1 //=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file lowers exception-related instructions and setjmp/longjmp 11 /// function calls in order to use Emscripten's JavaScript try and catch 12 /// mechanism. 13 /// 14 /// To handle exceptions and setjmp/longjmps, this scheme relies on JavaScript's 15 /// try and catch syntax and relevant exception-related libraries implemented 16 /// in JavaScript glue code that will be produced by Emscripten. This is similar 17 /// to the current Emscripten asm.js exception handling in fastcomp. For 18 /// fastcomp's EH / SjLj scheme, see these files in fastcomp LLVM branch: 19 /// (Location: https://github.com/kripken/emscripten-fastcomp) 20 /// lib/Target/JSBackend/NaCl/LowerEmExceptionsPass.cpp 21 /// lib/Target/JSBackend/NaCl/LowerEmSetjmp.cpp 22 /// lib/Target/JSBackend/JSBackend.cpp 23 /// lib/Target/JSBackend/CallHandlers.h 24 /// 25 /// * Exception handling 26 /// This pass lowers invokes and landingpads into library functions in JS glue 27 /// code. Invokes are lowered into function wrappers called invoke wrappers that 28 /// exist in JS side, which wraps the original function call with JS try-catch. 29 /// If an exception occurred, cxa_throw() function in JS side sets some 30 /// variables (see below) so we can check whether an exception occurred from 31 /// wasm code and handle it appropriately. 32 /// 33 /// * Setjmp-longjmp handling 34 /// This pass lowers setjmp to a reasonably-performant approach for emscripten. 35 /// The idea is that each block with a setjmp is broken up into two parts: the 36 /// part containing setjmp and the part right after the setjmp. The latter part 37 /// is either reached from the setjmp, or later from a longjmp. To handle the 38 /// longjmp, all calls that might longjmp are also called using invoke wrappers 39 /// and thus JS / try-catch. JS longjmp() function also sets some variables so 40 /// we can check / whether a longjmp occurred from wasm code. Each block with a 41 /// function call that might longjmp is also split up after the longjmp call. 42 /// After the longjmp call, we check whether a longjmp occurred, and if it did, 43 /// which setjmp it corresponds to, and jump to the right post-setjmp block. 44 /// We assume setjmp-longjmp handling always run after EH handling, which means 45 /// we don't expect any exception-related instructions when SjLj runs. 46 /// FIXME Currently this scheme does not support indirect call of setjmp, 47 /// because of the limitation of the scheme itself. fastcomp does not support it 48 /// either. 49 /// 50 /// In detail, this pass does following things: 51 /// 52 /// 1) Assumes the existence of global variables: __THREW__, __threwValue 53 /// __THREW__ and __threwValue will be set in invoke wrappers 54 /// in JS glue code. For what invoke wrappers are, refer to 3). These 55 /// variables are used for both exceptions and setjmp/longjmps. 56 /// __THREW__ indicates whether an exception or a longjmp occurred or not. 0 57 /// means nothing occurred, 1 means an exception occurred, and other numbers 58 /// mean a longjmp occurred. In the case of longjmp, __threwValue variable 59 /// indicates the corresponding setjmp buffer the longjmp corresponds to. 60 /// 61 /// * Exception handling 62 /// 63 /// 2) We assume the existence of setThrew and setTempRet0/getTempRet0 functions 64 /// at link time. 65 /// The global variables in 1) will exist in wasm address space, 66 /// but their values should be set in JS code, so these functions 67 /// as interfaces to JS glue code. These functions are equivalent to the 68 /// following JS functions, which actually exist in asm.js version of JS 69 /// library. 70 /// 71 /// function setThrew(threw, value) { 72 /// if (__THREW__ == 0) { 73 /// __THREW__ = threw; 74 /// __threwValue = value; 75 /// } 76 /// } 77 // 78 /// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code. 79 /// 80 /// In exception handling, getTempRet0 indicates the type of an exception 81 /// caught, and in setjmp/longjmp, it means the second argument to longjmp 82 /// function. 83 /// 84 /// 3) Lower 85 /// invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad 86 /// into 87 /// __THREW__ = 0; 88 /// call @__invoke_SIG(func, arg1, arg2) 89 /// %__THREW__.val = __THREW__; 90 /// __THREW__ = 0; 91 /// if (%__THREW__.val == 1) 92 /// goto %lpad 93 /// else 94 /// goto %invoke.cont 95 /// SIG is a mangled string generated based on the LLVM IR-level function 96 /// signature. After LLVM IR types are lowered to the target wasm types, 97 /// the names for these wrappers will change based on wasm types as well, 98 /// as in invoke_vi (function takes an int and returns void). The bodies of 99 /// these wrappers will be generated in JS glue code, and inside those 100 /// wrappers we use JS try-catch to generate actual exception effects. It 101 /// also calls the original callee function. An example wrapper in JS code 102 /// would look like this: 103 /// function invoke_vi(index,a1) { 104 /// try { 105 /// Module["dynCall_vi"](index,a1); // This calls original callee 106 /// } catch(e) { 107 /// if (typeof e !== 'number' && e !== 'longjmp') throw e; 108 /// asm["setThrew"](1, 0); // setThrew is called here 109 /// } 110 /// } 111 /// If an exception is thrown, __THREW__ will be set to true in a wrapper, 112 /// so we can jump to the right BB based on this value. 113 /// 114 /// 4) Lower 115 /// %val = landingpad catch c1 catch c2 catch c3 ... 116 /// ... use %val ... 