1 //=- WebAssemblyFixIrreducibleControlFlow.cpp - Fix irreducible control flow -// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements a pass that removes irreducible control flow. 11 /// Irreducible control flow means multiple-entry loops, which this pass 12 /// transforms to have a single entry. 13 /// 14 /// Note that LLVM has a generic pass that lowers irreducible control flow, but 15 /// it linearizes control flow, turning diamonds into two triangles, which is 16 /// both unnecessary and undesirable for WebAssembly. 17 /// 18 /// The big picture: We recursively process each "region", defined as a group 19 /// of blocks with a single entry and no branches back to that entry. A region 20 /// may be the entire function body, or the inner part of a loop, i.e., the 21 /// loop's body without branches back to the loop entry. In each region we fix 22 /// up multi-entry loops by adding a new block that can dispatch to each of the 23 /// loop entries, based on the value of a label "helper" variable, and we 24 /// replace direct branches to the entries with assignments to the label 25 /// variable and a branch to the dispatch block. Then the dispatch block is the 26 /// single entry in the loop containing the previous multiple entries. After 27 /// ensuring all the loops in a region are reducible, we recurse into them. The 28 /// total time complexity of this pass is: 29 /// 30 /// O(NumBlocks * NumNestedLoops * NumIrreducibleLoops + 31 /// NumLoops * NumLoops) 32 /// 33 /// This pass is similar to what the Relooper [1] does. Both identify looping 34 /// code that requires multiple entries, and resolve it in a similar way (in 35 /// Relooper terminology, we implement a Multiple shape in a Loop shape). Note 36 /// also that like the Relooper, we implement a "minimal" intervention: we only 37 /// use the "label" helper for the blocks we absolutely must and no others. We 38 /// also prioritize code size and do not duplicate code in order to resolve 39 /// irreducibility. The graph algorithms for finding loops and entries and so 40 /// forth are also similar to the Relooper. The main differences between this 41 /// pass and the Relooper are: 42 /// 43 /// * We just care about irreducibility, so we just look at loops. 44 /// * The Relooper emits structured control flow (with ifs etc.), while we 45 /// emit a CFG. 46 /// 47 /// [1] Alon Zakai. 2011. Emscripten: an LLVM-to-JavaScript compiler. In 48 /// Proceedings of the ACM international conference companion on Object oriented 49 /// programming systems languages and applications companion (SPLASH '11). ACM, 50 /// New York, NY, USA, 301-312. DOI=10.1145/2048147.2048224 51 /// http://doi.acm.org/10.1145/2048147.2048224 52 /// 53 //===----------------------------------------------------------------------===// 54 55 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" 56 #include "WebAssembly.h" 57 #include "WebAssemblySubtarget.h" 58 #include "llvm/CodeGen/MachineFunctionPass.h" 59 #include "llvm/CodeGen/MachineInstrBuilder.h" 60 #include "llvm/Support/Debug.h" 61 using namespace llvm; 62 63 #define DEBUG_TYPE "wasm-fix-irreducible-control-flow" 64 65 namespace { 66 67 using BlockVector = SmallVector<MachineBasicBlock *, 4>; 68 using BlockSet = SmallPtrSet<MachineBasicBlock *, 4>; 69 70 static BlockVector getSortedEntries(const BlockSet &Entries) { 71 BlockVector SortedEntries(Entries.begin(), Entries.end()); 72 llvm::sort(SortedEntries, 73 [](const MachineBasicBlock *A, const MachineBasicBlock *B) { 74 auto ANum = A->getNumber(); 75 auto BNum = B->getNumber(); 76 return ANum < BNum; 77 }); 78 return SortedEntries; 79 } 80 81 // Calculates reachability in a region. Ignores branches to blocks outside of 82 // the region, and ignores branches to the region entry (for the case where 83 // the region is the inner part of a loop). 