1 //===-- VEISelLowering.cpp - VE DAG Lowering Implementation ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the interfaces that VE uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "VEISelLowering.h" 15 #include "MCTargetDesc/VEMCExpr.h" 16 #include "VECustomDAG.h" 17 #include "VEInstrBuilder.h" 18 #include "VEMachineFunctionInfo.h" 19 #include "VERegisterInfo.h" 20 #include "VETargetMachine.h" 21 #include "llvm/ADT/StringSwitch.h" 22 #include "llvm/CodeGen/CallingConvLower.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineJumpTableInfo.h" 27 #include "llvm/CodeGen/MachineModuleInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/SelectionDAG.h" 30 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/KnownBits.h" 37 using namespace llvm; 38 39 #define DEBUG_TYPE "ve-lower" 40 41 //===----------------------------------------------------------------------===// 42 // Calling Convention Implementation 43 //===----------------------------------------------------------------------===// 44 45 #include "VEGenCallingConv.inc" 46 47 CCAssignFn *getReturnCC(CallingConv::ID CallConv) { 48 switch (CallConv) { 49 default: 50 return RetCC_VE_C; 51 case CallingConv::Fast: 52 return RetCC_VE_Fast; 53 } 54 } 55 56 CCAssignFn *getParamCC(CallingConv::ID CallConv, bool IsVarArg) { 57 if (IsVarArg) 58 return CC_VE2; 59 switch (CallConv) { 60 default: 61 return CC_VE_C; 62 case CallingConv::Fast: 63 return CC_VE_Fast; 64 } 65 } 66 67 bool VETargetLowering::CanLowerReturn( 68 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 69 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 70 CCAssignFn *RetCC = getReturnCC(CallConv); 71 SmallVector<CCValAssign, 16> RVLocs; 72 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 73 return CCInfo.CheckReturn(Outs, RetCC); 74 } 75 76 static const MVT AllVectorVTs[] = {MVT::v256i32, MVT::v512i32, MVT::v256i64, 77 MVT::v256f32, MVT::v512f32, MVT::v256f64}; 78 79 static const MVT AllMaskVTs[] = {MVT::v256i1, MVT::v512i1}; 80 81 static const MVT AllPackedVTs[] = {MVT::v512i32, MVT::v512f32}; 82 83 void VETargetLowering::initRegisterClasses() { 84 // Set up the register classes. 85 addRegisterClass(MVT::i32, &VE::I32RegClass); 86 addRegisterClass(MVT::i64, &VE::I64RegClass); 87 addRegisterClass(MVT::f32, &VE::F32RegClass); 88 addRegisterClass(MVT::f64, &VE::I64RegClass); 89 addRegisterClass(MVT::f128, &VE::F128RegClass); 90 91 if (Subtarget->enableVPU()) { 92 for (MVT VecVT : AllVectorVTs) 93 addRegisterClass(VecVT, &VE::V64RegClass); 94 addRegisterClass(MVT::v256i1, &VE::VMRegClass); 95 addRegisterClass(MVT::v512i1, &VE::VM512RegClass); 96 } 97 } 98 99 void VETargetLowering::initSPUActions() { 100 const auto &TM = getTargetMachine(); 101 /// Load & Store { 102 103 // VE doesn't have i1 sign extending load. 104 for (MVT VT : MVT::integer_valuetypes()) { 105 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 106 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 107 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 108 setTruncStoreAction(VT, MVT::i1, Expand); 109 } 110 111 // VE doesn't have floating point extload/truncstore, so expand them. 112 for (MVT FPVT : MVT::fp_valuetypes()) { 113 for (MVT OtherFPVT : MVT::fp_valuetypes()) { 114 setLoadExtAction(ISD::EXTLOAD, FPVT, OtherFPVT, Expand); 115 setTruncStoreAction(FPVT, OtherFPVT, Expand); 116 } 117 } 118 119 // VE doesn't have fp128 load/store, so expand them in custom lower. 120 setOperationAction(ISD::LOAD, MVT::f128, Custom); 121 setOperationAction(ISD::STORE, MVT::f128, Custom); 122 123 /// } Load & Store 124 125 // Custom legalize address nodes into LO/HI parts. 126 MVT PtrVT = MVT::getIntegerVT(TM.getPointerSizeInBits(0)); 127 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 128 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 129 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 130 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 131 setOperationAction(ISD::JumpTable, PtrVT, Custom); 132 133 /// VAARG handling { 134 setOperationAction(ISD::VASTART, MVT::Other, Custom); 135 // VAARG needs to be lowered to access with 8 bytes alignment. 136 setOperationAction(ISD::VAARG, MVT::Other, Custom); 137 // Use the default implementation. 138 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 139 setOperationAction(ISD::VAEND, MVT::Other, Expand); 140 /// } VAARG handling 141 142 /// Stack { 143 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 144 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom); 145 146 // Use the default implementation. 147 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 148 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 149 /// } Stack 150 151 /// Branch { 152 153 // VE doesn't have BRCOND 154 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 155 156 // BR_JT is not implemented yet. 157 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 158 159 /// } Branch 160 161 /// Int Ops { 162 for (MVT IntVT : {MVT::i32, MVT::i64}) { 163 // VE has no REM or DIVREM operations. 164 setOperationAction(ISD::UREM, IntVT, Expand); 165 setOperationAction(ISD::SREM, IntVT, Expand); 166 setOperationAction(ISD::SDIVREM, IntVT, Expand); 167 setOperationAction(ISD::UDIVREM, IntVT, Expand); 168 169 // VE has no SHL_PARTS/SRA_PARTS/SRL_PARTS operations. 170 setOperationAction(ISD::SHL_PARTS, IntVT, Expand); 171 setOperationAction(ISD::SRA_PARTS, IntVT, Expand); 172 setOperationAction(ISD::SRL_PARTS, IntVT, Expand); 173 174 // VE has no MULHU/S or U/SMUL_LOHI operations. 175 // TODO: Use MPD instruction to implement SMUL_LOHI for i32 type. 176 setOperationAction(ISD::MULHU, IntVT, Expand); 177 setOperationAction(ISD::MULHS, IntVT, Expand); 178 setOperationAction(ISD::UMUL_LOHI, IntVT, Expand); 179 setOperationAction(ISD::SMUL_LOHI, IntVT, Expand); 180 181 // VE has no CTTZ, ROTL, ROTR operations. 182 setOperationAction(ISD::CTTZ, IntVT, Expand); 183 setOperationAction(ISD::ROTL, IntVT, Expand); 184 setOperationAction(ISD::ROTR, IntVT, Expand); 185 186 // VE has 64 bits instruction which works as i64 BSWAP operation. This 187 // instruction works fine as i32 BSWAP operation with an additional 188 // parameter. Use isel patterns to lower BSWAP. 189 setOperationAction(ISD::BSWAP, IntVT, Legal); 190 191 // VE has only 64 bits instructions which work as i64 BITREVERSE/CTLZ/CTPOP 192 // operations. Use isel patterns for i64, promote for i32. 193 LegalizeAction Act = (IntVT == MVT::i32) ? Promote : Legal; 194 setOperationAction(ISD::BITREVERSE, IntVT, Act); 195 setOperationAction(ISD::CTLZ, IntVT, Act); 196 setOperationAction(ISD::CTLZ_ZERO_UNDEF, IntVT, Act); 197 setOperationAction(ISD::CTPOP, IntVT, Act); 198 199 // VE has only 64 bits instructions which work as i64 AND/OR/XOR operations. 200 // Use isel patterns for i64, promote for i32. 201 setOperationAction(ISD::AND, IntVT, Act); 202 setOperationAction(ISD::OR, IntVT, Act); 203 setOperationAction(ISD::XOR, IntVT, Act); 204 } 205 /// } Int Ops 206 207 /// Conversion { 208 // VE doesn't have instructions for fp<->uint, so expand them by llvm 209 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote); // use i64 210 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); // use i64 211 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 212 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 213 214 // fp16 not supported 215 for (MVT FPVT : MVT::fp_valuetypes()) { 216 setOperationAction(ISD::FP16_TO_FP, FPVT, Expand); 217 setOperationAction(ISD::FP_TO_FP16, FPVT, Expand); 218 } 219 /// } Conversion 220 221 /// Floating-point Ops { 222 /// Note: Floating-point operations are fneg, fadd, fsub, fmul, fdiv, frem, 223 /// and fcmp. 224 225 // VE doesn't have following floating point operations. 226 for (MVT VT : MVT::fp_valuetypes()) { 227 setOperationAction(ISD::FNEG, VT, Expand); 228 setOperationAction(ISD::FREM, VT, Expand); 229 } 230 231 // VE doesn't have fdiv of f128. 232 setOperationAction(ISD::FDIV, MVT::f128, Expand); 233 234 for (MVT FPVT : {MVT::f32, MVT::f64}) { 235 // f32 and f64 uses ConstantFP. f128 uses ConstantPool. 236 setOperationAction(ISD::ConstantFP, FPVT, Legal); 237 } 238 /// } Floating-point Ops 239 240 /// Floating-point math functions { 241 242 // VE doesn't have following floating point math functions. 243 for (MVT VT : MVT::fp_valuetypes()) { 244 setOperationAction(ISD::FABS, VT, Expand); 245 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 246 setOperationAction(ISD::FCOS, VT, Expand); 247 setOperationAction(ISD::FSIN, VT, Expand); 248 setOperationAction(ISD::FSQRT, VT, Expand); 249 } 250 251 /// } Floating-point math functions 252 253 /// Atomic instructions { 254 255 setMaxAtomicSizeInBitsSupported(64); 256 setMinCmpXchgSizeInBits(32); 257 setSupportsUnalignedAtomics(false); 258 259 // Use custom inserter for ATOMIC_FENCE. 260 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 261 262 // Other atomic instructions. 263 for (MVT VT : MVT::integer_valuetypes()) { 264 // Support i8/i16 atomic swap. 265 setOperationAction(ISD::ATOMIC_SWAP, VT, Custom); 266 267 // FIXME: Support "atmam" instructions. 268 setOperationAction(ISD::ATOMIC_LOAD_ADD, VT, Expand); 269 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Expand); 270 setOperationAction(ISD::ATOMIC_LOAD_AND, VT, Expand); 271 setOperationAction(ISD::ATOMIC_LOAD_OR, VT, Expand); 272 273 // VE doesn't have follwing instructions. 