117 /// into 118 /// %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...) 119 /// %val = {%fmc, getTempRet0()} 120 /// ... use %val ... 121 /// Here N is a number calculated based on the number of clauses. 122 /// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code. 123 /// 124 /// 5) Lower 125 /// resume {%a, %b} 126 /// into 127 /// call @__resumeException(%a) 128 /// where __resumeException() is a function in JS glue code. 129 /// 130 /// 6) Lower 131 /// call @llvm.eh.typeid.for(type) (intrinsic) 132 /// into 133 /// call @llvm_eh_typeid_for(type) 134 /// llvm_eh_typeid_for function will be generated in JS glue code. 135 /// 136 /// * Setjmp / Longjmp handling 137 /// 138 /// In case calls to longjmp() exists 139 /// 140 /// 1) Lower 141 /// longjmp(buf, value) 142 /// into 143 /// emscripten_longjmp_jmpbuf(buf, value) 144 /// emscripten_longjmp_jmpbuf will be lowered to emscripten_longjmp later. 145 /// 146 /// In case calls to setjmp() exists 147 /// 148 /// 2) In the function entry that calls setjmp, initialize setjmpTable and 149 /// sejmpTableSize as follows: 150 /// setjmpTableSize = 4; 151 /// setjmpTable = (int *) malloc(40); 152 /// setjmpTable[0] = 0; 153 /// setjmpTable and setjmpTableSize are used in saveSetjmp() function in JS 154 /// code. 155 /// 156 /// 3) Lower 157 /// setjmp(buf) 158 /// into 159 /// setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize); 160 /// setjmpTableSize = getTempRet0(); 161 /// For each dynamic setjmp call, setjmpTable stores its ID (a number which 162 /// is incrementally assigned from 0) and its label (a unique number that 163 /// represents each callsite of setjmp). When we need more entries in 164 /// setjmpTable, it is reallocated in saveSetjmp() in JS code and it will 165 /// return the new table address, and assign the new table size in 166 /// setTempRet0(). saveSetjmp also stores the setjmp's ID into the buffer 167 /// buf. A BB with setjmp is split into two after setjmp call in order to 168 /// make the post-setjmp BB the possible destination of longjmp BB. 169 /// 170 /// 171 /// 4) Lower every call that might longjmp into 172 /// __THREW__ = 0; 173 /// call @__invoke_SIG(func, arg1, arg2) 174 /// %__THREW__.val = __THREW__; 175 /// __THREW__ = 0; 176 /// if (%__THREW__.val != 0 & __threwValue != 0) { 177 /// %label = testSetjmp(mem[%__THREW__.val], setjmpTable, 178 /// setjmpTableSize); 179 /// if (%label == 0) 180 /// emscripten_longjmp(%__THREW__.val, __threwValue); 181 /// setTempRet0(__threwValue); 182 /// } else { 183 /// %label = -1; 184 /// } 185 /// longjmp_result = getTempRet0(); 186 /// switch label { 187 /// label 1: goto post-setjmp BB 1 188 /// label 2: goto post-setjmp BB 2 189 /// ... 190 /// default: goto splitted next BB 191 /// } 192 /// testSetjmp examines setjmpTable to see if there is a matching setjmp 193 /// call. After calling an invoke wrapper, if a longjmp occurred, __THREW__ 194 /// will be the address of matching jmp_buf buffer and __threwValue be the 195 /// second argument to longjmp. mem[__THREW__.val] is a setjmp ID that is 196 /// stored in saveSetjmp. testSetjmp returns a setjmp label, a unique ID to 197 /// each setjmp callsite. Label 0 means this longjmp buffer does not 198 /// correspond to one of the setjmp callsites in this function, so in this 199 /// case we just chain the longjmp to the caller. (Here we call 200 /// emscripten_longjmp, which is different from emscripten_longjmp_jmpbuf. 201 /// emscripten_longjmp_jmpbuf takes jmp_buf as its first argument, while 202 /// emscripten_longjmp takes an int. Both of them will eventually be lowered 203 /// to emscripten_longjmp in s2wasm, but here we need two signatures - we 204 /// can't translate an int value to a jmp_buf.) 205 /// Label -1 means no longjmp occurred. Otherwise we jump to the right 206 /// post-setjmp BB based on the label. 207 /// 208 ///===----------------------------------------------------------------------===// 209 210 #include "WebAssembly.h" 211 #include "llvm/IR/CallSite.h" 212 #include "llvm/IR/Dominators.h" 213 #include "llvm/IR/IRBuilder.h" 214 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 215 #include "llvm/Transforms/Utils/SSAUpdater.h" 216 217 using namespace llvm; 218 219 #define DEBUG_TYPE "wasm-lower-em-ehsjlj" 220 221 static cl::list<std::string> 222 EHWhitelist("emscripten-cxx-exceptions-whitelist", 223 cl::desc("The list of function names in which Emscripten-style " 224 "exception handling is enabled (see emscripten " 225 "EMSCRIPTEN_CATCHING_WHITELIST options)"), 226 cl::CommaSeparated); 227 228 namespace { 229 class WebAssemblyLowerEmscriptenEHSjLj final : public ModulePass { 230 static const char *ResumeFName; 231 static const char *EHTypeIDFName; 232 static const char *EmLongjmpFName; 233 static const char *EmLongjmpJmpbufFName; 234 static const char *SaveSetjmpFName; 235 static const char *TestSetjmpFName; 236 static const char *FindMatchingCatchPrefix; 237 static const char *InvokePrefix; 238 239 bool EnableEH; // Enable exception handling 240 bool EnableSjLj; // Enable setjmp/longjmp handling 241 242 GlobalVariable *ThrewGV; 243 GlobalVariable *ThrewValueGV; 244 Function *GetTempRet0Func; 245 Function *SetTempRet0Func; 246 Function *ResumeF; 247 Function *EHTypeIDF; 248 Function *EmLongjmpF; 249 Function *EmLongjmpJmpbufF; 250 Function *SaveSetjmpF; 251 Function *TestSetjmpF; 252 253 // __cxa_find_matching_catch_N functions. 