1 //===-- VEISelLowering.cpp - VE DAG Lowering Implementation ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the interfaces that VE uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "VEISelLowering.h" 15 #include "MCTargetDesc/VEMCExpr.h" 16 #include "VECustomDAG.h" 17 #include "VEInstrBuilder.h" 18 #include "VEMachineFunctionInfo.h" 19 #include "VERegisterInfo.h" 20 #include "VETargetMachine.h" 21 #include "llvm/ADT/StringSwitch.h" 22 #include "llvm/CodeGen/CallingConvLower.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineJumpTableInfo.h" 27 #include "llvm/CodeGen/MachineModuleInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/SelectionDAG.h" 30 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/KnownBits.h" 37 using namespace llvm; 38 39 #define DEBUG_TYPE "ve-lower" 40 41 //===----------------------------------------------------------------------===// 42 // Calling Convention Implementation 43 //===----------------------------------------------------------------------===// 44 45 #include "VEGenCallingConv.inc" 46 47 CCAssignFn *getReturnCC(CallingConv::ID CallConv) { 48 switch (CallConv) { 49 default: 50 return RetCC_VE_C; 51 case CallingConv::Fast: 52 return RetCC_VE_Fast; 53 } 54 } 55 56 CCAssignFn *getParamCC(CallingConv::ID CallConv, bool IsVarArg) { 57 if (IsVarArg) 58 return CC_VE2; 59 switch (CallConv) { 60 default: 61 return CC_VE_C; 62 case CallingConv::Fast: 63 return CC_VE_Fast; 64 } 65 } 66 67 bool VETargetLowering::CanLowerReturn( 68 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 69 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 70 CCAssignFn *RetCC = getReturnCC(CallConv); 71 SmallVector<CCValAssign, 16> RVLocs; 72 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 73 return CCInfo.CheckReturn(Outs, RetCC); 74 } 75 76 static const MVT AllVectorVTs[] = {MVT::v256i32, MVT::v512i32, MVT::v256i64, 77 MVT::v256f32, MVT::v512f32, MVT::v256f64}; 78 79 static const MVT AllMaskVTs[] = {MVT::v256i1, MVT::v512i1}; 80 81 static const MVT AllPackedVTs[] = {MVT::v512i32, MVT::v512f32}; 82 83 void VETargetLowering::initRegisterClasses() { 84 // Set up the register classes. 85 addRegisterClass(MVT::i32, &VE::I32RegClass); 86 addRegisterClass(MVT::i64, &VE::I64RegClass); 87 addRegisterClass(MVT::f32, &VE::F32RegClass); 88 addRegisterClass(MVT::f64, &VE::I64RegClass); 89 addRegisterClass(MVT::f128, &VE::F128RegClass); 90 91 if (Subtarget->enableVPU()) { 92 for (MVT VecVT : AllVectorVTs) 93 addRegisterClass(VecVT, &VE::V64RegClass); 94 addRegisterClass(MVT::v256i1, &VE::VMRegClass); 95 addRegisterClass(MVT::v512i1, &VE::VM512RegClass); 96 } 97 } 98 99 void VETargetLowering::initSPUActions() { 100 const auto &TM = getTargetMachine(); 101 /// Load & Store { 102 103 // VE doesn't have i1 sign extending load. 104 for (MVT VT : MVT::integer_valuetypes()) { 105 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 106 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 107 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 108 setTruncStoreAction(VT, MVT::i1, Expand); 109 } 110 111 // VE doesn't have floating point extload/truncstore, so expand them. 112 for (MVT FPVT : MVT::fp_valuetypes()) { 113 for (MVT OtherFPVT : MVT::fp_valuetypes()) { 114 setLoadExtAction(ISD::EXTLOAD, FPVT, OtherFPVT, Expand); 115 setTruncStoreAction(FPVT, OtherFPVT, Expand); 116 } 117 } 118 119 // VE doesn't have fp128 load/store, so expand them in custom lower. 120 setOperationAction(ISD::LOAD, MVT::f128, Custom); 121 setOperationAction(ISD::STORE, MVT::f128, Custom); 122 123 /// } Load & Store 124 125 // Custom legalize address nodes into LO/HI parts. 126 MVT PtrVT = MVT::getIntegerVT(TM.getPointerSizeInBits(0)); 127 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 128 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 129 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 130 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 131 setOperationAction(ISD::JumpTable, PtrVT, Custom); 132 133 /// VAARG handling { 134 setOperationAction(ISD::VASTART, MVT::Other, Custom); 135 // VAARG needs to be lowered to access with 8 bytes alignment. 136 setOperationAction(ISD::VAARG, MVT::Other, Custom); 137 // Use the default implementation. 138 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 139 setOperationAction(ISD::VAEND, MVT::Other, Expand); 140 /// } VAARG handling 141 142 /// Stack { 143 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 144 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom); 145 146 // Use the default implementation. 147 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 148 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 149 /// } Stack 150 151 /// Branch { 152 153 // VE doesn't have BRCOND 154 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 155 156 // BR_JT is not implemented yet. 157 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 158 159 /// } Branch 160 161 /// Int Ops { 162 for (MVT IntVT : {MVT::i32, MVT::i64}) { 163 // VE has no REM or DIVREM operations. 164 setOperationAction(ISD::UREM, IntVT, Expand); 165 setOperationAction(ISD::SREM, IntVT, Expand); 166 setOperationAction(ISD::SDIVREM, IntVT, Expand); 167 setOperationAction(ISD::UDIVREM, IntVT, Expand); 168 169 // VE has no SHL_PARTS/SRA_PARTS/SRL_PARTS operations. 170 setOperationAction(ISD::SHL_PARTS, IntVT, Expand); 171 setOperationAction(ISD::SRA_PARTS, IntVT, Expand); 172 setOperationAction(ISD::SRL_PARTS, IntVT, Expand); 173 174 // VE has no MULHU/S or U/SMUL_LOHI operations. 175 // TODO: Use MPD instruction to implement SMUL_LOHI for i32 type. 176 setOperationAction(ISD::MULHU, IntVT, Expand); 177 setOperationAction(ISD::MULHS, IntVT, Expand); 178 setOperationAction(ISD::UMUL_LOHI, IntVT, Expand); 179 setOperationAction(ISD::SMUL_LOHI, IntVT, Expand); 180 181 // VE has no CTTZ, ROTL, ROTR operations. 182 setOperationAction(ISD::CTTZ, IntVT, Expand); 183 setOperationAction(ISD::ROTL, IntVT, Expand); 184 setOperationAction(ISD::ROTR, IntVT, Expand); 185 186 // VE has 64 bits instruction which works as i64 BSWAP operation. This 187 // instruction works fine as i32 BSWAP operation with an additional 188 // parameter. Use isel patterns to lower BSWAP. 189 setOperationAction(ISD::BSWAP, IntVT, Legal); 190 191 // VE has only 64 bits instructions which work as i64 BITREVERSE/CTLZ/CTPOP 192 // operations. Use isel patterns for i64, promote for i32. 193 LegalizeAction Act = (IntVT == MVT::i32) ? Promote : Legal; 194 setOperationAction(ISD::BITREVERSE, IntVT, Act); 195 setOperationAction(ISD::CTLZ, IntVT, Act); 196 setOperationAction(ISD::CTLZ_ZERO_UNDEF, IntVT, Act); 197 setOperationAction(ISD::CTPOP, IntVT, Act); 198 199 // VE has only 64 bits instructions which work as i64 AND/OR/XOR operations. 200 // Use isel patterns for i64, promote for i32. 201 setOperationAction(ISD::AND, IntVT, Act); 202 setOperationAction(ISD::OR, IntVT, Act); 203 setOperationAction(ISD::XOR, IntVT, Act); 204 } 205 /// } Int Ops 206 207 /// Conversion { 208 // VE doesn't have instructions for fp<->uint, so expand them by llvm 209 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote); // use i64 210 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); // use i64 211 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 212 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 213 214 // fp16 not supported 215 for (MVT FPVT : MVT::fp_valuetypes()) { 216 setOperationAction(ISD::FP16_TO_FP, FPVT, Expand); 217 setOperationAction(ISD::FP_TO_FP16, FPVT, Expand); 218 } 219 /// } Conversion 220 221 /// Floating-point Ops { 222 /// Note: Floating-point operations are fneg, fadd, fsub, fmul, fdiv, frem, 223 /// and fcmp. 224 225 // VE doesn't have following floating point operations. 226 for (MVT VT : MVT::fp_valuetypes()) { 227 setOperationAction(ISD::FNEG, VT, Expand); 228 setOperationAction(ISD::FREM, VT, Expand); 229 } 230 231 // VE doesn't have fdiv of f128. 232 setOperationAction(ISD::FDIV, MVT::f128, Expand); 233 234 for (MVT FPVT : {MVT::f32, MVT::f64}) { 235 // f32 and f64 uses ConstantFP. f128 uses ConstantPool. 236 setOperationAction(ISD::ConstantFP, FPVT, Legal); 237 } 238 /// } Floating-point Ops 239 240 /// Floating-point math functions { 241 242 // VE doesn't have following floating point math functions. 243 for (MVT VT : MVT::fp_valuetypes()) { 244 setOperationAction(ISD::FABS, VT, Expand); 245 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 246 setOperationAction(ISD::FCOS, VT, Expand); 247 setOperationAction(ISD::FSIN, VT, Expand); 248 setOperationAction(ISD::FSQRT, VT, Expand); 249 } 250 251 /// } Floating-point math functions 252 253 /// Atomic instructions { 254 255 setMaxAtomicSizeInBitsSupported(64); 256 setMinCmpXchgSizeInBits(32); 257 setSupportsUnalignedAtomics(false); 258 259 // Use custom inserter for ATOMIC_FENCE. 260 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 261 262 // Other atomic instructions. 263 for (MVT VT : MVT::integer_valuetypes()) { 264 // Support i8/i16 atomic swap. 265 setOperationAction(ISD::ATOMIC_SWAP, VT, Custom); 266 267 // FIXME: Support "atmam" instructions. 268 setOperationAction(ISD::ATOMIC_LOAD_ADD, VT, Expand); 269 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Expand); 270 setOperationAction(ISD::ATOMIC_LOAD_AND, VT, Expand); 271 setOperationAction(ISD::ATOMIC_LOAD_OR, VT, Expand); 272 273 // VE doesn't have follwing instructions. 274 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand); 275 setOperationAction(ISD::ATOMIC_LOAD_CLR, VT, Expand); 276 setOperationAction(ISD::ATOMIC_LOAD_XOR, VT, Expand); 277 setOperationAction(ISD::ATOMIC_LOAD_NAND, VT, Expand); 278 setOperationAction(ISD::ATOMIC_LOAD_MIN, VT, Expand); 279 setOperationAction(ISD::ATOMIC_LOAD_MAX, VT, Expand); 280 setOperationAction(ISD::ATOMIC_LOAD_UMIN, VT, Expand); 281 setOperationAction(ISD::ATOMIC_LOAD_UMAX, VT, Expand); 282 } 283 284 /// } Atomic instructions 285 286 /// SJLJ instructions { 287 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 288 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 289 setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH, MVT::Other, Custom); 290 if (TM.Options.ExceptionModel == ExceptionHandling::SjLj) 291 setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume"); 292 /// } SJLJ instructions 293 294 // Intrinsic instructions 295 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 296 } 297 298 void VETargetLowering::initVPUActions() { 299 for (MVT LegalMaskVT : AllMaskVTs) 300 setOperationAction(ISD::BUILD_VECTOR, LegalMaskVT, Custom); 301 302 for (unsigned Opc : {ISD::AND, ISD::OR, ISD::XOR}) 303 setOperationAction(Opc, MVT::v512i1, Custom); 304 305 for (MVT LegalVecVT : AllVectorVTs) { 306 setOperationAction(ISD::BUILD_VECTOR, LegalVecVT, Custom); 307 setOperationAction(ISD::INSERT_VECTOR_ELT, LegalVecVT, Legal); 308 setOperationAction(ISD::EXTRACT_VECTOR_ELT, LegalVecVT, Legal); 309 // Translate all vector instructions with legal element types to VVP_* 310 // nodes. 311 // TODO We will custom-widen into VVP_* nodes in the future. While we are 312 // buildling the infrastructure for this, we only do this for legal vector 313 // VTs. 314 #define HANDLE_VP_TO_VVP(VP_OPC, VVP_NAME) \ 315 setOperationAction(ISD::VP_OPC, LegalVecVT, Custom); 316 #define ADD_VVP_OP(VVP_NAME, ISD_NAME) \ 317 setOperationAction(ISD::ISD_NAME, LegalVecVT, Custom); 318 setOperationAction(ISD::EXPERIMENTAL_VP_STRIDED_LOAD, LegalVecVT, Custom); 319 setOperationAction(ISD::EXPERIMENTAL_VP_STRIDED_STORE, LegalVecVT, Custom); 320 #include "VVPNodes.def" 321 } 322 323 for (MVT LegalPackedVT : AllPackedVTs) { 324 setOperationAction(ISD::INSERT_VECTOR_ELT, LegalPackedVT, Custom); 325 setOperationAction(ISD::EXTRACT_VECTOR_ELT, LegalPackedVT, Custom); 326 } 327 328 // vNt32, vNt64 ops (legal element types) 329 for (MVT VT : MVT::vector_valuetypes()) { 330 MVT ElemVT = VT.getVectorElementType(); 331 unsigned ElemBits = ElemVT.getScalarSizeInBits(); 332 if (ElemBits != 32 && ElemBits != 64) 333 continue; 334 335 for (unsigned MemOpc : {ISD::MLOAD, ISD::MSTORE, ISD::LOAD, ISD::STORE}) 336 setOperationAction(MemOpc, VT, Custom); 337 338 const ISD::NodeType IntReductionOCs[] = { 339 ISD::VECREDUCE_ADD, ISD::VECREDUCE_MUL, ISD::VECREDUCE_AND, 340 ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR, ISD::VECREDUCE_SMIN, 341 ISD::VECREDUCE_SMAX, ISD::VECREDUCE_UMIN, ISD::VECREDUCE_UMAX}; 342 343 for (unsigned IntRedOpc : IntReductionOCs) 344 setOperationAction(IntRedOpc, VT, Custom); 345 } 346 } 347 348 SDValue 349 VETargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 350 bool IsVarArg, 351 const SmallVectorImpl<ISD::OutputArg> &Outs, 352 const SmallVectorImpl<SDValue> &OutVals, 353 const SDLoc &DL, SelectionDAG &DAG) const { 354 // CCValAssign - represent the assignment of the return value to locations. 355 SmallVector<CCValAssign, 16> RVLocs; 356 357 // CCState - Info about the registers and stack slot. 358 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 359 *DAG.getContext()); 360 361 // Analyze return values. 362 CCInfo.AnalyzeReturn(Outs, getReturnCC(CallConv)); 363 364 SDValue Flag; 365 SmallVector<SDValue, 4> RetOps(1, Chain); 366 367 // Copy the result values into the output registers. 