1 //=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// 10 /// \file 11 /// This file lowers exception-related instructions and setjmp/longjmp 12 /// function calls in order to use Emscripten's JavaScript try and catch 13 /// mechanism. 14 /// 15 /// To handle exceptions and setjmp/longjmps, this scheme relies on JavaScript's 16 /// try and catch syntax and relevant exception-related libraries implemented 17 /// in JavaScript glue code that will be produced by Emscripten. This is similar 18 /// to the current Emscripten asm.js exception handling in fastcomp. For 19 /// fastcomp's EH / SjLj scheme, see these files in fastcomp LLVM branch: 20 /// (Location: https://github.com/kripken/emscripten-fastcomp) 21 /// lib/Target/JSBackend/NaCl/LowerEmExceptionsPass.cpp 22 /// lib/Target/JSBackend/NaCl/LowerEmSetjmp.cpp 23 /// lib/Target/JSBackend/JSBackend.cpp 24 /// lib/Target/JSBackend/CallHandlers.h 25 /// 26 /// * Exception handling 27 /// This pass lowers invokes and landingpads into library functions in JS glue 28 /// code. Invokes are lowered into function wrappers called invoke wrappers that 29 /// exist in JS side, which wraps the original function call with JS try-catch. 30 /// If an exception occurred, cxa_throw() function in JS side sets some 31 /// variables (see below) so we can check whether an exception occurred from 32 /// wasm code and handle it appropriately. 33 /// 34 /// * Setjmp-longjmp handling 35 /// This pass lowers setjmp to a reasonably-performant approach for emscripten. 36 /// The idea is that each block with a setjmp is broken up into two parts: the 37 /// part containing setjmp and the part right after the setjmp. The latter part 38 /// is either reached from the setjmp, or later from a longjmp. To handle the 39 /// longjmp, all calls that might longjmp are also called using invoke wrappers 40 /// and thus JS / try-catch. JS longjmp() function also sets some variables so 41 /// we can check / whether a longjmp occurred from wasm code. Each block with a 42 /// function call that might longjmp is also split up after the longjmp call. 43 /// After the longjmp call, we check whether a longjmp occurred, and if it did, 44 /// which setjmp it corresponds to, and jump to the right post-setjmp block. 45 /// We assume setjmp-longjmp handling always run after EH handling, which means 46 /// we don't expect any exception-related instructions when SjLj runs. 47 /// FIXME Currently this scheme does not support indirect call of setjmp, 48 /// because of the limitation of the scheme itself. fastcomp does not support it 49 /// either. 50 /// 51 /// In detail, this pass does following things: 52 /// 53 /// 1) Assumes the existence of global variables: __THREW__, __threwValue, and 54 /// __tempRet0. 55 /// __tempRet0 will be set within __cxa_find_matching_catch() function in 56 /// JS library, and __THREW__ and __threwValue will be set in invoke wrappers 57 /// in JS glue code. For what invoke wrappers are, refer to 3). These 58 /// variables are used for both exceptions and setjmp/longjmps. 59 /// __THREW__ indicates whether an exception or a longjmp occurred or not. 0 60 /// means nothing occurred, 1 means an exception occurred, and other numbers 61 /// mean a longjmp occurred. In the case of longjmp, __threwValue variable 62 /// indicates the corresponding setjmp buffer the longjmp corresponds to. 63 /// In exception handling, __tempRet0 indicates the type of an exception 64 /// caught, and in setjmp/longjmp, it means the second argument to longjmp 65 /// function. 66 /// 67 /// * Exception handling 68 /// 69 /// 2) We assume the existence of setThrew and setTempRet0 functions at link 70 /// time. 71 /// The global variables in 1) will exist in wasm address space, 72 /// but their values should be set in JS code, so these functions 73 /// as interfaces to JS glue code. These functions are equivalent to the 74 /// following JS functions, which actually exist in asm.js version of JS 75 /// library. 76 /// 77 /// function setThrew(threw, value) { 78 /// if (__THREW__ == 0) { 79 /// __THREW__ = threw; 80 /// __threwValue = value; 81 /// } 82 /// } 83 /// 84 /// function setTempRet0(value) { 85 /// __tempRet0 = value; 86 /// } 87 /// 88 /// 3) Lower 89 /// invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad 90 /// into 91 /// __THREW__ = 0; 92 /// call @__invoke_SIG(func, arg1, arg2) 93 /// %__THREW__.val = __THREW__; 94 /// __THREW__ = 0; 95 /// if (%__THREW__.val == 1) 96 /// goto %lpad 97 /// else 98 /// goto %invoke.cont 99 /// SIG is a mangled string generated based on the LLVM IR-level function 100 /// signature. After LLVM IR types are lowered to the target wasm types, 101 /// the names for these wrappers will change based on wasm types as well, 102 /// as in invoke_vi (function takes an int and returns void). The bodies of 103 /// these wrappers will be generated in JS glue code, and inside those 104 /// wrappers we use JS try-catch to generate actual exception effects. It 105 /// also calls the original callee function. An example wrapper in JS code 106 /// would look like this: 107 /// function invoke_vi(index,a1) { 108 /// try { 109 /// Module["dynCall_vi"](index,a1); // This calls original callee 110 /// } catch(e) { 111 /// if (typeof e !== 'number' && e !== 'longjmp') throw e; 112 /// asm["setThrew"](1, 0); // setThrew is called here 113 /// } 114 /// } 115 /// If an exception is thrown, __THREW__ will be set to true in a wrapper, 116 /// so we can jump to the right BB based on this value. 