84 class ReachabilityGraph { 85 public: 86 ReachabilityGraph(MachineBasicBlock *Entry, const BlockSet &Blocks) 87 : Entry(Entry), Blocks(Blocks) { 88 #ifndef NDEBUG 89 // The region must have a single entry. 90 for (auto *MBB : Blocks) { 91 if (MBB != Entry) { 92 for (auto *Pred : MBB->predecessors()) { 93 assert(inRegion(Pred)); 94 } 95 } 96 } 97 #endif 98 calculate(); 99 } 100 101 bool canReach(MachineBasicBlock *From, MachineBasicBlock *To) const { 102 assert(inRegion(From) && inRegion(To)); 103 auto I = Reachable.find(From); 104 if (I == Reachable.end()) 105 return false; 106 return I->second.count(To); 107 } 108 109 // "Loopers" are blocks that are in a loop. We detect these by finding blocks 110 // that can reach themselves. 111 const BlockSet &getLoopers() const { return Loopers; } 112 113 // Get all blocks that are loop entries. 114 const BlockSet &getLoopEntries() const { return LoopEntries; } 115 116 // Get all blocks that enter a particular loop from outside. 117 const BlockSet &getLoopEnterers(MachineBasicBlock *LoopEntry) const { 118 assert(inRegion(LoopEntry)); 119 auto I = LoopEnterers.find(LoopEntry); 120 assert(I != LoopEnterers.end()); 121 return I->second; 122 } 123 124 private: 125 MachineBasicBlock *Entry; 126 const BlockSet &Blocks; 127 128 BlockSet Loopers, LoopEntries; 129 DenseMap<MachineBasicBlock *, BlockSet> LoopEnterers; 130 131 bool inRegion(MachineBasicBlock *MBB) const { return Blocks.count(MBB); } 132 133 // Maps a block to all the other blocks it can reach. 134 DenseMap<MachineBasicBlock *, BlockSet> Reachable; 135 136 void calculate() { 137 // Reachability computation work list. Contains pairs of recent additions 138 // (A, B) where we just added a link A => B. 139 using BlockPair = std::pair<MachineBasicBlock *, MachineBasicBlock *>; 140 SmallVector<BlockPair, 4> WorkList; 141 142 // Add all relevant direct branches. 143 for (auto *MBB : Blocks) { 144 for (auto *Succ : MBB->successors()) { 145 if (Succ != Entry && inRegion(Succ)) { 146 Reachable[MBB].insert(Succ); 147 WorkList.emplace_back(MBB, Succ); 148 } 149 } 150 } 151 152 while (!WorkList.empty()) { 153 MachineBasicBlock *MBB, *Succ; 154 std::tie(MBB, Succ) = WorkList.pop_back_val(); 155 assert(inRegion(MBB) && Succ != Entry && inRegion(Succ)); 156 if (MBB != Entry) { 157 // We recently added MBB => Succ, and that means we may have enabled 158 // Pred => MBB => Succ. 159 for (auto *Pred : MBB->predecessors()) { 160 if (Reachable[Pred].insert(Succ).second) { 161 WorkList.emplace_back(Pred, Succ); 162 } 163 } 164 } 165 } 166 167 // Blocks that can return to themselves are in a loop. 168 for (auto *MBB : Blocks) { 169 if (canReach(MBB, MBB)) { 170 Loopers.insert(MBB); 171 } 172 } 173 assert(!Loopers.count(Entry)); 174 175 // Find the loop entries - loopers reachable from blocks not in that loop - 176 // and those outside blocks that reach them, the "loop enterers". 177 for (auto *Looper : Loopers) { 178 for (auto *Pred : Looper->predecessors()) { 179 // Pred can reach Looper. If Looper can reach Pred, it is in the loop; 180 // otherwise, it is a block that enters into the loop. 181 if (!canReach(Looper, Pred)) { 182 LoopEntries.insert(Looper); 183 LoopEnterers[Looper].insert(Pred); 184 } 185 } 186 } 187 } 188 }; 189 190 // Finds the blocks in a single-entry loop, given the loop entry and the 191 // list of blocks that enter the loop. 192 class LoopBlocks { 193 public: 194 LoopBlocks(MachineBasicBlock *Entry, const BlockSet &Enterers) 195 : Entry(Entry), Enterers(Enterers) { 196 calculate(); 197 } 198 199 BlockSet &getBlocks() { return Blocks; } 200 201 private: 202 MachineBasicBlock *Entry; 203 const BlockSet &Enterers; 204 205 BlockSet Blocks; 206 207 void calculate() { 208 // Going backwards from the loop entry, if we ignore the blocks entering 209 // from