274 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand); 275 setOperationAction(ISD::ATOMIC_LOAD_CLR, VT, Expand); 276 setOperationAction(ISD::ATOMIC_LOAD_XOR, VT, Expand); 277 setOperationAction(ISD::ATOMIC_LOAD_NAND, VT, Expand); 278 setOperationAction(ISD::ATOMIC_LOAD_MIN, VT, Expand); 279 setOperationAction(ISD::ATOMIC_LOAD_MAX, VT, Expand); 280 setOperationAction(ISD::ATOMIC_LOAD_UMIN, VT, Expand); 281 setOperationAction(ISD::ATOMIC_LOAD_UMAX, VT, Expand); 282 } 283 284 /// } Atomic instructions 285 286 /// SJLJ instructions { 287 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 288 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 289 setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH, MVT::Other, Custom); 290 if (TM.Options.ExceptionModel == ExceptionHandling::SjLj) 291 setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume"); 292 /// } SJLJ instructions 293 294 // Intrinsic instructions 295 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 296 } 297 298 void VETargetLowering::initVPUActions() { 299 for (MVT LegalMaskVT : AllMaskVTs) 300 setOperationAction(ISD::BUILD_VECTOR, LegalMaskVT, Custom); 301 302 for (unsigned Opc : {ISD::AND, ISD::OR, ISD::XOR}) 303 setOperationAction(Opc, MVT::v512i1, Custom); 304 305 for (MVT LegalVecVT : AllVectorVTs) { 306 setOperationAction(ISD::BUILD_VECTOR, LegalVecVT, Custom); 307 setOperationAction(ISD::INSERT_VECTOR_ELT, LegalVecVT, Legal); 308 setOperationAction(ISD::EXTRACT_VECTOR_ELT, LegalVecVT, Legal); 309 // Translate all vector instructions with legal element types to VVP_* 310 // nodes. 311 // TODO We will custom-widen into VVP_* nodes in the future. While we are 312 // buildling the infrastructure for this, we only do this for legal vector 313 // VTs. 314 #define HANDLE_VP_TO_VVP(VP_OPC, VVP_NAME) \ 315 setOperationAction(ISD::VP_OPC, LegalVecVT, Custom); 316 #define ADD_VVP_OP(VVP_NAME, ISD_NAME) \ 317 setOperationAction(ISD::ISD_NAME, LegalVecVT, Custom); 318 #include "VVPNodes.def" 319 } 320 321 for (MVT LegalPackedVT : AllPackedVTs) { 322 setOperationAction(ISD::INSERT_VECTOR_ELT, LegalPackedVT, Custom); 323 setOperationAction(ISD::EXTRACT_VECTOR_ELT, LegalPackedVT, Custom); 324 } 325 326 // vNt32, vNt64 ops (legal element types) 327 for (MVT VT : MVT::vector_valuetypes()) { 328 MVT ElemVT = VT.getVectorElementType(); 329 unsigned ElemBits = ElemVT.getScalarSizeInBits(); 330 if (ElemBits != 32 && ElemBits != 64) 331 continue; 332 333 for (unsigned MemOpc : {ISD::MLOAD, ISD::MSTORE, ISD::LOAD, ISD::STORE}) 334 setOperationAction(MemOpc, VT, Custom); 335 } 336 } 337 338 SDValue 339 VETargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 340 bool IsVarArg, 341 const SmallVectorImpl<ISD::OutputArg> &Outs, 342 const SmallVectorImpl<SDValue> &OutVals, 343 const SDLoc &DL, SelectionDAG &DAG) const { 344 // CCValAssign - represent the assignment of the return value to locations. 345 SmallVector<CCValAssign, 16> RVLocs; 346 347 // CCState - Info about the registers and stack slot. 348 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 349 *DAG.getContext()); 350 351 // Analyze return values. 352 CCInfo.AnalyzeReturn(Outs, getReturnCC(CallConv)); 353 354 SDValue Flag; 355 SmallVector<SDValue, 4> RetOps(1, Chain); 356 357 // Copy the result values into the output registers. 358 for (unsigned i = 0; i != RVLocs.size(); ++i) { 359 CCValAssign &VA = RVLocs[i]; 360 assert(VA.isRegLoc() && "Can only return in registers!"); 361 assert(!VA.needsCustom() && "Unexpected custom lowering"); 362 SDValue OutVal = OutVals[i]; 363 364 // Integer return values must be sign or zero extended by the callee. 365 switch (VA.getLocInfo()) { 366 case CCValAssign::Full: 367 break; 368 case CCValAssign::SExt: 369 OutVal = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), OutVal); 370 break; 371 case CCValAssign::ZExt: 372 OutVal = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), OutVal); 373 break; 374 case CCValAssign::AExt: 375 OutVal = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), OutVal); 376 break; 377 case CCValAssign::BCvt: { 378 // Convert a float return value to i64 with padding. 379 // 63 31 0 380 // +------+------+ 381 // | float| 0 | 382 // +------+------+ 383 assert(VA.getLocVT() == MVT::i64); 384 assert(VA.getValVT() == MVT::f32); 385 SDValue Undef = SDValue( 386 DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::i64), 0); 387 SDValue Sub_f32 = DAG.getTargetConstant(VE::sub_f32, DL, MVT::i32); 388 OutVal = SDValue(DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 389 MVT::i64, Undef, OutVal, Sub_f32), 390 0); 391 break; 392 } 393 default: 394 llvm_unreachable("Unknown loc info!"); 395 } 396 397 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVal, Flag); 398 399 // Guarantee that all emitted copies are stuck together with flags. 400 Flag = Chain.getValue(1); 401 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 402 } 403 404 RetOps[0] = Chain; // Update chain. 405 406 // Add the flag if we have it. 407 if (Flag.getNode()) 408 RetOps.push_back(Flag); 409 410 return DAG.getNode(VEISD::RET_FLAG, DL, MVT::Other, RetOps); 411 } 412 413 SDValue VETargetLowering::LowerFormalArguments( 414 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 415 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 416 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 417 MachineFunction &MF = DAG.getMachineFunction(); 418 419 // Get the base offset of the incoming arguments stack space. 420 unsigned ArgsBaseOffset = Subtarget->getRsaSize(); 421 // Get the size of the preserved arguments area 422 unsigned ArgsPreserved = 64; 423 424 // Analyze arguments according to CC_VE. 425 SmallVector<CCValAssign, 16> ArgLocs; 426 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, 427 *DAG.getContext()); 428 // Allocate the preserved area first. 429 CCInfo.AllocateStack(ArgsPreserved, Align(8)); 430 // We already allocated the preserved area, so the stack offset computed 431 // by CC_VE would be correct now. 432 CCInfo.AnalyzeFormalArguments(Ins, getParamCC(CallConv, false)); 433 434 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 435 CCValAssign &VA = ArgLocs[i]; 436 assert(!VA.needsCustom() && "Unexpected custom lowering"); 437 if (VA.isRegLoc()) { 438 // This argument is passed in a register. 439 // All integer register arguments are promoted by the caller to i64. 440 441 // Create a virtual register for the promoted live-in value. 442 Register VReg = 443 MF.addLiveIn(VA.getLocReg(), getRegClassFor(VA.getLocVT())); 444 SDValue Arg = DAG.getCopyFromReg(Chain, DL, VReg, VA.getLocVT()); 445 446 // The caller promoted the argument, so insert an Assert?ext SDNode so we 447 // won't promote the value again in this function. 448 switch (VA.getLocInfo()) { 449 case CCValAssign::SExt: 450 Arg = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Arg, 451 DAG.getValueType(VA.getValVT())); 452 break; 453 case CCValAssign::ZExt: 454 Arg = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Arg, 455 DAG.getValueType(VA.getValVT())); 456 break; 457 case CCValAssign::BCvt: { 458 // Extract a float argument from i64 with padding. 459 // 63 31 0 460 // +------+------+ 461 // | float| 0 | 462 // +------+------+ 463 assert(VA.getLocVT() == MVT::i64); 464 assert(VA.getValVT() == MVT::f32); 465 SDValue Sub_f32 = DAG.getTargetConstant(VE::sub_f32, DL, MVT::i32); 466 Arg = SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 467 MVT::f32, Arg, Sub_f32), 468 0); 469 break; 470 } 471 default: 472 break; 473 } 474 475 // Truncate the register down to the argument type. 476 if (VA.isExtInLoc()) 477 Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg); 478 479 InVals.push_back(Arg); 480 continue; 481 } 482 483 // The registers are exhausted. This argument was passed on the stack. 484 assert(VA.isMemLoc()); 485 // The CC_VE_Full/Half functions compute stack offsets relative to the 486 // beginning of the arguments area at %fp + the size of reserved area. 487 unsigned Offset = VA.getLocMemOffset() + ArgsBaseOffset; 488 unsigned ValSize = VA.getValVT().getSizeInBits() / 8; 489 490 // Adjust offset for a float argument by adding 4 since the argument is 491 // stored in 8 bytes buffer with offset like below. LLVM generates 492 // 4 bytes load instruction, so need to adjust offset here. This 493 // adjustment is required in only LowerFormalArguments. In LowerCall, 494 // a float argument is converted to i64 first, and stored as 8 bytes 495 // data, which is required by ABI, so no need for adjustment. 496 // 0 4 497 // +------+------+ 498 // | empty| float| 499 // +------+------+ 500 if (VA.getValVT() == MVT::f32) 501 Offset += 4; 502 503 int FI = MF.getFrameInfo().CreateFixedObject(ValSize, Offset, true); 504 InVals.push_back( 505 DAG.getLoad(VA.getValVT(), DL, Chain, 506 DAG.getFrameIndex(FI, getPointerTy(MF.getDataLayout())), 507 MachinePointerInfo::getFixedStack(MF, FI))); 508 } 509 510 if (!IsVarArg) 511 return Chain; 512 513 // This function takes variable arguments, some of which may have been passed 514 // in registers %s0-%s8. 