368 for (unsigned i = 0; i != RVLocs.size(); ++i) { 369 CCValAssign &VA = RVLocs[i]; 370 assert(VA.isRegLoc() && "Can only return in registers!"); 371 assert(!VA.needsCustom() && "Unexpected custom lowering"); 372 SDValue OutVal = OutVals[i]; 373 374 // Integer return values must be sign or zero extended by the callee. 375 switch (VA.getLocInfo()) { 376 case CCValAssign::Full: 377 break; 378 case CCValAssign::SExt: 379 OutVal = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), OutVal); 380 break; 381 case CCValAssign::ZExt: 382 OutVal = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), OutVal); 383 break; 384 case CCValAssign::AExt: 385 OutVal = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), OutVal); 386 break; 387 case CCValAssign::BCvt: { 388 // Convert a float return value to i64 with padding. 389 // 63 31 0 390 // +------+------+ 391 // | float| 0 | 392 // +------+------+ 393 assert(VA.getLocVT() == MVT::i64); 394 assert(VA.getValVT() == MVT::f32); 395 SDValue Undef = SDValue( 396 DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::i64), 0); 397 SDValue Sub_f32 = DAG.getTargetConstant(VE::sub_f32, DL, MVT::i32); 398 OutVal = SDValue(DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 399 MVT::i64, Undef, OutVal, Sub_f32), 400 0); 401 break; 402 } 403 default: 404 llvm_unreachable("Unknown loc info!"); 405 } 406 407 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVal, Flag); 408 409 // Guarantee that all emitted copies are stuck together with flags. 410 Flag = Chain.getValue(1); 411 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 412 } 413 414 RetOps[0] = Chain; // Update chain. 415 416 // Add the flag if we have it. 417 if (Flag.getNode()) 418 RetOps.push_back(Flag); 419 420 return DAG.getNode(VEISD::RET_FLAG, DL, MVT::Other, RetOps); 421 } 422 423 SDValue VETargetLowering::LowerFormalArguments( 424 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 425 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 426 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 427 MachineFunction &MF = DAG.getMachineFunction(); 428 429 // Get the base offset of the incoming arguments stack space. 430 unsigned ArgsBaseOffset = Subtarget->getRsaSize(); 431 // Get the size of the preserved arguments area 432 unsigned ArgsPreserved = 64; 433 434 // Analyze arguments according to CC_VE. 435 SmallVector<CCValAssign, 16> ArgLocs; 436 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, 437 *DAG.getContext()); 438 // Allocate the preserved area first. 439 CCInfo.AllocateStack(ArgsPreserved, Align(8)); 440 // We already allocated the preserved area, so the stack offset computed 441 // by CC_VE would be correct now. 442 CCInfo.AnalyzeFormalArguments(Ins, getParamCC(CallConv, false)); 443 444 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 445 CCValAssign &VA = ArgLocs[i]; 446 assert(!VA.needsCustom() && "Unexpected custom lowering"); 447 if (VA.isRegLoc()) { 448 // This argument is passed in a register. 449 // All integer register arguments are promoted by the caller to i64. 450 451 // Create a virtual register for the promoted live-in value. 452 Register VReg = 453 MF.addLiveIn(VA.getLocReg(), getRegClassFor(VA.getLocVT())); 454 SDValue Arg = DAG.getCopyFromReg(Chain, DL, VReg, VA.getLocVT()); 455 456 // The caller promoted the argument, so insert an Assert?ext SDNode so we 457 // won't promote the value again in this function. 458 switch (VA.getLocInfo()) { 459 case CCValAssign::SExt: 460 Arg = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Arg, 461 DAG.getValueType(VA.getValVT())); 462 break; 463 case CCValAssign::ZExt: 464 Arg = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Arg, 465 DAG.getValueType(VA.getValVT())); 466 break; 467 case CCValAssign::BCvt: { 468 // Extract a float argument from i64 with padding. 469 // 63 31 0 470 // +------+------+ 471 // | float| 0 | 472 // +------+------+ 473 assert(VA.getLocVT() == MVT::i64); 474 assert(VA.getValVT() == MVT::f32); 475 SDValue Sub_f32 = DAG.getTargetConstant(VE::sub_f32, DL, MVT::i32); 476 Arg = SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 477 MVT::f32, Arg, Sub_f32), 478 0); 479 break; 480 } 481 default: 482 break; 483 } 484 485 // Truncate the register down to the argument type. 486 if (VA.isExtInLoc()) 487 Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg); 488 489 InVals.push_back(Arg); 490 continue; 491 } 492 493 // The registers are exhausted. This argument was passed on the stack. 494 assert(VA.isMemLoc()); 495 // The CC_VE_Full/Half functions compute stack offsets relative to the 496 // beginning of the arguments area at %fp + the size of reserved area. 497 unsigned Offset = VA.getLocMemOffset() + ArgsBaseOffset; 498 unsigned ValSize = VA.getValVT().getSizeInBits() / 8; 499 500 // Adjust offset for a float argument by adding 4 since the argument is 501 // stored in 8 bytes buffer with offset like below. LLVM generates 502 // 4 bytes load instruction, so need to adjust offset here. This 503 // adjustment is required in only LowerFormalArguments. In LowerCall, 504 // a float argument is converted to i64 first, and stored as 8 bytes 505 // data, which is required by ABI, so no need for adjustment. 506 // 0 4 507 // +------+------+ 508 // | empty| float| 509 // +------+------+ 510 if (VA.getValVT() == MVT::f32) 511 Offset += 4; 512 513 int FI = MF.getFrameInfo().CreateFixedObject(ValSize, Offset, true); 514 InVals.push_back( 515 DAG.getLoad(VA.getValVT(), DL, Chain, 516 DAG.getFrameIndex(FI, getPointerTy(MF.getDataLayout())), 517 MachinePointerInfo::getFixedStack(MF, FI))); 518 } 519 520 if (!IsVarArg) 521 return Chain; 522 523 // This function takes variable arguments, some of which may have been passed 524 // in registers %s0-%s8. 525 // 526 // The va_start intrinsic needs to know the offset to the first variable 527 // argument. 528 // TODO: need to calculate offset correctly once we support f128. 529 unsigned ArgOffset = ArgLocs.size() * 8; 530 VEMachineFunctionInfo *FuncInfo = MF.getInfo<VEMachineFunctionInfo>(); 531 // Skip the reserved area at the top of stack. 532 FuncInfo->setVarArgsFrameOffset(ArgOffset + ArgsBaseOffset); 533 534 return Chain; 535 } 536 537 // FIXME? Maybe this could be a TableGen attribute on some registers and 538 // this table could be generated automatically from RegInfo. 539 Register VETargetLowering::getRegisterByName(const char *RegName, LLT VT, 540 const MachineFunction &MF) const { 541 Register Reg = StringSwitch<Register>(RegName) 542 .Case("sp", VE::SX11) // Stack pointer 543 .Case("fp", VE::SX9) // Frame pointer 544 .Case("sl", VE::SX8) // Stack limit 545 .Case("lr", VE::SX10) // Link register 546 .Case("tp", VE::SX14) // Thread pointer 547 .Case("outer", VE::SX12) // Outer regiser 548 .Case("info", VE::SX17) // Info area register 549 .Case("got", VE::SX15) // Global offset table register 550 .Case("plt", VE::SX16) // Procedure linkage table register 551 .Default(0); 552 553 if (Reg) 554 return Reg; 555 556 report_fatal_error("Invalid register name global variable"); 557 } 558 559 //===----------------------------------------------------------------------===// 560 // TargetLowering Implementation 561 //===----------------------------------------------------------------------===// 562 563 SDValue VETargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 564 SmallVectorImpl<SDValue> &InVals) const { 565 SelectionDAG &DAG = CLI.DAG; 566 SDLoc DL = CLI.DL; 567 SDValue Chain = CLI.Chain; 568 auto PtrVT = getPointerTy(DAG.getDataLayout()); 569 570 // VE target does not yet support tail call optimization. 571 CLI.IsTailCall = false; 572 573 // Get the base offset of the outgoing arguments stack space. 574 unsigned ArgsBaseOffset = Subtarget->getRsaSize(); 575 // Get the size of the preserved arguments area 576 unsigned ArgsPreserved = 8 * 8u; 577 578 // Analyze operands of the call, assigning locations to each operand. 579 SmallVector<CCValAssign, 16> ArgLocs; 580 CCState CCInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), ArgLocs, 581 *DAG.getContext()); 582 // Allocate the preserved area first. 583 CCInfo.AllocateStack(ArgsPreserved, Align(8)); 584 // We already allocated the preserved area, so the stack offset computed 585 // by CC_VE would be correct now. 586 CCInfo.AnalyzeCallOperands(CLI.Outs, getParamCC(CLI.CallConv, false)); 587 588 // VE requires to use both register and stack for varargs or no-prototyped 589 // functions. 590 bool UseBoth = CLI.IsVarArg; 591 592 // Analyze operands again if it is required to store BOTH. 593 SmallVector<CCValAssign, 16> ArgLocs2; 594 CCState CCInfo2(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), 595 ArgLocs2, *DAG.getContext()); 596 if (UseBoth) 597 CCInfo2.AnalyzeCallOperands(CLI.Outs, getParamCC(CLI.CallConv, true)); 598 599 // Get the size of the outgoing arguments stack space requirement. 600 unsigned ArgsSize = CCInfo.getNextStackOffset(); 601 602 // Keep stack frames 16-byte aligned. 603 ArgsSize = alignTo(ArgsSize, 16); 604 605 // Adjust the stack pointer to make room for the arguments. 606 // FIXME: Use hasReservedCallFrame to avoid %sp adjustments around all calls 607 // with more than 6 arguments. 608 Chain = DAG.getCALLSEQ_START(Chain, ArgsSize, 0, DL); 609 610 // Collect the set of registers to pass to the function and their values. 611 // This will be emitted as a sequence of CopyToReg nodes glued to the call 612 // instruction. 613 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 614 615 // Collect chains from all the memory opeations that copy arguments to the 616 // stack. They must follow the stack pointer adjustment above and precede the 617 // call instruction itself. 618 SmallVector<SDValue, 8> MemOpChains; 619 620 // VE needs to get address of callee function in a register 621 // So, prepare to copy it to SX12 here. 622 623 // If the callee is a GlobalAddress node (quite common, every direct call is) 624 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. 625 // Likewise ExternalSymbol -> TargetExternalSymbol. 626 SDValue Callee = CLI.Callee; 627 628 bool IsPICCall = isPositionIndependent(); 629 630 // PC-relative references to external symbols should go through $stub. 631 // If so, we need to prepare GlobalBaseReg first. 632 const TargetMachine &TM = DAG.getTarget(); 633 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 634 const GlobalValue *GV = nullptr; 635 auto *CalleeG = dyn_cast<GlobalAddressSDNode>(Callee); 636 if (CalleeG) 637 GV = CalleeG->getGlobal(); 638 bool Local = TM.shouldAssumeDSOLocal(*Mod, GV); 639 bool UsePlt = !Local; 640 MachineFunction &MF = DAG.getMachineFunction(); 641 642 // Turn GlobalAddress/ExternalSymbol node into a value node 643 // containing the address of them here. 644 if (CalleeG) { 645 if (IsPICCall) { 646 if (UsePlt) 647 Subtarget->getInstrInfo()->getGlobalBaseReg(&MF); 648 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 0); 649 Callee = DAG.getNode(VEISD::GETFUNPLT, DL, PtrVT, Callee); 650 } else { 651 Callee = 652 makeHiLoPair(Callee, VEMCExpr::VK_VE_HI32, VEMCExpr::VK_VE_LO32, DAG); 653 } 654 } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 655 if (IsPICCall) { 656 if (UsePlt) 657 Subtarget->getInstrInfo()->getGlobalBaseReg(&MF); 658 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT, 0); 659 Callee = DAG.getNode(VEISD::GETFUNPLT, DL, PtrVT, Callee); 660 } else { 661 Callee = 662 makeHiLoPair(Callee, VEMCExpr::VK_VE_HI32, VEMCExpr::VK_VE_LO32, DAG); 663 } 664 } 665 666 RegsToPass.push_back(std::make_pair(VE::SX12, Callee)); 667 668 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 669 CCValAssign &VA = ArgLocs[i]; 670 SDValue Arg = CLI.OutVals[i]; 671 672 // Promote the value if needed. 673 switch (VA.getLocInfo()) { 674 default: 675 llvm_unreachable("Unknown location info!"); 676 case CCValAssign::Full: 677 break; 678 case CCValAssign::SExt: 679 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); 680 break; 681 case CCValAssign::ZExt: 682 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); 683 break; 684 case CCValAssign::AExt: 685 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); 686 break; 687 case CCValAssign::BCvt: { 688 // Convert a float argument to i64 with padding. 689 // 63 31 0 690 // +------+------+ 691 // | float| 0 | 692 // +------+------+ 693 assert(VA.getLocVT() == MVT::i64); 694 assert(VA.getValVT() == MVT::f32); 695 SDValue Undef = SDValue( 696 DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::i64), 0); 697 SDValue Sub_f32 = DAG.getTargetConstant(VE::sub_f32, DL, MVT::i32); 698 Arg = SDValue(DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 699 MVT::i64, Undef, Arg, Sub_f32), 700 0); 701 break; 702 } 703 } 704 705 if (VA.isRegLoc()) { 706 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 707 if (!UseBoth) 708 continue; 709 VA = ArgLocs2[i]; 710 } 711 712 assert(VA.isMemLoc()); 713 714 // Create a store off the stack pointer for this argument. 