outside, we will traverse all the blocks in the loop. 210 BlockVector WorkList; 211 BlockSet AddedToWorkList; 212 Blocks.insert(Entry); 213 for (auto *Pred : Entry->predecessors()) { 214 if (!Enterers.count(Pred)) { 215 WorkList.push_back(Pred); 216 AddedToWorkList.insert(Pred); 217 } 218 } 219 220 while (!WorkList.empty()) { 221 auto *MBB = WorkList.pop_back_val(); 222 assert(!Enterers.count(MBB)); 223 if (Blocks.insert(MBB).second) { 224 for (auto *Pred : MBB->predecessors()) { 225 if (!AddedToWorkList.count(Pred)) { 226 WorkList.push_back(Pred); 227 AddedToWorkList.insert(Pred); 228 } 229 } 230 } 231 } 232 } 233 }; 234 235 class WebAssemblyFixIrreducibleControlFlow final : public MachineFunctionPass { 236 StringRef getPassName() const override { 237 return "WebAssembly Fix Irreducible Control Flow"; 238 } 239 240 bool runOnMachineFunction(MachineFunction &MF) override; 241 242 bool processRegion(MachineBasicBlock *Entry, BlockSet &Blocks, 243 MachineFunction &MF); 244 245 void makeSingleEntryLoop(BlockSet &Entries, BlockSet &Blocks, 246 MachineFunction &MF, const ReachabilityGraph &Graph); 247 248 public: 249 static char ID; // Pass identification, replacement for typeid 250 WebAssemblyFixIrreducibleControlFlow() : MachineFunctionPass(ID) {} 251 }; 252 253 bool WebAssemblyFixIrreducibleControlFlow::processRegion( 254 MachineBasicBlock *Entry, BlockSet &Blocks, MachineFunction &MF) { 255 bool Changed = false; 256 // Remove irreducibility before processing child loops, which may take 257 // multiple iterations. 258 while (true) { 259 ReachabilityGraph Graph(Entry, Blocks); 260 261 bool FoundIrreducibility = false; 262 263 for (auto *LoopEntry : getSortedEntries(Graph.getLoopEntries())) { 264 // Find mutual entries - all entries which can reach this one, and 265 // are reached by it (that always includes LoopEntry itself). All mutual 266 // entries must be in the same loop, so if we have more than one, then we 267 // have irreducible control flow. 268 // 269 // (Note that we need to sort the entries here, as otherwise the order can 270 // matter: being mutual is a symmetric relationship, and each set of 271 // mutuals will be handled properly no matter which we see first. However, 272 // there can be multiple disjoint sets of mutuals, and which we process 273 // first changes the output.) 274 // 275 // Note that irreducibility may involve inner loops, e.g. imagine A 276 // starts one loop, and it has B inside it which starts an inner loop. 277 // If we add a branch from all the way on the outside to B, then in a 278 // sense B is no longer an "inner" loop, semantically speaking. We will 279 // fix that irreducibility by adding a block that dispatches to either 280 // either A or B, so B will no longer be an inner loop in our output. 281 // (A fancier approach might try to keep it as such.) 282 // 283 // Note that we still need to recurse into inner loops later, to handle 284 // the case where the irreducibility is entirely nested - we would not 285 // be able to identify that at this point, since the enclosing loop is 286 // a group of blocks all of whom can reach each other. (We'll see the 287 // irreducibility after removing branches to the top of that enclosing 288 // loop.) 289 BlockSet MutualLoopEntries; 290 MutualLoopEntries.insert(LoopEntry); 291 for (auto *OtherLoopEntry : Graph.getLoopEntries()) { 292 if (OtherLoopEntry != LoopEntry && 293 Graph.canReach(LoopEntry, OtherLoopEntry) && 294 Graph.canReach(OtherLoopEntry, LoopEntry)) { 295 MutualLoopEntries.insert(OtherLoopEntry); 296 } 297 } 298 299 if (MutualLoopEntries.size() > 1) { 300 makeSingleEntryLoop(MutualLoopEntries, Blocks, MF, Graph); 301 FoundIrreducibility = true; 302 Changed = true; 303 break; 304 } 305 } 306 // Only go on to actually process the inner loops when we are done 307 // removing