117 /// 118 /// 4) Lower 119 /// %val = landingpad catch c1 catch c2 catch c3 ... 120 /// ... use %val ... 121 /// into 122 /// %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...) 123 /// %val = {%fmc, __tempRet0} 124 /// ... use %val ... 125 /// Here N is a number calculated based on the number of clauses. 126 /// Global variable __tempRet0 is set within __cxa_find_matching_catch() in 127 /// JS glue code. 128 /// 129 /// 5) Lower 130 /// resume {%a, %b} 131 /// into 132 /// call @__resumeException(%a) 133 /// where __resumeException() is a function in JS glue code. 134 /// 135 /// 6) Lower 136 /// call @llvm.eh.typeid.for(type) (intrinsic) 137 /// into 138 /// call @llvm_eh_typeid_for(type) 139 /// llvm_eh_typeid_for function will be generated in JS glue code. 140 /// 141 /// * Setjmp / Longjmp handling 142 /// 143 /// 7) In the function entry that calls setjmp, initialize setjmpTable and 144 /// sejmpTableSize as follows: 145 /// setjmpTableSize = 4; 146 /// setjmpTable = (int *) malloc(40); 147 /// setjmpTable[0] = 0; 148 /// setjmpTable and setjmpTableSize are used in saveSetjmp() function in JS 149 /// code. 150 /// 151 /// 8) Lower 152 /// setjmp(buf) 153 /// into 154 /// setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize); 155 /// setjmpTableSize = __tempRet0; 156 /// For each dynamic setjmp call, setjmpTable stores its ID (a number which 157 /// is incrementally assigned from 0) and its label (a unique number that 158 /// represents each callsite of setjmp). When we need more entries in 159 /// setjmpTable, it is reallocated in saveSetjmp() in JS code and it will 160 /// return the new table address, and assign the new table size in 161 /// __tempRet0. saveSetjmp also stores the setjmp's ID into the buffer buf. 162 /// A BB with setjmp is split into two after setjmp call in order to make the 163 /// post-setjmp BB the possible destination of longjmp BB. 164 /// 165 /// 9) Lower 166 /// longjmp(buf, value) 167 /// into 168 /// emscripten_longjmp_jmpbuf(buf, value) 169 /// emscripten_longjmp_jmpbuf will be lowered to emscripten_longjmp later. 170 /// 171 /// 10) Lower every call that might longjmp into 172 /// __THREW__ = 0; 173 /// call @__invoke_SIG(func, arg1, arg2) 174 /// %__THREW__.val = __THREW__; 175 /// __THREW__ = 0; 176 /// if (%__THREW__.val != 0 & __threwValue != 0) { 177 /// %label = testSetjmp(mem[%__THREW__.val], setjmpTable, 178 /// setjmpTableSize); 179 /// if (%label == 0) 180 /// emscripten_longjmp(%__THREW__.val, __threwValue); 181 /// __tempRet0 = __threwValue; 182 /// } else { 183 /// %label = -1; 184 /// } 185 /// longjmp_result = __tempRet0; 186 /// switch label { 187 /// label 1: goto post-setjmp BB 1 188 /// label 2: goto post-setjmp BB 2 189 /// ... 190 /// default: goto splitted next BB 191 /// } 192 /// testSetjmp examines setjmpTable to see if there is a matching setjmp 193 /// call. After calling an invoke wrapper, if a longjmp occurred, __THREW__ 194 /// will be the address of matching jmp_buf buffer and __threwValue be the 195 /// second argument to longjmp. mem[__THREW__.val] is a setjmp ID that is 196 /// stored in saveSetjmp. testSetjmp returns a setjmp label, a unique ID to 197 /// each setjmp callsite. Label 0 means this longjmp buffer does not 198 /// correspond to one of the setjmp callsites in this function, so in this 199 /// case we just chain the longjmp to the caller. (Here we call 200 /// emscripten_longjmp, which is different from emscripten_longjmp_jmpbuf. 201 /// emscripten_longjmp_jmpbuf takes jmp_buf as its first argument, while 202 /// emscripten_longjmp takes an int. Both of them will eventually be lowered 203 /// to emscripten_longjmp in s2wasm, but here we need two signatures - we 204 /// can't translate an int value to a jmp_buf.) 205 /// Label -1 means no longjmp occurred. Otherwise we jump to the right 206 /// post-setjmp BB based on the label. 207 /// 208 ///===----------------------------------------------------------------------===// 209 210 #include "WebAssembly.h" 211 #include "llvm/IR/CallSite.h" 212 #include "llvm/IR/Dominators.h" 213 #include "llvm/IR/IRBuilder.h" 214 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 215 #include "llvm/Transforms/Utils/SSAUpdater.h" 216 217 using namespace llvm; 218 219 #define DEBUG_TYPE "wasm-lower-em-ehsjlj" 220 221 static cl::list<std::string> 222 EHWhitelist("emscripten-cxx-exceptions-whitelist", 223 cl::desc("The list of function names in which Emscripten-style " 224 "exception handling is enabled (see emscripten " 225 "EMSCRIPTEN_CATCHING_WHITELIST options)"), 226 cl::CommaSeparated); 227 228 namespace { 229 class WebAssemblyLowerEmscriptenEHSjLj final : public ModulePass { 230 static const char *ResumeFName; 231 static const char *EHTypeIDFName; 232 static const char *EmLongjmpFName; 233 static const char *EmLongjmpJmpbufFName; 234 static const char *SaveSetjmpFName; 235 static const char *TestSetjmpFName; 236 static const char *FindMatchingCatchPrefix; 237 static const char *InvokePrefix; 238 239 bool EnableEH; // Enable exception handling 240 bool EnableSjLj; // Enable setjmp/longjmp handling 241 242 GlobalVariable *ThrewGV; 243 GlobalVariable *ThrewValueGV; 244 GlobalVariable *TempRet0GV; 245 Function *ResumeF; 246 Function *EHTypeIDF; 247 Function *EmLongjmpF; 248 Function *EmLongjmpJmpbufF; 249 Function *SaveSetjmpF; 250 Function *TestSetjmpF; 251 252 // __cxa_find_matching_catch_N functions. 