715 SDValue StackPtr = DAG.getRegister(VE::SX11, PtrVT); 716 // The argument area starts at %fp/%sp + the size of reserved area. 717 SDValue PtrOff = 718 DAG.getIntPtrConstant(VA.getLocMemOffset() + ArgsBaseOffset, DL); 719 PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff); 720 MemOpChains.push_back( 721 DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo())); 722 } 723 724 // Emit all stores, make sure they occur before the call. 725 if (!MemOpChains.empty()) 726 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 727 728 // Build a sequence of CopyToReg nodes glued together with token chain and 729 // glue operands which copy the outgoing args into registers. The InGlue is 730 // necessary since all emitted instructions must be stuck together in order 731 // to pass the live physical registers. 732 SDValue InGlue; 733 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 734 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[i].first, 735 RegsToPass[i].second, InGlue); 736 InGlue = Chain.getValue(1); 737 } 738 739 // Build the operands for the call instruction itself. 740 SmallVector<SDValue, 8> Ops; 741 Ops.push_back(Chain); 742 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 743 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 744 RegsToPass[i].second.getValueType())); 745 746 // Add a register mask operand representing the call-preserved registers. 747 const VERegisterInfo *TRI = Subtarget->getRegisterInfo(); 748 const uint32_t *Mask = 749 TRI->getCallPreservedMask(DAG.getMachineFunction(), CLI.CallConv); 750 assert(Mask && "Missing call preserved mask for calling convention"); 751 Ops.push_back(DAG.getRegisterMask(Mask)); 752 753 // Make sure the CopyToReg nodes are glued to the call instruction which 754 // consumes the registers. 755 if (InGlue.getNode()) 756 Ops.push_back(InGlue); 757 758 // Now the call itself. 759 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 760 Chain = DAG.getNode(VEISD::CALL, DL, NodeTys, Ops); 761 InGlue = Chain.getValue(1); 762 763 // Revert the stack pointer immediately after the call. 764 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(ArgsSize, DL, true), 765 DAG.getIntPtrConstant(0, DL, true), InGlue, DL); 766 InGlue = Chain.getValue(1); 767 768 // Now extract the return values. This is more or less the same as 769 // LowerFormalArguments. 770 771 // Assign locations to each value returned by this call. 772 SmallVector<CCValAssign, 16> RVLocs; 773 CCState RVInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), RVLocs, 774 *DAG.getContext()); 775 776 // Set inreg flag manually for codegen generated library calls that 777 // return float. 778 if (CLI.Ins.size() == 1 && CLI.Ins[0].VT == MVT::f32 && !CLI.CB) 779 CLI.Ins[0].Flags.setInReg(); 780 781 RVInfo.AnalyzeCallResult(CLI.Ins, getReturnCC(CLI.CallConv)); 782 783 // Copy all of the result registers out of their specified physreg. 784 for (unsigned i = 0; i != RVLocs.size(); ++i) { 785 CCValAssign &VA = RVLocs[i]; 786 assert(!VA.needsCustom() && "Unexpected custom lowering"); 787 Register Reg = VA.getLocReg(); 788 789 // When returning 'inreg {i32, i32 }', two consecutive i32 arguments can 790 // reside in the same register in the high and low bits. Reuse the 791 // CopyFromReg previous node to avoid duplicate copies. 792 SDValue RV; 793 if (RegisterSDNode *SrcReg = dyn_cast<RegisterSDNode>(Chain.getOperand(1))) 794 if (SrcReg->getReg() == Reg && Chain->getOpcode() == ISD::CopyFromReg) 795 RV = Chain.getValue(0); 796 797 // But usually we'll create a new CopyFromReg for a different register. 798 if (!RV.getNode()) { 799 RV = DAG.getCopyFromReg(Chain, DL, Reg, RVLocs[i].getLocVT(), InGlue); 800 Chain = RV.getValue(1); 801 InGlue = Chain.getValue(2); 802 } 803 804 // The callee promoted the return value, so insert an Assert?ext SDNode so 805 // we won't promote the value again in this function. 806 switch (VA.getLocInfo()) { 807 case CCValAssign::SExt: 808 RV = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), RV, 809 DAG.getValueType(VA.getValVT())); 810 break; 811 case CCValAssign::ZExt: 812 RV = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), RV, 813 DAG.getValueType(VA.getValVT())); 814 break; 815 case CCValAssign::BCvt: { 816 // Extract a float return value from i64 with padding. 817 // 63 31 0 818 // +------+------+ 819 // | float| 0 | 820 // +------+------+ 821 assert(VA.getLocVT() == MVT::i64); 822 assert(VA.getValVT() == MVT::f32); 823 SDValue Sub_f32 = DAG.getTargetConstant(VE::sub_f32, DL, MVT::i32); 824 RV = SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 825 MVT::f32, RV, Sub_f32), 826 0); 827 break; 828 } 829 default: 830 break; 831 } 832 833 // Truncate the register down to the return value type. 834 if (VA.isExtInLoc()) 835 RV = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), RV); 836 837 InVals.push_back(RV); 838 } 839 840 return Chain; 841 } 842 843 bool VETargetLowering::isOffsetFoldingLegal( 844 const GlobalAddressSDNode *GA) const { 845 // VE uses 64 bit addressing, so we need multiple instructions to generate 846 // an address. Folding address with offset increases the number of 847 // instructions, so that we disable it here. Offsets will be folded in 848 // the DAG combine later if it worth to do so. 849 return false; 850 } 851 852 /// isFPImmLegal - Returns true if the target can instruction select the 853 /// specified FP immediate natively. If false, the legalizer will 854 /// materialize the FP immediate as a load from a constant pool. 855 bool VETargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 856 bool ForCodeSize) const { 857 return VT == MVT::f32 || VT == MVT::f64; 858 } 859 860 /// Determine if the target supports unaligned memory accesses. 861 /// 862 /// This function returns true if the target allows unaligned memory accesses 863 /// of the specified type in the given address space. If true, it also returns 864 /// whether the unaligned memory access is "fast" in the last argument by 865 /// reference. This is used, for example, in situations where an array 866 /// copy/move/set is converted to a sequence of store operations. Its use 867 /// helps to ensure that such replacements don't generate code that causes an 868 /// alignment error (trap) on the target machine. 869 bool VETargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 870 unsigned AddrSpace, 871 Align A, 872 MachineMemOperand::Flags, 873 bool *Fast) const { 874 if (Fast) { 875 // It's fast anytime on VE 876 *Fast = true; 877 } 878 return true; 879 } 880 881 VETargetLowering::VETargetLowering(const TargetMachine &TM, 882 const VESubtarget &STI) 883 : TargetLowering(TM), Subtarget(&STI) { 884 // Instructions which use registers as conditionals examine all the 885 // bits (as does the pseudo SELECT_CC expansion). I don't think it 886 // matters much whether it's ZeroOrOneBooleanContent, or 887 // ZeroOrNegativeOneBooleanContent, so, arbitrarily choose the 888 // former. 889 setBooleanContents(ZeroOrOneBooleanContent); 890 setBooleanVectorContents(ZeroOrOneBooleanContent); 891 892 initRegisterClasses(); 893 initSPUActions(); 894 initVPUActions(); 895 896 setStackPointerRegisterToSaveRestore(VE::SX11); 897 898 // We have target-specific dag combine patterns for the following nodes: 899 setTargetDAGCombine(ISD::TRUNCATE); 900 901 // Set function alignment to 16 bytes 902 setMinFunctionAlignment(Align(16)); 903 904 // VE stores all argument by 8 bytes alignment 905 setMinStackArgumentAlignment(Align(8)); 906 907 computeRegisterProperties(Subtarget->getRegisterInfo()); 908 } 909 910 const char *VETargetLowering::getTargetNodeName(unsigned Opcode) const { 911 #define TARGET_NODE_CASE(NAME) \ 912 case VEISD::NAME: \ 913 return "VEISD::" #NAME; 914 switch ((VEISD::NodeType)Opcode) { 915 case VEISD::FIRST_NUMBER: 916 break; 917 TARGET_NODE_CASE(CALL) 918 TARGET_NODE_CASE(EH_SJLJ_LONGJMP) 919 TARGET_NODE_CASE(EH_SJLJ_SETJMP) 920 TARGET_NODE_CASE(EH_SJLJ_SETUP_DISPATCH) 921 TARGET_NODE_CASE(GETFUNPLT) 922 TARGET_NODE_CASE(GETSTACKTOP) 923 TARGET_NODE_CASE(GETTLSADDR) 924 TARGET_NODE_CASE(GLOBAL_BASE_REG) 925 TARGET_NODE_CASE(Hi) 926 TARGET_NODE_CASE(Lo) 927 TARGET_NODE_CASE(MEMBARRIER) 928 TARGET_NODE_CASE(RET_FLAG) 929 TARGET_NODE_CASE(TS1AM) 930 TARGET_NODE_CASE(VEC_UNPACK_LO) 931 TARGET_NODE_CASE(VEC_UNPACK_HI) 932 TARGET_NODE_CASE(VEC_PACK) 933 TARGET_NODE_CASE(VEC_BROADCAST) 934 TARGET_NODE_CASE(REPL_I32) 935 TARGET_NODE_CASE(REPL_F32) 936 937 TARGET_NODE_CASE(LEGALAVL) 938 939 // Register the VVP_* SDNodes. 940 #define ADD_VVP_OP(VVP_NAME, ...) TARGET_NODE_CASE(VVP_NAME) 941 #include "VVPNodes.def" 942 } 943 #undef TARGET_NODE_CASE 944 return nullptr; 945 } 946 947 EVT VETargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &, 948 EVT VT) const { 949 return MVT::i32; 950 } 951 952 // Convert to a target node and set target flags. 953 SDValue VETargetLowering::withTargetFlags(SDValue Op, unsigned TF, 954 SelectionDAG &DAG) const { 955 if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) 956 return DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(GA), 957 GA->getValueType(0), GA->getOffset(), TF); 958 959 if (const BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op)) 960 return DAG.getTargetBlockAddress(BA->getBlockAddress(), Op.getValueType(), 961 0, TF); 962 963 if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) 964 return DAG.getTargetConstantPool(CP->getConstVal(), CP->getValueType(0), 965 CP->getAlign(), CP->getOffset(), TF); 966 967 if (const ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) 968 return DAG.getTargetExternalSymbol(ES->getSymbol(), ES->getValueType(0), 969 TF); 970 971 if (const JumpTableSDNode *JT = dyn_cast<JumpTableSDNode>(Op)) 972 return DAG.getTargetJumpTable(JT->getIndex(), JT->getValueType(0), TF); 973 974 llvm_unreachable("Unhandled address SDNode"); 975 } 976 977 // Split Op into high and low parts according to HiTF and LoTF. 978 // Return an ADD node combining the parts. 979 SDValue VETargetLowering::makeHiLoPair(SDValue Op, unsigned HiTF, unsigned LoTF, 980 SelectionDAG &DAG) const { 981 SDLoc DL(Op); 982 EVT VT = Op.getValueType(); 983 SDValue Hi = DAG.getNode(VEISD::Hi, DL, VT, withTargetFlags(Op, HiTF, DAG)); 984 SDValue Lo = DAG.getNode(VEISD::Lo, DL, VT, withTargetFlags(Op, LoTF, DAG)); 985 return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo); 986 } 987 988 // Build SDNodes for producing an address from a GlobalAddress, ConstantPool, 989 // or ExternalSymbol SDNode. 990 SDValue VETargetLowering::makeAddress(SDValue Op, SelectionDAG &DAG) const { 991 SDLoc DL(Op); 992 EVT PtrVT = Op.getValueType(); 993 994 // Handle PIC mode first. VE needs a got load for every variable! 995 if (isPositionIndependent()) { 996 auto GlobalN = dyn_cast<GlobalAddressSDNode>(Op); 997 998 if (isa<ConstantPoolSDNode>(Op) || isa<JumpTableSDNode>(Op) || 999 (GlobalN && GlobalN->getGlobal()->hasLocalLinkage())) { 1000 // Create following instructions for local linkage PIC code. 1001 // lea %reg, label@gotoff_lo 1002 // and %reg, %reg, (32)0 1003 // lea.sl %reg, label@gotoff_hi(%reg, %got) 1004 SDValue HiLo = makeHiLoPair(Op, VEMCExpr::VK_VE_GOTOFF_HI32, 1005 VEMCExpr::VK_VE_GOTOFF_LO32, DAG); 1006 SDValue GlobalBase = DAG.getNode(VEISD::GLOBAL_BASE_REG, DL, PtrVT); 1007 return DAG.getNode(ISD::ADD, DL, PtrVT, GlobalBase, HiLo); 1008 } 1009 // Create following instructions for not local linkage PIC code. 1010 // lea %reg, label@got_lo 1011 // and %reg, %reg, (32)0 1012 // lea.sl %reg, label@got_hi(%reg) 1013 // ld %reg, (%reg, %got) 1014 SDValue HiLo = makeHiLoPair(Op, VEMCExpr::VK_VE_GOT_HI32, 1015 VEMCExpr::VK_VE_GOT_LO32, DAG); 1016 SDValue GlobalBase = DAG.getNode(VEISD::GLOBAL_BASE_REG, DL, PtrVT); 1017 SDValue AbsAddr = DAG.getNode(ISD::ADD, DL, PtrVT, GlobalBase, HiLo); 1018 return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), AbsAddr, 1019 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 1020 } 1021 1022 // This is one of the absolute code models. 1023 switch (getTargetMachine().getCodeModel()) { 1024 default: 1025 llvm_unreachable("Unsupported absolute code model"); 1026 case CodeModel::Small: 1027 case CodeModel::Medium: 1028 case CodeModel::Large: 1029 // abs64. 