 919 } 920 921 // Process resume instructions 922 for (BasicBlock &BB : F) { 923 // Scan the body of the basic block for resumes 924 for (Instruction &I : BB) { 925 auto *RI = dyn_cast<ResumeInst>(&I); 926 if (!RI) 927 continue; 928 Changed = true; 929 930 // Split the input into legal values 931 Value *Input = RI->getValue(); 932 IRB.SetInsertPoint(RI); 933 Value *Low = IRB.CreateExtractValue(Input, 0, "low"); 934 // Create a call to __resumeException function 935 IRB.CreateCall(ResumeF, {Low}); 936 // Add a terminator to the block 937 IRB.CreateUnreachable(); 938 ToErase.push_back(RI); 939 } 940 } 941 942 // Process llvm.eh.typeid.for intrinsics 943 for (BasicBlock &BB : F) { 944 for (Instruction &I : BB) { 945 auto *CI = dyn_cast<CallInst>(&I); 946 if (!CI) 947 continue; 948 const Function *Callee = CI->getCalledFunction(); 949 if (!Callee) 950 continue; 951 if (Callee->getIntrinsicID() != Intrinsic::eh_typeid_for) 952 continue; 953 Changed = true; 954 955 IRB.SetInsertPoint(CI); 956 CallInst *NewCI = 957 IRB.CreateCall(EHTypeIDF, CI->getArgOperand(0), "typeid"); 958 CI->replaceAllUsesWith(NewCI); 959 ToErase.push_back(CI); 960 } 961 } 962 963 // Look for orphan landingpads, can occur in blocks with no predecessors 964 for (BasicBlock &BB : F) { 965 Instruction *I = BB.getFirstNonPHI(); 966 if (auto *LPI = dyn_cast<LandingPadInst>(I)) 967 LandingPads.insert(LPI); 968 } 969 Changed |= !LandingPads.empty(); 970 971 // Handle all the landingpad for this function together, as multiple invokes 972 // may share a single lp 973 for (LandingPadInst *LPI : LandingPads) { 974 IRB.SetInsertPoint(LPI); 975 SmallVector<Value *, 16> FMCArgs; 976 for (unsigned I = 0, E = LPI->getNumClauses(); I < E; ++I) { 977 Constant *Clause = LPI->getClause(I); 978 // TODO Handle filters (= exception specifications). 979 // https://bugs.llvm.org/show_bug.cgi?id=50396 980 if (LPI->isCatch(I)) 981 FMCArgs.push_back(Clause); 982 } 983 984 // Create a call to __cxa_find_matching_catch_N function 985 Function *FMCF = getFindMatchingCatch(M, FMCArgs.size()); 986 CallInst *FMCI = IRB.CreateCall(FMCF, FMCArgs, "fmc"); 987 Value *Undef = UndefValue::get(LPI->getType()); 988 Value *Pair0 = IRB.CreateInsertValue(Undef, FMCI, 0, "pair0"); 989 Value *TempRet0 = IRB.CreateCall(GetTempRet0F, None, "tempret0"); 990 Value *Pair1 = IRB.CreateInsertValue(Pair0, TempRet0, 1, "pair1"); 991 992 LPI->replaceAllUsesWith(Pair1); 993 ToErase.push_back(LPI); 994 } 995 996 // Erase everything we no longer need in this function 997 for (Instruction *I : ToErase) 998 I->eraseFromParent(); 999 1000 return Changed; 1001 } 1002 1003 // This tries to get debug info from the instruction before which a new 1004 // instruction will be inserted, and if there's no debug info in that 1005 // instruction, tries to get the info instead from the previous instruction (if 1006 // any). If none of these has debug info and a DISubprogram is provided, it 1007 // creates a dummy debug info with the first line of the function, because IR 1008 // verifier requires all inlinable callsites should have debug info when both a 1009 // caller and callee have DISubprogram. If none of these conditions are met, 1010 // returns empty info. 1011 static DebugLoc getOrCreateDebugLoc(const Instruction *InsertBefore, 1012 DISubprogram *SP) { 1013 assert(InsertBefore); 1014 if (InsertBefore->getDebugLoc()) 1015 return InsertBefore->getDebugLoc(); 1016 const Instruction *Prev = InsertBefore->getPrevNode(); 1017 if (Prev && Prev->getDebugLoc()) 1018 return Prev->getDebugLoc(); 1019 if (SP) 1020 