254 // Indexed by the number of clauses in an original landingpad instruction. 255 DenseMap<int, Function *> FindMatchingCatches; 256 // Map of <function signature string, invoke_ wrappers> 257 StringMap<Function *> InvokeWrappers; 258 // Set of whitelisted function names for exception handling 259 std::set<std::string> EHWhitelistSet; 260 261 StringRef getPassName() const override { 262 return "WebAssembly Lower Emscripten Exceptions"; 263 } 264 265 bool runEHOnFunction(Function &F); 266 bool runSjLjOnFunction(Function &F); 267 Function *getFindMatchingCatch(Module &M, unsigned NumClauses); 268 269 template <typename CallOrInvoke> Value *wrapInvoke(CallOrInvoke *CI); 270 void wrapTestSetjmp(BasicBlock *BB, Instruction *InsertPt, Value *Threw, 271 Value *SetjmpTable, Value *SetjmpTableSize, Value *&Label, 272 Value *&LongjmpResult, BasicBlock *&EndBB); 273 template <typename CallOrInvoke> Function *getInvokeWrapper(CallOrInvoke *CI); 274 275 bool areAllExceptionsAllowed() const { return EHWhitelistSet.empty(); } 276 bool canLongjmp(Module &M, const Value *Callee) const; 277 278 void rebuildSSA(Function &F); 279 280 public: 281 static char ID; 282 283 WebAssemblyLowerEmscriptenEHSjLj(bool EnableEH = true, bool EnableSjLj = true) 284 : ModulePass(ID), EnableEH(EnableEH), EnableSjLj(EnableSjLj), 285 ThrewGV(nullptr), ThrewValueGV(nullptr), GetTempRet0Func(nullptr), 286 SetTempRet0Func(nullptr), ResumeF(nullptr), EHTypeIDF(nullptr), 287 EmLongjmpF(nullptr), EmLongjmpJmpbufF(nullptr), SaveSetjmpF(nullptr), 288 TestSetjmpF(nullptr) { 289 EHWhitelistSet.insert(EHWhitelist.begin(), EHWhitelist.end()); 290 } 291 bool runOnModule(Module &M) override; 292 293 void getAnalysisUsage(AnalysisUsage &AU) const override { 294 AU.addRequired<DominatorTreeWrapperPass>(); 295 } 296 }; 297 } // End anonymous namespace 298 299 const char *WebAssemblyLowerEmscriptenEHSjLj::ResumeFName = "__resumeException"; 300 const char *WebAssemblyLowerEmscriptenEHSjLj::EHTypeIDFName = 301 "llvm_eh_typeid_for"; 302 const char *WebAssemblyLowerEmscriptenEHSjLj::EmLongjmpFName = 303 "emscripten_longjmp"; 304 const char *WebAssemblyLowerEmscriptenEHSjLj::EmLongjmpJmpbufFName = 305 "emscripten_longjmp_jmpbuf"; 306 const char *WebAssemblyLowerEmscriptenEHSjLj::SaveSetjmpFName = "saveSetjmp"; 307 const char *WebAssemblyLowerEmscriptenEHSjLj::TestSetjmpFName = "testSetjmp"; 308 const char *WebAssemblyLowerEmscriptenEHSjLj::FindMatchingCatchPrefix = 309 "__cxa_find_matching_catch_"; 310 const char *WebAssemblyLowerEmscriptenEHSjLj::InvokePrefix = "__invoke_"; 311 312 char WebAssemblyLowerEmscriptenEHSjLj::ID = 0; 313 INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj, DEBUG_TYPE, 314 "WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp", 315 false, false) 316 317 ModulePass *llvm::createWebAssemblyLowerEmscriptenEHSjLj(bool EnableEH, 318 bool EnableSjLj) { 319 return new WebAssemblyLowerEmscriptenEHSjLj(EnableEH, EnableSjLj); 320 } 321 322 static bool canThrow(const Value *V) { 323 if (const auto *F = dyn_cast<const Function>(V)) { 324 // Intrinsics cannot throw 325 if (F->isIntrinsic()) 326 return false; 327 StringRef Name = F->getName(); 328 // leave setjmp and longjmp (mostly) alone, we process them properly later 329 if (Name == "setjmp" || Name == "longjmp") 330 return false; 331 return !F->doesNotThrow(); 332 } 333 // not a function, so an indirect call - can throw, we can't tell 334 return true; 335 } 336 337 // Get a global variable with the given name. If it doesn't exist declare it, 338 // which will generate an import and asssumes that it will exist at link time. 339 static GlobalVariable *getGlobalVariableI32(Module &M, IRBuilder<> &IRB, 340 const char *Name) { 341 if (M.getNamedGlobal(Name)) 342 report_fatal_error(Twine("variable name is reserved: ") + Name); 343 344 return new GlobalVariable(M, IRB.getInt32Ty(), false, 345 GlobalValue::ExternalLinkage, nullptr, Name); 346 } 347 348 // Simple function name mangler. 349 // This function simply takes LLVM's string representation of parameter types 350 // and concatenate them with '_'. There are non-alphanumeric characters but llc 351 // is ok with it, and we need to postprocess these names after the lowering 352 // phase anyway. 353 static std::string getSignature(FunctionType *FTy) { 354 std::string Sig; 355 raw_string_ostream OS(Sig); 356 OS << *FTy->getReturnType(); 357 for (Type *ParamTy : FTy->params()) 358 OS << "_" << *ParamTy; 359 if (FTy->isVarArg()) 360 OS << "_..."; 361 Sig = OS.str(); 362 Sig.erase(remove_if(Sig, isspace), Sig.end()); 363 // When s2wasm parses .s file, a comma means the end of an argument. So a 364 // mangled function name can contain any character but a comma. 365 std::replace(Sig.begin(), Sig.end(), ',', '.'); 366 return Sig; 367 } 368 369 // Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2. 370 // This is because a landingpad instruction contains two more arguments, a 371 // personality function and a cleanup bit, and __cxa_find_matching_catch_N 372 // functions are named after the number of arguments in the original landingpad 373 // instruction. 