1 //- WebAssemblyISelDAGToDAG.cpp - A dag to dag inst selector for WebAssembly -//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file defines an instruction selector for the WebAssembly target.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
15 #include "WebAssembly.h"
16 #include "WebAssemblyTargetMachine.h"
17 #include "llvm/CodeGen/SelectionDAGISel.h"
18 #include "llvm/IR/Function.h" // To access function attributes.
19 #include "llvm/Support/Debug.h"
20 #include "llvm/Support/KnownBits.h"
21 #include "llvm/Support/MathExtras.h"
22 #include "llvm/Support/raw_ostream.h"
23 using namespace llvm;
24 
25 #define DEBUG_TYPE "wasm-isel"
26 
27 //===--------------------------------------------------------------------===//
28 /// WebAssembly-specific code to select WebAssembly machine instructions for
29 /// SelectionDAG operations.
30 ///
31 namespace {
32 class WebAssemblyDAGToDAGISel final : public SelectionDAGISel {
33   /// Keep a pointer to the WebAssemblySubtarget around so that we can make the
34   /// right decision when generating code for different targets.
35   const WebAssemblySubtarget *Subtarget;
36 
37   bool ForCodeSize;
38 
39 public:
40   WebAssemblyDAGToDAGISel(WebAssemblyTargetMachine &TM,
41                           CodeGenOpt::Level OptLevel)
42       : SelectionDAGISel(TM, OptLevel), Subtarget(nullptr), ForCodeSize(false) {
43   }
44 
45   StringRef getPassName() const override {
46     return "WebAssembly Instruction Selection";
47   }
48 
49   bool runOnMachineFunction(MachineFunction &MF) override {
50     LLVM_DEBUG(dbgs() << "********** ISelDAGToDAG **********\n"
51                          "********** Function: "
52                       << MF.getName() << '\n');
53 
54     ForCodeSize = MF.getFunction().hasOptSize();
55     Subtarget = &MF.getSubtarget<WebAssemblySubtarget>();
56     return SelectionDAGISel::runOnMachineFunction(MF);
57   }
58 
59   void Select(SDNode *Node) override;
60 
61   bool SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
62                                     std::vector<SDValue> &OutOps) override;
63 
64 // Include the pieces autogenerated from the target description.
65 #include "WebAssemblyGenDAGISel.inc"
66 
67 private:
68   // add select functions here...
69 };
70 } // end anonymous namespace
71 
72 void WebAssemblyDAGToDAGISel::Select(SDNode *Node) {
73   // If we have a custom node, we already have selected!
74   if (Node->isMachineOpcode()) {
75     LLVM_DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
76     Node->setNodeId(-1);
77     return;
78   }
79 
80   // Few custom selection stuff.
81   SDLoc DL(Node);
82   MachineFunction &MF = CurDAG->getMachineFunction();
83   switch (Node->getOpcode()) {
84   case ISD::ATOMIC_FENCE: {
85     if (!MF.getSubtarget<WebAssemblySubtarget>().hasAtomics())
86       break;
87 
88     uint64_t SyncScopeID =
89         cast<ConstantSDNode>(Node->getOperand(2).getNode())->getZExtValue();
90     switch (SyncScopeID) {
91     case SyncScope::SingleThread: {
92       // We lower a single-thread fence to a pseudo compiler barrier instruction
93       // preventing instruction reordering. This will not be emitted in final
94       // binary.
95       MachineSDNode *Fence =
96           CurDAG->getMachineNode(WebAssembly::COMPILER_FENCE,
97                                  DL,                 // debug loc
98                                  MVT::Other,         // outchain type
99                                  Node->getOperand(0) // inchain
100           );
101       ReplaceNode(Node, Fence);
102       CurDAG->RemoveDeadNode(Node);
103       return;
104     }
105 
106     case SyncScope::System: {
107       // For non-emscripten systems, we have not decided on what we should
108       // traslate fences to yet.