return DILocation::get(SP->getContext(), SP->getLine(), 1, SP); 1021 return DebugLoc(); 1022 } 1023 1024 bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function &F) { 1025 assert(EnableEmSjLj || EnableWasmSjLj); 1026 Module &M = *F.getParent(); 1027 LLVMContext &C = F.getContext(); 1028 IRBuilder<> IRB(C); 1029 SmallVector<Instruction *, 64> ToErase; 1030 // Vector of %setjmpTable values 1031 SmallVector<Instruction *, 4> SetjmpTableInsts; 1032 // Vector of %setjmpTableSize values 1033 SmallVector<Instruction *, 4> SetjmpTableSizeInsts; 1034 1035 // Setjmp preparation 1036 1037 // This instruction effectively means %setjmpTableSize = 4. 1038 // We create this as an instruction intentionally, and we don't want to fold 1039 // this instruction to a constant 4, because this value will be used in 1040 // SSAUpdater.AddAvailableValue(...) later. 1041 BasicBlock *Entry = &F.getEntryBlock(); 1042 DebugLoc FirstDL = getOrCreateDebugLoc(&*Entry->begin(), F.getSubprogram()); 1043 SplitBlock(Entry, &*Entry->getFirstInsertionPt()); 1044 1045 BinaryOperator *SetjmpTableSize = 1046 BinaryOperator::Create(Instruction::Add, IRB.getInt32(4), IRB.getInt32(0), 1047 "setjmpTableSize", Entry->getTerminator()); 1048 SetjmpTableSize->setDebugLoc(FirstDL); 1049 // setjmpTable = (int *) malloc(40); 1050 Instruction *SetjmpTable = CallInst::CreateMalloc( 1051 SetjmpTableSize, IRB.getInt32Ty(), IRB.getInt32Ty(), IRB.getInt32(40), 1052 nullptr, nullptr, "setjmpTable"); 1053 SetjmpTable->setDebugLoc(FirstDL); 1054 // CallInst::CreateMalloc may return a bitcast instruction if the result types 1055 // mismatch. We need to set the debug loc for the original call too. 1056 auto *MallocCall = SetjmpTable->stripPointerCasts(); 1057 if (auto *MallocCallI = dyn_cast<Instruction>(MallocCall)) { 1058 MallocCallI->setDebugLoc(FirstDL); 1059 } 1060 // setjmpTable[0] = 0; 1061 IRB.SetInsertPoint(SetjmpTableSize); 1062 IRB.CreateStore(IRB.getInt32(0), SetjmpTable); 1063 SetjmpTableInsts.push_back(SetjmpTable); 1064 SetjmpTableSizeInsts.push_back(SetjmpTableSize); 1065 1066 // Setjmp transformation 1067 SmallVector<PHINode *, 4> SetjmpRetPHIs; 1068 Function *SetjmpF = M.getFunction("setjmp"); 1069 for (User *U : SetjmpF->users()) { 1070 auto *CI = dyn_cast<CallInst>(U); 1071 if (!CI) 1072 report_fatal_error("Does not support indirect calls to setjmp"); 1073 1074 BasicBlock *BB = CI->getParent(); 1075 if (BB->getParent() != &F) // in other function 1076 continue; 1077 1078 // The tail is everything right after the call, and will be reached once 1079 // when setjmp is called, and later when longjmp returns to the setjmp 1080 BasicBlock *Tail = SplitBlock(BB, CI->getNextNode()); 1081 // Add a phi to the tail, which will be the output of setjmp, which 1082 // indicates if this is the first call or a longjmp back. The phi directly 1083 // uses the right value based on where we arrive from 1084 IRB.SetInsertPoint(Tail->getFirstNonPHI()); 1085 PHINode *SetjmpRet = IRB.CreatePHI(IRB.getInt32Ty(), 2, "setjmp.ret"); 1086 1087 // setjmp initial call returns 0 1088 SetjmpRet->addIncoming(IRB.getInt32(0), BB); 1089 // The proper output is now this, not the setjmp call itself 1090 CI->replaceAllUsesWith(SetjmpRet); 1091 // longjmp returns to the setjmp will add themselves to this phi 1092 SetjmpRetPHIs.push_back(SetjmpRet); 1093 1094 // Fix call target 1095 // Our index in the function is our place in the array + 1 to avoid index 1096 // 0, because index 0 means the longjmp is not ours to handle. 