374 Function * 375 WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module &M, 376 unsigned NumClauses) { 377 if (FindMatchingCatches.count(NumClauses)) 378 return FindMatchingCatches[NumClauses]; 379 PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext()); 380 SmallVector<Type *, 16> Args(NumClauses, Int8PtrTy); 381 FunctionType *FTy = FunctionType::get(Int8PtrTy, Args, false); 382 Function *F = 383 Function::Create(FTy, GlobalValue::ExternalLinkage, 384 FindMatchingCatchPrefix + Twine(NumClauses + 2), &M); 385 FindMatchingCatches[NumClauses] = F; 386 return F; 387 } 388 389 // Generate invoke wrapper seqence with preamble and postamble 390 // Preamble: 391 // __THREW__ = 0; 392 // Postamble: 393 // %__THREW__.val = __THREW__; __THREW__ = 0; 394 // Returns %__THREW__.val, which indicates whether an exception is thrown (or 395 // whether longjmp occurred), for future use. 396 template <typename CallOrInvoke> 397 Value *WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallOrInvoke *CI) { 398 LLVMContext &C = CI->getModule()->getContext(); 399 400 // If we are calling a function that is noreturn, we must remove that 401 // attribute. The code we insert here does expect it to return, after we 402 // catch the exception. 403 if (CI->doesNotReturn()) { 404 if (auto *F = dyn_cast<Function>(CI->getCalledValue())) 405 F->removeFnAttr(Attribute::NoReturn); 406 CI->removeAttribute(AttributeList::FunctionIndex, Attribute::NoReturn); 407 } 408 409 IRBuilder<> IRB(C); 410 IRB.SetInsertPoint(CI); 411 412 // Pre-invoke 413 // __THREW__ = 0; 414 IRB.CreateStore(IRB.getInt32(0), ThrewGV); 415 416 // Invoke function wrapper in JavaScript 417 SmallVector<Value *, 16> Args; 418 // Put the pointer to the callee as first argument, so it can be called 419 // within the invoke wrapper later 420 Args.push_back(CI->getCalledValue()); 421 Args.append(CI->arg_begin(), CI->arg_end()); 422 CallInst *NewCall = IRB.CreateCall(getInvokeWrapper(CI), Args); 423 NewCall->takeName(CI); 424 NewCall->setCallingConv(CI->getCallingConv()); 425 NewCall->setDebugLoc(CI->getDebugLoc()); 426 427 // Because we added the pointer to the callee as first argument, all 428 // argument attribute indices have to be incremented by one. 429 SmallVector<AttributeSet, 8> ArgAttributes; 430 const AttributeList &InvokeAL = CI->getAttributes(); 431 432 // No attributes for the callee pointer. 433 ArgAttributes.push_back(AttributeSet()); 434 // Copy the argument attributes from the original 435 for (unsigned i = 0, e = CI->getNumArgOperands(); i < e; ++i) 436 ArgAttributes.push_back(InvokeAL.getParamAttributes(i)); 437 438 // Reconstruct the AttributesList based on the vector we constructed. 439 AttributeList NewCallAL = 440 AttributeList::get(C, InvokeAL.getFnAttributes(), 441 InvokeAL.getRetAttributes(), ArgAttributes); 442 NewCall->setAttributes(NewCallAL); 443 444 CI->replaceAllUsesWith(NewCall); 445 446 // Post-invoke 447 // %__THREW__.val = __THREW__; __THREW__ = 0; 448 Value *Threw = IRB.CreateLoad(ThrewGV, ThrewGV->getName() + ".val"); 449 IRB.CreateStore(IRB.getInt32(0), ThrewGV); 450 return Threw; 451 } 452 453 // Get matching invoke wrapper based on callee signature 454 template <typename CallOrInvoke> 455 Function *WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallOrInvoke *CI) { 456 Module *M = CI->getModule(); 457 SmallVector<Type *, 16> ArgTys; 458 Value *Callee = CI->getCalledValue(); 459 FunctionType *CalleeFTy; 460 if (auto *F = dyn_cast<Function>(Callee)) 461 CalleeFTy = F->getFunctionType(); 462 else { 463 auto *CalleeTy = cast<PointerType>(Callee->getType())->getElementType(); 464 CalleeFTy = dyn_cast<FunctionType>(CalleeTy); 465 } 466 467 std::string Sig = getSignature(CalleeFTy); 468 if (InvokeWrappers.find(Sig) != InvokeWrappers.end()) 469 return InvokeWrappers[Sig]; 470 471 // Put the pointer to the callee as first argument 472 ArgTys.push_back(PointerType::getUnqual(CalleeFTy)); 473 // Add argument types 474 ArgTys.append(CalleeFTy->param_begin(), CalleeFTy->param_end()); 475 476 FunctionType *FTy = FunctionType::get(CalleeFTy->getReturnType(), ArgTys, 477 CalleeFTy->isVarArg()); 478 Function *F = Function::Create(FTy, GlobalValue::ExternalLinkage, 479 InvokePrefix + Sig, M); 480 InvokeWrappers[Sig] = F; 481 return F; 482 } 483 484 bool WebAssemblyLowerEmscriptenEHSjLj::canLongjmp(Module &M, 485 const Value *Callee) const { 486 if (auto *CalleeF = dyn_cast<Function>(Callee)) 487 if (CalleeF->isIntrinsic()) 488 return false; 489 490 // The reason we include malloc/free here is to exclude the malloc/free 491 // calls generated in setjmp prep / cleanup routines. 492 Function *SetjmpF = M.getFunction("setjmp"); 493 Function *MallocF = M.getFunction("malloc"); 494 Function *FreeF = M.getFunction("free"); 495 if (Callee == SetjmpF || Callee == MallocF || Callee == FreeF) 496 return false; 497 498 // There are functions in JS glue code 499 if (Callee == ResumeF || Callee == EHTypeIDF || Callee == SaveSetjmpF || 500 Callee == TestSetjmpF) 501 return false; 502 503 // __cxa_find_matching_catch_N functions cannot longjmp 504 if (Callee->getName().startswith(FindMatchingCatchPrefix)) 505 return false; 506 507 // Exception-catching related functions 508 Function *BeginCatchF = M.getFunction("__cxa_begin_catch"); 509 Function *EndCatchF = M.getFunction("__cxa_end_catch"); 510 Function *AllocExceptionF = M.getFunction("__cxa_allocate_exception"); 511 Function *ThrowF = M.getFunction("__cxa_throw"); 512 Function *TerminateF = M.getFunction("__clang_call_terminate"); 513 if (Callee == BeginCatchF || Callee == EndCatchF || 514 Callee == AllocExceptionF || Callee == ThrowF || Callee == TerminateF || 515 Callee == GetTempRet0Func || Callee == SetTempRet0Func) 516 return false; 517 518 // Otherwise we don't know 519 return true; 520 } 521 522 // Generate testSetjmp function call seqence with preamble and postamble. 