253 // Indexed by the number of clauses in an original landingpad instruction. 254 DenseMap<int, Function *> FindMatchingCatches; 255 // Map of <function signature string, invoke_ wrappers> 256 StringMap<Function *> InvokeWrappers; 257 // Set of whitelisted function names for exception handling 258 std::set<std::string> EHWhitelistSet; 259 260 StringRef getPassName() const override { 261 return "WebAssembly Lower Emscripten Exceptions"; 262 } 263 264 bool runEHOnFunction(Function &F); 265 bool runSjLjOnFunction(Function &F); 266 Function *getFindMatchingCatch(Module &M, unsigned NumClauses); 267 268 template <typename CallOrInvoke> Value *wrapInvoke(CallOrInvoke *CI); 269 void wrapTestSetjmp(BasicBlock *BB, Instruction *InsertPt, Value *Threw, 270 Value *SetjmpTable, Value *SetjmpTableSize, Value *&Label, 271 Value *&LongjmpResult, BasicBlock *&EndBB); 272 template <typename CallOrInvoke> Function *getInvokeWrapper(CallOrInvoke *CI); 273 274 bool areAllExceptionsAllowed() const { return EHWhitelistSet.empty(); } 275 bool canLongjmp(Module &M, const Value *Callee) const; 276 277 void rebuildSSA(Function &F); 278 279 public: 280 static char ID; 281 282 WebAssemblyLowerEmscriptenEHSjLj(bool EnableEH = true, bool EnableSjLj = true) 283 : ModulePass(ID), EnableEH(EnableEH), EnableSjLj(EnableSjLj), 284 ThrewGV(nullptr), ThrewValueGV(nullptr), TempRet0GV(nullptr), 285 ResumeF(nullptr), EHTypeIDF(nullptr), EmLongjmpF(nullptr), 286 EmLongjmpJmpbufF(nullptr), SaveSetjmpF(nullptr), TestSetjmpF(nullptr) { 287 EHWhitelistSet.insert(EHWhitelist.begin(), EHWhitelist.end()); 288 } 289 bool runOnModule(Module &M) override; 290 291 void getAnalysisUsage(AnalysisUsage &AU) const override { 292 AU.addRequired<DominatorTreeWrapperPass>(); 293 } 294 }; 295 } // End anonymous namespace 296 297 const char *WebAssemblyLowerEmscriptenEHSjLj::ResumeFName = "__resumeException"; 298 const char *WebAssemblyLowerEmscriptenEHSjLj::EHTypeIDFName = 299 "llvm_eh_typeid_for"; 300 const char *WebAssemblyLowerEmscriptenEHSjLj::EmLongjmpFName = 301 "emscripten_longjmp"; 302 const char *WebAssemblyLowerEmscriptenEHSjLj::EmLongjmpJmpbufFName = 303 "emscripten_longjmp_jmpbuf"; 304 const char *WebAssemblyLowerEmscriptenEHSjLj::SaveSetjmpFName = "saveSetjmp"; 305 const char *WebAssemblyLowerEmscriptenEHSjLj::TestSetjmpFName = "testSetjmp"; 306 const char *WebAssemblyLowerEmscriptenEHSjLj::FindMatchingCatchPrefix = 307 "__cxa_find_matching_catch_"; 308 const char *WebAssemblyLowerEmscriptenEHSjLj::InvokePrefix = "__invoke_"; 309 310 char WebAssemblyLowerEmscriptenEHSjLj::ID = 0; 311 INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj, DEBUG_TYPE, 312 "WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp", 313 false, false) 314 315 ModulePass *llvm::createWebAssemblyLowerEmscriptenEHSjLj(bool EnableEH, 316 bool EnableSjLj) { 317 return new WebAssemblyLowerEmscriptenEHSjLj(EnableEH, EnableSjLj); 318 } 319 320 static bool canThrow(const Value *V) { 321 if (const auto *F = dyn_cast<const Function>(V)) { 322 // Intrinsics cannot throw 323 if (F->isIntrinsic()) 324 return false; 325 StringRef Name = F->getName(); 326 // leave setjmp and longjmp (mostly) alone, we process them properly later 327 if (Name == "setjmp" || Name == "longjmp") 328 return false; 329 return !F->doesNotThrow(); 330 } 331 // not a function, so an indirect call - can throw, we can't tell 332 return true; 333 } 334 335 // Get a global variable with the given name. If it doesn't exist declare it, 336 // which will generate an import and asssumes that it will exist at link time. 337 static GlobalVariable *getGlobalVariableI32(Module &M, IRBuilder<> &IRB, 338 const char *Name) { 339 if (M.getNamedGlobal(Name)) 340 report_fatal_error(Twine("variable name is reserved: ") + Name); 341 342 return new GlobalVariable(M, IRB.getInt32Ty(), false, 343 GlobalValue::ExternalLinkage, nullptr, Name); 344 } 345 346 // Simple function name mangler. 347 // This function simply takes LLVM's string representation of parameter types 348 // and concatenate them with '_'. There are non-alphanumeric characters but llc 349 // is ok with it, and we need to postprocess these names after the lowering 350 // phase anyway. 351 static std::string getSignature(FunctionType *FTy) { 352 std::string Sig; 353 raw_string_ostream OS(Sig); 354 OS << *FTy->getReturnType(); 355 for (Type *ParamTy : FTy->params()) 356 OS << "_" << *ParamTy; 357 if (FTy->isVarArg()) 358 OS << "_..."; 359 Sig = OS.str(); 360 Sig.erase(remove_if(Sig, isspace), Sig.end()); 361 // When s2wasm parses .s file, a comma means the end of an argument. So a 362 // mangled function name can contain any character but a comma. 363 std::replace(Sig.begin(), Sig.end(), ',', '.'); 364 return Sig; 365 } 366 367 // Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2. 368 // This is because a landingpad instruction contains two more arguments, a 369 // personality function and a cleanup bit, and __cxa_find_matching_catch_N 370 // functions are named after the number of arguments in the original landingpad 371 // instruction. 