515 // 516 // The va_start intrinsic needs to know the offset to the first variable 517 // argument. 518 // TODO: need to calculate offset correctly once we support f128. 519 unsigned ArgOffset = ArgLocs.size() * 8; 520 VEMachineFunctionInfo *FuncInfo = MF.getInfo<VEMachineFunctionInfo>(); 521 // Skip the reserved area at the top of stack. 522 FuncInfo->setVarArgsFrameOffset(ArgOffset + ArgsBaseOffset); 523 524 return Chain; 525 } 526 527 // FIXME? Maybe this could be a TableGen attribute on some registers and 528 // this table could be generated automatically from RegInfo. 529 Register VETargetLowering::getRegisterByName(const char *RegName, LLT VT, 530 const MachineFunction &MF) const { 531 Register Reg = StringSwitch<Register>(RegName) 532 .Case("sp", VE::SX11) // Stack pointer 533 .Case("fp", VE::SX9) // Frame pointer 534 .Case("sl", VE::SX8) // Stack limit 535 .Case("lr", VE::SX10) // Link register 536 .Case("tp", VE::SX14) // Thread pointer 537 .Case("outer", VE::SX12) // Outer regiser 538 .Case("info", VE::SX17) // Info area register 539 .Case("got", VE::SX15) // Global offset table register 540 .Case("plt", VE::SX16) // Procedure linkage table register 541 .Default(0); 542 543 if (Reg) 544 return Reg; 545 546 report_fatal_error("Invalid register name global variable"); 547 } 548 549 //===----------------------------------------------------------------------===// 550 // TargetLowering Implementation 551 //===----------------------------------------------------------------------===// 552 553 SDValue VETargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 554 SmallVectorImpl<SDValue> &InVals) const { 555 SelectionDAG &DAG = CLI.DAG; 556 SDLoc DL = CLI.DL; 557 SDValue Chain = CLI.Chain; 558 auto PtrVT = getPointerTy(DAG.getDataLayout()); 559 560 // VE target does not yet support tail call optimization. 561 CLI.IsTailCall = false; 562 563 // Get the base offset of the outgoing arguments stack space. 564 unsigned ArgsBaseOffset = Subtarget->getRsaSize(); 565 // Get the size of the preserved arguments area 566 unsigned ArgsPreserved = 8 * 8u; 567 568 // Analyze operands of the call, assigning locations to each operand. 569 SmallVector<CCValAssign, 16> ArgLocs; 570 CCState CCInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), ArgLocs, 571 *DAG.getContext()); 572 // Allocate the preserved area first. 573 CCInfo.AllocateStack(ArgsPreserved, Align(8)); 574 // We already allocated the preserved area, so the stack offset computed 575 // by CC_VE would be correct now. 576 CCInfo.AnalyzeCallOperands(CLI.Outs, getParamCC(CLI.CallConv, false)); 577 578 // VE requires to use both register and stack for varargs or no-prototyped 579 // functions. 580 bool UseBoth = CLI.IsVarArg; 581 582 // Analyze operands again if it is required to store BOTH. 583 SmallVector<CCValAssign, 16> ArgLocs2; 584 CCState CCInfo2(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), 585 ArgLocs2, *DAG.getContext()); 586 if (UseBoth) 587 CCInfo2.AnalyzeCallOperands(CLI.Outs, getParamCC(CLI.CallConv, true)); 588 589 // Get the size of the outgoing arguments stack space requirement. 590 unsigned ArgsSize = CCInfo.getNextStackOffset(); 591 592 // Keep stack frames 16-byte aligned. 593 ArgsSize = alignTo(ArgsSize, 16); 594 595 // Adjust the stack pointer to make room for the arguments. 596 // FIXME: Use hasReservedCallFrame to avoid %sp adjustments around all calls 597 // with more than 6 arguments. 598 Chain = DAG.getCALLSEQ_START(Chain, ArgsSize, 0, DL); 599 600 // Collect the set of registers to pass to the function and their values. 601 // This will be emitted as a sequence of CopyToReg nodes glued to the call 602 // instruction. 603 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 604 605 // Collect chains from all the memory opeations that copy arguments to the 606 // stack. They must follow the stack pointer adjustment above and precede the 607 // call instruction itself. 608 SmallVector<SDValue, 8> MemOpChains; 609 610 // VE needs to get address of callee function in a register 611 // So, prepare to copy it to SX12 here. 612 613 // If the callee is a GlobalAddress node (quite common, every direct call is) 614 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. 615 // Likewise ExternalSymbol -> TargetExternalSymbol. 616 SDValue Callee = CLI.Callee; 617 618 bool IsPICCall = isPositionIndependent(); 619 620 // PC-relative references to external symbols should go through $stub. 621 // If so, we need to prepare GlobalBaseReg first. 622 const TargetMachine &TM = DAG.getTarget(); 623 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 624 const GlobalValue *GV = nullptr; 625 auto *CalleeG = dyn_cast<GlobalAddressSDNode>(Callee); 626 if (CalleeG) 627 GV = CalleeG->getGlobal(); 628 bool Local = TM.shouldAssumeDSOLocal(*Mod, GV); 629 bool UsePlt = !Local; 630 MachineFunction &MF = DAG.getMachineFunction(); 631 632 // Turn GlobalAddress/ExternalSymbol node into a value node 633 // containing the address of them here. 634 if (CalleeG) { 635 if (IsPICCall) { 636 if (UsePlt) 637 Subtarget->getInstrInfo()->getGlobalBaseReg(&MF); 638 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 0); 639 Callee = DAG.getNode(VEISD::GETFUNPLT, DL, PtrVT, Callee); 640 } else { 641 Callee = 642 makeHiLoPair(Callee, VEMCExpr::VK_VE_HI32, VEMCExpr::VK_VE_LO32, DAG); 643 } 644 } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 645 if (IsPICCall) { 646 if (UsePlt) 647 Subtarget->getInstrInfo()->getGlobalBaseReg(&MF); 648 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT, 0); 649 Callee = DAG.getNode(VEISD::GETFUNPLT, DL, PtrVT, Callee); 650 } else { 651 Callee = 652 makeHiLoPair(Callee, VEMCExpr::VK_VE_HI32, VEMCExpr::VK_VE_LO32, DAG); 653 } 654 } 655 656 RegsToPass.push_back(std::make_pair(VE::SX12, Callee)); 657 658 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 659 CCValAssign &VA = ArgLocs[i]; 660 SDValue Arg = CLI.OutVals[i]; 661 662 // Promote the value if needed. 663 switch (VA.getLocInfo()) { 664 default: 665 llvm_unreachable("Unknown location info!"); 666 case CCValAssign::Full: 667 break; 668 case CCValAssign::SExt: 669 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); 670 break; 671 case CCValAssign::ZExt: 672 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); 673 break; 674 case CCValAssign::AExt: 675 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); 676 break; 677 case CCValAssign::BCvt: { 678 // Convert a float argument to i64 with padding. 679 // 63 31 0 680 // +------+------+ 681 // | float| 0 | 682 // +------+------+ 683 assert(VA.getLocVT() == MVT::i64); 684 assert(VA.getValVT() == MVT::f32); 685 SDValue Undef = SDValue( 686 DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::i64), 0); 687 SDValue Sub_f32 = DAG.getTargetConstant(VE::sub_f32, DL, MVT::i32); 688 Arg = SDValue(DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 689 MVT::i64, Undef, Arg, Sub_f32), 690 0); 691 break; 692 } 693 } 694 695 if (VA.isRegLoc()) { 696 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 697 if (!UseBoth) 698 continue; 699 VA = ArgLocs2[i]; 700 } 701 702 assert(VA.isMemLoc()); 703 704 // Create a store off the stack pointer for this argument. 705 SDValue StackPtr = DAG.getRegister(VE::SX11, PtrVT); 706 // The argument area starts at %fp/%sp + the size of reserved area. 707 SDValue PtrOff = 708 DAG.getIntPtrConstant(VA.getLocMemOffset() + ArgsBaseOffset, DL); 709 PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff); 710 MemOpChains.push_back( 711 DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo())); 712 } 713 714 // Emit all stores, make sure they occur before the call. 715 if (!MemOpChains.empty()) 716 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 717 718 // Build a sequence of CopyToReg nodes glued together with token chain and 719 // glue operands which copy the outgoing args into registers. The InGlue is 720 // necessary since all emitted instructions must be stuck together in order 721 // to pass the live physical registers. 722 SDValue InGlue; 723 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 724 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[i].first, 725 RegsToPass[i].second, InGlue); 726 InGlue = Chain.getValue(1); 727 } 728 729 // Build the operands for the call instruction itself. 730 SmallVector<SDValue, 8> Ops; 731 Ops.push_back(Chain); 732 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 733 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 734 RegsToPass[i].second.getValueType())); 735 736 // Add a register mask operand representing the call-preserved registers. 737 const VERegisterInfo *TRI = Subtarget->getRegisterInfo(); 738 const uint32_t *Mask = 739 TRI->getCallPreservedMask(DAG.getMachineFunction(), CLI.CallConv); 740 assert(Mask && "Missing call preserved mask for calling convention"); 741 Ops.push_back(DAG.getRegisterMask(Mask)); 742 743 // Make sure the CopyToReg nodes are glued to the call instruction which 744 // consumes the registers. 745 if (InGlue.getNode()) 746 Ops.push_back(InGlue); 747 748 // Now the call itself. 