523 // The code this generates is equivalent to the following JavaScript code: 524 // if (%__THREW__.val != 0 & threwValue != 0) { 525 // %label = _testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize); 526 // if (%label == 0) 527 // emscripten_longjmp(%__THREW__.val, threwValue); 528 // setTempRet0(threwValue); 529 // } else { 530 // %label = -1; 531 // } 532 // %longjmp_result = getTempRet0(); 533 // 534 // As output parameters. returns %label, %longjmp_result, and the BB the last 535 // instruction (%longjmp_result = ...) is in. 536 void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp( 537 BasicBlock *BB, Instruction *InsertPt, Value *Threw, Value *SetjmpTable, 538 Value *SetjmpTableSize, Value *&Label, Value *&LongjmpResult, 539 BasicBlock *&EndBB) { 540 Function *F = BB->getParent(); 541 LLVMContext &C = BB->getModule()->getContext(); 542 IRBuilder<> IRB(C); 543 IRB.SetInsertPoint(InsertPt); 544 545 // if (%__THREW__.val != 0 & threwValue != 0) 546 IRB.SetInsertPoint(BB); 547 BasicBlock *ThenBB1 = BasicBlock::Create(C, "if.then1", F); 548 BasicBlock *ElseBB1 = BasicBlock::Create(C, "if.else1", F); 549 BasicBlock *EndBB1 = BasicBlock::Create(C, "if.end", F); 550 Value *ThrewCmp = IRB.CreateICmpNE(Threw, IRB.getInt32(0)); 551 Value *ThrewValue = 552 IRB.CreateLoad(ThrewValueGV, ThrewValueGV->getName() + ".val"); 553 Value *ThrewValueCmp = IRB.CreateICmpNE(ThrewValue, IRB.getInt32(0)); 554 Value *Cmp1 = IRB.CreateAnd(ThrewCmp, ThrewValueCmp, "cmp1"); 555 IRB.CreateCondBr(Cmp1, ThenBB1, ElseBB1); 556 557 // %label = _testSetjmp(mem[%__THREW__.val], _setjmpTable, _setjmpTableSize); 558 // if (%label == 0) 559 IRB.SetInsertPoint(ThenBB1); 560 BasicBlock *ThenBB2 = BasicBlock::Create(C, "if.then2", F); 561 BasicBlock *EndBB2 = BasicBlock::Create(C, "if.end2", F); 562 Value *ThrewInt = IRB.CreateIntToPtr(Threw, Type::getInt32PtrTy(C), 563 Threw->getName() + ".i32p"); 564 Value *LoadedThrew = 565 IRB.CreateLoad(ThrewInt, ThrewInt->getName() + ".loaded"); 566 Value *ThenLabel = IRB.CreateCall( 567 TestSetjmpF, {LoadedThrew, SetjmpTable, SetjmpTableSize}, "label"); 568 Value *Cmp2 = IRB.CreateICmpEQ(ThenLabel, IRB.getInt32(0)); 569 IRB.CreateCondBr(Cmp2, ThenBB2, EndBB2); 570 571 // emscripten_longjmp(%__THREW__.val, threwValue); 572 IRB.SetInsertPoint(ThenBB2); 573 IRB.CreateCall(EmLongjmpF, {Threw, ThrewValue}); 574 IRB.CreateUnreachable(); 575 576 // setTempRet0(threwValue); 577 IRB.SetInsertPoint(EndBB2); 578 IRB.CreateCall(SetTempRet0Func, ThrewValue); 579 IRB.CreateBr(EndBB1); 580 581 IRB.SetInsertPoint(ElseBB1); 582 IRB.CreateBr(EndBB1); 583 584 // longjmp_result = getTempRet0(); 585 IRB.SetInsertPoint(EndBB1); 586 PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label"); 587 LabelPHI->addIncoming(ThenLabel, EndBB2); 588 589 LabelPHI->addIncoming(IRB.getInt32(-1), ElseBB1); 590 591 // Output parameter assignment 592 Label = LabelPHI; 593 EndBB = EndBB1; 594 LongjmpResult = IRB.CreateCall(GetTempRet0Func, None, "longjmp_result"); 595 } 596 597 void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function &F) { 598 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 599 DT.recalculate(F); // CFG has been changed 600 SSAUpdater SSA; 601 for (BasicBlock &BB : F) { 602 for (Instruction &I : BB) { 603 for (auto UI = I.use_begin(), UE = I.use_end(); UI != UE;) { 604 Use &U = *UI; 605 ++UI; 606 SSA.Initialize(I.getType(), I.getName()); 607 SSA.AddAvailableValue(&BB, &I); 608 Instruction *User = cast<Instruction>(U.getUser()); 609 if (User->getParent() == &BB) 610 continue; 611 612 if (PHINode *UserPN = dyn_cast<PHINode>(User)) 613 if (UserPN->getIncomingBlock(U) == &BB) 614 continue; 615 616 if (DT.dominates(&I, User)) 617 continue; 618 SSA.RewriteUseAfterInsertions(U); 619 } 620 } 621 } 622 } 623 624 bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module &M) { 625 LLVM_DEBUG(dbgs() << "********** Lower Emscripten EH & SjLj **********\n"); 626 627 LLVMContext &C = M.getContext(); 628 IRBuilder<> IRB(C); 629 630 Function *SetjmpF = M.getFunction("setjmp"); 631 Function *LongjmpF = M.getFunction("longjmp"); 632 bool SetjmpUsed = SetjmpF && !SetjmpF->use_empty(); 633 bool LongjmpUsed = LongjmpF && !LongjmpF->use_empty(); 634 bool DoSjLj = EnableSjLj && (SetjmpUsed || LongjmpUsed); 635 636 // Declare (or get) global variables __THREW__, __threwValue, and 637 // getTempRet0/setTempRet0 function which are used in common for both 638 // exception handling and setjmp/longjmp handling 639 ThrewGV = getGlobalVariableI32(M, IRB, "__THREW__"); 640 ThrewValueGV = getGlobalVariableI32(M, IRB, "__threwValue"); 641 GetTempRet0Func = 642 Function::Create(FunctionType::get(IRB.getInt32Ty(), false), 643 GlobalValue::ExternalLinkage, "getTempRet0", &M); 644 SetTempRet0Func = Function::Create( 645 FunctionType::get(IRB.getVoidTy(), IRB.getInt32Ty(), false), 646 GlobalValue::ExternalLinkage, "setTempRet0", &M); 647 GetTempRet0Func->setDoesNotThrow(); 648 SetTempRet0Func->setDoesNotThrow(); 649 650 bool Changed = false; 651 652 // Exception handling 653 if (EnableEH) { 654 // Register __resumeException function 655 FunctionType *ResumeFTy = 656 FunctionType::get(IRB.getVoidTy(), IRB.getInt8PtrTy(), false); 657 ResumeF = Function::Create(ResumeFTy, GlobalValue::ExternalLinkage, 658 ResumeFName, &M); 659 660 // Register llvm_eh_typeid_for function 661 FunctionType *EHTypeIDTy = 662 FunctionType::get(IRB.getInt32Ty(), IRB.getInt8PtrTy(), false); 663 EHTypeIDF = Function::Create(EHTypeIDTy, GlobalValue::ExternalLinkage, 664 EHTypeIDFName, &M); 665 666 for (Function &F : M) { 667 if (F.isDeclaration()) 668 continue; 669 Changed |= runEHOnFunction(F); 670 } 671 } 672 673 // Setjmp/longjmp handling 674 if (DoSjLj) { 675 Changed = true; // We have setjmp or longjmp somewhere 676 677 if (LongjmpF) { 678 // Replace all uses of longjmp with emscripten_longjmp_jmpbuf, which is 679 // defined in JS code 680 EmLongjmpJmpbufF = Function::Create(LongjmpF->getFunctionType(), 681 GlobalValue::ExternalLinkage, 682 EmLongjmpJmpbufFName, &M); 683 684 LongjmpF->replaceAllUsesWith(EmLongjmpJmpbufF); 685 } 686 687 if (SetjmpF) { 688 // Register saveSetjmp function 689 FunctionType *SetjmpFTy = SetjmpF->getFunctionType(); 690 SmallVector<Type *, 4> Params = {SetjmpFTy->getParamType(0), 691 IRB.getInt32Ty(), Type::getInt32PtrTy(C), 692 IRB.getInt32Ty()}; 693 FunctionType *FTy = 694 FunctionType::get(Type::getInt32PtrTy(C), Params, false); 695 SaveSetjmpF = Function::Create(FTy, GlobalValue::ExternalLinkage, 696 SaveSetjmpFName, &M); 697 698 // Register testSetjmp function 699 Params = {IRB.getInt32Ty(), Type::getInt32PtrTy(C), IRB.getInt32Ty()}; 700 FTy = FunctionType::get(IRB.getInt32Ty(), Params, false); 701 TestSetjmpF = Function::Create(FTy, GlobalValue::ExternalLinkage, 702 TestSetjmpFName, &M); 703 704 FTy = FunctionType::get(IRB.getVoidTy(), 705 {IRB.getInt32Ty(), IRB.getInt32Ty()}, false); 706 EmLongjmpF = Function::Create(FTy, GlobalValue::ExternalLinkage, 707 EmLongjmpFName, &M); 708 709 // Only traverse functions that uses setjmp in order not to insert 710 // unnecessary prep / cleanup code in every function 711 SmallPtrSet<Function *, 8> SetjmpUsers; 712 for (User *U : SetjmpF->users()) { 713 auto *UI = cast<Instruction>(U); 714 SetjmpUsers.insert(UI->getFunction()); 715 } 716 for (Function *F : SetjmpUsers) 717 runSjLjOnFunction(*F); 718 } 719 } 720 721 if (!Changed) { 722 // Delete unused global variables and functions 723 if (ResumeF) 724 ResumeF->eraseFromParent(); 725 if (EHTypeIDF) 726 EHTypeIDF->eraseFromParent(); 727 if (EmLongjmpF) 728 EmLongjmpF->eraseFromParent(); 729 if (SaveSetjmpF) 730 SaveSetjmpF->eraseFromParent(); 731 if (TestSetjmpF) 732 TestSetjmpF->eraseFromParent(); 733 return false; 734 } 735 736 return true; 737 } 738 739 bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function &F) { 740 Module &M = *F.getParent(); 741 LLVMContext &C = F.getContext(); 742 IRBuilder<> IRB(C); 743 bool Changed = false; 744 SmallVector<Instruction *, 64> ToErase; 745 SmallPtrSet<LandingPadInst *, 32> LandingPads; 746 bool AllowExceptions = 747 areAllExceptionsAllowed() || EHWhitelistSet.count(F.getName()); 748 749 for (BasicBlock &BB : F) { 750 auto *II = dyn_cast<InvokeInst>(BB.getTerminator()); 751 if (!II) 752 continue; 753 Changed = true; 754 LandingPads.insert(II->getLandingPadInst()); 755 IRB.SetInsertPoint(II); 756 757 bool NeedInvoke = AllowExceptions && canThrow(II->getCalledValue()); 758 if (NeedInvoke) { 759 // Wrap invoke with invoke wrapper and generate preamble/postamble 760 Value *Threw = wrapInvoke(II); 761 ToErase.push_back(II); 762 763 // Insert a branch based on __THREW__ variable 764 Value *Cmp = IRB.CreateICmpEQ(Threw, IRB.getInt32(1), "cmp"); 765 IRB.CreateCondBr(Cmp, II->getUnwindDest(), II->getNormalDest()); 766 767 } else { 768 // This can't throw, and we don't need this invoke, just replace it with a 769 // call+branch 770 SmallVector<Value *, 16> Args(II->arg_begin(), II->arg_end()); 771 CallInst *NewCall = IRB.CreateCall(II->getCalledValue(), Args); 772 NewCall->takeName(II); 773 NewCall->setCallingConv(II->getCallingConv()); 774 NewCall->setDebugLoc(II->getDebugLoc()); 775 NewCall->setAttributes(II->getAttributes()); 776 II->replaceAllUsesWith(NewCall); 777 ToErase.push_back(II); 778 779 IRB.CreateBr(II->getNormalDest()); 780 781 // Remove any PHI node entries from the exception destination 782 II->getUnwindDest()->removePredecessor(&BB); 783 } 784 } 785 786 // Process resume instructions 787 for (BasicBlock &BB : F) { 788 // Scan the body of the basic block for resumes 789 for (Instruction &I : BB) { 790 auto *RI = dyn_cast<ResumeInst>(&I); 791 if (!RI) 792 continue; 793 794 // Split the input into legal values 795 Value *Input = RI->getValue(); 796 IRB.SetInsertPoint(RI); 797 Value *Low = IRB.CreateExtractValue(Input, 0, "low"); 798 // Create a call to __resumeException function 799 IRB.CreateCall(ResumeF, {Low}); 800 // Add a terminator to the block 801 IRB.CreateUnreachable(); 802 ToErase.push_back(RI); 803 } 804 } 805 806 // Process llvm.eh.typeid.for intrinsics 807 for (BasicBlock &BB : F) { 808 for (Instruction &I : BB) { 809 auto *CI = dyn_cast<CallInst>(&I); 810 if (!CI) 811 continue; 812 const Function *Callee = CI->getCalledFunction(); 813 if (!Callee) 814 continue; 815 if (Callee->getIntrinsicID() != Intrinsic::eh_typeid_for) 816 continue; 817 818 IRB.SetInsertPoint(CI); 819 CallInst *NewCI = 820 IRB.CreateCall(EHTypeIDF, CI->getArgOperand(0), "typeid"); 821 CI->replaceAllUsesWith(NewCI); 822 ToErase.push_back(CI); 823 } 824 } 825 826 // Look for orphan landingpads, can occur in blocks with no predecessors 827 for (BasicBlock &BB : F) { 828 Instruction *I = BB.getFirstNonPHI(); 829 if (auto *LPI = dyn_cast<LandingPadInst>(I)) 830 LandingPads.insert(LPI); 831 } 832 833 // Handle all the landingpad for this function together, as multiple invokes 834 // may share a single lp 835 for (LandingPadInst *LPI : LandingPads) { 836 IRB.SetInsertPoint(LPI); 837 SmallVector<Value *, 16> FMCArgs; 838 for (unsigned i = 0, e = LPI->getNumClauses(); i < e; ++i) { 839 Constant *Clause = LPI->getClause(i); 840 // As a temporary workaround for the lack of aggregate varargs support 841 // in the interface between JS and wasm, break out filter operands into 842 // their component elements. 