1097 IRB.SetInsertPoint(CI); 1098 Value *Args[] = {CI->getArgOperand(0), IRB.getInt32(SetjmpRetPHIs.size()), 1099 SetjmpTable, SetjmpTableSize}; 1100 Instruction *NewSetjmpTable = 1101 IRB.CreateCall(SaveSetjmpF, Args, "setjmpTable"); 1102 Instruction *NewSetjmpTableSize = 1103 IRB.CreateCall(GetTempRet0F, None, "setjmpTableSize"); 1104 SetjmpTableInsts.push_back(NewSetjmpTable); 1105 SetjmpTableSizeInsts.push_back(NewSetjmpTableSize); 1106 ToErase.push_back(CI); 1107 } 1108 1109 // Handle longjmp calls. 1110 handleLongjmpableCallsForEmscriptenSjLj(F, SetjmpTableInsts, 1111 SetjmpTableSizeInsts, SetjmpRetPHIs); 1112 1113 // Erase everything we no longer need in this function 1114 for (Instruction *I : ToErase) 1115 I->eraseFromParent(); 1116 1117 // Free setjmpTable buffer before each return instruction + function-exiting 1118 // call 1119 SmallVector<Instruction *, 16> ExitingInsts; 1120 for (BasicBlock &BB : F) { 1121 Instruction *TI = BB.getTerminator(); 1122 if (isa<ReturnInst>(TI)) 1123 ExitingInsts.push_back(TI); 1124 for (auto &I : BB) { 1125 if (auto *CB = dyn_cast<CallBase>(&I)) { 1126 StringRef CalleeName = CB->getCalledOperand()->getName(); 1127 if (CalleeName == "__resumeException" || 1128 CalleeName == "emscripten_longjmp" || CalleeName == "__cxa_throw") 1129 ExitingInsts.push_back(&I); 1130 } 1131 } 1132 } 1133 for (auto *I : ExitingInsts) { 1134 DebugLoc DL = getOrCreateDebugLoc(I, F.getSubprogram()); 1135 auto *Free = CallInst::CreateFree(SetjmpTable, I); 1136 Free->setDebugLoc(DL); 1137 // CallInst::CreateFree may create a bitcast instruction if its argument 1138 // types mismatch. We need to set the debug loc for the bitcast too. 1139 if (auto *FreeCallI = dyn_cast<CallInst>(Free)) { 1140 if (auto *BitCastI = dyn_cast<BitCastInst>(FreeCallI->getArgOperand(0))) 1141 BitCastI->setDebugLoc(DL); 1142 } 1143 } 1144 1145 // Every call to saveSetjmp can change setjmpTable and setjmpTableSize 1146 // (when buffer reallocation occurs) 1147 // entry: 1148 // setjmpTableSize = 4; 1149 // setjmpTable = (int *) malloc(40); 1150 // setjmpTable[0] = 0; 1151 // ... 1152 // somebb: 1153 // setjmpTable = saveSetjmp(env, label, setjmpTable, setjmpTableSize); 1154 // setjmpTableSize = getTempRet0(); 1155 // So we need to make sure the SSA for these variables is valid so that every 1156 // saveSetjmp and testSetjmp calls have the correct arguments. 1157 SSAUpdater SetjmpTableSSA; 1158 SSAUpdater SetjmpTableSizeSSA; 1159 SetjmpTableSSA.Initialize(Type::getInt32PtrTy(C), "setjmpTable"); 1160 SetjmpTableSizeSSA.Initialize(Type::getInt32Ty(C), "setjmpTableSize"); 1161 for (Instruction *I : SetjmpTableInsts) 1162 SetjmpTableSSA.AddAvailableValue(I->getParent(), I); 1163 for (Instruction *I : SetjmpTableSizeInsts) 1164 SetjmpTableSizeSSA.AddAvailableValue(I->getParent(), I); 1165 1166 for (auto &U : make_early_inc_range(SetjmpTable->uses())) 1167 if (auto *I = dyn_cast<Instruction>(U.getUser())) 1168 if (I->getParent() != Entry) 1169 SetjmpTableSSA.RewriteUse(U); 1170 for (auto &U : make_early_inc_range(SetjmpTableSize->uses())) 1171 if (auto *I = dyn_cast<Instruction>(U.getUser())) 1172 if (I->getParent() != Entry) 1173 SetjmpTableSizeSSA.RewriteUse(U); 1174 1175 // Finally, our modifications to the cfg can break dominance of SSA variables. 