1030 return makeHiLoPair(Op, VEMCExpr::VK_VE_HI32, VEMCExpr::VK_VE_LO32, DAG); 1031 } 1032 } 1033 1034 /// Custom Lower { 1035 1036 // The mappings for emitLeading/TrailingFence for VE is designed by following 1037 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 1038 Instruction *VETargetLowering::emitLeadingFence(IRBuilderBase &Builder, 1039 Instruction *Inst, 1040 AtomicOrdering Ord) const { 1041 switch (Ord) { 1042 case AtomicOrdering::NotAtomic: 1043 case AtomicOrdering::Unordered: 1044 llvm_unreachable("Invalid fence: unordered/non-atomic"); 1045 case AtomicOrdering::Monotonic: 1046 case AtomicOrdering::Acquire: 1047 return nullptr; // Nothing to do 1048 case AtomicOrdering::Release: 1049 case AtomicOrdering::AcquireRelease: 1050 return Builder.CreateFence(AtomicOrdering::Release); 1051 case AtomicOrdering::SequentiallyConsistent: 1052 if (!Inst->hasAtomicStore()) 1053 return nullptr; // Nothing to do 1054 return Builder.CreateFence(AtomicOrdering::SequentiallyConsistent); 1055 } 1056 llvm_unreachable("Unknown fence ordering in emitLeadingFence"); 1057 } 1058 1059 Instruction *VETargetLowering::emitTrailingFence(IRBuilderBase &Builder, 1060 Instruction *Inst, 1061 AtomicOrdering Ord) const { 1062 switch (Ord) { 1063 case AtomicOrdering::NotAtomic: 1064 case AtomicOrdering::Unordered: 1065 llvm_unreachable("Invalid fence: unordered/not-atomic"); 1066 case AtomicOrdering::Monotonic: 1067 case AtomicOrdering::Release: 1068 return nullptr; // Nothing to do 1069 case AtomicOrdering::Acquire: 1070 case AtomicOrdering::AcquireRelease: 1071 return Builder.CreateFence(AtomicOrdering::Acquire); 1072 case AtomicOrdering::SequentiallyConsistent: 1073 return Builder.CreateFence(AtomicOrdering::SequentiallyConsistent); 1074 } 1075 llvm_unreachable("Unknown fence ordering in emitTrailingFence"); 1076 } 1077 1078 SDValue VETargetLowering::lowerATOMIC_FENCE(SDValue Op, 1079 SelectionDAG &DAG) const { 1080 SDLoc DL(Op); 1081 AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>( 1082 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()); 1083 SyncScope::ID FenceSSID = static_cast<SyncScope::ID>( 1084 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); 1085 1086 // VE uses Release consistency, so need a fence instruction if it is a 1087 // cross-thread fence. 1088 if (FenceSSID == SyncScope::System) { 1089 switch (FenceOrdering) { 1090 case AtomicOrdering::NotAtomic: 1091 case AtomicOrdering::Unordered: 1092 case AtomicOrdering::Monotonic: 1093 // No need to generate fencem instruction here. 1094 break; 1095 case AtomicOrdering::Acquire: 1096 // Generate "fencem 2" as acquire fence. 1097 return SDValue(DAG.getMachineNode(VE::FENCEM, DL, MVT::Other, 1098 DAG.getTargetConstant(2, DL, MVT::i32), 1099 Op.getOperand(0)), 1100 0); 1101 case AtomicOrdering::Release: 1102 // Generate "fencem 1" as release fence. 1103 return SDValue(DAG.getMachineNode(VE::FENCEM, DL, MVT::Other, 1104 DAG.getTargetConstant(1, DL, MVT::i32), 1105 Op.getOperand(0)), 1106 0); 1107 case AtomicOrdering::AcquireRelease: 1108 case AtomicOrdering::SequentiallyConsistent: 1109 // Generate "fencem 3" as acq_rel and seq_cst fence. 1110 // FIXME: "fencem 3" doesn't wait for for PCIe deveices accesses, 1111 // so seq_cst may require more instruction for them. 1112 return SDValue(DAG.getMachineNode(VE::FENCEM, DL, MVT::Other, 1113 DAG.getTargetConstant(3, DL, MVT::i32), 1114 Op.getOperand(0)), 1115 0); 1116 } 1117 } 1118 1119 // MEMBARRIER is a compiler barrier; it codegens to a no-op. 1120 return DAG.getNode(VEISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); 1121 } 1122 1123 TargetLowering::AtomicExpansionKind 1124 VETargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 1125 // We have TS1AM implementation for i8/i16/i32/i64, so use it. 1126 if (AI->getOperation() == AtomicRMWInst::Xchg) { 1127 return AtomicExpansionKind::None; 1128 } 1129 // FIXME: Support "ATMAM" instruction for LOAD_ADD/SUB/AND/OR. 1130 1131 // Otherwise, expand it using compare and exchange instruction to not call 1132 // __sync_fetch_and_* functions. 1133 return AtomicExpansionKind::CmpXChg; 1134 } 1135 1136 static SDValue prepareTS1AM(SDValue Op, SelectionDAG &DAG, SDValue &Flag, 1137 SDValue &Bits) { 1138 SDLoc DL(Op); 1139 AtomicSDNode *N = cast<AtomicSDNode>(Op); 1140 SDValue Ptr = N->getOperand(1); 1141 SDValue Val = N->getOperand(2); 1142 EVT PtrVT = Ptr.getValueType(); 1143 bool Byte = N->getMemoryVT() == MVT::i8; 1144 // Remainder = AND Ptr, 3 1145 // Flag = 1 << Remainder ; If Byte is true (1 byte swap flag) 1146 // Flag = 3 << Remainder ; If Byte is false (2 bytes swap flag) 1147 // Bits = Remainder << 3 1148 // NewVal = Val << Bits 1149 SDValue Const3 = DAG.getConstant(3, DL, PtrVT); 1150 SDValue Remainder = DAG.getNode(ISD::AND, DL, PtrVT, {Ptr, Const3}); 1151 SDValue Mask = Byte ? DAG.getConstant(1, DL, MVT::i32) 1152 : DAG.getConstant(3, DL, MVT::i32); 1153 Flag = DAG.getNode(ISD::SHL, DL, MVT::i32, {Mask, Remainder}); 1154 Bits = DAG.getNode(ISD::SHL, DL, PtrVT, {Remainder, Const3}); 1155 return DAG.getNode(ISD::SHL, DL, Val.getValueType(), {Val, Bits}); 1156 } 1157 1158 static SDValue finalizeTS1AM(SDValue Op, SelectionDAG &DAG, SDValue Data, 1159 SDValue Bits) { 1160 SDLoc DL(Op); 1161 EVT VT = Data.getValueType(); 1162 bool Byte = cast<AtomicSDNode>(Op)->getMemoryVT() == MVT::i8; 1163 // NewData = Data >> Bits 1164 // Result = NewData & 0xff ; If Byte is true (1 byte) 1165 // Result = NewData & 0xffff ; If Byte is false (2 bytes) 1166 1167 SDValue NewData = DAG.getNode(ISD::SRL, DL, VT, Data, Bits); 1168 return DAG.getNode(ISD::AND, DL, VT, 1169 {NewData, DAG.getConstant(Byte ? 0xff : 0xffff, DL, VT)}); 1170 } 1171 1172 SDValue VETargetLowering::lowerATOMIC_SWAP(SDValue Op, 1173 SelectionDAG &DAG) const { 1174 SDLoc DL(Op); 1175 AtomicSDNode *N = cast<AtomicSDNode>(Op); 1176 1177 if (N->getMemoryVT() == MVT::i8) { 1178 // For i8, use "ts1am" 1179 // Input: 1180 // ATOMIC_SWAP Ptr, Val, Order 1181 // 1182 // Output: 1183 // Remainder = AND Ptr, 3 1184 // Flag = 1 << Remainder ; 1 byte swap flag for TS1AM inst. 1185 // Bits = Remainder << 3 1186 // NewVal = Val << Bits 1187 // 1188 // Aligned = AND Ptr, -4 1189 // Data = TS1AM Aligned, Flag, NewVal 1190 // 1191 // NewData = Data >> Bits 1192 // Result = NewData & 0xff ; 1 byte result 1193 SDValue Flag; 1194 SDValue Bits; 1195 SDValue NewVal = prepareTS1AM(Op, DAG, Flag, Bits); 1196 1197 SDValue Ptr = N->getOperand(1); 1198 SDValue Aligned = DAG.getNode(ISD::AND, DL, Ptr.getValueType(), 1199 {Ptr, DAG.getConstant(-4, DL, MVT::i64)}); 1200 SDValue TS1AM = DAG.getAtomic(VEISD::TS1AM, DL, N->getMemoryVT(), 1201 DAG.getVTList(Op.getNode()->getValueType(0), 1202 Op.getNode()->getValueType(1)), 1203 {N->getChain(), Aligned, Flag, NewVal}, 1204 N->getMemOperand()); 1205 1206 SDValue Result = finalizeTS1AM(Op, DAG, TS1AM, Bits); 1207 SDValue Chain = TS1AM.getValue(1); 1208 return DAG.getMergeValues({Result, Chain}, DL); 1209 } 1210 if (N->getMemoryVT() == MVT::i16) { 1211 // For i16, use "ts1am" 1212 SDValue Flag; 1213 SDValue Bits; 1214 SDValue NewVal = prepareTS1AM(Op, DAG, Flag, Bits); 1215 1216 SDValue Ptr = N->getOperand(1); 1217 SDValue Aligned = DAG.getNode(ISD::AND, DL, Ptr.getValueType(), 1218 {Ptr, DAG.getConstant(-4, DL, MVT::i64)}); 1219 SDValue TS1AM = DAG.getAtomic(VEISD::TS1AM, DL, N->getMemoryVT(), 1220 DAG.getVTList(Op.getNode()->getValueType(0), 1221 Op.getNode()->getValueType(1)), 1222 {N->getChain(), Aligned, Flag, NewVal}, 1223 N->getMemOperand()); 1224 1225 SDValue Result = finalizeTS1AM(Op, DAG, TS1AM, Bits); 1226 SDValue Chain = TS1AM.getValue(1); 1227 return DAG.getMergeValues({Result, Chain}, DL); 1228 } 1229 // Otherwise, let llvm legalize it. 1230 return Op; 1231 } 1232 1233 SDValue VETargetLowering::lowerGlobalAddress(SDValue Op, 1234 SelectionDAG &DAG) const { 1235 return makeAddress(Op, DAG); 1236 } 1237 1238 SDValue VETargetLowering::lowerBlockAddress(SDValue Op, 1239 SelectionDAG &DAG) const { 1240 return makeAddress(Op, DAG); 1241 } 1242 1243 SDValue VETargetLowering::lowerConstantPool(SDValue Op, 1244 SelectionDAG &DAG) const { 1245 return makeAddress(Op, DAG); 1246 } 1247 1248 SDValue 1249 VETargetLowering::lowerToTLSGeneralDynamicModel(SDValue Op, 1250 SelectionDAG &DAG) const { 1251 SDLoc DL(Op); 1252 1253 // Generate the following code: 1254 // t1: ch,glue = callseq_start t0, 0, 0 1255 // t2: i64,ch,glue = VEISD::GETTLSADDR t1, label, t1:1 1256 // t3: ch,glue = callseq_end t2, 0, 0, t2:2 1257 // t4: i64,ch,glue = CopyFromReg t3, Register:i64 $sx0, t3:1 1258 SDValue Label = withTargetFlags(Op, 0, DAG); 1259 EVT PtrVT = Op.getValueType(); 1260 1261 // Lowering the machine isd will make sure everything is in the right 1262 // location. 1263 SDValue Chain = DAG.getEntryNode(); 1264 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1265 const uint32_t *Mask = Subtarget->getRegisterInfo()->getCallPreservedMask( 1266 DAG.getMachineFunction(), CallingConv::C); 1267 Chain = DAG.getCALLSEQ_START(Chain, 64, 0, DL); 1268 SDValue Args[] = {Chain, Label, DAG.getRegisterMask(Mask), Chain.getValue(1)}; 1269 Chain = DAG.getNode(VEISD::GETTLSADDR, DL, NodeTys, Args); 1270 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(64, DL, true), 1271 DAG.getIntPtrConstant(0, DL, true), 1272 Chain.getValue(1), DL); 1273 Chain = DAG.getCopyFromReg(Chain, DL, VE::SX0, PtrVT, Chain.getValue(1)); 1274 1275 // GETTLSADDR will be codegen'ed as call. Inform MFI that function has calls. 1276 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 1277 MFI.setHasCalls(true); 1278 1279 // Also generate code to prepare a GOT register if it is PIC. 1280 if (isPositionIndependent()) { 1281 MachineFunction &MF = DAG.getMachineFunction(); 1282 Subtarget->getInstrInfo()->getGlobalBaseReg(&MF); 1283 } 1284 1285 return Chain; 1286 } 1287 1288 SDValue VETargetLowering::lowerGlobalTLSAddress(SDValue Op, 1289 SelectionDAG &DAG) const { 1290 // The current implementation of nld (2.26) doesn't allow local exec model 1291 // code described in VE-tls_v1.1.pdf (*1) as its input. Instead, we always 1292 // generate the general dynamic model code sequence. 1293 // 1294 // *1: https://www.nec.com/en/global/prod/hpc/aurora/document/VE-tls_v1.1.pdf 1295 return lowerToTLSGeneralDynamicModel(Op, DAG); 1296 } 1297 1298 SDValue VETargetLowering::lowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 1299 return makeAddress(Op, DAG); 1300 } 1301 1302 // Lower a f128 load into two f64 loads. 1303 static SDValue lowerLoadF128(SDValue Op, SelectionDAG &DAG) { 1304 SDLoc DL(Op); 1305 LoadSDNode *LdNode = dyn_cast<LoadSDNode>(Op.getNode()); 1306 assert(LdNode && LdNode->getOffset().isUndef() && "Unexpected node type"); 1307 unsigned Alignment = LdNode->getAlign().value(); 1308 if (Alignment > 8) 1309 Alignment = 8; 1310 1311 SDValue Lo64 = 1312 DAG.getLoad(MVT::f64, DL, LdNode->getChain(), LdNode->getBasePtr(), 1313 LdNode->getPointerInfo(), Alignment, 1314 LdNode->isVolatile() ? MachineMemOperand::MOVolatile 1315 : MachineMemOperand::MONone); 1316 EVT AddrVT = LdNode->getBasePtr().getValueType(); 1317 SDValue HiPtr = DAG.getNode(ISD::ADD, DL, AddrVT, LdNode->getBasePtr(), 1318 DAG.getConstant(8, DL, AddrVT)); 1319 SDValue Hi64 = 1320 DAG.getLoad(MVT::f64, DL, LdNode->getChain(), HiPtr, 1321 LdNode->getPointerInfo(), Alignment, 1322 LdNode->isVolatile() ? MachineMemOperand::MOVolatile 1323 : MachineMemOperand::MONone); 1324 1325 SDValue SubRegEven = DAG.getTargetConstant(VE::sub_even, DL, MVT::i32); 1326 SDValue SubRegOdd = DAG.getTargetConstant(VE::sub_odd, DL, MVT::i32); 1327 1328 // VE stores Hi64 to 8(addr) and Lo64 to 0(addr) 1329 SDNode *InFP128 = 1330 DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f128); 1331 InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f128, 1332 SDValue(InFP128, 0), Hi64, SubRegEven); 1333 InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f128, 1334 SDValue(InFP128, 0), Lo64, SubRegOdd); 1335 SDValue OutChains[2] = {SDValue(Lo64.getNode(), 1), 1336 SDValue(Hi64.getNode(), 1)}; 1337 SDValue OutChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 1338 SDValue Ops[2] = {SDValue(InFP128, 0), OutChain}; 1339 return DAG.getMergeValues(Ops, DL); 1340 } 1341 1342 SDValue VETargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const { 1343 LoadSDNode *LdNode = cast<LoadSDNode>(Op.getNode()); 1344 1345 EVT MemVT = LdNode->getMemoryVT(); 1346 1347 // Dispatch to vector isel. 1348 if (MemVT.isVector() && !isMaskType(MemVT)) 1349 return lowerToVVP(Op, DAG); 1350 1351 SDValue BasePtr = LdNode->getBasePtr(); 1352 if (isa<FrameIndexSDNode>(BasePtr.getNode())) { 1353 // Do not expand store instruction with frame index here because of 1354 // dependency problems. We expand it later in eliminateFrameIndex(). 1355 return Op; 1356 } 1357 1358 if (MemVT == MVT::f128) 1359 return lowerLoadF128(Op, DAG); 1360 1361 return Op; 1362 } 1363 1364 // Lower a f128 store into two f64 stores. 1365 static SDValue lowerStoreF128(SDValue Op, SelectionDAG &DAG) { 1366 SDLoc DL(Op); 1367 StoreSDNode *StNode = dyn_cast<StoreSDNode>(Op.getNode()); 1368 assert(StNode && StNode->getOffset().isUndef() && "Unexpected node type"); 1369 1370 SDValue SubRegEven = DAG.getTargetConstant(VE::sub_even, DL, MVT::i32); 1371 SDValue SubRegOdd = DAG.getTargetConstant(VE::sub_odd, DL, MVT::i32); 1372 1373 SDNode *Hi64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i64, 1374 StNode->getValue(), SubRegEven); 1375 SDNode *Lo64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i64, 1376 StNode->getValue(), SubRegOdd); 1377 1378 unsigned Alignment = StNode->getAlign().value(); 1379 if (Alignment > 8) 1380 Alignment = 8; 1381 1382 // VE stores Hi64 to 8(addr) and Lo64 to 0(addr) 1383 SDValue OutChains[2]; 1384 OutChains[0] = 1385 DAG.getStore(StNode->getChain(), DL, SDValue(Lo64, 0), 1386 StNode->getBasePtr(), MachinePointerInfo(), Alignment, 1387 StNode->isVolatile() ? MachineMemOperand::MOVolatile 1388 : MachineMemOperand::MONone); 1389 EVT AddrVT = StNode->getBasePtr().getValueType(); 1390 SDValue HiPtr = DAG.getNode(ISD::ADD, DL, AddrVT, StNode->getBasePtr(), 1391 DAG.getConstant(8, DL, AddrVT)); 1392 OutChains[1] = 1393 DAG.getStore(StNode->getChain(), DL, SDValue(Hi64, 0), HiPtr, 1394 MachinePointerInfo(), Alignment, 1395 StNode->isVolatile() ? MachineMemOperand::MOVolatile 1396 : MachineMemOperand::MONone); 1397 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 1398 } 1399 1400 SDValue VETargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const { 1401 StoreSDNode *StNode = cast<StoreSDNode>(Op.getNode()); 1402 assert(StNode && StNode->getOffset().isUndef() && "Unexpected node type"); 1403 1404 // always expand non-mask vector loads to VVP 1405 EVT MemVT = StNode->getMemoryVT(); 1406 if (MemVT.isVector() && !isMaskType(MemVT)) 1407 return lowerToVVP(Op, DAG); 1408 1409 SDValue BasePtr = StNode->getBasePtr(); 1410 if (isa<FrameIndexSDNode>(BasePtr.getNode())) { 1411 // Do not expand store instruction with frame index here because of 1412 // dependency problems. We expand it later in eliminateFrameIndex(). 