109       if (!Subtarget->getTargetTriple().isOSEmscripten())
110         report_fatal_error(
111             "ATOMIC_FENCE is not yet supported in non-emscripten OSes");
112 
113       // Wasm does not have a fence instruction, but because all atomic
114       // instructions in wasm are sequentially consistent, we translate a
115       // fence to an idempotent atomic RMW instruction to a linear memory
116       // address. All atomic instructions in wasm are sequentially consistent,
117       // but this is to ensure a fence also prevents reordering of non-atomic
118       // instructions in the VM. Even though LLVM IR's fence instruction does
119       // not say anything about its relationship with non-atomic instructions,
120       // we think this is more user-friendly.
121       //
122       // While any address can work, here we use a value stored in
123       // __stack_pointer wasm global because there's high chance that area is
124       // in cache.
125       //
126       // So the selected instructions will be in the form of:
127       //   %addr = get_global $__stack_pointer
128       //   %0 = i32.const 0
129       //   i32.atomic.rmw.or %addr, %0
130       SDValue StackPtrSym = CurDAG->getTargetExternalSymbol(
131           "__stack_pointer", TLI->getPointerTy(CurDAG->getDataLayout()));
132       MachineSDNode *GetGlobal =
133           CurDAG->getMachineNode(WebAssembly::GLOBAL_GET_I32, // opcode
134                                  DL,                          // debug loc
135                                  MVT::i32,                    // result type
136                                  StackPtrSym // __stack_pointer symbol
137           );
138 
139       SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
140       auto *MMO = MF.getMachineMemOperand(
141           MachinePointerInfo::getUnknownStack(MF),
142           // FIXME Volatile isn't really correct, but currently all LLVM
143           // atomic instructions are treated as volatiles in the backend, so
144           // we should be consistent.
145           MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad |
146               MachineMemOperand::MOStore,
147           4, 4, AAMDNodes(), nullptr, SyncScope::System,
148           AtomicOrdering::SequentiallyConsistent);
149       MachineSDNode *Const0 =
150           CurDAG->getMachineNode(WebAssembly::CONST_I32, DL, MVT::i32, Zero);
151       MachineSDNode *AtomicRMW = CurDAG->getMachineNode(
152           WebAssembly::ATOMIC_RMW_OR_I32, // opcode
153           DL,                             // debug loc
154           MVT::i32,                       // result type
155           MVT::Other,                     // outchain type
156           {
157               Zero,                  // alignment
158               Zero,                  // offset
159               SDValue(GetGlobal, 0), // __stack_pointer
160               SDValue(Const0, 0),    // OR with 0 to make it idempotent
161               Node->getOperand(0)    // inchain
162           });
163 
164       CurDAG->setNodeMemRefs(AtomicRMW, {MMO});
165       ReplaceUses(SDValue(Node, 0), SDValue(AtomicRMW, 1));
166       CurDAG->RemoveDeadNode(Node);
167       return;
168     }
169     default:
170       llvm_unreachable("Unknown scope!");
171     }
172   }
173 
174   default:
175     break;
176   }
177 
178   // Select the default instruction.
179   SelectCode(Node);
180 }
181 
182 bool WebAssemblyDAGToDAGISel::SelectInlineAsmMemoryOperand(
183     const SDValue &Op, unsigned ConstraintID, std::vector<SDValue> &OutOps) {
184   switch (ConstraintID) {
185   case InlineAsm::Constraint_i:
186   case InlineAsm::Constraint_m:
187     // We just support simple memory operands that just have a single address
188     // operand and need no special handling.
189     OutOps.push_back(Op);
190     return false;
191   default:
192     break;
193   }
194 
195   return true;
196 }
197 
198 /// This pass converts a legalized DAG into a WebAssembly-specific DAG, ready
199 /// for instruction scheduling.
200 FunctionPass *llvm::createWebAssemblyISelDag(WebAssemblyTargetMachine &TM,
201                                              CodeGenOpt::Level OptLevel) {
202   return new WebAssemblyDAGToDAGISel(TM, OptLevel);
203 }
204