749 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 750 Chain = DAG.getNode(VEISD::CALL, DL, NodeTys, Ops); 751 InGlue = Chain.getValue(1); 752 753 // Revert the stack pointer immediately after the call. 754 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(ArgsSize, DL, true), 755 DAG.getIntPtrConstant(0, DL, true), InGlue, DL); 756 InGlue = Chain.getValue(1); 757 758 // Now extract the return values. This is more or less the same as 759 // LowerFormalArguments. 760 761 // Assign locations to each value returned by this call. 762 SmallVector<CCValAssign, 16> RVLocs; 763 CCState RVInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), RVLocs, 764 *DAG.getContext()); 765 766 // Set inreg flag manually for codegen generated library calls that 767 // return float. 768 if (CLI.Ins.size() == 1 && CLI.Ins[0].VT == MVT::f32 && !CLI.CB) 769 CLI.Ins[0].Flags.setInReg(); 770 771 RVInfo.AnalyzeCallResult(CLI.Ins, getReturnCC(CLI.CallConv)); 772 773 // Copy all of the result registers out of their specified physreg. 774 for (unsigned i = 0; i != RVLocs.size(); ++i) { 775 CCValAssign &VA = RVLocs[i]; 776 assert(!VA.needsCustom() && "Unexpected custom lowering"); 777 Register Reg = VA.getLocReg(); 778 779 // When returning 'inreg {i32, i32 }', two consecutive i32 arguments can 780 // reside in the same register in the high and low bits. Reuse the 781 // CopyFromReg previous node to avoid duplicate copies. 782 SDValue RV; 783 if (RegisterSDNode *SrcReg = dyn_cast<RegisterSDNode>(Chain.getOperand(1))) 784 if (SrcReg->getReg() == Reg && Chain->getOpcode() == ISD::CopyFromReg) 785 RV = Chain.getValue(0); 786 787 // But usually we'll create a new CopyFromReg for a different register. 788 if (!RV.getNode()) { 789 RV = DAG.getCopyFromReg(Chain, DL, Reg, RVLocs[i].getLocVT(), InGlue); 790 Chain = RV.getValue(1); 791 InGlue = Chain.getValue(2); 792 } 793 794 // The callee promoted the return value, so insert an Assert?ext SDNode so 795 // we won't promote the value again in this function. 796 switch (VA.getLocInfo()) { 797 case CCValAssign::SExt: 798 RV = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), RV, 799 DAG.getValueType(VA.getValVT())); 800 break; 801 case CCValAssign::ZExt: 802 RV = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), RV, 803 DAG.getValueType(VA.getValVT())); 804 break; 805 case CCValAssign::BCvt: { 806 // Extract a float return value from i64 with padding. 807 // 63 31 0 808 // +------+------+ 809 // | float| 0 | 810 // +------+------+ 811 assert(VA.getLocVT() == MVT::i64); 812 assert(VA.getValVT() == MVT::f32); 813 SDValue Sub_f32 = DAG.getTargetConstant(VE::sub_f32, DL, MVT::i32); 814 RV = SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 815 MVT::f32, RV, Sub_f32), 816 0); 817 break; 818 } 819 default: 820 break; 821 } 822 823 // Truncate the register down to the return value type. 824 if (VA.isExtInLoc()) 825 RV = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), RV); 826 827 InVals.push_back(RV); 828 } 829 830 return Chain; 831 } 832 833 bool VETargetLowering::isOffsetFoldingLegal( 834 const GlobalAddressSDNode *GA) const { 835 // VE uses 64 bit addressing, so we need multiple instructions to generate 836 // an address. Folding address with offset increases the number of 837 // instructions, so that we disable it here. Offsets will be folded in 838 // the DAG combine later if it worth to do so. 839 return false; 840 } 841 842 /// isFPImmLegal - Returns true if the target can instruction select the 843 /// specified FP immediate natively. If false, the legalizer will 844 /// materialize the FP immediate as a load from a constant pool. 845 bool VETargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 846 bool ForCodeSize) const { 847 return VT == MVT::f32 || VT == MVT::f64; 848 } 849 850 /// Determine if the target supports unaligned memory accesses. 851 /// 852 /// This function returns true if the target allows unaligned memory accesses 853 /// of the specified type in the given address space. If true, it also returns 854 /// whether the unaligned memory access is "fast" in the last argument by 855 /// reference. This is used, for example, in situations where an array 856 /// copy/move/set is converted to a sequence of store operations. Its use 857 /// helps to ensure that such replacements don't generate code that causes an 858 /// alignment error (trap) on the target machine. 859 bool VETargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 860 unsigned AddrSpace, 861 Align A, 862 MachineMemOperand::Flags, 863 bool *Fast) const { 864 if (Fast) { 865 // It's fast anytime on VE 866 *Fast = true; 867 } 868 return true; 869 } 870 871 VETargetLowering::VETargetLowering(const TargetMachine &TM, 872 const VESubtarget &STI) 873 : TargetLowering(TM), Subtarget(&STI) { 874 // Instructions which use registers as conditionals examine all the 875 // bits (as does the pseudo SELECT_CC expansion). I don't think it 876 // matters much whether it's ZeroOrOneBooleanContent, or 877 // ZeroOrNegativeOneBooleanContent, so, arbitrarily choose the 878 // former. 879 setBooleanContents(ZeroOrOneBooleanContent); 880 setBooleanVectorContents(ZeroOrOneBooleanContent); 881 882 initRegisterClasses(); 883 initSPUActions(); 884 initVPUActions(); 885 886 setStackPointerRegisterToSaveRestore(VE::SX11); 887 888 // We have target-specific dag combine patterns for the following nodes: 889 setTargetDAGCombine(ISD::TRUNCATE); 890 891 // Set function alignment to 16 bytes 892 setMinFunctionAlignment(Align(16)); 893 894 // VE stores all argument by 8 bytes alignment 895 setMinStackArgumentAlignment(Align(8)); 896 897 computeRegisterProperties(Subtarget->getRegisterInfo()); 898 } 899 900 const char *VETargetLowering::getTargetNodeName(unsigned Opcode) const { 901 #define TARGET_NODE_CASE(NAME) \ 902 case VEISD::NAME: \ 903 return "VEISD::" #NAME; 904 switch ((VEISD::NodeType)Opcode) { 905 case VEISD::FIRST_NUMBER: 906 break; 907 TARGET_NODE_CASE(CALL) 908 TARGET_NODE_CASE(EH_SJLJ_LONGJMP) 909 TARGET_NODE_CASE(EH_SJLJ_SETJMP) 910 TARGET_NODE_CASE(EH_SJLJ_SETUP_DISPATCH) 911 TARGET_NODE_CASE(GETFUNPLT) 912 TARGET_NODE_CASE(GETSTACKTOP) 913 TARGET_NODE_CASE(GETTLSADDR) 914 TARGET_NODE_CASE(GLOBAL_BASE_REG) 915 TARGET_NODE_CASE(Hi) 916 TARGET_NODE_CASE(Lo) 917 TARGET_NODE_CASE(MEMBARRIER) 918 TARGET_NODE_CASE(RET_FLAG) 919 TARGET_NODE_CASE(TS1AM) 920 TARGET_NODE_CASE(VEC_UNPACK_LO) 921 TARGET_NODE_CASE(VEC_UNPACK_HI) 922 TARGET_NODE_CASE(VEC_PACK) 923 TARGET_NODE_CASE(VEC_BROADCAST) 924 TARGET_NODE_CASE(REPL_I32) 925 TARGET_NODE_CASE(REPL_F32) 926 927 TARGET_NODE_CASE(LEGALAVL) 928 929 // Register the VVP_* SDNodes. 930 #define ADD_VVP_OP(VVP_NAME, ...) TARGET_NODE_CASE(VVP_NAME) 931 #include "VVPNodes.def" 932 } 933 #undef TARGET_NODE_CASE 934 return nullptr; 935 } 936 937 EVT VETargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &, 938 EVT VT) const { 939 return MVT::i32; 940 } 941 942 // Convert to a target node and set target flags. 943 SDValue VETargetLowering::withTargetFlags(SDValue Op, unsigned TF, 944 SelectionDAG &DAG) const { 945 if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) 946 return DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(GA), 947 GA->getValueType(0), GA->getOffset(), TF); 948 949 if (const BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op)) 950 return DAG.getTargetBlockAddress(BA->getBlockAddress(), Op.getValueType(), 951 0, TF); 952 953 if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) 954 return DAG.getTargetConstantPool(CP->getConstVal(), CP->getValueType(0), 955 CP->getAlign(), CP->getOffset(), TF); 956 957 if (const ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) 958 return DAG.getTargetExternalSymbol(ES->getSymbol(), ES->getValueType(0), 959 TF); 960 961 if (const JumpTableSDNode *JT = dyn_cast<JumpTableSDNode>(Op)) 962 return DAG.getTargetJumpTable(JT->getIndex(), JT->getValueType(0), TF); 963 964 llvm_unreachable("Unhandled address SDNode"); 965 } 966 967 // Split Op into high and low parts according to HiTF and LoTF. 968 // Return an ADD node combining the parts. 969 SDValue VETargetLowering::makeHiLoPair(SDValue Op, unsigned HiTF, unsigned LoTF, 970 SelectionDAG &DAG) const { 971 SDLoc DL(Op); 972 EVT VT = Op.getValueType(); 973 SDValue Hi = DAG.getNode(VEISD::Hi, DL, VT, withTargetFlags(Op, HiTF, DAG)); 974 SDValue Lo = DAG.getNode(VEISD::Lo, DL, VT, withTargetFlags(Op, LoTF, DAG)); 975 return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo); 976 } 977 978 // Build SDNodes for producing an address from a GlobalAddress, ConstantPool, 979 // or ExternalSymbol SDNode. 980 SDValue VETargetLowering::makeAddress(SDValue Op, SelectionDAG &DAG) const { 981 SDLoc DL(Op); 982 EVT PtrVT = Op.getValueType(); 983 984 // Handle PIC mode first. VE needs a got load for every variable! 985 if (isPositionIndependent()) { 986 auto GlobalN = dyn_cast<GlobalAddressSDNode>(Op); 987 988 if (isa<ConstantPoolSDNode>(Op) || isa<JumpTableSDNode>(Op) || 989 (GlobalN && GlobalN->getGlobal()->hasLocalLinkage())) { 990 // Create following instructions for local linkage PIC code. 991 // lea %reg, label@gotoff_lo 992 // and %reg, %reg, (32)0 993 // lea.sl %reg, label@gotoff_hi(%reg, %got) 994 SDValue HiLo = makeHiLoPair(Op, VEMCExpr::VK_VE_GOTOFF_HI32, 995 VEMCExpr::VK_VE_GOTOFF_LO32, DAG); 996 SDValue GlobalBase = DAG.getNode(VEISD::GLOBAL_BASE_REG, DL, PtrVT); 997 return DAG.getNode(ISD::ADD, DL, PtrVT, GlobalBase, HiLo); 998 } 999 // Create following instructions for not local linkage PIC code. 1000 // lea %reg, label@got_lo 1001 // and %reg, %reg, (32)0 1002 // lea.sl %reg, label@got_hi(%reg) 1003 // ld %reg, (%reg, %got) 1004 SDValue HiLo = makeHiLoPair(Op, VEMCExpr::VK_VE_GOT_HI32, 1005 VEMCExpr::VK_VE_GOT_LO32, DAG); 1006 SDValue GlobalBase = DAG.getNode(VEISD::GLOBAL_BASE_REG, DL, PtrVT); 1007 SDValue AbsAddr = DAG.getNode(ISD::ADD, DL, PtrVT, GlobalBase, HiLo); 1008 return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), AbsAddr, 1009 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 1010 } 1011 1012 // This is one of the absolute code models. 