372 Function * 373 WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module &M, 374 unsigned NumClauses) { 375 if (FindMatchingCatches.count(NumClauses)) 376 return FindMatchingCatches[NumClauses]; 377 PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext()); 378 SmallVector<Type *, 16> Args(NumClauses, Int8PtrTy); 379 FunctionType *FTy = FunctionType::get(Int8PtrTy, Args, false); 380 Function *F = 381 Function::Create(FTy, GlobalValue::ExternalLinkage, 382 FindMatchingCatchPrefix + Twine(NumClauses + 2), &M); 383 FindMatchingCatches[NumClauses] = F; 384 return F; 385 } 386 387 // Generate invoke wrapper seqence with preamble and postamble 388 // Preamble: 389 // __THREW__ = 0; 390 // Postamble: 391 // %__THREW__.val = __THREW__; __THREW__ = 0; 392 // Returns %__THREW__.val, which indicates whether an exception is thrown (or 393 // whether longjmp occurred), for future use. 394 template <typename CallOrInvoke> 395 Value *WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallOrInvoke *CI) { 396 LLVMContext &C = CI->getModule()->getContext(); 397 398 // If we are calling a function that is noreturn, we must remove that 399 // attribute. The code we insert here does expect it to return, after we 400 // catch the exception. 401 if (CI->doesNotReturn()) { 402 if (auto *F = dyn_cast<Function>(CI->getCalledValue())) 403 F->removeFnAttr(Attribute::NoReturn); 404 CI->removeAttribute(AttributeList::FunctionIndex, Attribute::NoReturn); 405 } 406 407 IRBuilder<> IRB(C); 408 IRB.SetInsertPoint(CI); 409 410 // Pre-invoke 411 // __THREW__ = 0; 412 IRB.CreateStore(IRB.getInt32(0), ThrewGV); 413 414 // Invoke function wrapper in JavaScript 415 SmallVector<Value *, 16> Args; 416 // Put the pointer to the callee as first argument, so it can be called 417 // within the invoke wrapper later 418 Args.push_back(CI->getCalledValue()); 419 Args.append(CI->arg_begin(), CI->arg_end()); 420 CallInst *NewCall = IRB.CreateCall(getInvokeWrapper(CI), Args); 421 NewCall->takeName(CI); 422 NewCall->setCallingConv(CI->getCallingConv()); 423 NewCall->setDebugLoc(CI->getDebugLoc()); 424 425 // Because we added the pointer to the callee as first argument, all 426 // argument attribute indices have to be incremented by one. 427 SmallVector<AttributeSet, 8> ArgAttributes; 428 const AttributeList &InvokeAL = CI->getAttributes(); 429 430 // No attributes for the callee pointer. 431 ArgAttributes.push_back(AttributeSet()); 432 // Copy the argument attributes from the original 433 for (unsigned i = 0, e = CI->getNumArgOperands(); i < e; ++i) 434 ArgAttributes.push_back(InvokeAL.getParamAttributes(i)); 435 436 // Reconstruct the AttributesList based on the vector we constructed. 437 AttributeList NewCallAL = 438 AttributeList::get(C, InvokeAL.getFnAttributes(), 439 InvokeAL.getRetAttributes(), ArgAttributes); 440 NewCall->setAttributes(NewCallAL); 441 442 CI->replaceAllUsesWith(NewCall); 443 444 // Post-invoke 445 // %__THREW__.val = __THREW__; __THREW__ = 0; 446 Value *Threw = IRB.CreateLoad(ThrewGV, ThrewGV->getName() + ".val"); 447 IRB.CreateStore(IRB.getInt32(0), ThrewGV); 448 return Threw; 449 } 450 451 // Get matching invoke wrapper based on callee signature 452 template <typename CallOrInvoke> 453 Function *WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallOrInvoke *CI) { 454 Module *M = CI->getModule(); 455 SmallVector<Type *, 16> ArgTys; 456 Value *Callee = CI->getCalledValue(); 457 FunctionType *CalleeFTy; 458 if (auto *F = dyn_cast<Function>(Callee)) 459 CalleeFTy = F->getFunctionType(); 460 else { 461 auto *CalleeTy = cast<PointerType>(Callee->getType())->getElementType(); 462 CalleeFTy = dyn_cast<FunctionType>(CalleeTy); 463 } 464 465 std::string Sig = getSignature(CalleeFTy); 466 if (InvokeWrappers.find(Sig) != InvokeWrappers.end()) 467 return InvokeWrappers[Sig]; 468 469 // Put the pointer to the callee as first argument 470 ArgTys.push_back(PointerType::getUnqual(CalleeFTy)); 471 // Add argument types 472 ArgTys.append(CalleeFTy->param_begin(), CalleeFTy->param_end()); 473 474 FunctionType *FTy = FunctionType::get(CalleeFTy->getReturnType(), ArgTys, 475 CalleeFTy->isVarArg()); 476 Function *F = Function::Create(FTy, GlobalValue::ExternalLinkage, 477 InvokePrefix + Sig, M); 478 InvokeWrappers[Sig] = F; 479 return F; 480 } 481 482 bool WebAssemblyLowerEmscriptenEHSjLj::canLongjmp(Module &M, 483 const Value *Callee) const { 484 if (auto *CalleeF = dyn_cast<Function>(Callee)) 485 if (CalleeF->isIntrinsic()) 486 return false; 487 488 // The reason we include malloc/free here is to exclude the malloc/free 489 // calls generated in setjmp prep / cleanup routines. 490 Function *SetjmpF = M.getFunction("setjmp"); 491 Function *MallocF = M.getFunction("malloc"); 492 Function *FreeF = M.getFunction("free"); 493 if (Callee == SetjmpF || Callee == MallocF || Callee == FreeF) 494 return false; 495 496 // There are functions in JS glue code 497 if (Callee == ResumeF || Callee == EHTypeIDF || Callee == SaveSetjmpF || 498 Callee == TestSetjmpF) 499 return false; 500 501 // __cxa_find_matching_catch_N functions cannot longjmp 502 if (Callee->getName().startswith(FindMatchingCatchPrefix)) 503 return false; 504 505 // Exception-catching related functions 506 Function *BeginCatchF = M.getFunction("__cxa_begin_catch"); 507 Function *EndCatchF = M.getFunction("__cxa_end_catch"); 508 Function *AllocExceptionF = M.getFunction("__cxa_allocate_exception"); 509 Function *ThrowF = M.getFunction("__cxa_throw"); 510 Function *TerminateF = M.getFunction("__clang_call_terminate"); 511 if (Callee == BeginCatchF || Callee == EndCatchF || 512 Callee == AllocExceptionF || Callee == ThrowF || Callee == TerminateF) 513 return false; 514 515 // Otherwise we don't know 516 return true; 517 } 518 519 // Generate testSetjmp function call seqence with preamble and postamble. 