1413 return Op; 1414 } 1415 1416 if (MemVT == MVT::f128) 1417 return lowerStoreF128(Op, DAG); 1418 1419 // Otherwise, ask llvm to expand it. 1420 return SDValue(); 1421 } 1422 1423 SDValue VETargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 1424 MachineFunction &MF = DAG.getMachineFunction(); 1425 VEMachineFunctionInfo *FuncInfo = MF.getInfo<VEMachineFunctionInfo>(); 1426 auto PtrVT = getPointerTy(DAG.getDataLayout()); 1427 1428 // Need frame address to find the address of VarArgsFrameIndex. 1429 MF.getFrameInfo().setFrameAddressIsTaken(true); 1430 1431 // vastart just stores the address of the VarArgsFrameIndex slot into the 1432 // memory location argument. 1433 SDLoc DL(Op); 1434 SDValue Offset = 1435 DAG.getNode(ISD::ADD, DL, PtrVT, DAG.getRegister(VE::SX9, PtrVT), 1436 DAG.getIntPtrConstant(FuncInfo->getVarArgsFrameOffset(), DL)); 1437 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1438 return DAG.getStore(Op.getOperand(0), DL, Offset, Op.getOperand(1), 1439 MachinePointerInfo(SV)); 1440 } 1441 1442 SDValue VETargetLowering::lowerVAARG(SDValue Op, SelectionDAG &DAG) const { 1443 SDNode *Node = Op.getNode(); 1444 EVT VT = Node->getValueType(0); 1445 SDValue InChain = Node->getOperand(0); 1446 SDValue VAListPtr = Node->getOperand(1); 1447 EVT PtrVT = VAListPtr.getValueType(); 1448 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1449 SDLoc DL(Node); 1450 SDValue VAList = 1451 DAG.getLoad(PtrVT, DL, InChain, VAListPtr, MachinePointerInfo(SV)); 1452 SDValue Chain = VAList.getValue(1); 1453 SDValue NextPtr; 1454 1455 if (VT == MVT::f128) { 1456 // VE f128 values must be stored with 16 bytes alignment. We doesn't 1457 // know the actual alignment of VAList, so we take alignment of it 1458 // dyanmically. 1459 int Align = 16; 1460 VAList = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, 1461 DAG.getConstant(Align - 1, DL, PtrVT)); 1462 VAList = DAG.getNode(ISD::AND, DL, PtrVT, VAList, 1463 DAG.getConstant(-Align, DL, PtrVT)); 1464 // Increment the pointer, VAList, by 16 to the next vaarg. 1465 NextPtr = 1466 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getIntPtrConstant(16, DL)); 1467 } else if (VT == MVT::f32) { 1468 // float --> need special handling like below. 1469 // 0 4 1470 // +------+------+ 1471 // | empty| float| 1472 // +------+------+ 1473 // Increment the pointer, VAList, by 8 to the next vaarg. 1474 NextPtr = 1475 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getIntPtrConstant(8, DL)); 1476 // Then, adjust VAList. 1477 unsigned InternalOffset = 4; 1478 VAList = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, 1479 DAG.getConstant(InternalOffset, DL, PtrVT)); 1480 } else { 1481 // Increment the pointer, VAList, by 8 to the next vaarg. 1482 NextPtr = 1483 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getIntPtrConstant(8, DL)); 1484 } 1485 1486 // Store the incremented VAList to the legalized pointer. 1487 InChain = DAG.getStore(Chain, DL, NextPtr, VAListPtr, MachinePointerInfo(SV)); 1488 1489 // Load the actual argument out of the pointer VAList. 1490 // We can't count on greater alignment than the word size. 1491 return DAG.getLoad(VT, DL, InChain, VAList, MachinePointerInfo(), 1492 std::min(PtrVT.getSizeInBits(), VT.getSizeInBits()) / 8); 1493 } 1494 1495 SDValue VETargetLowering::lowerDYNAMIC_STACKALLOC(SDValue Op, 1496 SelectionDAG &DAG) const { 1497 // Generate following code. 1498 // (void)__llvm_grow_stack(size); 1499 // ret = GETSTACKTOP; // pseudo instruction 1500 SDLoc DL(Op); 1501 1502 // Get the inputs. 1503 SDNode *Node = Op.getNode(); 1504 SDValue Chain = Op.getOperand(0); 1505 SDValue Size = Op.getOperand(1); 1506 MaybeAlign Alignment(Op.getConstantOperandVal(2)); 1507 EVT VT = Node->getValueType(0); 1508 1509 // Chain the dynamic stack allocation so that it doesn't modify the stack 1510 // pointer when other instructions are using the stack. 1511 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL); 1512 1513 const TargetFrameLowering &TFI = *Subtarget->getFrameLowering(); 1514 Align StackAlign = TFI.getStackAlign(); 1515 bool NeedsAlign = Alignment.valueOrOne() > StackAlign; 1516 1517 // Prepare arguments 1518 TargetLowering::ArgListTy Args; 1519 TargetLowering::ArgListEntry Entry; 1520 Entry.Node = Size; 1521 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 1522 Args.push_back(Entry); 1523 if (NeedsAlign) { 1524 Entry.Node = DAG.getConstant(~(Alignment->value() - 1ULL), DL, VT); 1525 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 1526 Args.push_back(Entry); 1527 } 1528 Type *RetTy = Type::getVoidTy(*DAG.getContext()); 1529 1530 EVT PtrVT = Op.getValueType(); 1531 SDValue Callee; 1532 if (NeedsAlign) { 1533 Callee = DAG.getTargetExternalSymbol("__ve_grow_stack_align", PtrVT, 0); 1534 } else { 1535 Callee = DAG.getTargetExternalSymbol("__ve_grow_stack", PtrVT, 0); 1536 } 1537 1538 TargetLowering::CallLoweringInfo CLI(DAG); 1539 CLI.setDebugLoc(DL) 1540 .setChain(Chain) 1541 .setCallee(CallingConv::PreserveAll, RetTy, Callee, std::move(Args)) 1542 .setDiscardResult(true); 1543 std::pair<SDValue, SDValue> pair = LowerCallTo(CLI); 1544 Chain = pair.second; 1545 SDValue Result = DAG.getNode(VEISD::GETSTACKTOP, DL, VT, Chain); 1546 if (NeedsAlign) { 1547 Result = DAG.getNode(ISD::ADD, DL, VT, Result, 1548 DAG.getConstant((Alignment->value() - 1ULL), DL, VT)); 1549 Result = DAG.getNode(ISD::AND, DL, VT, Result, 1550 DAG.getConstant(~(Alignment->value() - 1ULL), DL, VT)); 1551 } 1552 // Chain = Result.getValue(1); 1553 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, DL, true), 1554 DAG.getIntPtrConstant(0, DL, true), SDValue(), DL); 1555 1556 SDValue Ops[2] = {Result, Chain}; 1557 return DAG.getMergeValues(Ops, DL); 1558 } 1559 1560 SDValue VETargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 1561 SelectionDAG &DAG) const { 1562 SDLoc DL(Op); 1563 return DAG.getNode(VEISD::EH_SJLJ_LONGJMP, DL, MVT::Other, Op.getOperand(0), 1564 Op.getOperand(1)); 1565 } 1566 1567 SDValue VETargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 1568 SelectionDAG &DAG) const { 1569 SDLoc DL(Op); 1570 return DAG.getNode(VEISD::EH_SJLJ_SETJMP, DL, 1571 DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0), 1572 Op.getOperand(1)); 1573 } 1574 1575 SDValue VETargetLowering::lowerEH_SJLJ_SETUP_DISPATCH(SDValue Op, 1576 SelectionDAG &DAG) const { 1577 SDLoc DL(Op); 1578 return DAG.getNode(VEISD::EH_SJLJ_SETUP_DISPATCH, DL, MVT::Other, 1579 Op.getOperand(0)); 1580 } 1581 1582 static SDValue lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG, 1583 const VETargetLowering &TLI, 1584 const VESubtarget *Subtarget) { 1585 SDLoc DL(Op); 1586 MachineFunction &MF = DAG.getMachineFunction(); 1587 EVT PtrVT = TLI.getPointerTy(MF.getDataLayout()); 1588 1589 MachineFrameInfo &MFI = MF.getFrameInfo(); 1590 MFI.setFrameAddressIsTaken(true); 1591 1592 unsigned Depth = Op.getConstantOperandVal(0); 1593 const VERegisterInfo *RegInfo = Subtarget->getRegisterInfo(); 1594 Register FrameReg = RegInfo->getFrameRegister(MF); 1595 SDValue FrameAddr = 1596 DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, PtrVT); 1597 while (Depth--) 1598 FrameAddr = DAG.getLoad(Op.getValueType(), DL, DAG.getEntryNode(), 1599 FrameAddr, MachinePointerInfo()); 1600 return FrameAddr; 1601 } 1602 1603 static SDValue lowerRETURNADDR(SDValue Op, SelectionDAG &DAG, 1604 const VETargetLowering &TLI, 1605 const VESubtarget *Subtarget) { 1606 MachineFunction &MF = DAG.getMachineFunction(); 1607 MachineFrameInfo &MFI = MF.getFrameInfo(); 1608 MFI.setReturnAddressIsTaken(true); 1609 1610 if (TLI.verifyReturnAddressArgumentIsConstant(Op, DAG)) 1611 return SDValue(); 1612 1613 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG, TLI, Subtarget); 1614 1615 SDLoc DL(Op); 1616 EVT VT = Op.getValueType(); 1617 SDValue Offset = DAG.getConstant(8, DL, VT); 1618 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 1619 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 1620 MachinePointerInfo()); 1621 } 1622 1623 SDValue VETargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 1624 SelectionDAG &DAG) const { 1625 SDLoc DL(Op); 1626 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1627 switch (IntNo) { 1628 default: // Don't custom lower most intrinsics. 1629 return SDValue(); 1630 case Intrinsic::eh_sjlj_lsda: { 1631 MachineFunction &MF = DAG.getMachineFunction(); 1632 MVT VT = Op.getSimpleValueType(); 1633 const VETargetMachine *TM = 1634 static_cast<const VETargetMachine *>(&DAG.getTarget()); 1635 1636 // Create GCC_except_tableXX string. The real symbol for that will be 1637 // generated in EHStreamer::emitExceptionTable() later. So, we just 1638 // borrow it's name here. 1639 TM->getStrList()->push_back(std::string( 1640 (Twine("GCC_except_table") + Twine(MF.getFunctionNumber())).str())); 1641 SDValue Addr = 1642 DAG.getTargetExternalSymbol(TM->getStrList()->back().c_str(), VT, 0); 1643 if (isPositionIndependent()) { 1644 Addr = makeHiLoPair(Addr, VEMCExpr::VK_VE_GOTOFF_HI32, 1645 VEMCExpr::VK_VE_GOTOFF_LO32, DAG); 1646 SDValue GlobalBase = DAG.getNode(VEISD::GLOBAL_BASE_REG, DL, VT); 1647 return DAG.getNode(ISD::ADD, DL, VT, GlobalBase, Addr); 1648 } 1649 return makeHiLoPair(Addr, VEMCExpr::VK_VE_HI32, VEMCExpr::VK_VE_LO32, DAG); 1650 } 1651 } 1652 } 1653 1654 static bool getUniqueInsertion(SDNode *N, unsigned &UniqueIdx) { 1655 if (!isa<BuildVectorSDNode>(N)) 1656 return false; 1657 const auto *BVN = cast<BuildVectorSDNode>(N); 1658 1659 // Find first non-undef insertion. 1660 unsigned Idx; 1661 for (Idx = 0; Idx < BVN->getNumOperands(); ++Idx) { 1662 auto ElemV = BVN->getOperand(Idx); 1663 if (!ElemV->isUndef()) 1664 break; 1665 } 1666 // Catch the (hypothetical) all-undef case. 1667 if (Idx == BVN->getNumOperands()) 1668 return false; 1669 // Remember insertion. 1670 UniqueIdx = Idx++; 1671 // Verify that all other insertions are undef. 1672 for (; Idx < BVN->getNumOperands(); ++Idx) { 1673 auto ElemV = BVN->getOperand(Idx); 1674 if (!ElemV->isUndef()) 1675 return false; 1676 } 1677 return true; 1678 } 1679 1680 static SDValue getSplatValue(SDNode *N) { 1681 if (auto *BuildVec = dyn_cast<BuildVectorSDNode>(N)) { 1682 return BuildVec->getSplatValue(); 1683 } 1684 return SDValue(); 1685 } 1686 1687 SDValue VETargetLowering::lowerBUILD_VECTOR(SDValue Op, 1688 SelectionDAG &DAG) const { 1689 VECustomDAG CDAG(DAG, Op); 1690 MVT ResultVT = Op.getSimpleValueType(); 1691 1692 // If there is just one element, expand to INSERT_VECTOR_ELT. 1693 unsigned UniqueIdx; 1694 if (getUniqueInsertion(Op.getNode(), UniqueIdx)) { 1695 SDValue AccuV = CDAG.getUNDEF(Op.getValueType()); 1696 auto ElemV = Op->getOperand(UniqueIdx); 1697 SDValue IdxV = CDAG.getConstant(UniqueIdx, MVT::i64); 1698 return CDAG.getNode(ISD::INSERT_VECTOR_ELT, ResultVT, {AccuV, ElemV, IdxV}); 1699 } 1700 1701 // Else emit a broadcast. 1702 if (SDValue ScalarV = getSplatValue(Op.getNode())) { 1703 unsigned NumEls = ResultVT.getVectorNumElements(); 1704 auto AVL = CDAG.getConstant(NumEls, MVT::i32); 1705 return CDAG.getBroadcast(ResultVT, ScalarV, AVL); 1706 } 1707 1708 // Expand 1709 return SDValue(); 1710 } 1711 1712 TargetLowering::LegalizeAction 1713 VETargetLowering::getCustomOperationAction(SDNode &Op) const { 1714 // Custom legalization on VVP_* and VEC_* opcodes is required to pack-legalize 1715 // these operations (transform nodes such that their AVL parameter refers to 1716 // packs of 64bit, instead of number of elements. 