1013 switch (getTargetMachine().getCodeModel()) { 1014 default: 1015 llvm_unreachable("Unsupported absolute code model"); 1016 case CodeModel::Small: 1017 case CodeModel::Medium: 1018 case CodeModel::Large: 1019 // abs64. 1020 return makeHiLoPair(Op, VEMCExpr::VK_VE_HI32, VEMCExpr::VK_VE_LO32, DAG); 1021 } 1022 } 1023 1024 /// Custom Lower { 1025 1026 // The mappings for emitLeading/TrailingFence for VE is designed by following 1027 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 1028 Instruction *VETargetLowering::emitLeadingFence(IRBuilderBase &Builder, 1029 Instruction *Inst, 1030 AtomicOrdering Ord) const { 1031 switch (Ord) { 1032 case AtomicOrdering::NotAtomic: 1033 case AtomicOrdering::Unordered: 1034 llvm_unreachable("Invalid fence: unordered/non-atomic"); 1035 case AtomicOrdering::Monotonic: 1036 case AtomicOrdering::Acquire: 1037 return nullptr; // Nothing to do 1038 case AtomicOrdering::Release: 1039 case AtomicOrdering::AcquireRelease: 1040 return Builder.CreateFence(AtomicOrdering::Release); 1041 case AtomicOrdering::SequentiallyConsistent: 1042 if (!Inst->hasAtomicStore()) 1043 return nullptr; // Nothing to do 1044 return Builder.CreateFence(AtomicOrdering::SequentiallyConsistent); 1045 } 1046 llvm_unreachable("Unknown fence ordering in emitLeadingFence"); 1047 } 1048 1049 Instruction *VETargetLowering::emitTrailingFence(IRBuilderBase &Builder, 1050 Instruction *Inst, 1051 AtomicOrdering Ord) const { 1052 switch (Ord) { 1053 case AtomicOrdering::NotAtomic: 1054 case AtomicOrdering::Unordered: 1055 llvm_unreachable("Invalid fence: unordered/not-atomic"); 1056 case AtomicOrdering::Monotonic: 1057 case AtomicOrdering::Release: 1058 return nullptr; // Nothing to do 1059 case AtomicOrdering::Acquire: 1060 case AtomicOrdering::AcquireRelease: 1061 return Builder.CreateFence(AtomicOrdering::Acquire); 1062 case AtomicOrdering::SequentiallyConsistent: 1063 return Builder.CreateFence(AtomicOrdering::SequentiallyConsistent); 1064 } 1065 llvm_unreachable("Unknown fence ordering in emitTrailingFence"); 1066 } 1067 1068 SDValue VETargetLowering::lowerATOMIC_FENCE(SDValue Op, 1069 SelectionDAG &DAG) const { 1070 SDLoc DL(Op); 1071 AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>( 1072 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()); 1073 SyncScope::ID FenceSSID = static_cast<SyncScope::ID>( 1074 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); 1075 1076 // VE uses Release consistency, so need a fence instruction if it is a 1077 // cross-thread fence. 1078 if (FenceSSID == SyncScope::System) { 1079 switch (FenceOrdering) { 1080 case AtomicOrdering::NotAtomic: 1081 case AtomicOrdering::Unordered: 1082 case AtomicOrdering::Monotonic: 1083 // No need to generate fencem instruction here. 1084 break; 1085 case AtomicOrdering::Acquire: 1086 // Generate "fencem 2" as acquire fence. 1087 return SDValue(DAG.getMachineNode(VE::FENCEM, DL, MVT::Other, 1088 DAG.getTargetConstant(2, DL, MVT::i32), 1089 Op.getOperand(0)), 1090 0); 1091 case AtomicOrdering::Release: 1092 // Generate "fencem 1" as release fence. 1093 return SDValue(DAG.getMachineNode(VE::FENCEM, DL, MVT::Other, 1094 DAG.getTargetConstant(1, DL, MVT::i32), 1095 Op.getOperand(0)), 1096 0); 1097 case AtomicOrdering::AcquireRelease: 1098 case AtomicOrdering::SequentiallyConsistent: 1099 // Generate "fencem 3" as acq_rel and seq_cst fence. 1100 // FIXME: "fencem 3" doesn't wait for for PCIe deveices accesses, 1101 // so seq_cst may require more instruction for them. 1102 return SDValue(DAG.getMachineNode(VE::FENCEM, DL, MVT::Other, 1103 DAG.getTargetConstant(3, DL, MVT::i32), 1104 Op.getOperand(0)), 1105 0); 1106 } 1107 } 1108 1109 // MEMBARRIER is a compiler barrier; it codegens to a no-op. 1110 return DAG.getNode(VEISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); 1111 } 1112 1113 TargetLowering::AtomicExpansionKind 1114 VETargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 1115 // We have TS1AM implementation for i8/i16/i32/i64, so use it. 1116 if (AI->getOperation() == AtomicRMWInst::Xchg) { 1117 return AtomicExpansionKind::None; 1118 } 1119 // FIXME: Support "ATMAM" instruction for LOAD_ADD/SUB/AND/OR. 1120 1121 // Otherwise, expand it using compare and exchange instruction to not call 1122 // __sync_fetch_and_* functions. 1123 return AtomicExpansionKind::CmpXChg; 1124 } 1125 1126 static SDValue prepareTS1AM(SDValue Op, SelectionDAG &DAG, SDValue &Flag, 1127 SDValue &Bits) { 1128 SDLoc DL(Op); 1129 AtomicSDNode *N = cast<AtomicSDNode>(Op); 1130 SDValue Ptr = N->getOperand(1); 1131 SDValue Val = N->getOperand(2); 1132 EVT PtrVT = Ptr.getValueType(); 1133 bool Byte = N->getMemoryVT() == MVT::i8; 1134 // Remainder = AND Ptr, 3 1135 // Flag = 1 << Remainder ; If Byte is true (1 byte swap flag) 1136 // Flag = 3 << Remainder ; If Byte is false (2 bytes swap flag) 1137 // Bits = Remainder << 3 1138 // NewVal = Val << Bits 1139 SDValue Const3 = DAG.getConstant(3, DL, PtrVT); 1140 SDValue Remainder = DAG.getNode(ISD::AND, DL, PtrVT, {Ptr, Const3}); 1141 SDValue Mask = Byte ? DAG.getConstant(1, DL, MVT::i32) 1142 : DAG.getConstant(3, DL, MVT::i32); 1143 Flag = DAG.getNode(ISD::SHL, DL, MVT::i32, {Mask, Remainder}); 1144 Bits = DAG.getNode(ISD::SHL, DL, PtrVT, {Remainder, Const3}); 1145 return DAG.getNode(ISD::SHL, DL, Val.getValueType(), {Val, Bits}); 1146 } 1147 1148 static SDValue finalizeTS1AM(SDValue Op, SelectionDAG &DAG, SDValue Data, 1149 SDValue Bits) { 1150 SDLoc DL(Op); 1151 EVT VT = Data.getValueType(); 1152 bool Byte = cast<AtomicSDNode>(Op)->getMemoryVT() == MVT::i8; 1153 // NewData = Data >> Bits 1154 // Result = NewData & 0xff ; If Byte is true (1 byte) 1155 // Result = NewData & 0xffff ; If Byte is false (2 bytes) 1156 1157 SDValue NewData = DAG.getNode(ISD::SRL, DL, VT, Data, Bits); 1158 return DAG.getNode(ISD::AND, DL, VT, 1159 {NewData, DAG.getConstant(Byte ? 0xff : 0xffff, DL, VT)}); 1160 } 1161 1162 SDValue VETargetLowering::lowerATOMIC_SWAP(SDValue Op, 1163 SelectionDAG &DAG) const { 1164 SDLoc DL(Op); 1165 AtomicSDNode *N = cast<AtomicSDNode>(Op); 1166 1167 if (N->getMemoryVT() == MVT::i8) { 1168 // For i8, use "ts1am" 1169 // Input: 1170 // ATOMIC_SWAP Ptr, Val, Order 1171 // 1172 // Output: 1173 // Remainder = AND Ptr, 3 1174 // Flag = 1 << Remainder ; 1 byte swap flag for TS1AM inst. 1175 // Bits = Remainder << 3 1176 // NewVal = Val << Bits 1177 // 1178 // Aligned = AND Ptr, -4 1179 // Data = TS1AM Aligned, Flag, NewVal 1180 // 1181 // NewData = Data >> Bits 1182 // Result = NewData & 0xff ; 1 byte result 1183 SDValue Flag; 1184 SDValue Bits; 1185 SDValue NewVal = prepareTS1AM(Op, DAG, Flag, Bits); 1186 1187 SDValue Ptr = N->getOperand(1); 1188 SDValue Aligned = DAG.getNode(ISD::AND, DL, Ptr.getValueType(), 1189 {Ptr, DAG.getConstant(-4, DL, MVT::i64)}); 1190 SDValue TS1AM = DAG.getAtomic(VEISD::TS1AM, DL, N->getMemoryVT(), 1191 DAG.getVTList(Op.getNode()->getValueType(0), 1192 Op.getNode()->getValueType(1)), 1193 {N->getChain(), Aligned, Flag, NewVal}, 1194 N->getMemOperand()); 1195 1196 SDValue Result = finalizeTS1AM(Op, DAG, TS1AM, Bits); 1197 SDValue Chain = TS1AM.getValue(1); 1198 return DAG.getMergeValues({Result, Chain}, DL); 1199 } 1200 if (N->getMemoryVT() == MVT::i16) { 1201 // For i16, use "ts1am" 1202 SDValue Flag; 1203 SDValue Bits; 1204 SDValue NewVal = prepareTS1AM(Op, DAG, Flag, Bits); 1205 1206 SDValue Ptr = N->getOperand(1); 1207 SDValue Aligned = DAG.getNode(ISD::AND, DL, Ptr.getValueType(), 1208 {Ptr, DAG.getConstant(-4, DL, MVT::i64)}); 1209 SDValue TS1AM = DAG.getAtomic(VEISD::TS1AM, DL, N->getMemoryVT(), 1210 DAG.getVTList(Op.getNode()->getValueType(0), 1211 Op.getNode()->getValueType(1)), 1212 {N->getChain(), Aligned, Flag, NewVal}, 1213 N->getMemOperand()); 1214 1215 SDValue Result = finalizeTS1AM(Op, DAG, TS1AM, Bits); 1216 SDValue Chain = TS1AM.getValue(1); 1217 return DAG.getMergeValues({Result, Chain}, DL); 1218 } 1219 // Otherwise, let llvm legalize it. 1220 return Op; 1221 } 1222 1223 SDValue VETargetLowering::lowerGlobalAddress(SDValue Op, 1224 SelectionDAG &DAG) const { 1225 return makeAddress(Op, DAG); 1226 } 1227 1228 SDValue VETargetLowering::lowerBlockAddress(SDValue Op, 1229 SelectionDAG &DAG) const { 1230 return makeAddress(Op, DAG); 1231 } 1232 1233 SDValue VETargetLowering::lowerConstantPool(SDValue Op, 1234 SelectionDAG &DAG) const { 1235 return makeAddress(Op, DAG); 1236 } 1237 1238 SDValue 1239 VETargetLowering::lowerToTLSGeneralDynamicModel(SDValue Op, 1240 SelectionDAG &DAG) const { 1241 SDLoc DL(Op); 1242 1243 // Generate the following code: 1244 // t1: ch,glue = callseq_start t0, 0, 0 1245 // t2: i64,ch,glue = VEISD::GETTLSADDR t1, label, t1:1 1246 // t3: ch,glue = callseq_end t2, 0, 0, t2:2 1247 // t4: i64,ch,glue = CopyFromReg t3, Register:i64 $sx0, t3:1 1248 SDValue Label = withTargetFlags(Op, 0, DAG); 1249 EVT PtrVT = Op.getValueType(); 1250 1251 // Lowering the machine isd will make sure everything is in the right 1252 // location. 