843 if (LPI->isFilter(i)) { 844 auto *ATy = cast<ArrayType>(Clause->getType()); 845 for (unsigned j = 0, e = ATy->getNumElements(); j < e; ++j) { 846 Value *EV = IRB.CreateExtractValue(Clause, makeArrayRef(j), "filter"); 847 FMCArgs.push_back(EV); 848 } 849 } else 850 FMCArgs.push_back(Clause); 851 } 852 853 // Create a call to __cxa_find_matching_catch_N function 854 Function *FMCF = getFindMatchingCatch(M, FMCArgs.size()); 855 CallInst *FMCI = IRB.CreateCall(FMCF, FMCArgs, "fmc"); 856 Value *Undef = UndefValue::get(LPI->getType()); 857 Value *Pair0 = IRB.CreateInsertValue(Undef, FMCI, 0, "pair0"); 858 Value *TempRet0 = IRB.CreateCall(GetTempRet0Func, None, "tempret0"); 859 Value *Pair1 = IRB.CreateInsertValue(Pair0, TempRet0, 1, "pair1"); 860 861 LPI->replaceAllUsesWith(Pair1); 862 ToErase.push_back(LPI); 863 } 864 865 // Erase everything we no longer need in this function 866 for (Instruction *I : ToErase) 867 I->eraseFromParent(); 868 869 return Changed; 870 } 871 872 bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function &F) { 873 Module &M = *F.getParent(); 874 LLVMContext &C = F.getContext(); 875 IRBuilder<> IRB(C); 876 SmallVector<Instruction *, 64> ToErase; 877 // Vector of %setjmpTable values 878 std::vector<Instruction *> SetjmpTableInsts; 879 // Vector of %setjmpTableSize values 880 std::vector<Instruction *> SetjmpTableSizeInsts; 881 882 // Setjmp preparation 883 884 // This instruction effectively means %setjmpTableSize = 4. 885 // We create this as an instruction intentionally, and we don't want to fold 886 // this instruction to a constant 4, because this value will be used in 887 // SSAUpdater.AddAvailableValue(...) later. 888 BasicBlock &EntryBB = F.getEntryBlock(); 889 BinaryOperator *SetjmpTableSize = BinaryOperator::Create( 890 Instruction::Add, IRB.getInt32(4), IRB.getInt32(0), "setjmpTableSize", 891 &*EntryBB.getFirstInsertionPt()); 892 // setjmpTable = (int *) malloc(40); 893 Instruction *SetjmpTable = CallInst::CreateMalloc( 894 SetjmpTableSize, IRB.getInt32Ty(), IRB.getInt32Ty(), IRB.getInt32(40), 895 nullptr, nullptr, "setjmpTable"); 896 // setjmpTable[0] = 0; 897 IRB.SetInsertPoint(SetjmpTableSize); 898 IRB.CreateStore(IRB.getInt32(0), SetjmpTable); 899 SetjmpTableInsts.push_back(SetjmpTable); 900 SetjmpTableSizeInsts.push_back(SetjmpTableSize); 901 902 // Setjmp transformation 903 std::vector<PHINode *> SetjmpRetPHIs; 904 Function *SetjmpF = M.getFunction("setjmp"); 905 for (User *U : SetjmpF->users()) { 906 auto *CI = dyn_cast<CallInst>(U); 907 if (!CI) 908 report_fatal_error("Does not support indirect calls to setjmp"); 909 910 BasicBlock *BB = CI->getParent(); 911 if (BB->getParent() != &F) // in other function 912 continue; 913 914 // The tail is everything right after the call, and will be reached once 915 // when setjmp is called, and later when longjmp returns to the setjmp 916 BasicBlock *Tail = SplitBlock(BB, CI->getNextNode()); 917 // Add a phi to the tail, which will be the output of setjmp, which 918 // indicates if this is the first call or a longjmp back. The phi directly 919 // uses the right value based on where we arrive from 920 IRB.SetInsertPoint(Tail->getFirstNonPHI()); 921 PHINode *SetjmpRet = IRB.CreatePHI(IRB.getInt32Ty(), 2, "setjmp.ret"); 922 923 // setjmp initial call returns 0 924 SetjmpRet->addIncoming(IRB.getInt32(0), BB); 925 // The proper output is now this, not the setjmp call itself 926 CI->replaceAllUsesWith(SetjmpRet); 927 // longjmp returns to the setjmp will add themselves to this phi 928 SetjmpRetPHIs.push_back(SetjmpRet); 929 930 // Fix call target 931 // Our index in the function is our place in the array + 1 to avoid index 932 // 0, because index 0 means the longjmp is not ours to handle. 933 IRB.SetInsertPoint(CI); 934 Value *Args[] = {CI->getArgOperand(0), IRB.getInt32(SetjmpRetPHIs.size()), 935 SetjmpTable, SetjmpTableSize}; 936 Instruction *NewSetjmpTable = 937 IRB.CreateCall(SaveSetjmpF, Args, "setjmpTable"); 938 Instruction *NewSetjmpTableSize = 939 IRB.CreateCall(GetTempRet0Func, None, "setjmpTableSize"); 940 SetjmpTableInsts.push_back(NewSetjmpTable); 941 SetjmpTableSizeInsts.push_back(NewSetjmpTableSize); 942 ToErase.push_back(CI); 943 } 944 945 // Update each call that can longjmp so it can return to a setjmp where 946 // relevant. 947 948 // Because we are creating new BBs while processing and don't want to make 949 // all these newly created BBs candidates again for longjmp processing, we 950 // first make the vector of candidate BBs. 951 std::vector<BasicBlock *> BBs; 952 for (BasicBlock &BB : F) 953 BBs.push_back(&BB); 954 955 // BBs.size() will change within the loop, so we query it every time 956 for (unsigned i = 0; i < BBs.size(); i++) { 957 BasicBlock *BB = BBs[i]; 958 for (Instruction &I : *BB) { 959 assert(!isa<InvokeInst>(&I)); 960 auto *CI = dyn_cast<CallInst>(&I); 961 if (!CI) 962 continue; 963 964 const Value *Callee = CI->getCalledValue(); 965 if (!canLongjmp(M, Callee)) 966 continue; 967 968 Value *Threw = nullptr; 969 BasicBlock *Tail; 970 if (Callee->getName().startswith(InvokePrefix)) { 971 // If invoke wrapper has already been