1717 1718 // Packing opcodes are created with a pack-legal AVL (LEGALAVL). No need to 1719 // re-visit them. 1720 if (isPackingSupportOpcode(Op.getOpcode())) 1721 return Legal; 1722 1723 // Custom lower to legalize AVL for packed mode. 1724 if (isVVPOrVEC(Op.getOpcode())) 1725 return Custom; 1726 return Legal; 1727 } 1728 1729 SDValue VETargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 1730 LLVM_DEBUG(dbgs() << "::LowerOperation"; Op->print(dbgs());); 1731 unsigned Opcode = Op.getOpcode(); 1732 1733 /// Scalar isel. 1734 switch (Opcode) { 1735 case ISD::ATOMIC_FENCE: 1736 return lowerATOMIC_FENCE(Op, DAG); 1737 case ISD::ATOMIC_SWAP: 1738 return lowerATOMIC_SWAP(Op, DAG); 1739 case ISD::BlockAddress: 1740 return lowerBlockAddress(Op, DAG); 1741 case ISD::ConstantPool: 1742 return lowerConstantPool(Op, DAG); 1743 case ISD::DYNAMIC_STACKALLOC: 1744 return lowerDYNAMIC_STACKALLOC(Op, DAG); 1745 case ISD::EH_SJLJ_LONGJMP: 1746 return lowerEH_SJLJ_LONGJMP(Op, DAG); 1747 case ISD::EH_SJLJ_SETJMP: 1748 return lowerEH_SJLJ_SETJMP(Op, DAG); 1749 case ISD::EH_SJLJ_SETUP_DISPATCH: 1750 return lowerEH_SJLJ_SETUP_DISPATCH(Op, DAG); 1751 case ISD::FRAMEADDR: 1752 return lowerFRAMEADDR(Op, DAG, *this, Subtarget); 1753 case ISD::GlobalAddress: 1754 return lowerGlobalAddress(Op, DAG); 1755 case ISD::GlobalTLSAddress: 1756 return lowerGlobalTLSAddress(Op, DAG); 1757 case ISD::INTRINSIC_WO_CHAIN: 1758 return lowerINTRINSIC_WO_CHAIN(Op, DAG); 1759 case ISD::JumpTable: 1760 return lowerJumpTable(Op, DAG); 1761 case ISD::LOAD: 1762 return lowerLOAD(Op, DAG); 1763 case ISD::RETURNADDR: 1764 return lowerRETURNADDR(Op, DAG, *this, Subtarget); 1765 case ISD::BUILD_VECTOR: 1766 return lowerBUILD_VECTOR(Op, DAG); 1767 case ISD::STORE: 1768 return lowerSTORE(Op, DAG); 1769 case ISD::VASTART: 1770 return lowerVASTART(Op, DAG); 1771 case ISD::VAARG: 1772 return lowerVAARG(Op, DAG); 1773 1774 case ISD::INSERT_VECTOR_ELT: 1775 return lowerINSERT_VECTOR_ELT(Op, DAG); 1776 case ISD::EXTRACT_VECTOR_ELT: 1777 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 1778 } 1779 1780 /// Vector isel. 1781 LLVM_DEBUG(dbgs() << "::LowerOperation_VVP"; Op->print(dbgs());); 1782 if (ISD::isVPOpcode(Opcode)) 1783 return lowerToVVP(Op, DAG); 1784 1785 switch (Opcode) { 1786 default: 1787 llvm_unreachable("Should not custom lower this!"); 1788 1789 // Legalize the AVL of this internal node. 1790 case VEISD::VEC_BROADCAST: 1791 #define ADD_VVP_OP(VVP_NAME, ...) case VEISD::VVP_NAME: 1792 #include "VVPNodes.def" 1793 // AVL already legalized. 1794 if (getAnnotatedNodeAVL(Op).second) 1795 return Op; 1796 return legalizeInternalVectorOp(Op, DAG); 1797 1798 // Translate into a VEC_*/VVP_* layer operation. 1799 case ISD::MLOAD: 1800 case ISD::MSTORE: 1801 #define ADD_VVP_OP(VVP_NAME, ISD_NAME) case ISD::ISD_NAME: 1802 #include "VVPNodes.def" 1803 if (isMaskArithmetic(Op) && isPackedVectorType(Op.getValueType())) 1804 return splitMaskArithmetic(Op, DAG); 1805 return lowerToVVP(Op, DAG); 1806 } 1807 } 1808 /// } Custom Lower 1809 1810 void VETargetLowering::ReplaceNodeResults(SDNode *N, 1811 SmallVectorImpl<SDValue> &Results, 1812 SelectionDAG &DAG) const { 1813 switch (N->getOpcode()) { 1814 case ISD::ATOMIC_SWAP: 1815 // Let LLVM expand atomic swap instruction through LowerOperation. 1816 return; 1817 default: 1818 LLVM_DEBUG(N->dumpr(&DAG)); 1819 llvm_unreachable("Do not know how to custom type legalize this operation!"); 1820 } 1821 } 1822 1823 /// JumpTable for VE. 1824 /// 1825 /// VE cannot generate relocatable symbol in jump table. VE cannot 1826 /// generate expressions using symbols in both text segment and data 1827 /// segment like below. 1828 /// .4byte .LBB0_2-.LJTI0_0 1829 /// So, we generate offset from the top of function like below as 1830 /// a custom label. 1831 /// .4byte .LBB0_2-<function name> 1832 1833 unsigned VETargetLowering::getJumpTableEncoding() const { 1834 // Use custom label for PIC. 1835 if (isPositionIndependent()) 1836 return MachineJumpTableInfo::EK_Custom32; 1837 1838 // Otherwise, use the normal jump table encoding heuristics. 1839 return TargetLowering::getJumpTableEncoding(); 1840 } 1841 1842 const MCExpr *VETargetLowering::LowerCustomJumpTableEntry( 1843 const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB, 1844 unsigned Uid, MCContext &Ctx) const { 1845 assert(isPositionIndependent()); 1846 1847 // Generate custom label for PIC like below. 1848 // .4bytes .LBB0_2-<function name> 1849 const auto *Value = MCSymbolRefExpr::create(MBB->getSymbol(), Ctx); 1850 MCSymbol *Sym = Ctx.getOrCreateSymbol(MBB->getParent()->getName().data()); 1851 const auto *Base = MCSymbolRefExpr::create(Sym, Ctx); 1852 return MCBinaryExpr::createSub(Value, Base, Ctx); 1853 } 1854 1855 SDValue VETargetLowering::getPICJumpTableRelocBase(SDValue Table, 1856 SelectionDAG &DAG) const { 1857 assert(isPositionIndependent()); 1858 SDLoc DL(Table); 1859 Function *Function = &DAG.getMachineFunction().getFunction(); 1860 assert(Function != nullptr); 1861 auto PtrTy = getPointerTy(DAG.getDataLayout(), Function->getAddressSpace()); 1862 1863 // In the jump table, we have following values in PIC mode. 1864 // .4bytes .LBB0_2-<function name> 1865 // We need to add this value and the address of this function to generate 1866 // .LBB0_2 label correctly under PIC mode. So, we want to generate following 1867 // instructions: 1868 // lea %reg, fun@gotoff_lo 1869 // and %reg, %reg, (32)0 1870 // lea.sl %reg, fun@gotoff_hi(%reg, %got) 1871 // In order to do so, we need to genarate correctly marked DAG node using 1872 // makeHiLoPair. 1873 SDValue Op = DAG.getGlobalAddress(Function, DL, PtrTy); 1874 SDValue HiLo = makeHiLoPair(Op, VEMCExpr::VK_VE_GOTOFF_HI32, 1875 VEMCExpr::VK_VE_GOTOFF_LO32, DAG); 1876 SDValue GlobalBase = DAG.getNode(VEISD::GLOBAL_BASE_REG, DL, PtrTy); 1877 return DAG.getNode(ISD::ADD, DL, PtrTy, GlobalBase, HiLo); 1878 } 1879 1880 Register VETargetLowering::prepareMBB(MachineBasicBlock &MBB, 1881 MachineBasicBlock::iterator I, 1882 MachineBasicBlock *TargetBB, 1883 const DebugLoc &DL) const { 1884 MachineFunction *MF = MBB.getParent(); 1885 MachineRegisterInfo &MRI = MF->getRegInfo(); 1886 const VEInstrInfo *TII = Subtarget->getInstrInfo(); 1887 1888 const TargetRegisterClass *RC = &VE::I64RegClass; 1889 Register Tmp1 = MRI.createVirtualRegister(RC); 1890 Register Tmp2 = MRI.createVirtualRegister(RC); 1891 Register Result = MRI.createVirtualRegister(RC); 1892 1893 if (isPositionIndependent()) { 1894 // Create following instructions for local linkage PIC code. 1895 // lea %Tmp1, TargetBB@gotoff_lo 1896 // and %Tmp2, %Tmp1, (32)0 1897 // lea.sl %Result, TargetBB@gotoff_hi(%Tmp2, %s15) ; %s15 is GOT 1898 BuildMI(MBB, I, DL, TII->get(VE::LEAzii), Tmp1) 1899 .addImm(0) 1900 .addImm(0) 1901 .addMBB(TargetBB, VEMCExpr::VK_VE_GOTOFF_LO32); 1902 BuildMI(MBB, I, DL, TII->get(VE::ANDrm), Tmp2) 1903 .addReg(Tmp1, getKillRegState(true)) 1904 .addImm(M0(32)); 1905 BuildMI(MBB, I, DL, TII->get(VE::LEASLrri), Result) 1906 .addReg(VE::SX15) 1907 .addReg(Tmp2, getKillRegState(true)) 1908 .addMBB(TargetBB, VEMCExpr::VK_VE_GOTOFF_HI32); 1909 } else { 1910 // Create following instructions for non-PIC code. 1911 // lea %Tmp1, TargetBB@lo 1912 // and %Tmp2, %Tmp1, (32)0 1913 // lea.sl %Result, TargetBB@hi(%Tmp2) 1914 BuildMI(MBB, I, DL, TII->get(VE::LEAzii), Tmp1) 1915 .addImm(0) 1916 .addImm(0) 1917 .addMBB(TargetBB, VEMCExpr::VK_VE_LO32); 1918 BuildMI(MBB, I, DL, TII->get(VE::ANDrm), Tmp2) 1919 .addReg(Tmp1, getKillRegState(true)) 1920 .addImm(M0(32)); 1921 BuildMI(MBB, I, DL, TII->get(VE::LEASLrii), Result) 1922 .addReg(Tmp2, getKillRegState(true)) 1923 .addImm(0) 1924 .addMBB(TargetBB, VEMCExpr::VK_VE_HI32); 1925 } 1926 return Result; 1927 } 1928 1929 Register VETargetLowering::prepareSymbol(MachineBasicBlock &MBB, 1930 MachineBasicBlock::iterator I, 1931 StringRef Symbol, const DebugLoc &DL, 1932 bool IsLocal = false, 1933 bool IsCall = false) const { 1934 MachineFunction *MF = MBB.getParent(); 1935 MachineRegisterInfo &MRI = MF->getRegInfo(); 1936 const VEInstrInfo *TII = Subtarget->getInstrInfo(); 1937 1938 const TargetRegisterClass *RC = &VE::I64RegClass; 1939 Register Result = MRI.createVirtualRegister(RC); 1940 1941 if (isPositionIndependent()) { 1942 if (IsCall && !IsLocal) { 1943 // Create following instructions for non-local linkage PIC code function 1944 // calls. These instructions uses IC and magic number -24, so we expand 1945 // them in VEAsmPrinter.cpp from GETFUNPLT pseudo instruction. 1946 // lea %Reg, Symbol@plt_lo(-24) 1947 // and %Reg, %Reg, (32)0 1948 // sic %s16 1949 // lea.sl %Result, Symbol@plt_hi(%Reg, %s16) ; %s16 is PLT 1950 BuildMI(MBB, I, DL, TII->get(VE::GETFUNPLT), Result) 1951 .addExternalSymbol("abort"); 1952 } else if (IsLocal) { 1953 Register Tmp1 = MRI.createVirtualRegister(RC); 1954 Register Tmp2 = MRI.createVirtualRegister(RC); 1955 // Create following instructions for local linkage PIC code. 1956 // lea %Tmp1, Symbol@gotoff_lo 1957 // and %Tmp2, %Tmp1, (32)0 1958 // lea.sl %Result, Symbol@gotoff_hi(%Tmp2, %s15) ; %s15 is GOT 1959 BuildMI(MBB, I, DL, TII->get(VE::LEAzii), Tmp1) 1960 .addImm(0) 1961 .addImm(0) 1962 .addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_GOTOFF_LO32); 1963 BuildMI(MBB, I, DL, TII->get(VE::ANDrm), Tmp2) 1964 .addReg(Tmp1, getKillRegState(true)) 1965 .addImm(M0(32)); 1966 BuildMI(MBB, I, DL, TII->get(VE::LEASLrri), Result) 1967 .addReg(VE::SX15) 1968 .addReg(Tmp2, getKillRegState(true)) 1969 .addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_GOTOFF_HI32); 1970 } else { 1971 Register Tmp1 = MRI.createVirtualRegister(RC); 1972 Register Tmp2 = MRI.createVirtualRegister(RC); 1973 // Create following instructions for not local linkage PIC code. 1974 // lea %Tmp1, Symbol@got_lo 1975 // and %Tmp2, %Tmp1, (32)0 1976 // lea.sl %Tmp3, Symbol@gotoff_hi(%Tmp2, %s15) ; %s15 is GOT 1977 // ld %Result, 0(%Tmp3) 1978 Register Tmp3 = MRI.createVirtualRegister(RC); 1979 BuildMI(MBB, I, DL, TII->get(VE::LEAzii), Tmp1) 1980 .addImm(0) 1981 .addImm(0) 1982 .addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_GOT_LO32); 1983 BuildMI(MBB, I, DL, TII->get(VE::ANDrm), Tmp2) 1984 .addReg(Tmp1, getKillRegState(true)) 1985 .addImm(M0(32)); 1986 BuildMI(MBB, I, DL, TII->get(VE::LEASLrri), Tmp3) 1987 .addReg(VE::SX15) 1988 .addReg(Tmp2, getKillRegState(true)) 1989 .addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_GOT_HI32); 1990 BuildMI(MBB, I, DL, TII->get(VE::LDrii), Result) 1991 .addReg(Tmp3, getKillRegState(true)) 1992 .addImm(0) 1993 .addImm(0); 1994 } 1995 } else { 1996 Register Tmp1 = MRI.createVirtualRegister(RC); 1997 Register Tmp2 = MRI.createVirtualRegister(RC); 1998 // Create following instructions for non-PIC code. 1999 // lea %Tmp1, Symbol@lo 2000 // and %Tmp2, %Tmp1, (32)0 2001 // lea.sl %Result, Symbol@hi(%Tmp2) 2002 BuildMI(MBB, I, DL, TII->get(VE::LEAzii), Tmp1) 2003 .addImm(0) 2004 .addImm(0) 2005 .addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_LO32); 2006 BuildMI(MBB, I, DL, TII->get(VE::ANDrm), Tmp2) 2007 .addReg(Tmp1, getKillRegState(true)) 2008 .addImm(M0(32)); 2009 BuildMI(MBB, I, DL, TII->get(VE::LEASLrii), Result) 2010 .addReg(Tmp2, getKillRegState(true)) 2011 .addImm(0) 2012 .addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_HI32); 2013 } 2014 return Result; 2015 } 2016 2017 void VETargetLowering::setupEntryBlockForSjLj(MachineInstr &MI, 2018 MachineBasicBlock *MBB, 2019 MachineBasicBlock *DispatchBB, 2020 int FI, int Offset) const { 2021 DebugLoc DL = MI.getDebugLoc(); 2022 const VEInstrInfo *TII = Subtarget->getInstrInfo(); 2023 2024 Register LabelReg = 2025 prepareMBB(*MBB, MachineBasicBlock::iterator(MI), DispatchBB, DL); 2026 2027 // Store an address of DispatchBB to a given jmpbuf[1] where has next IC 2028 // referenced by longjmp (throw) later. 2029 MachineInstrBuilder MIB = BuildMI(*MBB, MI, DL, TII->get(VE::STrii)); 2030 addFrameReference(MIB, FI, Offset); // jmpbuf[1] 2031 MIB.addReg(LabelReg, getKillRegState(true)); 2032 } 2033 2034 MachineBasicBlock * 2035 VETargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 2036 MachineBasicBlock *MBB) const { 2037 DebugLoc DL = MI.getDebugLoc(); 2038 MachineFunction *MF = MBB->getParent(); 2039 const TargetInstrInfo *TII = Subtarget->getInstrInfo(); 2040 const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo(); 2041 MachineRegisterInfo &MRI = MF->getRegInfo(); 2042 2043 const BasicBlock *BB = MBB->getBasicBlock(); 2044 MachineFunction::iterator I = ++MBB->getIterator(); 2045 2046 // Memory Reference. 2047 SmallVector<MachineMemOperand *, 2> MMOs(MI.memoperands_begin(), 2048 MI.memoperands_end()); 2049 Register BufReg = MI.getOperand(1).getReg(); 2050 2051 Register DstReg; 2052 2053 DstReg = MI.getOperand(0).getReg(); 2054 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 2055 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 2056 (void)TRI; 2057 Register MainDestReg = MRI.createVirtualRegister(RC); 2058 Register RestoreDestReg = MRI.createVirtualRegister(RC); 2059 2060 // For `v = call @llvm.eh.sjlj.setjmp(buf)`, we generate following 2061 // instructions. SP/FP must be saved in jmpbuf before `llvm.eh.sjlj.setjmp`. 2062 // 2063 // ThisMBB: 2064 // buf[3] = %s17 iff %s17 is used as BP 2065 // buf[1] = RestoreMBB as IC after longjmp 2066 // # SjLjSetup RestoreMBB 2067 // 2068 // MainMBB: 2069 // v_main = 0 2070 // 2071 // SinkMBB: 2072 // v = phi(v_main, MainMBB, v_restore, RestoreMBB) 2073 // ... 2074 // 2075 // RestoreMBB: 2076 // %s17 = buf[3] = iff %s17 is used as BP 2077 // v_restore = 1 2078 // goto SinkMBB 2079 2080 MachineBasicBlock *ThisMBB = MBB; 2081 MachineBasicBlock *MainMBB = MF->CreateMachineBasicBlock(BB); 2082 MachineBasicBlock *SinkMBB = MF->CreateMachineBasicBlock(BB); 2083 MachineBasicBlock *RestoreMBB = MF->CreateMachineBasicBlock(BB); 2084 MF->insert(I, MainMBB); 2085 MF->insert(I, SinkMBB); 2086 MF->push_back(RestoreMBB); 2087 RestoreMBB->setHasAddressTaken(); 2088 2089 // Transfer the remainder of BB and its successor edges to SinkMBB. 