1253 SDValue Chain = DAG.getEntryNode(); 1254 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1255 const uint32_t *Mask = Subtarget->getRegisterInfo()->getCallPreservedMask( 1256 DAG.getMachineFunction(), CallingConv::C); 1257 Chain = DAG.getCALLSEQ_START(Chain, 64, 0, DL); 1258 SDValue Args[] = {Chain, Label, DAG.getRegisterMask(Mask), Chain.getValue(1)}; 1259 Chain = DAG.getNode(VEISD::GETTLSADDR, DL, NodeTys, Args); 1260 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(64, DL, true), 1261 DAG.getIntPtrConstant(0, DL, true), 1262 Chain.getValue(1), DL); 1263 Chain = DAG.getCopyFromReg(Chain, DL, VE::SX0, PtrVT, Chain.getValue(1)); 1264 1265 // GETTLSADDR will be codegen'ed as call. Inform MFI that function has calls. 1266 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 1267 MFI.setHasCalls(true); 1268 1269 // Also generate code to prepare a GOT register if it is PIC. 1270 if (isPositionIndependent()) { 1271 MachineFunction &MF = DAG.getMachineFunction(); 1272 Subtarget->getInstrInfo()->getGlobalBaseReg(&MF); 1273 } 1274 1275 return Chain; 1276 } 1277 1278 SDValue VETargetLowering::lowerGlobalTLSAddress(SDValue Op, 1279 SelectionDAG &DAG) const { 1280 // The current implementation of nld (2.26) doesn't allow local exec model 1281 // code described in VE-tls_v1.1.pdf (*1) as its input. Instead, we always 1282 // generate the general dynamic model code sequence. 1283 // 1284 // *1: https://www.nec.com/en/global/prod/hpc/aurora/document/VE-tls_v1.1.pdf 1285 return lowerToTLSGeneralDynamicModel(Op, DAG); 1286 } 1287 1288 SDValue VETargetLowering::lowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 1289 return makeAddress(Op, DAG); 1290 } 1291 1292 // Lower a f128 load into two f64 loads. 1293 static SDValue lowerLoadF128(SDValue Op, SelectionDAG &DAG) { 1294 SDLoc DL(Op); 1295 LoadSDNode *LdNode = dyn_cast<LoadSDNode>(Op.getNode()); 1296 assert(LdNode && LdNode->getOffset().isUndef() && "Unexpected node type"); 1297 unsigned Alignment = LdNode->getAlign().value(); 1298 if (Alignment > 8) 1299 Alignment = 8; 1300 1301 SDValue Lo64 = 1302 DAG.getLoad(MVT::f64, DL, LdNode->getChain(), LdNode->getBasePtr(), 1303 LdNode->getPointerInfo(), Alignment, 1304 LdNode->isVolatile() ? MachineMemOperand::MOVolatile 1305 : MachineMemOperand::MONone); 1306 EVT AddrVT = LdNode->getBasePtr().getValueType(); 1307 SDValue HiPtr = DAG.getNode(ISD::ADD, DL, AddrVT, LdNode->getBasePtr(), 1308 DAG.getConstant(8, DL, AddrVT)); 1309 SDValue Hi64 = 1310 DAG.getLoad(MVT::f64, DL, LdNode->getChain(), HiPtr, 1311 LdNode->getPointerInfo(), Alignment, 1312 LdNode->isVolatile() ? MachineMemOperand::MOVolatile 1313 : MachineMemOperand::MONone); 1314 1315 SDValue SubRegEven = DAG.getTargetConstant(VE::sub_even, DL, MVT::i32); 1316 SDValue SubRegOdd = DAG.getTargetConstant(VE::sub_odd, DL, MVT::i32); 1317 1318 // VE stores Hi64 to 8(addr) and Lo64 to 0(addr) 1319 SDNode *InFP128 = 1320 DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f128); 1321 InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f128, 1322 SDValue(InFP128, 0), Hi64, SubRegEven); 1323 InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f128, 1324 SDValue(InFP128, 0), Lo64, SubRegOdd); 1325 SDValue OutChains[2] = {SDValue(Lo64.getNode(), 1), 1326 SDValue(Hi64.getNode(), 1)}; 1327 SDValue OutChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 1328 SDValue Ops[2] = {SDValue(InFP128, 0), OutChain}; 1329 return DAG.getMergeValues(Ops, DL); 1330 } 1331 1332 SDValue VETargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const { 1333 LoadSDNode *LdNode = cast<LoadSDNode>(Op.getNode()); 1334 1335 EVT MemVT = LdNode->getMemoryVT(); 1336 1337 // Dispatch to vector isel. 1338 if (MemVT.isVector() && !isMaskType(MemVT)) 1339 return lowerToVVP(Op, DAG); 1340 1341 SDValue BasePtr = LdNode->getBasePtr(); 1342 if (isa<FrameIndexSDNode>(BasePtr.getNode())) { 1343 // Do not expand store instruction with frame index here because of 1344 // dependency problems. We expand it later in eliminateFrameIndex(). 1345 return Op; 1346 } 1347 1348 if (MemVT == MVT::f128) 1349 return lowerLoadF128(Op, DAG); 1350 1351 return Op; 1352 } 1353 1354 // Lower a f128 store into two f64 stores. 1355 static SDValue lowerStoreF128(SDValue Op, SelectionDAG &DAG) { 1356 SDLoc DL(Op); 1357 StoreSDNode *StNode = dyn_cast<StoreSDNode>(Op.getNode()); 1358 assert(StNode && StNode->getOffset().isUndef() && "Unexpected node type"); 1359 1360 SDValue SubRegEven = DAG.getTargetConstant(VE::sub_even, DL, MVT::i32); 1361 SDValue SubRegOdd = DAG.getTargetConstant(VE::sub_odd, DL, MVT::i32); 1362 1363 SDNode *Hi64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i64, 1364 StNode->getValue(), SubRegEven); 1365 SDNode *Lo64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i64, 1366 StNode->getValue(), SubRegOdd); 1367 1368 unsigned Alignment = StNode->getAlign().value(); 1369 if (Alignment > 8) 1370 Alignment = 8; 1371 1372 // VE stores Hi64 to 8(addr) and Lo64 to 0(addr) 1373 SDValue OutChains[2]; 1374 OutChains[0] = 1375 DAG.getStore(StNode->getChain(), DL, SDValue(Lo64, 0), 1376 StNode->getBasePtr(), MachinePointerInfo(), Alignment, 1377 StNode->isVolatile() ? MachineMemOperand::MOVolatile 1378 : MachineMemOperand::MONone); 1379 EVT AddrVT = StNode->getBasePtr().getValueType(); 1380 SDValue HiPtr = DAG.getNode(ISD::ADD, DL, AddrVT, StNode->getBasePtr(), 1381 DAG.getConstant(8, DL, AddrVT)); 1382 OutChains[1] = 1383 DAG.getStore(StNode->getChain(), DL, SDValue(Hi64, 0), HiPtr, 1384 MachinePointerInfo(), Alignment, 1385 StNode->isVolatile() ? MachineMemOperand::MOVolatile 1386 : MachineMemOperand::MONone); 1387 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 1388 } 1389 1390 SDValue VETargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const { 1391 StoreSDNode *StNode = cast<StoreSDNode>(Op.getNode()); 1392 assert(StNode && StNode->getOffset().isUndef() && "Unexpected node type"); 1393 1394 // always expand non-mask vector loads to VVP 1395 EVT MemVT = StNode->getMemoryVT(); 1396 if (MemVT.isVector() && !isMaskType(MemVT)) 1397 return lowerToVVP(Op, DAG); 1398 1399 SDValue BasePtr = StNode->getBasePtr(); 1400 if (isa<FrameIndexSDNode>(BasePtr.getNode())) { 1401 // Do not expand store instruction with frame index here because of 1402 // dependency problems. We expand it later in eliminateFrameIndex(). 1403 return Op; 1404 } 1405 1406 if (MemVT == MVT::f128) 1407 return lowerStoreF128(Op, DAG); 1408 1409 // Otherwise, ask llvm to expand it. 1410 return SDValue(); 1411 } 1412 1413 SDValue VETargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 1414 MachineFunction &MF = DAG.getMachineFunction(); 1415 VEMachineFunctionInfo *FuncInfo = MF.getInfo<VEMachineFunctionInfo>(); 1416 auto PtrVT = getPointerTy(DAG.getDataLayout()); 1417 1418 // Need frame address to find the address of VarArgsFrameIndex. 1419 MF.getFrameInfo().setFrameAddressIsTaken(true); 1420 1421 // vastart just stores the address of the VarArgsFrameIndex slot into the 1422 // memory location argument. 1423 SDLoc DL(Op); 1424 SDValue Offset = 1425 DAG.getNode(ISD::ADD, DL, PtrVT, DAG.getRegister(VE::SX9, PtrVT), 1426 DAG.getIntPtrConstant(FuncInfo->getVarArgsFrameOffset(), DL)); 1427 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1428 return DAG.getStore(Op.getOperand(0), DL, Offset, Op.getOperand(1), 1429 MachinePointerInfo(SV)); 1430 } 1431 1432 SDValue VETargetLowering::lowerVAARG(SDValue Op, SelectionDAG &DAG) const { 1433 SDNode *Node = Op.getNode(); 1434 EVT VT = Node->getValueType(0); 1435 SDValue InChain = Node->getOperand(0); 1436 SDValue VAListPtr = Node->getOperand(1); 1437 EVT PtrVT = VAListPtr.getValueType(); 1438 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1439 SDLoc DL(Node); 1440 SDValue VAList = 1441 DAG.getLoad(PtrVT, DL, InChain, VAListPtr, MachinePointerInfo(SV)); 1442 SDValue Chain = VAList.getValue(1); 1443 SDValue NextPtr; 1444 1445 if (VT == MVT::f128) { 1446 // VE f128 values must be stored with 16 bytes alignment. We doesn't 1447 // know the actual alignment of VAList, so we take alignment of it 1448 // dyanmically. 1449 int Align = 16; 1450 VAList = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, 1451 DAG.getConstant(Align - 1, DL, PtrVT)); 1452 VAList = DAG.getNode(ISD::AND, DL, PtrVT, VAList, 1453 DAG.getConstant(-Align, DL, PtrVT)); 1454 // Increment the pointer, VAList, by 16 to the next vaarg. 1455 NextPtr = 1456 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getIntPtrConstant(16, DL)); 1457 } else if (VT == MVT::f32) { 1458 // float --> need special handling like below. 1459 // 0 4 1460 // +------+------+ 1461 // | empty| float| 1462 // +------+------+ 1463 // Increment the pointer, VAList, by 8 to the next vaarg. 1464 NextPtr = 1465 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getIntPtrConstant(8, DL)); 1466 // Then, adjust VAList. 