generated for this call in 972 // previous EH phase, search for the load instruction 973 // %__THREW__.val = __THREW__; 974 // in postamble after the invoke wrapper call 975 LoadInst *ThrewLI = nullptr; 976 StoreInst *ThrewResetSI = nullptr; 977 for (auto I = std::next(BasicBlock::iterator(CI)), IE = BB->end(); 978 I != IE; ++I) { 979 if (auto *LI = dyn_cast<LoadInst>(I)) 980 if (auto *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand())) 981 if (GV == ThrewGV) { 982 Threw = ThrewLI = LI; 983 break; 984 } 985 } 986 // Search for the store instruction after the load above 987 // __THREW__ = 0; 988 for (auto I = std::next(BasicBlock::iterator(ThrewLI)), IE = BB->end(); 989 I != IE; ++I) { 990 if (auto *SI = dyn_cast<StoreInst>(I)) 991 if (auto *GV = dyn_cast<GlobalVariable>(SI->getPointerOperand())) 992 if (GV == ThrewGV && SI->getValueOperand() == IRB.getInt32(0)) { 993 ThrewResetSI = SI; 994 break; 995 } 996 } 997 assert(Threw && ThrewLI && "Cannot find __THREW__ load after invoke"); 998 assert(ThrewResetSI && "Cannot find __THREW__ store after invoke"); 999 Tail = SplitBlock(BB, ThrewResetSI->getNextNode()); 1000 1001 } else { 1002 // Wrap call with invoke wrapper and generate preamble/postamble 1003 Threw = wrapInvoke(CI); 1004 ToErase.push_back(CI); 1005 Tail = SplitBlock(BB, CI->getNextNode()); 1006 } 1007 1008 // We need to replace the terminator in Tail - SplitBlock makes BB go 1009 // straight to Tail, we need to check if a longjmp occurred, and go to the 1010 // right setjmp-tail if so 1011 ToErase.push_back(BB->getTerminator()); 1012 1013 // Generate a function call to testSetjmp function and preamble/postamble 1014 // code to figure out (1) whether longjmp occurred (2) if longjmp 1015 // occurred, which setjmp it corresponds to 1016 Value *Label = nullptr; 1017 Value *LongjmpResult = nullptr; 1018 BasicBlock *EndBB = nullptr; 1019 wrapTestSetjmp(BB, CI, Threw, SetjmpTable, SetjmpTableSize, Label, 1020 LongjmpResult, EndBB); 1021 assert(Label && LongjmpResult && EndBB); 1022 1023 // Create switch instruction 1024 IRB.SetInsertPoint(EndBB); 1025 SwitchInst *SI = IRB.CreateSwitch(Label, Tail, SetjmpRetPHIs.size()); 1026 // -1 means no longjmp happened, continue normally (will hit the default 1027 // switch case). 0 means a longjmp that is not ours to handle, needs a 1028 // rethrow. Otherwise the index is the same as the index in P+1 (to avoid 1029 // 0). 1030 for (unsigned i = 0; i < SetjmpRetPHIs.size(); i++) { 1031 SI->addCase(IRB.getInt32(i + 1), SetjmpRetPHIs[i]->getParent()); 1032 SetjmpRetPHIs[i]->addIncoming(LongjmpResult, EndBB); 1033 } 1034 1035 // We are splitting the block here, and must continue to find other calls 1036 // in the block - which is now split. so continue to traverse in the Tail 1037 BBs.push_back(Tail); 1038 } 1039 } 1040 1041 // Erase everything we no longer need in this function 1042 for (Instruction *I : ToErase) 1043 I->eraseFromParent(); 1044 1045 // Free setjmpTable buffer before each return instruction 1046 for (BasicBlock &BB : F) { 1047 Instruction *TI = BB.getTerminator(); 1048 if (isa<ReturnInst>(TI)) 1049 CallInst::CreateFree(SetjmpTable, TI); 1050 } 1051 1052 // Every call to saveSetjmp can change setjmpTable and setjmpTableSize 1053 // (when buffer reallocation occurs) 1054 // entry: 1055 // setjmpTableSize = 4; 1056 // setjmpTable = (int *) malloc(40); 1057 // setjmpTable[0] = 0; 1058 // ... 1059 // somebb: 1060 // setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize); 1061 // setjmpTableSize = getTempRet0(); 1062 // So we need to make sure the SSA for these variables is valid so that every 1063 // saveSetjmp and testSetjmp calls have the correct arguments. 1064 SSAUpdater SetjmpTableSSA; 1065 SSAUpdater SetjmpTableSizeSSA; 1066 SetjmpTableSSA.Initialize(Type::getInt32PtrTy(C), "setjmpTable"); 1067 SetjmpTableSizeSSA.Initialize(Type::getInt32Ty(C), "setjmpTableSize"); 1068 for (Instruction *I : SetjmpTableInsts) 1069 SetjmpTableSSA.AddAvailableValue(I->getParent(), I); 1070 for (Instruction *I : SetjmpTableSizeInsts) 1071 SetjmpTableSizeSSA.AddAvailableValue(I->getParent(), I); 1072 1073 for (auto UI = SetjmpTable->use_begin(), UE = SetjmpTable->use_end(); 1074 UI != UE;) { 1075 // Grab the use before incrementing the iterator. 1076 Use &U = *UI; 1077 // Increment the iterator before removing the use from the list. 1078 ++UI; 1079 if (Instruction *I = dyn_cast<Instruction>(U.getUser())) 1080 if (I->getParent() != &EntryBB) 1081 SetjmpTableSSA.RewriteUse(U); 1082 } 1083 for (auto UI = SetjmpTableSize->use_begin(), UE = SetjmpTableSize->use_end(); 1084 UI != UE;) { 1085 Use &U = *UI; 1086 ++UI; 1087 if (Instruction *I = dyn_cast<Instruction>(U.getUser())) 1088 if (I->getParent() != &EntryBB) 1089 SetjmpTableSizeSSA.RewriteUse(U); 1090 } 1091 1092 // Finally, our modifications to the cfg can break dominance of SSA variables. 1093 // For example, in this code, 1094 // if (x()) { .. setjmp() .. } 1095 // if (y()) { .. longjmp() .. } 1096 // We must split the longjmp block, and it can jump into the block splitted 1097 // from setjmp one. But that means that when we split the setjmp block, it's 1098 // first part no longer dominates its second part - there is a theoretically 1099 // possible control flow path where x() is false, then y() is true and we 1100 // reach the second part of the setjmp block, without ever reaching the first 1101 // part. So, we rebuild SSA form here. 1102 rebuildSSA(F); 1103 return true; 1104 } 1105