irreducible control flow and changing the graph. Modifying 308 // the graph as we go is possible, and that might let us avoid looking at 309 // the already-fixed loops again if we are careful, but all that is 310 // complex and bug-prone. Since irreducible loops are rare, just starting 311 // another iteration is best. 312 if (FoundIrreducibility) { 313 continue; 314 } 315 316 for (auto *LoopEntry : Graph.getLoopEntries()) { 317 LoopBlocks InnerBlocks(LoopEntry, Graph.getLoopEnterers(LoopEntry)); 318 // Each of these calls to processRegion may change the graph, but are 319 // guaranteed not to interfere with each other. The only changes we make 320 // to the graph are to add blocks on the way to a loop entry. As the 321 // loops are disjoint, that means we may only alter branches that exit 322 // another loop, which are ignored when recursing into that other loop 323 // anyhow. 324 if (processRegion(LoopEntry, InnerBlocks.getBlocks(), MF)) { 325 Changed = true; 326 } 327 } 328 329 return Changed; 330 } 331 } 332 333 // Given a set of entries to a single loop, create a single entry for that 334 // loop by creating a dispatch block for them, routing control flow using 335 // a helper variable. Also updates Blocks with any new blocks created, so 336 // that we properly track all the blocks in the region. But this does not update 337 // ReachabilityGraph; this will be updated in the caller of this function as 338 // needed. 339 void WebAssemblyFixIrreducibleControlFlow::makeSingleEntryLoop( 340 BlockSet &Entries, BlockSet &Blocks, MachineFunction &MF, 341 const ReachabilityGraph &Graph) { 342 assert(Entries.size() >= 2); 343 344 // Sort the entries to ensure a deterministic build. 345 BlockVector SortedEntries = getSortedEntries(Entries); 346 347 #ifndef NDEBUG 348 for (auto Block : SortedEntries) 349 assert(Block->getNumber() != -1); 350 if (SortedEntries.size() > 1) { 351 for (auto I = SortedEntries.begin(), E = SortedEntries.end() - 1; I != E; 352 ++I) { 353 auto ANum = (*I)->getNumber(); 354 auto BNum = (*(std::next(I)))->getNumber(); 355 assert(ANum != BNum); 356 } 357 } 358 #endif 359 360 // Create a dispatch block which will contain a jump table to the entries. 361 MachineBasicBlock *Dispatch = MF.CreateMachineBasicBlock(); 362 MF.insert(MF.end(), Dispatch); 363 Blocks.insert(Dispatch); 364 365 // Add the jump table. 366 const auto &TII = *MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo(); 367 MachineInstrBuilder MIB = 368 BuildMI(Dispatch, DebugLoc(), TII.get(WebAssembly::BR_TABLE_I32)); 369 370 // Add the register which will be used to tell the jump table which block to 371 // jump to. 372 MachineRegisterInfo &MRI = MF.getRegInfo(); 373 Register Reg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 374 MIB.addReg(Reg); 375 376 // Compute the indices in the superheader, one for each bad block, and 377 // add them as successors. 378 DenseMap<MachineBasicBlock *, unsigned> Indices; 379 for (auto *Entry : SortedEntries) { 380 auto Pair = Indices.insert(std::make_pair(Entry, 0)); 381 assert(Pair.second); 382 383 unsigned Index = MIB.getInstr()->getNumExplicitOperands() - 1; 384 Pair.first->second = Index; 385 386 MIB.addMBB(Entry); 387 Dispatch->addSuccessor(Entry); 388 } 389 390 // Rewrite the problematic successors for every block that wants to reach 391 // the bad blocks. For simplicity, we just introduce a new block for every 392 // edge we need to rewrite. (Fancier things are possible.) 393 394 BlockVector AllPreds; 395 for (auto *Entry : SortedEntries) { 396 for (auto *Pred : Entry->predecessors()) { 397 if (Pred != Dispatch) { 398 AllPreds.push_back(Pred); 399 } 400 } 401 } 402 403 // This set stores predecessors within this loop. 404 DenseSet<MachineBasicBlock *> InLoop; 405 for (auto *Pred : AllPreds) { 406 for (auto *Entry : Pred->successors()) { 407 if (!Entries.count(Entry)) 408 continue; 409 if (Graph.canReach(Entry, Pred)) { 410 InLoop.insert(Pred); 411 break; 412 } 413 } 414 } 415 416 // Record if each entry has a layout predecessor. This map stores 417 // <<loop entry, Predecessor is within the loop?