1467 unsigned InternalOffset = 4; 1468 VAList = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, 1469 DAG.getConstant(InternalOffset, DL, PtrVT)); 1470 } else { 1471 // Increment the pointer, VAList, by 8 to the next vaarg. 1472 NextPtr = 1473 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getIntPtrConstant(8, DL)); 1474 } 1475 1476 // Store the incremented VAList to the legalized pointer. 1477 InChain = DAG.getStore(Chain, DL, NextPtr, VAListPtr, MachinePointerInfo(SV)); 1478 1479 // Load the actual argument out of the pointer VAList. 1480 // We can't count on greater alignment than the word size. 1481 return DAG.getLoad(VT, DL, InChain, VAList, MachinePointerInfo(), 1482 std::min(PtrVT.getSizeInBits(), VT.getSizeInBits()) / 8); 1483 } 1484 1485 SDValue VETargetLowering::lowerDYNAMIC_STACKALLOC(SDValue Op, 1486 SelectionDAG &DAG) const { 1487 // Generate following code. 1488 // (void)__llvm_grow_stack(size); 1489 // ret = GETSTACKTOP; // pseudo instruction 1490 SDLoc DL(Op); 1491 1492 // Get the inputs. 1493 SDNode *Node = Op.getNode(); 1494 SDValue Chain = Op.getOperand(0); 1495 SDValue Size = Op.getOperand(1); 1496 MaybeAlign Alignment(Op.getConstantOperandVal(2)); 1497 EVT VT = Node->getValueType(0); 1498 1499 // Chain the dynamic stack allocation so that it doesn't modify the stack 1500 // pointer when other instructions are using the stack. 1501 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL); 1502 1503 const TargetFrameLowering &TFI = *Subtarget->getFrameLowering(); 1504 Align StackAlign = TFI.getStackAlign(); 1505 bool NeedsAlign = Alignment.valueOrOne() > StackAlign; 1506 1507 // Prepare arguments 1508 TargetLowering::ArgListTy Args; 1509 TargetLowering::ArgListEntry Entry; 1510 Entry.Node = Size; 1511 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 1512 Args.push_back(Entry); 1513 if (NeedsAlign) { 1514 Entry.Node = DAG.getConstant(~(Alignment->value() - 1ULL), DL, VT); 1515 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 1516 Args.push_back(Entry); 1517 } 1518 Type *RetTy = Type::getVoidTy(*DAG.getContext()); 1519 1520 EVT PtrVT = Op.getValueType(); 1521 SDValue Callee; 1522 if (NeedsAlign) { 1523 Callee = DAG.getTargetExternalSymbol("__ve_grow_stack_align", PtrVT, 0); 1524 } else { 1525 Callee = DAG.getTargetExternalSymbol("__ve_grow_stack", PtrVT, 0); 1526 } 1527 1528 TargetLowering::CallLoweringInfo CLI(DAG); 1529 CLI.setDebugLoc(DL) 1530 .setChain(Chain) 1531 .setCallee(CallingConv::PreserveAll, RetTy, Callee, std::move(Args)) 1532 .setDiscardResult(true); 1533 std::pair<SDValue, SDValue> pair = LowerCallTo(CLI); 1534 Chain = pair.second; 1535 SDValue Result = DAG.getNode(VEISD::GETSTACKTOP, DL, VT, Chain); 1536 if (NeedsAlign) { 1537 Result = DAG.getNode(ISD::ADD, DL, VT, Result, 1538 DAG.getConstant((Alignment->value() - 1ULL), DL, VT)); 1539 Result = DAG.getNode(ISD::AND, DL, VT, Result, 1540 DAG.getConstant(~(Alignment->value() - 1ULL), DL, VT)); 1541 } 1542 // Chain = Result.getValue(1); 1543 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, DL, true), 1544 DAG.getIntPtrConstant(0, DL, true), SDValue(), DL); 1545 1546 SDValue Ops[2] = {Result, Chain}; 1547 return DAG.getMergeValues(Ops, DL); 1548 } 1549 1550 SDValue VETargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 1551 SelectionDAG &DAG) const { 1552 SDLoc DL(Op); 1553 return DAG.getNode(VEISD::EH_SJLJ_LONGJMP, DL, MVT::Other, Op.getOperand(0), 1554 Op.getOperand(1)); 1555 } 1556 1557 SDValue VETargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 1558 SelectionDAG &DAG) const { 1559 SDLoc DL(Op); 1560 return DAG.getNode(VEISD::EH_SJLJ_SETJMP, DL, 1561 DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0), 1562 Op.getOperand(1)); 1563 } 1564 1565 SDValue VETargetLowering::lowerEH_SJLJ_SETUP_DISPATCH(SDValue Op, 1566 SelectionDAG &DAG) const { 1567 SDLoc DL(Op); 1568 return DAG.getNode(VEISD::EH_SJLJ_SETUP_DISPATCH, DL, MVT::Other, 1569 Op.getOperand(0)); 1570 } 1571 1572 static SDValue lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG, 1573 const VETargetLowering &TLI, 1574 const VESubtarget *Subtarget) { 1575 SDLoc DL(Op); 1576 MachineFunction &MF = DAG.getMachineFunction(); 1577 EVT PtrVT = TLI.getPointerTy(MF.getDataLayout()); 1578 1579 MachineFrameInfo &MFI = MF.getFrameInfo(); 1580 MFI.setFrameAddressIsTaken(true); 1581 1582 unsigned Depth = Op.getConstantOperandVal(0); 1583 const VERegisterInfo *RegInfo = Subtarget->getRegisterInfo(); 1584 Register FrameReg = RegInfo->getFrameRegister(MF); 1585 SDValue FrameAddr = 1586 DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, PtrVT); 1587 while (Depth--) 1588 FrameAddr = DAG.getLoad(Op.getValueType(), DL, DAG.getEntryNode(), 1589 FrameAddr, MachinePointerInfo()); 1590 return FrameAddr; 1591 } 1592 1593 static SDValue lowerRETURNADDR(SDValue Op, SelectionDAG &DAG, 1594 const VETargetLowering &TLI, 1595 const VESubtarget *Subtarget) { 1596 MachineFunction &MF = DAG.getMachineFunction(); 1597 MachineFrameInfo &MFI = MF.getFrameInfo(); 1598 MFI.setReturnAddressIsTaken(true); 1599 1600 if (TLI.verifyReturnAddressArgumentIsConstant(Op, DAG)) 1601 return SDValue(); 1602 1603 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG, TLI, Subtarget); 1604 1605 SDLoc DL(Op); 1606 EVT VT = Op.getValueType(); 1607 SDValue Offset = DAG.getConstant(8, DL, VT); 1608 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 1609 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 1610 MachinePointerInfo()); 1611 } 1612 1613 SDValue VETargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 1614 SelectionDAG &DAG) const { 1615 SDLoc DL(Op); 1616 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1617 switch (IntNo) { 1618 default: // Don't custom lower most intrinsics. 1619 return SDValue(); 1620 case Intrinsic::eh_sjlj_lsda: { 1621 MachineFunction &MF = DAG.getMachineFunction(); 1622 MVT VT = Op.getSimpleValueType(); 1623 const VETargetMachine *TM = 1624 static_cast<const VETargetMachine *>(&DAG.getTarget()); 1625 1626 // Create GCC_except_tableXX string. The real symbol for that will be 1627 // generated in EHStreamer::emitExceptionTable() later. So, we just 1628 // borrow it's name here. 1629 TM->getStrList()->push_back(std::string( 1630 (Twine("GCC_except_table") + Twine(MF.getFunctionNumber())).str())); 1631 SDValue Addr = 1632 DAG.getTargetExternalSymbol(TM->getStrList()->back().c_str(), VT, 0); 1633 if (isPositionIndependent()) { 1634 Addr = makeHiLoPair(Addr, VEMCExpr::VK_VE_GOTOFF_HI32, 1635 VEMCExpr::VK_VE_GOTOFF_LO32, DAG); 1636 SDValue GlobalBase = DAG.getNode(VEISD::GLOBAL_BASE_REG, DL, VT); 1637 return DAG.getNode(ISD::ADD, DL, VT, GlobalBase, Addr); 1638 } 1639 return makeHiLoPair(Addr, VEMCExpr::VK_VE_HI32, VEMCExpr::VK_VE_LO32, DAG); 1640 } 1641 } 1642 } 1643 1644 static bool getUniqueInsertion(SDNode *N, unsigned &UniqueIdx) { 1645 if (!isa<BuildVectorSDNode>(N)) 1646 return false; 1647 const auto *BVN = cast<BuildVectorSDNode>(N); 1648 1649 // Find first non-undef insertion. 1650 unsigned Idx; 1651 for (Idx = 0; Idx < BVN->getNumOperands(); ++Idx) { 1652 auto ElemV = BVN->getOperand(Idx); 1653 if (!ElemV->isUndef()) 1654 break; 1655 } 1656 // Catch the (hypothetical) all-undef case. 1657 if (Idx == BVN->getNumOperands()) 1658 return false; 1659 // Remember insertion. 1660 UniqueIdx = Idx++; 1661 // Verify that all other insertions are undef. 1662 for (; Idx < BVN->getNumOperands(); ++Idx) { 1663 auto ElemV = BVN->getOperand(Idx); 1664 if (!ElemV->isUndef()) 1665 return false; 1666 } 1667 return true; 1668 } 1669 1670 static SDValue getSplatValue(SDNode *N) { 1671 if (auto *BuildVec = dyn_cast<BuildVectorSDNode>(N)) { 1672 return BuildVec->getSplatValue(); 1673 } 1674 return SDValue(); 1675 } 1676 1677 SDValue VETargetLowering::lowerBUILD_VECTOR(SDValue Op, 1678 SelectionDAG &DAG) const { 1679 VECustomDAG CDAG(DAG, Op); 1680 MVT ResultVT = Op.getSimpleValueType(); 1681 1682 // If there is just one element, expand to INSERT_VECTOR_ELT. 1683 unsigned UniqueIdx; 1684 if (getUniqueInsertion(Op.getNode(), UniqueIdx)) { 1685 SDValue AccuV = CDAG.getUNDEF(Op.getValueType()); 1686 auto ElemV = Op->getOperand(UniqueIdx); 1687 SDValue IdxV = CDAG.getConstant(UniqueIdx, MVT::i64); 1688 return CDAG.getNode(ISD::INSERT_VECTOR_ELT, ResultVT, {AccuV, ElemV, IdxV}); 1689 } 1690 1691 // Else emit a broadcast. 1692 if (SDValue ScalarV = getSplatValue(Op.getNode())) { 1693 unsigned NumEls = ResultVT.getVectorNumElements(); 1694 auto AVL = CDAG.getConstant(NumEls, MVT::i32); 1695 return CDAG.getBroadcast(ResultVT, ScalarV, AVL); 1696 } 1697 1698 // Expand 1699 return SDValue(); 1700 } 1701 1702 TargetLowering::LegalizeAction 1703 VETargetLowering::getCustomOperationAction(SDNode &Op) const { 1704 // Custom legalization on VVP_* and VEC_* opcodes is required to pack-legalize 1705 // these operations (transform nodes such that their AVL parameter refers to 1706 // packs of 64bit, instead of number of elements. 