520 // The code this generates is equivalent to the following JavaScript code: 521 // if (%__THREW__.val != 0 & threwValue != 0) { 522 // %label = _testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize); 523 // if (%label == 0) 524 // emscripten_longjmp(%__THREW__.val, threwValue); 525 // __tempRet0 = threwValue; 526 // } else { 527 // %label = -1; 528 // } 529 // %longjmp_result = __tempRet0; 530 // 531 // As output parameters. returns %label, %longjmp_result, and the BB the last 532 // instruction (%longjmp_result = ...) is in. 533 void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp( 534 BasicBlock *BB, Instruction *InsertPt, Value *Threw, Value *SetjmpTable, 535 Value *SetjmpTableSize, Value *&Label, Value *&LongjmpResult, 536 BasicBlock *&EndBB) { 537 Function *F = BB->getParent(); 538 LLVMContext &C = BB->getModule()->getContext(); 539 IRBuilder<> IRB(C); 540 IRB.SetInsertPoint(InsertPt); 541 542 // if (%__THREW__.val != 0 & threwValue != 0) 543 IRB.SetInsertPoint(BB); 544 BasicBlock *ThenBB1 = BasicBlock::Create(C, "if.then1", F); 545 BasicBlock *ElseBB1 = BasicBlock::Create(C, "if.else1", F); 546 BasicBlock *EndBB1 = BasicBlock::Create(C, "if.end", F); 547 Value *ThrewCmp = IRB.CreateICmpNE(Threw, IRB.getInt32(0)); 548 Value *ThrewValue = 549 IRB.CreateLoad(ThrewValueGV, ThrewValueGV->getName() + ".val"); 550 Value *ThrewValueCmp = IRB.CreateICmpNE(ThrewValue, IRB.getInt32(0)); 551 Value *Cmp1 = IRB.CreateAnd(ThrewCmp, ThrewValueCmp, "cmp1"); 552 IRB.CreateCondBr(Cmp1, ThenBB1, ElseBB1); 553 554 // %label = _testSetjmp(mem[%__THREW__.val], _setjmpTable, _setjmpTableSize); 555 // if (%label == 0) 556 IRB.SetInsertPoint(ThenBB1); 557 BasicBlock *ThenBB2 = BasicBlock::Create(C, "if.then2", F); 558 BasicBlock *EndBB2 = BasicBlock::Create(C, "if.end2", F); 559 Value *ThrewInt = IRB.CreateIntToPtr(Threw, Type::getInt32PtrTy(C), 560 Threw->getName() + ".i32p"); 561 Value *LoadedThrew = 562 IRB.CreateLoad(ThrewInt, ThrewInt->getName() + ".loaded"); 563 Value *ThenLabel = IRB.CreateCall( 564 TestSetjmpF, {LoadedThrew, SetjmpTable, SetjmpTableSize}, "label"); 565 Value *Cmp2 = IRB.CreateICmpEQ(ThenLabel, IRB.getInt32(0)); 566 IRB.CreateCondBr(Cmp2, ThenBB2, EndBB2); 567 568 // emscripten_longjmp(%__THREW__.val, threwValue); 569 IRB.SetInsertPoint(ThenBB2); 570 IRB.CreateCall(EmLongjmpF, {Threw, ThrewValue}); 571 IRB.CreateUnreachable(); 572 573 // __tempRet0 = threwValue; 574 IRB.SetInsertPoint(EndBB2); 575 IRB.CreateStore(ThrewValue, TempRet0GV); 576 IRB.CreateBr(EndBB1); 577 578 IRB.SetInsertPoint(ElseBB1); 579 IRB.CreateBr(EndBB1); 580 581 // longjmp_result = __tempRet0; 582 IRB.SetInsertPoint(EndBB1); 583 PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label"); 584 LabelPHI->addIncoming(ThenLabel, EndBB2); 585 586 LabelPHI->addIncoming(IRB.getInt32(-1), ElseBB1); 587 588 // Output parameter assignment 589 Label = LabelPHI; 590 EndBB = EndBB1; 591 LongjmpResult = IRB.CreateLoad(TempRet0GV, "longjmp_result"); 592 } 593 594 void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function &F) { 595 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 596 DT.recalculate(F); // CFG has been changed 597 SSAUpdater SSA; 598 for (BasicBlock &BB : F) { 599 for (Instruction &I : BB) { 600 for (auto UI = I.use_begin(), UE = I.use_end(); UI != UE;) { 601 Use &U = *UI; 602 ++UI; 603 SSA.Initialize(I.getType(), I.getName()); 604 SSA.AddAvailableValue(&BB, &I); 605 Instruction *User = cast<Instruction>(U.getUser()); 606 if (User->getParent() == &BB) 607 continue; 608 609 if (PHINode *UserPN = dyn_cast<PHINode>(User)) 610 if (UserPN->getIncomingBlock(U) == &BB) 611 continue; 612 613 if (DT.dominates(&I, User)) 614 continue; 615 SSA.RewriteUseAfterInsertions(U); 616 } 617 } 618 } 619 } 620 621 bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module &M) { 622 LLVMContext &C = M.getContext(); 623 IRBuilder<> IRB(C); 624 625 Function *SetjmpF = M.getFunction("setjmp"); 626 Function *LongjmpF = M.getFunction("longjmp"); 627 bool SetjmpUsed = SetjmpF && !SetjmpF->use_empty(); 628 bool LongjmpUsed = LongjmpF && !LongjmpF->use_empty(); 629 bool DoSjLj = EnableSjLj && (SetjmpUsed || LongjmpUsed); 630 631 // Declare (or get) global variables __THREW__, __threwValue, and __tempRet0, 632 // which are used in common for both exception handling and setjmp/longjmp 633 // handling 634 ThrewGV = getGlobalVariableI32(M, IRB, "__THREW__"); 635 ThrewValueGV = getGlobalVariableI32(M, IRB, "__threwValue"); 636 TempRet0GV = getGlobalVariableI32(M, IRB, "__tempRet0"); 637 638 bool Changed = false; 639 640 // Exception handling 641 if (EnableEH) { 642 // Register __resumeException function 643 FunctionType *ResumeFTy = 644 FunctionType::get(IRB.getVoidTy(), IRB.getInt8PtrTy(), false); 645 ResumeF = Function::Create(ResumeFTy, GlobalValue::ExternalLinkage, 646 ResumeFName, &M); 647 648 // Register llvm_eh_typeid_for function 649 FunctionType *EHTypeIDTy = 650 FunctionType::get(IRB.getInt32Ty(), IRB.getInt8PtrTy(), false); 651 EHTypeIDF = Function::Create(EHTypeIDTy, GlobalValue::ExternalLinkage, 652 EHTypeIDFName, &M); 653 654 for (Function &F : M) { 655 if (F.isDeclaration()) 656 continue; 657 Changed |= runEHOnFunction(F); 