2090 SinkMBB->splice(SinkMBB->begin(), MBB, 2091 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 2092 SinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 2093 2094 // ThisMBB: 2095 Register LabelReg = 2096 prepareMBB(*MBB, MachineBasicBlock::iterator(MI), RestoreMBB, DL); 2097 2098 // Store BP in buf[3] iff this function is using BP. 2099 const VEFrameLowering *TFI = Subtarget->getFrameLowering(); 2100 if (TFI->hasBP(*MF)) { 2101 MachineInstrBuilder MIB = BuildMI(*MBB, MI, DL, TII->get(VE::STrii)); 2102 MIB.addReg(BufReg); 2103 MIB.addImm(0); 2104 MIB.addImm(24); 2105 MIB.addReg(VE::SX17); 2106 MIB.setMemRefs(MMOs); 2107 } 2108 2109 // Store IP in buf[1]. 2110 MachineInstrBuilder MIB = BuildMI(*MBB, MI, DL, TII->get(VE::STrii)); 2111 MIB.add(MI.getOperand(1)); // we can preserve the kill flags here. 2112 MIB.addImm(0); 2113 MIB.addImm(8); 2114 MIB.addReg(LabelReg, getKillRegState(true)); 2115 MIB.setMemRefs(MMOs); 2116 2117 // SP/FP are already stored in jmpbuf before `llvm.eh.sjlj.setjmp`. 2118 2119 // Insert setup. 2120 MIB = 2121 BuildMI(*ThisMBB, MI, DL, TII->get(VE::EH_SjLj_Setup)).addMBB(RestoreMBB); 2122 2123 const VERegisterInfo *RegInfo = Subtarget->getRegisterInfo(); 2124 MIB.addRegMask(RegInfo->getNoPreservedMask()); 2125 ThisMBB->addSuccessor(MainMBB); 2126 ThisMBB->addSuccessor(RestoreMBB); 2127 2128 // MainMBB: 2129 BuildMI(MainMBB, DL, TII->get(VE::LEAzii), MainDestReg) 2130 .addImm(0) 2131 .addImm(0) 2132 .addImm(0); 2133 MainMBB->addSuccessor(SinkMBB); 2134 2135 // SinkMBB: 2136 BuildMI(*SinkMBB, SinkMBB->begin(), DL, TII->get(VE::PHI), DstReg) 2137 .addReg(MainDestReg) 2138 .addMBB(MainMBB) 2139 .addReg(RestoreDestReg) 2140 .addMBB(RestoreMBB); 2141 2142 // RestoreMBB: 2143 // Restore BP from buf[3] iff this function is using BP. The address of 2144 // buf is in SX10. 2145 // FIXME: Better to not use SX10 here 2146 if (TFI->hasBP(*MF)) { 2147 MachineInstrBuilder MIB = 2148 BuildMI(RestoreMBB, DL, TII->get(VE::LDrii), VE::SX17); 2149 MIB.addReg(VE::SX10); 2150 MIB.addImm(0); 2151 MIB.addImm(24); 2152 MIB.setMemRefs(MMOs); 2153 } 2154 BuildMI(RestoreMBB, DL, TII->get(VE::LEAzii), RestoreDestReg) 2155 .addImm(0) 2156 .addImm(0) 2157 .addImm(1); 2158 BuildMI(RestoreMBB, DL, TII->get(VE::BRCFLa_t)).addMBB(SinkMBB); 2159 RestoreMBB->addSuccessor(SinkMBB); 2160 2161 MI.eraseFromParent(); 2162 return SinkMBB; 2163 } 2164 2165 MachineBasicBlock * 2166 VETargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 2167 MachineBasicBlock *MBB) const { 2168 DebugLoc DL = MI.getDebugLoc(); 2169 MachineFunction *MF = MBB->getParent(); 2170 const TargetInstrInfo *TII = Subtarget->getInstrInfo(); 2171 MachineRegisterInfo &MRI = MF->getRegInfo(); 2172 2173 // Memory Reference. 2174 SmallVector<MachineMemOperand *, 2> MMOs(MI.memoperands_begin(), 2175 MI.memoperands_end()); 2176 Register BufReg = MI.getOperand(0).getReg(); 2177 2178 Register Tmp = MRI.createVirtualRegister(&VE::I64RegClass); 2179 // Since FP is only updated here but NOT referenced, it's treated as GPR. 2180 Register FP = VE::SX9; 2181 Register SP = VE::SX11; 2182 2183 MachineInstrBuilder MIB; 2184 2185 MachineBasicBlock *ThisMBB = MBB; 2186 2187 // For `call @llvm.eh.sjlj.longjmp(buf)`, we generate following instructions. 2188 // 2189 // ThisMBB: 2190 // %fp = load buf[0] 2191 // %jmp = load buf[1] 2192 // %s10 = buf ; Store an address of buf to SX10 for RestoreMBB 2193 // %sp = load buf[2] ; generated by llvm.eh.sjlj.setjmp. 2194 // jmp %jmp 2195 2196 // Reload FP. 2197 MIB = BuildMI(*ThisMBB, MI, DL, TII->get(VE::LDrii), FP); 2198 MIB.addReg(BufReg); 2199 MIB.addImm(0); 2200 MIB.addImm(0); 2201 MIB.setMemRefs(MMOs); 2202 2203 // Reload IP. 2204 MIB = BuildMI(*ThisMBB, MI, DL, TII->get(VE::LDrii), Tmp); 2205 MIB.addReg(BufReg); 2206 MIB.addImm(0); 2207 MIB.addImm(8); 2208 MIB.setMemRefs(MMOs); 2209 2210 // Copy BufReg to SX10 for later use in setjmp. 2211 // FIXME: Better to not use SX10 here 2212 BuildMI(*ThisMBB, MI, DL, TII->get(VE::ORri), VE::SX10) 2213 .addReg(BufReg) 2214 .addImm(0); 2215 2216 // Reload SP. 2217 MIB = BuildMI(*ThisMBB, MI, DL, TII->get(VE::LDrii), SP); 2218 MIB.add(MI.getOperand(0)); // we can preserve the kill flags here. 2219 MIB.addImm(0); 2220 MIB.addImm(16); 2221 MIB.setMemRefs(MMOs); 2222 2223 // Jump. 2224 BuildMI(*ThisMBB, MI, DL, TII->get(VE::BCFLari_t)) 2225 .addReg(Tmp, getKillRegState(true)) 2226 .addImm(0); 2227 2228 MI.eraseFromParent(); 2229 return ThisMBB; 2230 } 2231 2232 MachineBasicBlock * 2233 VETargetLowering::emitSjLjDispatchBlock(MachineInstr &MI, 2234 MachineBasicBlock *BB) const { 2235 DebugLoc DL = MI.getDebugLoc(); 2236 MachineFunction *MF = BB->getParent(); 2237 MachineFrameInfo &MFI = MF->getFrameInfo(); 2238 MachineRegisterInfo &MRI = MF->getRegInfo(); 2239 const VEInstrInfo *TII = Subtarget->getInstrInfo(); 2240 int FI = MFI.getFunctionContextIndex(); 2241 2242 // Get a mapping of the call site numbers to all of the landing pads they're 2243 // associated with. 2244 DenseMap<unsigned, SmallVector<MachineBasicBlock *, 2>> CallSiteNumToLPad; 2245 unsigned MaxCSNum = 0; 2246 for (auto &MBB : *MF) { 2247 if (!MBB.isEHPad()) 2248 continue; 2249 2250 MCSymbol *Sym = nullptr; 2251 for (const auto &MI : MBB) { 2252 if (MI.isDebugInstr()) 2253 continue; 2254 2255 assert(MI.isEHLabel() && "expected EH_LABEL"); 2256 Sym = MI.getOperand(0).getMCSymbol(); 2257 break; 2258 } 2259 2260 if (!MF->hasCallSiteLandingPad(Sym)) 2261 continue; 2262 2263 for (unsigned CSI : MF->getCallSiteLandingPad(Sym)) { 2264 CallSiteNumToLPad[CSI].push_back(&MBB); 2265 MaxCSNum = std::max(MaxCSNum, CSI); 2266 } 2267 } 2268 2269 // Get an ordered list of the machine basic blocks for the jump table. 2270 std::vector<MachineBasicBlock *> LPadList; 2271 SmallPtrSet<MachineBasicBlock *, 32> InvokeBBs; 2272 LPadList.reserve(CallSiteNumToLPad.size()); 2273 2274 for (unsigned CSI = 1; CSI <= MaxCSNum; ++CSI) { 2275 for (auto &LP : CallSiteNumToLPad[CSI]) { 2276 LPadList.push_back(LP); 2277 InvokeBBs.insert(LP->pred_begin(), LP->pred_end()); 2278 } 2279 } 2280 2281 assert(!LPadList.empty() && 2282 "No landing pad destinations for the dispatch jump table!"); 2283 2284 // The %fn_context is allocated like below (from --print-after=sjljehprepare): 2285 // %fn_context = alloca { i8*, i64, [4 x i64], i8*, i8*, [5 x i8*] } 2286 // 2287 // This `[5 x i8*]` is jmpbuf, so jmpbuf[1] is FI+72. 2288 // First `i64` is callsite, so callsite is FI+8. 2289 static const int OffsetIC = 72; 2290 static const int OffsetCS = 8; 2291 2292 // Create the MBBs for the dispatch code like following: 2293 // 2294 // ThisMBB: 2295 // Prepare DispatchBB address and store it to buf[1]. 2296 // ... 2297 // 2298 // DispatchBB: 2299 // %s15 = GETGOT iff isPositionIndependent 2300 // %callsite = load callsite 2301 // brgt.l.t #size of callsites, %callsite, DispContBB 2302 // 2303 // TrapBB: 2304 // Call abort. 2305 // 2306 // DispContBB: 2307 // %breg = address of jump table 2308 // %pc = load and calculate next pc from %breg and %callsite 2309 // jmp %pc 2310 2311 // Shove the dispatch's address into the return slot in the function context. 2312 MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock(); 2313 DispatchBB->setIsEHPad(true); 2314 2315 // Trap BB will causes trap like `assert(0)`. 2316 MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock(); 2317 DispatchBB->addSuccessor(TrapBB); 2318 2319 MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock(); 2320 DispatchBB->addSuccessor(DispContBB); 2321 2322 // Insert MBBs. 2323 MF->push_back(DispatchBB); 2324 MF->push_back(DispContBB); 2325 MF->push_back(TrapBB); 2326 2327 // Insert code to call abort in the TrapBB. 2328 Register Abort = prepareSymbol(*TrapBB, TrapBB->end(), "abort", DL, 2329 /* Local */ false, /* Call */ true); 2330 BuildMI(TrapBB, DL, TII->get(VE::BSICrii), VE::SX10) 2331 .addReg(Abort, getKillRegState(true)) 2332 .addImm(0) 2333 .addImm(0); 2334 2335 // Insert code into the entry block that creates and registers the function 2336 // context. 2337 setupEntryBlockForSjLj(MI, BB, DispatchBB, FI, OffsetIC); 2338 2339 // Create the jump table and associated information 2340 unsigned JTE = getJumpTableEncoding(); 2341 MachineJumpTableInfo *JTI = MF->getOrCreateJumpTableInfo(JTE); 2342 unsigned MJTI = JTI->createJumpTableIndex(LPadList); 2343 2344 const VERegisterInfo &RI = TII->getRegisterInfo(); 2345 // Add a register mask with no preserved registers. This results in all 2346 // registers being marked as clobbered. 2347 BuildMI(DispatchBB, DL, TII->get(VE::NOP)) 2348 .addRegMask(RI.getNoPreservedMask()); 2349 2350 if (isPositionIndependent()) { 2351 // Force to generate GETGOT, since current implementation doesn't store GOT 2352 // register. 2353 BuildMI(DispatchBB, DL, TII->get(VE::GETGOT), VE::SX15); 2354 } 2355 2356 // IReg is used as an index in a memory operand and therefore can't be SP 2357 const TargetRegisterClass *RC = &VE::I64RegClass; 2358 Register IReg = MRI.createVirtualRegister(RC); 2359 addFrameReference(BuildMI(DispatchBB, DL, TII->get(VE::LDLZXrii), IReg), FI, 2360 OffsetCS); 2361 if (LPadList.size() < 64) { 2362 BuildMI(DispatchBB, DL, TII->get(VE::BRCFLir_t)) 2363 .addImm(VECC::CC_ILE) 2364 .addImm(LPadList.size()) 2365 .addReg(IReg) 2366 .addMBB(TrapBB); 2367 } else { 2368 assert(LPadList.size() <= 0x7FFFFFFF && "Too large Landing Pad!"); 2369 Register TmpReg = MRI.createVirtualRegister(RC); 2370 BuildMI(DispatchBB, DL, TII->get(VE::LEAzii), TmpReg) 2371 .addImm(0) 2372 .addImm(0) 2373 .addImm(LPadList.size()); 2374 BuildMI(DispatchBB, DL, TII->get(VE::BRCFLrr_t)) 2375 .addImm(VECC::CC_ILE) 2376 .addReg(TmpReg, getKillRegState(true)) 2377 .addReg(IReg) 2378 .addMBB(TrapBB); 2379 } 2380 2381 Register BReg = MRI.createVirtualRegister(RC); 2382 Register Tmp1 = MRI.createVirtualRegister(RC); 2383 Register Tmp2 = MRI.createVirtualRegister(RC); 2384 2385 if (isPositionIndependent()) { 2386 // Create following instructions for local linkage PIC code. 2387 // lea %Tmp1, .LJTI0_0@gotoff_lo 2388 // and %Tmp2, %Tmp1, (32)0 2389 // lea.sl %BReg, .LJTI0_0@gotoff_hi(%Tmp2, %s15) ; %s15 is GOT 2390 BuildMI(DispContBB, DL, TII->get(VE::LEAzii), Tmp1) 2391 .addImm(0) 2392 .addImm(0) 2393 .addJumpTableIndex(MJTI, VEMCExpr::VK_VE_GOTOFF_LO32); 2394 BuildMI(DispContBB, DL, TII->get(VE::ANDrm), Tmp2) 2395 .addReg(Tmp1, getKillRegState(true)) 2396 .addImm(M0(32)); 2397 BuildMI(DispContBB, DL, TII->get(VE::LEASLrri), BReg) 2398 .addReg(VE::SX15) 2399 .addReg(Tmp2, getKillRegState(true)) 2400 .addJumpTableIndex(MJTI, VEMCExpr::VK_VE_GOTOFF_HI32); 2401 } else { 2402 // Create following instructions for non-PIC code. 2403 // lea %Tmp1, .LJTI0_0@lo 2404 // and %Tmp2, %Tmp1, (32)0 2405 // lea.sl %BReg, .LJTI0_0@hi(%Tmp2) 2406 BuildMI(DispContBB, DL, TII->get(VE::LEAzii), Tmp1) 2407 .addImm(0) 2408 .addImm(0) 2409 .addJumpTableIndex(MJTI, VEMCExpr::VK_VE_LO32); 2410 BuildMI(DispContBB, DL, TII->get(VE::ANDrm), Tmp2) 2411 .addReg(Tmp1, getKillRegState(true)) 2412 .addImm(M0(32)); 2413 BuildMI(DispContBB, DL, TII->get(VE::LEASLrii), BReg) 2414 .addReg(Tmp2, getKillRegState(true)) 2415 .addImm(0) 2416 .addJumpTableIndex(MJTI, VEMCExpr::VK_VE_HI32); 2417 } 2418 2419 switch (JTE) { 2420 case MachineJumpTableInfo::EK_BlockAddress: { 2421 // Generate simple block address code for no-PIC model. 2422 // sll %Tmp1, %IReg, 3 2423 // lds %TReg, 0(%Tmp1, %BReg) 2424 // bcfla %TReg 2425 2426 Register TReg = MRI.createVirtualRegister(RC); 2427 Register Tmp1 = MRI.createVirtualRegister(RC); 2428 2429 BuildMI(DispContBB, DL, TII->get(VE::SLLri), Tmp1) 2430 .addReg(IReg, getKillRegState(true)) 2431 .addImm(3); 2432 BuildMI(DispContBB, DL, TII->get(VE::LDrri), TReg) 2433 .addReg(BReg, getKillRegState(true)) 2434 .addReg(Tmp1, getKillRegState(true)) 2435 .addImm(0); 2436 BuildMI(DispContBB, DL, TII->get(VE::BCFLari_t)) 2437 .addReg(TReg, getKillRegState(true)) 2438 .addImm(0); 2439 break; 2440 } 2441 case MachineJumpTableInfo::EK_Custom32: { 2442 // Generate block address code using differences from the function pointer 2443 // for PIC model. 2444 // sll %Tmp1, %IReg, 2 2445 // ldl.zx %OReg, 0(%Tmp1, %BReg) 2446 // Prepare function address in BReg2. 2447 // adds.l %TReg, %BReg2, %OReg 2448 // bcfla %TReg 2449 2450 assert(isPositionIndependent()); 2451 Register OReg = MRI.createVirtualRegister(RC); 2452 Register TReg = MRI.createVirtualRegister(RC); 2453 Register Tmp1 = MRI.createVirtualRegister(RC); 2454 2455 BuildMI(DispContBB, DL, TII->get(VE::SLLri), Tmp1) 2456 .addReg(IReg, getKillRegState(true)) 2457 .addImm(2); 2458 BuildMI(DispContBB, DL, TII->get(VE::LDLZXrri), OReg) 2459 .addReg(BReg, getKillRegState(true)) 2460 .addReg(Tmp1, getKillRegState(true)) 2461 .addImm(0); 2462 Register BReg2 = 2463 prepareSymbol(*DispContBB, DispContBB->end(), 2464 DispContBB->getParent()->getName(), DL, /* Local */ true); 2465 BuildMI(DispContBB, DL, TII->get(VE::ADDSLrr), TReg) 2466 .addReg(OReg, getKillRegState(true)) 2467 .addReg(BReg2, getKillRegState(true)); 2468 BuildMI(DispContBB, DL, TII->get(VE::BCFLari_t)) 2469 .addReg(TReg, getKillRegState(true)) 2470 .addImm(0); 2471 break; 2472 } 2473 default: 2474 llvm_unreachable("Unexpected jump table encoding"); 2475 } 2476 2477 // Add the jump table entries as successors to the MBB. 2478 SmallPtrSet<MachineBasicBlock *, 8> SeenMBBs; 2479 for (auto &LP : LPadList) 2480 if (SeenMBBs.insert(LP).second) 2481 DispContBB->addSuccessor(LP); 2482 2483 // N.B. the order the invoke BBs are processed in doesn't matter here. 2484 SmallVector<MachineBasicBlock *, 64> MBBLPads; 2485 const MCPhysReg *SavedRegs = MF->getRegInfo().getCalleeSavedRegs(); 2486 for (MachineBasicBlock *MBB : InvokeBBs) { 2487 // Remove the landing pad successor from the invoke block and replace it 2488 // with the new dispatch block. 