1176 // For example, in this code, 1177 // if (x()) { .. setjmp() .. } 1178 // if (y()) { .. longjmp() .. } 1179 // We must split the longjmp block, and it can jump into the block splitted 1180 // from setjmp one. But that means that when we split the setjmp block, it's 1181 // first part no longer dominates its second part - there is a theoretically 1182 // possible control flow path where x() is false, then y() is true and we 1183 // reach the second part of the setjmp block, without ever reaching the first 1184 // part. So, we rebuild SSA form here. 1185 rebuildSSA(F); 1186 return true; 1187 } 1188 1189 // Update each call that can longjmp so it can return to a setjmp where 1190 // relevant. 1191 void WebAssemblyLowerEmscriptenEHSjLj::handleLongjmpableCallsForEmscriptenSjLj( 1192 Function &F, InstVector &SetjmpTableInsts, InstVector &SetjmpTableSizeInsts, 1193 SmallVectorImpl<PHINode *> &SetjmpRetPHIs) { 1194 Module &M = *F.getParent(); 1195 LLVMContext &C = F.getContext(); 1196 IRBuilder<> IRB(C); 1197 SmallVector<Instruction *, 64> ToErase; 1198 1199 // We need to pass setjmpTable and setjmpTableSize to testSetjmp function. 1200 // These values are defined in the beginning of the function and also in each 1201 // setjmp callsite, but we don't know which values we should use at this 1202 // point. So here we arbitraily use the ones defined in the beginning of the 1203 // function, and SSAUpdater will later update them to the correct values. 1204 Instruction *SetjmpTable = *SetjmpTableInsts.begin(); 1205 Instruction *SetjmpTableSize = *SetjmpTableSizeInsts.begin(); 1206 1207 // Because we are creating new BBs while processing and don't want to make 1208 // all these newly created BBs candidates again for longjmp processing, we 1209 // first make the vector of candidate BBs. 1210 std::vector<BasicBlock *> BBs; 1211 for (BasicBlock &BB : F) 1212 BBs.push_back(&BB); 1213 1214 // BBs.size() will change within the loop, so we query it every time 1215 for (unsigned I = 0; I < BBs.size(); I++) { 1216 BasicBlock *BB = BBs[I]; 1217 for (Instruction &I : *BB) { 1218 if (isa<InvokeInst>(&I)) 1219 report_fatal_error("When using Wasm EH with Emscripten SjLj, there is " 1220 "a restriction that `setjmp` function call and " 1221 "exception cannot be used within the same function"); 1222 auto *CI = dyn_cast<CallInst>(&I); 1223 if (!CI) 1224 continue; 1225 1226 const Value *Callee = CI->getCalledOperand(); 1227 if (!canLongjmp(Callee)) 1228 continue; 1229 if (isEmAsmCall(Callee)) 1230 report_fatal_error("Cannot use EM_ASM* alongside setjmp/longjmp in " + 1231 F.getName() + 1232 ". Please consider using EM_JS, or move the " 1233 "EM_ASM into another function.", 1234 false); 1235 1236 Value *Threw = nullptr; 1237 BasicBlock *Tail; 1238 if (Callee->getName().startswith("__invoke_")) { 1239 // If invoke wrapper has already been generated for this call in 1240 // previous EH phase, search for the load instruction 1241 // %__THREW__.val = __THREW__; 1242 // in postamble after the invoke wrapper call 1243 LoadInst *ThrewLI = nullptr; 1244 StoreInst *ThrewResetSI = nullptr; 1245 for (auto I = std::next(BasicBlock::iterator(CI)), IE = BB->end(); 1246 I != IE; ++I) { 1247 if (auto *LI = dyn_cast<LoadInst>(I)) 1248 if (auto *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand())) 1249 if (GV == ThrewGV) { 1250 Threw = ThrewLI = LI; 1251 break; 1252 } 1253 } 1254 // Search for the store instruction after the load above 1255 // __THREW__ = 0; 1256 for (auto I = std::next(BasicBlock::iterator(ThrewLI)), IE = BB->end(); 1257 I != IE; ++I) { 1258 if (auto *SI = dyn_cast<StoreInst>(I)) { 1259 if (auto *GV = dyn_cast<GlobalVariable>(SI->getPointerOperand())) { 1260 if (GV == ThrewGV && 1261 SI->getValueOperand() == getAddrSizeInt(&M, 0)) { 1262 ThrewResetSI = SI; 1263 break; 1264 } 1265 } 1266 } 1267 } 1268 assert(Threw && ThrewLI && "Cannot find __THREW__ load after invoke"); 1269 assert(ThrewResetSI && "Cannot find __THREW__ store after invoke"); 1270 Tail = SplitBlock(BB, ThrewResetSI->getNextNode()); 1271 1272 } else { 1273 // Wrap call with invoke wrapper and generate preamble/postamble 1274 Threw = wrapInvoke(CI); 1275 ToErase.push_back(CI); 1276 Tail = SplitBlock(BB, CI->getNextNode()); 1277 1278 // If exception handling is enabled, the thrown value can be not a 1279 // longjmp but an exception, in which case we shouldn't silently ignore 1280 // exceptions; we should rethrow them. 1281 // __THREW__'s value is 0 when nothing happened, 1 when an exception is 1282 // thrown, other values when longjmp is thrown. 1283 // 1284 // if (%__THREW__.val == 1) 1285 // goto %eh.rethrow 1286 // else 1287 // goto %normal 1288 // 1289 // eh.rethrow: ;; Rethrow exception 1290 // %exn = call @__cxa_find_matching_catch_2() ;; Retrieve thrown ptr 1291 // __resumeException(%exn) 1292 // 1293 // normal: 1294 // <-- Insertion point. Will insert sjlj handling code from here 1295 // goto %tail 1296 // 1297 // tail: 1298 // ... 1299 if (supportsException(&F) && canThrow(Callee)) { 1300 IRB.SetInsertPoint(CI); 1301 // We will add a new conditional branch. So remove the branch created 1302 // when we split the BB 1303 ToErase.push_back(BB->getTerminator()); 1304 BasicBlock *NormalBB = BasicBlock::Create(C, "normal", &F); 1305 BasicBlock *RethrowBB = BasicBlock::Create(C, "eh.rethrow", &F); 1306 Value *CmpEqOne = 1307 IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp.eq.one"); 1308 IRB.CreateCondBr(CmpEqOne, RethrowBB, NormalBB); 1309 IRB.SetInsertPoint(RethrowBB); 1310 CallInst *Exn = IRB.CreateCall(getFindMatchingCatch(M, 0), {}, "exn"); 1311 IRB.CreateCall(ResumeF, {Exn}); 1312 IRB.CreateUnreachable(); 1313 IRB.SetInsertPoint(NormalBB); 1314 IRB.CreateBr(Tail); 1315 BB = NormalBB; // New insertion point to insert testSetjmp() 1316 } 1317 } 1318 1319 // We need to replace the terminator in Tail - SplitBlock makes BB go 1320 // straight to Tail, we need to check if a longjmp occurred, and go to the 1321 // right setjmp-tail if so 1322 ToErase.push_back(BB->getTerminator()); 1323 1324 // Generate a function call to testSetjmp function and preamble/postamble 1325 // code to figure out (1) whether longjmp occurred (2) if longjmp 1326 // occurred, which setjmp it corresponds to 1327 Value *Label = nullptr; 1328 Value *LongjmpResult = nullptr; 1329 BasicBlock *EndBB = nullptr; 1330 wrapTestSetjmp(BB, CI->getDebugLoc(), Threw, SetjmpTable, SetjmpTableSize, 1331 Label, LongjmpResult, EndBB); 1332 assert(Label && LongjmpResult && EndBB); 1333 1334 // Create switch instruction 1335 IRB.SetInsertPoint(EndBB); 1336 IRB.SetCurrentDebugLocation(EndBB->getInstList().back().getDebugLoc()); 1337 SwitchInst *SI = IRB.CreateSwitch(Label, Tail, SetjmpRetPHIs.size()); 1338 // -1 means no longjmp happened, continue normally (will hit the default 1339 // switch case). 0 means a longjmp that is not ours to handle, needs a 1340 // rethrow. Otherwise the index is the same as the index in P+1 (to avoid 1341 // 0). 1342 for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) { 1343 SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent()); 1344 SetjmpRetPHIs[I]->addIncoming(LongjmpResult, EndBB); 1345 } 1346 1347 // We are splitting the block here, and must continue to find other calls 1348 // in the block - which is now split. so continue to traverse in the Tail 1349 BBs.push_back(Tail); 1350 } 1351 } 1352 1353 for (Instruction *I : ToErase) 1354 I->eraseFromParent(); 1355 } 1356