658 } 659 } 660 661 // Setjmp/longjmp handling 662 if (DoSjLj) { 663 Changed = true; // We have setjmp or longjmp somewhere 664 665 // Register saveSetjmp function 666 FunctionType *SetjmpFTy = SetjmpF->getFunctionType(); 667 SmallVector<Type *, 4> Params = {SetjmpFTy->getParamType(0), 668 IRB.getInt32Ty(), Type::getInt32PtrTy(C), 669 IRB.getInt32Ty()}; 670 FunctionType *FTy = 671 FunctionType::get(Type::getInt32PtrTy(C), Params, false); 672 SaveSetjmpF = Function::Create(FTy, GlobalValue::ExternalLinkage, 673 SaveSetjmpFName, &M); 674 675 // Register testSetjmp function 676 Params = {IRB.getInt32Ty(), Type::getInt32PtrTy(C), IRB.getInt32Ty()}; 677 FTy = FunctionType::get(IRB.getInt32Ty(), Params, false); 678 TestSetjmpF = Function::Create(FTy, GlobalValue::ExternalLinkage, 679 TestSetjmpFName, &M); 680 681 if (LongjmpF) { 682 // Replace all uses of longjmp with emscripten_longjmp_jmpbuf, which is 683 // defined in JS code 684 EmLongjmpJmpbufF = Function::Create(LongjmpF->getFunctionType(), 685 GlobalValue::ExternalLinkage, 686 EmLongjmpJmpbufFName, &M); 687 688 LongjmpF->replaceAllUsesWith(EmLongjmpJmpbufF); 689 } 690 FTy = FunctionType::get(IRB.getVoidTy(), 691 {IRB.getInt32Ty(), IRB.getInt32Ty()}, false); 692 EmLongjmpF = 693 Function::Create(FTy, GlobalValue::ExternalLinkage, EmLongjmpFName, &M); 694 695 // Only traverse functions that uses setjmp in order not to insert 696 // unnecessary prep / cleanup code in every function 697 SmallPtrSet<Function *, 8> SetjmpUsers; 698 for (User *U : SetjmpF->users()) { 699 auto *UI = cast<Instruction>(U); 700 SetjmpUsers.insert(UI->getFunction()); 701 } 702 for (Function *F : SetjmpUsers) 703 runSjLjOnFunction(*F); 704 } 705 706 if (!Changed) { 707 // Delete unused global variables and functions 708 if (ResumeF) 709 ResumeF->eraseFromParent(); 710 if (EHTypeIDF) 711 EHTypeIDF->eraseFromParent(); 712 if (EmLongjmpF) 713 EmLongjmpF->eraseFromParent(); 714 if (SaveSetjmpF) 715 SaveSetjmpF->eraseFromParent(); 716 if (TestSetjmpF) 717 TestSetjmpF->eraseFromParent(); 718 return false; 719 } 720 721 return true; 722 } 723 724 bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function &F) { 725 Module &M = *F.getParent(); 726 LLVMContext &C = F.getContext(); 727 IRBuilder<> IRB(C); 728 bool Changed = false; 729 SmallVector<Instruction *, 64> ToErase; 730 SmallPtrSet<LandingPadInst *, 32> LandingPads; 731 bool AllowExceptions = 732 areAllExceptionsAllowed() || EHWhitelistSet.count(F.getName()); 733 734 for (BasicBlock &BB : F) { 735 auto *II = dyn_cast<InvokeInst>(BB.getTerminator()); 736 if (!II) 737 continue; 738 Changed = true; 739 LandingPads.insert(II->getLandingPadInst()); 740 IRB.SetInsertPoint(II); 741 742 bool NeedInvoke = AllowExceptions && canThrow(II->getCalledValue()); 743 if (NeedInvoke) { 744 // Wrap invoke with invoke wrapper and generate preamble/postamble 745 Value *Threw = wrapInvoke(II); 746 ToErase.push_back(II); 747 748 // Insert a branch based on __THREW__ variable 749 Value *Cmp = IRB.CreateICmpEQ(Threw, IRB.getInt32(1), "cmp"); 750 IRB.CreateCondBr(Cmp, II->getUnwindDest(), II->getNormalDest()); 751 752 } else { 753 // This can't throw, and we don't need this invoke, just replace it with a 754 // call+branch 755 SmallVector<Value *, 16> Args(II->arg_begin(), II->arg_end()); 756 CallInst *NewCall = IRB.CreateCall(II->getCalledValue(), Args); 757 NewCall->takeName(II); 758 NewCall->setCallingConv(II->getCallingConv()); 759 NewCall->setDebugLoc(II->getDebugLoc()); 760 NewCall->setAttributes(II->getAttributes()); 761 II->replaceAllUsesWith(NewCall); 762 ToErase.push_back(II); 763 764 IRB.CreateBr(II->getNormalDest()); 765 766 // Remove any PHI node entries from the exception destination 767 II->getUnwindDest()->removePredecessor(&BB); 768 } 769 } 770 771 // Process resume instructions 772 for (BasicBlock &BB : F) { 773 // Scan the body of the basic block for resumes 774 for (Instruction &I : BB) { 775 auto *RI = dyn_cast<ResumeInst>(&I); 776 if (!RI) 777 continue; 778 779 // Split the input into legal values 780 Value *Input = RI->getValue(); 781 IRB.SetInsertPoint(RI); 782 Value *Low = IRB.CreateExtractValue(Input, 0, "low"); 783 // Create a call to __resumeException function 784 IRB.CreateCall(ResumeF, {Low}); 785 // Add a terminator to the block 786 IRB.CreateUnreachable(); 787 ToErase.push_back(RI); 788 } 789 } 790 791 // Process llvm.eh.typeid.for intrinsics 792 for (BasicBlock &BB : F) { 793 for (Instruction &I : BB) { 794 auto *CI = dyn_cast<CallInst>(&I); 795 if (!CI) 796 continue; 797 const Function *Callee = CI->getCalledFunction(); 798 if (!Callee) 799 continue; 800 if (Callee->getIntrinsicID() != Intrinsic::eh_typeid_for) 801 continue; 802 803 IRB.SetInsertPoint(CI); 804 CallInst *NewCI = 805 IRB.CreateCall(EHTypeIDF, CI->getArgOperand(0), "typeid"); 806 CI->replaceAllUsesWith(NewCI); 807 ToErase.push_back(CI); 808 } 809 } 810 811 // Look for orphan landingpads, can occur in blocks with no predecessors 812 for (BasicBlock &BB : F) { 813 Instruction *I = BB.getFirstNonPHI(); 814 if (auto *LPI = dyn_cast<LandingPadInst>(I)) 815 LandingPads.insert(LPI); 816 } 817 818 // Handle all the landingpad for this function together, as multiple invokes 819 // may share a single lp 820 for (LandingPadInst *LPI : LandingPads) { 821 IRB.SetInsertPoint(LPI); 822 SmallVector<Value *, 16> FMCArgs; 823 for (unsigned i = 0, e = LPI->getNumClauses(); i < e; ++i) { 824 Constant *Clause = LPI->getClause(i); 825 // As a temporary workaround for the lack of aggregate varargs support 826 // in the interface between JS and wasm, break out filter operands into 827 // their component elements. 