2489 // Keep a copy of Successors since it's modified inside the loop. 2490 SmallVector<MachineBasicBlock *, 8> Successors(MBB->succ_rbegin(), 2491 MBB->succ_rend()); 2492 // FIXME: Avoid quadratic complexity. 2493 for (auto MBBS : Successors) { 2494 if (MBBS->isEHPad()) { 2495 MBB->removeSuccessor(MBBS); 2496 MBBLPads.push_back(MBBS); 2497 } 2498 } 2499 2500 MBB->addSuccessor(DispatchBB); 2501 2502 // Find the invoke call and mark all of the callee-saved registers as 2503 // 'implicit defined' so that they're spilled. This prevents code from 2504 // moving instructions to before the EH block, where they will never be 2505 // executed. 2506 for (auto &II : reverse(*MBB)) { 2507 if (!II.isCall()) 2508 continue; 2509 2510 DenseMap<Register, bool> DefRegs; 2511 for (auto &MOp : II.operands()) 2512 if (MOp.isReg()) 2513 DefRegs[MOp.getReg()] = true; 2514 2515 MachineInstrBuilder MIB(*MF, &II); 2516 for (unsigned RI = 0; SavedRegs[RI]; ++RI) { 2517 Register Reg = SavedRegs[RI]; 2518 if (!DefRegs[Reg]) 2519 MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead); 2520 } 2521 2522 break; 2523 } 2524 } 2525 2526 // Mark all former landing pads as non-landing pads. The dispatch is the only 2527 // landing pad now. 2528 for (auto &LP : MBBLPads) 2529 LP->setIsEHPad(false); 2530 2531 // The instruction is gone now. 2532 MI.eraseFromParent(); 2533 return BB; 2534 } 2535 2536 MachineBasicBlock * 2537 VETargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 2538 MachineBasicBlock *BB) const { 2539 switch (MI.getOpcode()) { 2540 default: 2541 llvm_unreachable("Unknown Custom Instruction!"); 2542 case VE::EH_SjLj_LongJmp: 2543 return emitEHSjLjLongJmp(MI, BB); 2544 case VE::EH_SjLj_SetJmp: 2545 return emitEHSjLjSetJmp(MI, BB); 2546 case VE::EH_SjLj_Setup_Dispatch: 2547 return emitSjLjDispatchBlock(MI, BB); 2548 } 2549 } 2550 2551 static bool isI32Insn(const SDNode *User, const SDNode *N) { 2552 switch (User->getOpcode()) { 2553 default: 2554 return false; 2555 case ISD::ADD: 2556 case ISD::SUB: 2557 case ISD::MUL: 2558 case ISD::SDIV: 2559 case ISD::UDIV: 2560 case ISD::SETCC: 2561 case ISD::SMIN: 2562 case ISD::SMAX: 2563 case ISD::SHL: 2564 case ISD::SRA: 2565 case ISD::BSWAP: 2566 case ISD::SINT_TO_FP: 2567 case ISD::UINT_TO_FP: 2568 case ISD::BR_CC: 2569 case ISD::BITCAST: 2570 case ISD::ATOMIC_CMP_SWAP: 2571 case ISD::ATOMIC_SWAP: 2572 return true; 2573 case ISD::SRL: 2574 if (N->getOperand(0).getOpcode() != ISD::SRL) 2575 return true; 2576 // (srl (trunc (srl ...))) may be optimized by combining srl, so 2577 // doesn't optimize trunc now. 2578 return false; 2579 case ISD::SELECT_CC: 2580 if (User->getOperand(2).getNode() != N && 2581 User->getOperand(3).getNode() != N) 2582 return true; 2583 LLVM_FALLTHROUGH; 2584 case ISD::AND: 2585 case ISD::OR: 2586 case ISD::XOR: 2587 case ISD::SELECT: 2588 case ISD::CopyToReg: 2589 // Check all use of selections, bit operations, and copies. If all of them 2590 // are safe, optimize truncate to extract_subreg. 2591 for (const SDNode *U : User->uses()) { 2592 switch (U->getOpcode()) { 2593 default: 2594 // If the use is an instruction which treats the source operand as i32, 2595 // it is safe to avoid truncate here. 2596 if (isI32Insn(U, N)) 2597 continue; 2598 break; 2599 case ISD::ANY_EXTEND: 2600 case ISD::SIGN_EXTEND: 2601 case ISD::ZERO_EXTEND: { 2602 // Special optimizations to the combination of ext and trunc. 2603 // (ext ... (select ... (trunc ...))) is safe to avoid truncate here 2604 // since this truncate instruction clears higher 32 bits which is filled 2605 // by one of ext instructions later. 2606 assert(N->getValueType(0) == MVT::i32 && 2607 "find truncate to not i32 integer"); 2608 if (User->getOpcode() == ISD::SELECT_CC || 2609 User->getOpcode() == ISD::SELECT) 2610 continue; 2611 break; 2612 } 2613 } 2614 return false; 2615 } 2616 return true; 2617 } 2618 } 2619 2620 // Optimize TRUNCATE in DAG combining. Optimizing it in CUSTOM lower is 2621 // sometime too early. Optimizing it in DAG pattern matching in VEInstrInfo.td 2622 // is sometime too late. So, doing it at here. 2623 SDValue VETargetLowering::combineTRUNCATE(SDNode *N, 2624 DAGCombinerInfo &DCI) const { 2625 assert(N->getOpcode() == ISD::TRUNCATE && 2626 "Should be called with a TRUNCATE node"); 2627 2628 SelectionDAG &DAG = DCI.DAG; 2629 SDLoc DL(N); 2630 EVT VT = N->getValueType(0); 2631 2632 // We prefer to do this when all types are legal. 2633 if (!DCI.isAfterLegalizeDAG()) 2634 return SDValue(); 2635 2636 // Skip combine TRUNCATE atm if the operand of TRUNCATE might be a constant. 2637 if (N->getOperand(0)->getOpcode() == ISD::SELECT_CC && 2638 isa<ConstantSDNode>(N->getOperand(0)->getOperand(0)) && 2639 isa<ConstantSDNode>(N->getOperand(0)->getOperand(1))) 2640 return SDValue(); 2641 2642 // Check all use of this TRUNCATE. 2643 for (const SDNode *User : N->uses()) { 2644 // Make sure that we're not going to replace TRUNCATE for non i32 2645 // instructions. 2646 // 2647 // FIXME: Although we could sometimes handle this, and it does occur in 2648 // practice that one of the condition inputs to the select is also one of 2649 // the outputs, we currently can't deal with this. 2650 if (isI32Insn(User, N)) 2651 continue; 2652 2653 return SDValue(); 2654 } 2655 2656 SDValue SubI32 = DAG.getTargetConstant(VE::sub_i32, DL, MVT::i32); 2657 return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, VT, 2658 N->getOperand(0), SubI32), 2659 0); 2660 } 2661 2662 SDValue VETargetLowering::PerformDAGCombine(SDNode *N, 2663 DAGCombinerInfo &DCI) const { 2664 switch (N->getOpcode()) { 2665 default: 2666 break; 2667 case ISD::TRUNCATE: 2668 return combineTRUNCATE(N, DCI); 2669 } 2670 2671 return SDValue(); 2672 } 2673 2674 //===----------------------------------------------------------------------===// 2675 // VE Inline Assembly Support 2676 //===----------------------------------------------------------------------===// 2677 2678 VETargetLowering::ConstraintType 2679 VETargetLowering::getConstraintType(StringRef Constraint) const { 2680 if (Constraint.size() == 1) { 2681 switch (Constraint[0]) { 2682 default: 2683 break; 2684 case 'v': // vector registers 2685 return C_RegisterClass; 2686 } 2687 } 2688 return TargetLowering::getConstraintType(Constraint); 2689 } 2690 2691 std::pair<unsigned, const TargetRegisterClass *> 2692 VETargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 2693 StringRef Constraint, 2694 MVT VT) const { 2695 const TargetRegisterClass *RC = nullptr; 2696 if (Constraint.size() == 1) { 2697 switch (Constraint[0]) { 2698 default: 2699 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 2700 case 'r': 2701 RC = &VE::I64RegClass; 2702 break; 2703 case 'v': 2704 RC = &VE::V64RegClass; 2705 break; 2706 } 2707 return std::make_pair(0U, RC); 2708 } 2709 2710 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 2711 } 2712 2713 //===----------------------------------------------------------------------===// 2714 // VE Target Optimization Support 2715 //===----------------------------------------------------------------------===// 2716 2717 unsigned VETargetLowering::getMinimumJumpTableEntries() const { 2718 // Specify 8 for PIC model to relieve the impact of PIC load instructions. 2719 if (isJumpTableRelative()) 2720 return 8; 2721 2722 return TargetLowering::getMinimumJumpTableEntries(); 2723 } 2724 2725 bool VETargetLowering::hasAndNot(SDValue Y) const { 2726 EVT VT = Y.getValueType(); 2727 2728 // VE doesn't have vector and not instruction. 2729 if (VT.isVector()) 2730 return false; 2731 2732 // VE allows different immediate values for X and Y where ~X & Y. 2733 // Only simm7 works for X, and only mimm works for Y on VE. However, this 2734 // function is used to check whether an immediate value is OK for and-not 2735 // instruction as both X and Y. Generating additional instruction to 2736 // retrieve an immediate value is no good since the purpose of this 2737 // function is to convert a series of 3 instructions to another series of 2738 // 3 instructions with better parallelism. Therefore, we return false 2739 // for all immediate values now. 2740 // FIXME: Change hasAndNot function to have two operands to make it work 2741 // correctly with Aurora VE. 2742 if (isa<ConstantSDNode>(Y)) 2743 return false; 2744 2745 // It's ok for generic registers. 2746 return true; 2747 } 2748 2749 SDValue VETargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 2750 SelectionDAG &DAG) const { 2751 assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!"); 2752 MVT VT = Op.getOperand(0).getSimpleValueType(); 2753 2754 // Special treatment for packed V64 types. 2755 assert(VT == MVT::v512i32 || VT == MVT::v512f32); 2756 (void)VT; 2757 // Example of codes: 2758 // %packed_v = extractelt %vr, %idx / 2 2759 // %v = %packed_v >> (%idx % 2 * 32) 2760 // %res = %v & 0xffffffff 2761 2762 SDValue Vec = Op.getOperand(0); 2763 SDValue Idx = Op.getOperand(1); 2764 SDLoc DL(Op); 2765 SDValue Result = Op; 2766 if (false /* Idx->isConstant() */) { 2767 // TODO: optimized implementation using constant values 2768 } else { 2769 SDValue Const1 = DAG.getConstant(1, DL, MVT::i64); 2770 SDValue HalfIdx = DAG.getNode(ISD::SRL, DL, MVT::i64, {Idx, Const1}); 2771 SDValue PackedElt = 2772 SDValue(DAG.getMachineNode(VE::LVSvr, DL, MVT::i64, {Vec, HalfIdx}), 0); 2773 SDValue AndIdx = DAG.getNode(ISD::AND, DL, MVT::i64, {Idx, Const1}); 2774 SDValue Shift = DAG.getNode(ISD::XOR, DL, MVT::i64, {AndIdx, Const1}); 2775 SDValue Const5 = DAG.getConstant(5, DL, MVT::i64); 2776 Shift = DAG.getNode(ISD::SHL, DL, MVT::i64, {Shift, Const5}); 2777 PackedElt = DAG.getNode(ISD::SRL, DL, MVT::i64, {PackedElt, Shift}); 2778 SDValue Mask = DAG.getConstant(0xFFFFFFFFL, DL, MVT::i64); 2779 PackedElt = DAG.getNode(ISD::AND, DL, MVT::i64, {PackedElt, Mask}); 2780 SDValue SubI32 = DAG.getTargetConstant(VE::sub_i32, DL, MVT::i32); 2781 Result = SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 2782 MVT::i32, PackedElt, SubI32), 2783 0); 2784 2785 if (Op.getSimpleValueType() == MVT::f32) { 2786 Result = DAG.getBitcast(MVT::f32, Result); 2787 } else { 2788 assert(Op.getSimpleValueType() == MVT::i32); 2789 } 2790 } 2791 return Result; 2792 } 2793 2794 SDValue VETargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 2795 SelectionDAG &DAG) const { 2796 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!"); 2797 MVT VT = Op.getOperand(0).getSimpleValueType(); 2798 2799 // Special treatment for packed V64 types. 2800 assert(VT == MVT::v512i32 || VT == MVT::v512f32); 2801 (void)VT; 2802 // The v512i32 and v512f32 starts from upper bits (0..31). This "upper 2803 // bits" required `val << 32` from C implementation's point of view. 2804 // 2805 // Example of codes: 2806 // %packed_elt = extractelt %vr, (%idx >> 1) 2807 // %shift = ((%idx & 1) ^ 1) << 5 2808 // %packed_elt &= 0xffffffff00000000 >> shift 2809 // %packed_elt |= (zext %val) << shift 2810 // %vr = insertelt %vr, %packed_elt, (%idx >> 1) 2811 2812 SDLoc DL(Op); 2813 SDValue Vec = Op.getOperand(0); 2814 SDValue Val = Op.getOperand(1); 2815 SDValue Idx = Op.getOperand(2); 2816 if (Idx.getSimpleValueType() == MVT::i32) 2817 Idx = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Idx); 2818 if (Val.getSimpleValueType() == MVT::f32) 2819 Val = DAG.getBitcast(MVT::i32, Val); 2820 assert(Val.getSimpleValueType() == MVT::i32); 2821 Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val); 2822 2823 SDValue Result = Op; 2824 if (false /* Idx->isConstant()*/) { 2825 // TODO: optimized implementation using constant values 2826 } else { 2827 SDValue Const1 = DAG.getConstant(1, DL, MVT::i64); 2828 SDValue HalfIdx = DAG.getNode(ISD::SRL, DL, MVT::i64, {Idx, Const1}); 2829 SDValue PackedElt = 2830 SDValue(DAG.getMachineNode(VE::LVSvr, DL, MVT::i64, {Vec, HalfIdx}), 0); 2831 SDValue AndIdx = DAG.getNode(ISD::AND, DL, MVT::i64, {Idx, Const1}); 2832 SDValue Shift = DAG.getNode(ISD::XOR, DL, MVT::i64, {AndIdx, Const1}); 2833 SDValue Const5 = DAG.getConstant(5, DL, MVT::i64); 2834 Shift = DAG.getNode(ISD::SHL, DL, MVT::i64, {Shift, Const5}); 2835 SDValue Mask = DAG.getConstant(0xFFFFFFFF00000000L, DL, MVT::i64); 2836 Mask = DAG.getNode(ISD::SRL, DL, MVT::i64, {Mask, Shift}); 2837 PackedElt = DAG.getNode(ISD::AND, DL, MVT::i64, {PackedElt, Mask}); 2838 Val = DAG.getNode(ISD::SHL, DL, MVT::i64, {Val, Shift}); 2839 PackedElt = DAG.getNode(ISD::OR, DL, MVT::i64, {PackedElt, Val}); 2840 Result = 2841 SDValue(DAG.getMachineNode(VE::LSVrr_v, DL, Vec.getSimpleValueType(), 2842 {HalfIdx, PackedElt, Vec}), 2843 0); 2844 } 2845 return Result; 2846 } 2847