>, layout predecessor> 418 DenseMap<PointerIntPair<MachineBasicBlock *, 1, bool>, MachineBasicBlock *> 419 EntryToLayoutPred; 420 for (auto *Pred : AllPreds) { 421 bool PredInLoop = InLoop.count(Pred); 422 for (auto *Entry : Pred->successors()) 423 if (Entries.count(Entry) && Pred->isLayoutSuccessor(Entry)) 424 EntryToLayoutPred[{Entry, PredInLoop}] = Pred; 425 } 426 427 // We need to create at most two routing blocks per entry: one for 428 // predecessors outside the loop and one for predecessors inside the loop. 429 // This map stores 430 // <<loop entry, Predecessor is within the loop?>, routing block> 431 DenseMap<PointerIntPair<MachineBasicBlock *, 1, bool>, MachineBasicBlock *> 432 Map; 433 for (auto *Pred : AllPreds) { 434 bool PredInLoop = InLoop.count(Pred); 435 for (auto *Entry : Pred->successors()) { 436 if (!Entries.count(Entry) || Map.count({Entry, PredInLoop})) 437 continue; 438 // If there exists a layout predecessor of this entry and this predecessor 439 // is not that, we rather create a routing block after that layout 440 // predecessor to save a branch. 441 if (auto *OtherPred = EntryToLayoutPred.lookup({Entry, PredInLoop})) 442 if (OtherPred != Pred) 443 continue; 444 445 // This is a successor we need to rewrite. 446 MachineBasicBlock *Routing = MF.CreateMachineBasicBlock(); 447 MF.insert(Pred->isLayoutSuccessor(Entry) 448 ? MachineFunction::iterator(Entry) 449 : MF.end(), 450 Routing); 451 Blocks.insert(Routing); 452 453 // Set the jump table's register of the index of the block we wish to 454 // jump to, and jump to the jump table. 455 BuildMI(Routing, DebugLoc(), TII.get(WebAssembly::CONST_I32), Reg) 456 .addImm(Indices[Entry]); 457 BuildMI(Routing, DebugLoc(), TII.get(WebAssembly::BR)).addMBB(Dispatch); 458 Routing->addSuccessor(Dispatch); 459 Map[{Entry, PredInLoop}] = Routing; 460 } 461 } 462 463 for (auto *Pred : AllPreds) { 464 bool PredInLoop = InLoop.count(Pred); 465 // Remap the terminator operands and the successor list. 466 for (MachineInstr &Term : Pred->terminators()) 467 for (auto &Op : Term.explicit_uses()) 468 if (Op.isMBB() && Indices.count(Op.getMBB())) 469 Op.setMBB(Map[{Op.getMBB(), PredInLoop}]); 470 471 for (auto *Succ : Pred->successors()) { 472 if (!Entries.count(Succ)) 473 continue; 474 auto *Routing = Map[{Succ, PredInLoop}]; 475 Pred->replaceSuccessor(Succ, Routing); 476 } 477 } 478 479 // Create a fake default label, because br_table requires one. 480 MIB.addMBB(MIB.getInstr() 481 ->getOperand(MIB.getInstr()->getNumExplicitOperands() - 1) 482 .getMBB()); 483 } 484 485 } // end anonymous namespace 486 487 char WebAssemblyFixIrreducibleControlFlow::ID = 0; 488 INITIALIZE_PASS(WebAssemblyFixIrreducibleControlFlow, DEBUG_TYPE, 489 "Removes irreducible control flow", false, false) 490 491 FunctionPass *llvm::createWebAssemblyFixIrreducibleControlFlow() { 492 return new WebAssemblyFixIrreducibleControlFlow(); 493 } 494 495 bool WebAssemblyFixIrreducibleControlFlow::runOnMachineFunction( 496 MachineFunction &MF) { 497 LLVM_DEBUG(dbgs() << "********** Fixing Irreducible Control Flow **********\n" 498 "********** Function: " 499 << MF.getName() << '\n'); 500 501 // Start the recursive process on the entire function body. 502 BlockSet AllBlocks; 503 for (auto &MBB : MF) { 504 AllBlocks.insert(&MBB); 505 } 506 507 if (LLVM_UNLIKELY(processRegion(&*MF.begin(), AllBlocks, MF))) { 508 // We rewrote part of the function; recompute relevant things. 509 MF.getRegInfo().invalidateLiveness(); 510 MF.RenumberBlocks(); 511 return true; 512 } 513 514 return false; 515 } 516