828 if (LPI->isFilter(i)) { 829 auto *ATy = cast<ArrayType>(Clause->getType()); 830 for (unsigned j = 0, e = ATy->getNumElements(); j < e; ++j) { 831 Value *EV = IRB.CreateExtractValue(Clause, makeArrayRef(j), "filter"); 832 FMCArgs.push_back(EV); 833 } 834 } else 835 FMCArgs.push_back(Clause); 836 } 837 838 // Create a call to __cxa_find_matching_catch_N function 839 Function *FMCF = getFindMatchingCatch(M, FMCArgs.size()); 840 CallInst *FMCI = IRB.CreateCall(FMCF, FMCArgs, "fmc"); 841 Value *Undef = UndefValue::get(LPI->getType()); 842 Value *Pair0 = IRB.CreateInsertValue(Undef, FMCI, 0, "pair0"); 843 Value *TempRet0 = 844 IRB.CreateLoad(TempRet0GV, TempRet0GV->getName() + ".val"); 845 Value *Pair1 = IRB.CreateInsertValue(Pair0, TempRet0, 1, "pair1"); 846 847 LPI->replaceAllUsesWith(Pair1); 848 ToErase.push_back(LPI); 849 } 850 851 // Erase everything we no longer need in this function 852 for (Instruction *I : ToErase) 853 I->eraseFromParent(); 854 855 return Changed; 856 } 857 858 bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function &F) { 859 Module &M = *F.getParent(); 860 LLVMContext &C = F.getContext(); 861 IRBuilder<> IRB(C); 862 SmallVector<Instruction *, 64> ToErase; 863 // Vector of %setjmpTable values 864 std::vector<Instruction *> SetjmpTableInsts; 865 // Vector of %setjmpTableSize values 866 std::vector<Instruction *> SetjmpTableSizeInsts; 867 868 // Setjmp preparation 869 870 // This instruction effectively means %setjmpTableSize = 4. 871 // We create this as an instruction intentionally, and we don't want to fold 872 // this instruction to a constant 4, because this value will be used in 873 // SSAUpdater.AddAvailableValue(...) later. 874 BasicBlock &EntryBB = F.getEntryBlock(); 875 BinaryOperator *SetjmpTableSize = BinaryOperator::Create( 876 Instruction::Add, IRB.getInt32(4), IRB.getInt32(0), "setjmpTableSize", 877 &*EntryBB.getFirstInsertionPt()); 878 // setjmpTable = (int *) malloc(40); 879 Instruction *SetjmpTable = CallInst::CreateMalloc( 880 SetjmpTableSize, IRB.getInt32Ty(), IRB.getInt32Ty(), IRB.getInt32(40), 881 nullptr, nullptr, "setjmpTable"); 882 // setjmpTable[0] = 0; 883 IRB.SetInsertPoint(SetjmpTableSize); 884 IRB.CreateStore(IRB.getInt32(0), SetjmpTable); 885 SetjmpTableInsts.push_back(SetjmpTable); 886 SetjmpTableSizeInsts.push_back(SetjmpTableSize); 887 888 // Setjmp transformation 889 std::vector<PHINode *> SetjmpRetPHIs; 890 Function *SetjmpF = M.getFunction("setjmp"); 891 for (User *U : SetjmpF->users()) { 892 auto *CI = dyn_cast<CallInst>(U); 893 if (!CI) 894 report_fatal_error("Does not support indirect calls to setjmp"); 895 896 BasicBlock *BB = CI->getParent(); 897 if (BB->getParent() != &F) // in other function 898 continue; 899 900 // The tail is everything right after the call, and will be reached once 901 // when setjmp is called, and later when longjmp returns to the setjmp 902 BasicBlock *Tail = SplitBlock(BB, CI->getNextNode()); 903 // Add a phi to the tail, which will be the output of setjmp, which 904 // indicates if this is the first call or a longjmp back. The phi directly 905 // uses the right value based on where we arrive from 906 IRB.SetInsertPoint(Tail->getFirstNonPHI()); 907 PHINode *SetjmpRet = IRB.CreatePHI(IRB.getInt32Ty(), 2, "setjmp.ret"); 908 909 // setjmp initial call returns 0 910 SetjmpRet->addIncoming(IRB.getInt32(0), BB); 911 // The proper output is now this, not the setjmp call itself 912 CI->replaceAllUsesWith(SetjmpRet); 913 // longjmp returns to the setjmp will add themselves to this phi 914 SetjmpRetPHIs.push_back(SetjmpRet); 915 916 // Fix call target 917 // Our index in the function is our place in the array + 1 to avoid index 918 // 0, because index 0 means the longjmp is not ours to handle. 919 IRB.SetInsertPoint(CI); 920 Value *Args[] = {CI->getArgOperand(0), IRB.getInt32(SetjmpRetPHIs.size()), 921 SetjmpTable, SetjmpTableSize}; 922 Instruction *NewSetjmpTable = 923 IRB.CreateCall(SaveSetjmpF, Args, "setjmpTable"); 924 Instruction *NewSetjmpTableSize = 925 IRB.CreateLoad(TempRet0GV, "setjmpTableSize"); 926 SetjmpTableInsts.push_back(NewSetjmpTable); 927 SetjmpTableSizeInsts.push_back(NewSetjmpTableSize); 928 ToErase.push_back(CI); 929 } 930 931 // Update each call that can longjmp so it can return to a setjmp where 932 // relevant. 933 934 // Because we are creating new BBs while processing and don't want to make 935 // all these newly created BBs candidates again for longjmp processing, we 936 // first make the vector of candidate BBs. 937 std::vector<BasicBlock *> BBs; 938 for (BasicBlock &BB : F) 939 BBs.push_back(&BB); 940 941 // BBs.size() will change within the loop, so we query it every time 942 for (unsigned i = 0; i < BBs.size(); i++) { 943 BasicBlock *BB = BBs[i]; 944 for (Instruction &I : *BB) { 945 assert(!isa<InvokeInst>(&I)); 946 auto *CI = dyn_cast<CallInst>(&I); 947 if (!CI) 948 continue; 949 950 const Value *Callee = CI->getCalledValue(); 951 if (!canLongjmp(M, Callee)) 952 continue; 953 954 Value *Threw = nullptr; 955 BasicBlock *Tail; 956 if (Callee->getName().startswith(InvokePrefix)) { 957 // If invoke wrapper has already been generated for this call in 958 // previous EH phase, search for the load instruction 959 // %__THREW__.val = __THREW__; 960 // in postamble after the invoke wrapper call 961 LoadInst *ThrewLI = nullptr; 962 StoreInst *ThrewResetSI = nullptr; 963 for (auto I = std::next(BasicBlock::iterator(CI)), IE = BB->end(); 964 I != IE; ++I) { 965 if (auto *LI = dyn_cast<LoadInst>(I)) 966 if (auto *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand())) 967 if (GV == ThrewGV) { 968 Threw = ThrewLI = LI; 969 break; 970 } 971 } 972 // Search for the store instruction after the load above 973 // __THREW__ = 0; 974 for (auto I = std::next(BasicBlock::iterator(ThrewLI)), IE = BB->end(); 975 I != IE; ++I) { 976 if (auto *SI = dyn_cast<StoreInst>(I)) 977 if (auto *GV = dyn_cast<GlobalVariable>(SI->getPointerOperand())) 978 if (GV == ThrewGV && SI->getValueOperand() == IRB.getInt32(0)) { 979 ThrewResetSI = SI; 980 break; 981 } 982 } 983 assert(Threw && ThrewLI && "Cannot find __THREW__ load after invoke"); 984 assert(ThrewResetSI && "Cannot find __THREW__ store after invoke"); 985 Tail = SplitBlock(BB, ThrewResetSI->getNextNode()); 986 987 } else { 988 // Wrap call with invoke wrapper and generate preamble/postamble 989 Threw = wrapInvoke(CI); 990 ToErase.push_back(CI); 991 Tail = SplitBlock(BB, CI->getNextNode()); 992 } 993 994 // We need to replace the terminator in Tail - SplitBlock makes BB go 995 // straight to Tail, we need to check if a longjmp occurred, and go to the 996 // right setjmp-tail if so 997 ToErase.push_back(BB->getTerminator()); 998 999 // Generate a function call to testSetjmp function and preamble/postamble 1000 // code to figure out (1) whether longjmp occurred (2) if longjmp 1001 // occurred, which setjmp it corresponds to 1002 Value *Label = nullptr; 1003 Value *LongjmpResult = nullptr; 1004 BasicBlock *EndBB = nullptr; 1005 wrapTestSetjmp(BB, CI, Threw, SetjmpTable, SetjmpTableSize, Label, 1006 LongjmpResult, EndBB); 1007 assert(Label && LongjmpResult && EndBB); 1008 1009 // Create switch instruction 1010 IRB.SetInsertPoint(EndBB); 1011 SwitchInst *SI = IRB.CreateSwitch(Label, Tail, SetjmpRetPHIs.size()); 1012 // -1 means no longjmp happened, continue normally (will hit the default 1013 // switch case). 0 means a longjmp that is not ours to handle, needs a 1014 // rethrow. Otherwise the index is the same as the index in P+1 (to avoid 1015 // 0). 1016 for (unsigned i = 0; i < SetjmpRetPHIs.size(); i++) { 1017 SI->addCase(IRB.getInt32(i + 1), SetjmpRetPHIs[i]->getParent()); 1018 SetjmpRetPHIs[i]->addIncoming(LongjmpResult, EndBB); 1019 } 1020 1021 // We are splitting the block here, and must continue to find other calls 1022 // in the block - which is now split. so continue to traverse in the Tail 1023 BBs.push_back(Tail); 1024 } 1025 } 1026 1027 // Erase everything we no longer need in this function 1028 for (Instruction *I : ToErase) 1029 I->eraseFromParent(); 1030 1031 // Free setjmpTable buffer before each return instruction 1032 for (BasicBlock &BB : F) { 1033 Instruction *TI = BB.getTerminator(); 1034 if (isa<ReturnInst>(TI)) 1035 CallInst::CreateFree(SetjmpTable, TI); 1036 } 1037 1038 // Every call to saveSetjmp can change setjmpTable and setjmpTableSize 1039 // (when buffer reallocation occurs) 1040 // entry: 1041 // setjmpTableSize = 4; 1042 // setjmpTable = (int *) malloc(40); 1043 // setjmpTable[0] = 0; 1044 // ... 1045 // somebb: 1046 // setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize); 1047 // setjmpTableSize = __tempRet0; 1048 // So we need to make sure the SSA for these variables is valid so that every 1049 // saveSetjmp and testSetjmp calls have the correct arguments. 1050 SSAUpdater SetjmpTableSSA; 1051 SSAUpdater SetjmpTableSizeSSA; 1052 SetjmpTableSSA.Initialize(Type::getInt32PtrTy(C), "setjmpTable"); 1053 SetjmpTableSizeSSA.Initialize(Type::getInt32Ty(C), "setjmpTableSize"); 1054 for (Instruction *I : SetjmpTableInsts) 1055 SetjmpTableSSA.AddAvailableValue(I->getParent(), I); 1056 for (Instruction *I : SetjmpTableSizeInsts) 1057 SetjmpTableSizeSSA.AddAvailableValue(I->getParent(), I); 1058 1059 for (auto UI = SetjmpTable->use_begin(), UE = SetjmpTable->use_end(); 1060 UI != UE;) { 1061 // Grab the use before incrementing the iterator. 1062 Use &U = *UI; 1063 // Increment the iterator before removing the use from the list. 1064 ++UI; 1065 if (Instruction *I = dyn_cast<Instruction>(U.getUser())) 1066 if (I->getParent() != &EntryBB) 1067 SetjmpTableSSA.RewriteUse(U); 1068 } 1069 for (auto UI = SetjmpTableSize->use_begin(), UE = SetjmpTableSize->use_end(); 1070 UI != UE;) { 1071 Use &U = *UI; 1072 ++UI; 1073 if (Instruction *I = dyn_cast<Instruction>(U.getUser())) 1074 if (I->getParent() != &EntryBB) 1075 SetjmpTableSizeSSA.RewriteUse(U); 1076 } 1077 1078 // Finally, our modifications to the cfg can break dominance of SSA variables. 1079 // For example, in this code, 1080 // if (x()) { .. setjmp() .. } 1081 // if (y()) { .. longjmp() .. } 1082 // We must split the longjmp block, and it can jump into the block splitted 1083 // from setjmp one. But that means that when we split the setjmp block, it's 1084 // first part no longer dominates its second part - there is a theoretically 1085 // possible control flow path where x() is false, then y() is true and we 1086 // reach the second part of the setjmp block, without ever reaching the first 1087 // part. So, we rebuild SSA form here. 1088 rebuildSSA(F); 1089 return true; 1090 } 1091