1707 1708 // Packing opcodes are created with a pack-legal AVL (LEGALAVL). No need to 1709 // re-visit them. 1710 if (isPackingSupportOpcode(Op.getOpcode())) 1711 return Legal; 1712 1713 // Custom lower to legalize AVL for packed mode. 1714 if (isVVPOrVEC(Op.getOpcode())) 1715 return Custom; 1716 return Legal; 1717 } 1718 1719 SDValue VETargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 1720 LLVM_DEBUG(dbgs() << "::LowerOperation"; Op->print(dbgs());); 1721 unsigned Opcode = Op.getOpcode(); 1722 1723 /// Scalar isel. 1724 switch (Opcode) { 1725 case ISD::ATOMIC_FENCE: 1726 return lowerATOMIC_FENCE(Op, DAG); 1727 case ISD::ATOMIC_SWAP: 1728 return lowerATOMIC_SWAP(Op, DAG); 1729 case ISD::BlockAddress: 1730 return lowerBlockAddress(Op, DAG); 1731 case ISD::ConstantPool: 1732 return lowerConstantPool(Op, DAG); 1733 case ISD::DYNAMIC_STACKALLOC: 1734 return lowerDYNAMIC_STACKALLOC(Op, DAG); 1735 case ISD::EH_SJLJ_LONGJMP: 1736 return lowerEH_SJLJ_LONGJMP(Op, DAG); 1737 case ISD::EH_SJLJ_SETJMP: 1738 return lowerEH_SJLJ_SETJMP(Op, DAG); 1739 case ISD::EH_SJLJ_SETUP_DISPATCH: 1740 return lowerEH_SJLJ_SETUP_DISPATCH(Op, DAG); 1741 case ISD::FRAMEADDR: 1742 return lowerFRAMEADDR(Op, DAG, *this, Subtarget); 1743 case ISD::GlobalAddress: 1744 return lowerGlobalAddress(Op, DAG); 1745 case ISD::GlobalTLSAddress: 1746 return lowerGlobalTLSAddress(Op, DAG); 1747 case ISD::INTRINSIC_WO_CHAIN: 1748 return lowerINTRINSIC_WO_CHAIN(Op, DAG); 1749 case ISD::JumpTable: 1750 return lowerJumpTable(Op, DAG); 1751 case ISD::LOAD: 1752 return lowerLOAD(Op, DAG); 1753 case ISD::RETURNADDR: 1754 return lowerRETURNADDR(Op, DAG, *this, Subtarget); 1755 case ISD::BUILD_VECTOR: 1756 return lowerBUILD_VECTOR(Op, DAG); 1757 case ISD::STORE: 1758 return lowerSTORE(Op, DAG); 1759 case ISD::VASTART: 1760 return lowerVASTART(Op, DAG); 1761 case ISD::VAARG: 1762 return lowerVAARG(Op, DAG); 1763 1764 case ISD::INSERT_VECTOR_ELT: 1765 return lowerINSERT_VECTOR_ELT(Op, DAG); 1766 case ISD::EXTRACT_VECTOR_ELT: 1767 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 1768 } 1769 1770 /// Vector isel. 1771 LLVM_DEBUG(dbgs() << "::LowerOperation_VVP"; Op->print(dbgs());); 1772 if (ISD::isVPOpcode(Opcode)) 1773 return lowerToVVP(Op, DAG); 1774 1775 switch (Opcode) { 1776 default: 1777 llvm_unreachable("Should not custom lower this!"); 1778 1779 // Legalize the AVL of this internal node. 1780 case VEISD::VEC_BROADCAST: 1781 #define ADD_VVP_OP(VVP_NAME, ...) case VEISD::VVP_NAME: 1782 #include "VVPNodes.def" 1783 // AVL already legalized. 1784 if (getAnnotatedNodeAVL(Op).second) 1785 return Op; 1786 return legalizeInternalVectorOp(Op, DAG); 1787 1788 // Translate into a VEC_*/VVP_* layer operation. 1789 case ISD::MLOAD: 1790 case ISD::MSTORE: 1791 #define ADD_VVP_OP(VVP_NAME, ISD_NAME) case ISD::ISD_NAME: 1792 #include "VVPNodes.def" 1793 if (isMaskArithmetic(Op) && isPackedVectorType(Op.getValueType())) 1794 return splitMaskArithmetic(Op, DAG); 1795 return lowerToVVP(Op, DAG); 1796 } 1797 } 1798 /// } Custom Lower 1799 1800 void VETargetLowering::ReplaceNodeResults(SDNode *N, 1801 SmallVectorImpl<SDValue> &Results, 1802 SelectionDAG &DAG) const { 1803 switch (N->getOpcode()) { 1804 case ISD::ATOMIC_SWAP: 1805 // Let LLVM expand atomic swap instruction through LowerOperation. 1806 return; 1807 default: 1808 LLVM_DEBUG(N->dumpr(&DAG)); 1809 llvm_unreachable("Do not know how to custom type legalize this operation!"); 1810 } 1811 } 1812 1813 /// JumpTable for VE. 1814 /// 1815 /// VE cannot generate relocatable symbol in jump table. VE cannot 1816 /// generate expressions using symbols in both text segment and data 1817 /// segment like below. 1818 /// .4byte .LBB0_2-.LJTI0_0 1819 /// So, we generate offset from the top of function like below as 1820 /// a custom label. 1821 /// .4byte .LBB0_2-<function name> 1822 1823 unsigned VETargetLowering::getJumpTableEncoding() const { 1824 // Use custom label for PIC. 1825 if (isPositionIndependent()) 1826 return MachineJumpTableInfo::EK_Custom32; 1827 1828 // Otherwise, use the normal jump table encoding heuristics. 1829 return TargetLowering::getJumpTableEncoding(); 1830 } 1831 1832 const MCExpr *VETargetLowering::LowerCustomJumpTableEntry( 1833 const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB, 1834 unsigned Uid, MCContext &Ctx) const { 1835 assert(isPositionIndependent()); 1836 1837 // Generate custom label for PIC like below. 1838 // .4bytes .LBB0_2-<function name> 1839 const auto *Value = MCSymbolRefExpr::create(MBB->getSymbol(), Ctx); 1840 MCSymbol *Sym = Ctx.getOrCreateSymbol(MBB->getParent()->getName().data()); 1841 const auto *Base = MCSymbolRefExpr::create(Sym, Ctx); 1842 return MCBinaryExpr::createSub(Value, Base, Ctx); 1843 } 1844 1845 SDValue VETargetLowering::getPICJumpTableRelocBase(SDValue Table, 1846 SelectionDAG &DAG) const { 1847 assert(isPositionIndependent()); 1848 SDLoc DL(Table); 1849 Function *Function = &DAG.getMachineFunction().getFunction(); 1850 assert(Function != nullptr); 1851 auto PtrTy = getPointerTy(DAG.getDataLayout(), Function->getAddressSpace()); 1852 1853 // In the jump table, we have following values in PIC mode. 1854 // .4bytes .LBB0_2-<function name> 1855 // We need to add this value and the address of this function to generate 1856 // .LBB0_2 label correctly under PIC mode. So, we want to generate following 1857 // instructions: 1858 // lea %reg, fun@gotoff_lo 1859 // and %reg, %reg, (32)0 1860 // lea.sl %reg, fun@gotoff_hi(%reg, %got) 1861 // In order to do so, we need to genarate correctly marked DAG node using 1862 // makeHiLoPair. 1863 SDValue Op = DAG.getGlobalAddress(Function, DL, PtrTy); 1864 SDValue HiLo = makeHiLoPair(Op, VEMCExpr::VK_VE_GOTOFF_HI32, 1865 VEMCExpr::VK_VE_GOTOFF_LO32, DAG); 1866 SDValue GlobalBase = DAG.getNode(VEISD::GLOBAL_BASE_REG, DL, PtrTy); 1867 return DAG.getNode(ISD::ADD, DL, PtrTy, GlobalBase, HiLo); 1868 } 1869 1870 Register VETargetLowering::prepareMBB(MachineBasicBlock &MBB, 1871 MachineBasicBlock::iterator I, 1872 MachineBasicBlock *TargetBB, 1873 const DebugLoc &DL) const { 1874 MachineFunction *MF = MBB.getParent(); 1875 MachineRegisterInfo &MRI = MF->getRegInfo(); 1876 const VEInstrInfo *TII = Subtarget->getInstrInfo(); 1877 1878 const TargetRegisterClass *RC = &VE::I64RegClass; 1879 Register Tmp1 = MRI.createVirtualRegister(RC); 1880 Register Tmp2 = MRI.createVirtualRegister(RC); 1881 Register Result = MRI.createVirtualRegister(RC); 1882 1883 if (isPositionIndependent()) { 1884 // Create following instructions for local linkage PIC code. 1885 // lea %Tmp1, TargetBB@gotoff_lo 1886 // and %Tmp2, %Tmp1, (32)0 1887 // lea.sl %Result, TargetBB@gotoff_hi(%Tmp2, %s15) ; %s15 is GOT 1888 BuildMI(MBB, I, DL, TII->get(VE::LEAzii), Tmp1) 1889 .addImm(0) 1890 .addImm(0) 1891 .addMBB(TargetBB, VEMCExpr::VK_VE_GOTOFF_LO32); 1892 BuildMI(MBB, I, DL, TII->get(VE::ANDrm), Tmp2) 1893 .addReg(Tmp1, getKillRegState(true)) 1894 .addImm(M0(32)); 1895 BuildMI(MBB, I, DL, TII->get(VE::LEASLrri), Result) 1896 .addReg(VE::SX15) 1897 .addReg(Tmp2, getKillRegState(true)) 1898 .addMBB(TargetBB, VEMCExpr::VK_VE_GOTOFF_HI32); 1899 } else { 1900 // Create following instructions for non-PIC code. 1901 // lea %Tmp1, TargetBB@lo 1902 // and %Tmp2, %Tmp1, (32)0 1903 // lea.sl %Result, TargetBB@hi(%Tmp2) 1904 BuildMI(MBB, I, DL, TII->get(VE::LEAzii), Tmp1) 1905 .addImm(0) 1906 .addImm(0) 1907 .addMBB(TargetBB, VEMCExpr::VK_VE_LO32); 1908 BuildMI(MBB, I, DL, TII->get(VE::ANDrm), Tmp2) 1909 .addReg(Tmp1, getKillRegState(true)) 1910 .addImm(M0(32)); 1911 BuildMI(MBB, I, DL, TII->get(VE::LEASLrii), Result) 1912 .addReg(Tmp2, getKillRegState(true)) 1913 .addImm(0) 1914 .addMBB(TargetBB, VEMCExpr::VK_VE_HI32); 1915 } 1916 return Result; 1917 } 1918 1919 Register VETargetLowering::prepareSymbol(MachineBasicBlock &MBB, 1920 MachineBasicBlock::iterator I, 1921 StringRef Symbol, const DebugLoc &DL, 1922 bool IsLocal = false, 1923 bool IsCall = false) const { 1924 MachineFunction *MF = MBB.getParent(); 1925 MachineRegisterInfo &MRI = MF->getRegInfo(); 1926 const VEInstrInfo *TII = Subtarget->getInstrInfo(); 1927 1928 const TargetRegisterClass *RC = &VE::I64RegClass; 1929 Register Result = MRI.createVirtualRegister(RC); 1930 1931 if (isPositionIndependent()) { 1932 if (IsCall && !IsLocal) { 1933 // Create following instructions for non-local linkage PIC code function 1934 // calls. These instructions uses IC and magic number -24, so we expand 1935 // them in VEAsmPrinter.cpp from GETFUNPLT pseudo instruction. 1936 // lea %Reg, Symbol@plt_lo(-24) 1937 // and %Reg, %Reg, (32)0 1938 // sic %s16 1939 // lea.sl %Result, Symbol@plt_hi(%Reg, %s16) ; %s16 is PLT 1940 BuildMI(MBB, I, DL, TII->get(VE::GETFUNPLT), Result) 1941 .addExternalSymbol("abort"); 1942 } else if (IsLocal) { 1943 Register Tmp1 = MRI.createVirtualRegister(RC); 1944 Register Tmp2 = MRI.createVirtualRegister(RC); 1945 // Create following instructions for local linkage PIC code. 1946 // lea %Tmp1, Symbol@gotoff_lo 1947 // and %Tmp2, %Tmp1, (32)0 1948 // lea.sl %Result, Symbol@gotoff_hi(%Tmp2, %s15) ; %s15 is GOT 1949 BuildMI(MBB, I, DL, TII->get(VE::LEAzii), Tmp1) 1950 .addImm(0) 1951 .addImm(0) 1952 .addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_GOTOFF_LO32); 1953 BuildMI(MBB, I, DL, TII->get(VE::ANDrm), Tmp2) 1954 .addReg(Tmp1, getKillRegState(true)) 1955 .addImm(M0(32)); 1956 BuildMI(MBB, I, DL, TII->get(VE::LEASLrri), Result) 1957 .addReg(VE::SX15) 1958 .addReg(Tmp2, getKillRegState(true)) 1959 .addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_GOTOFF_HI32); 1960 } else { 1961 Register Tmp1 = MRI.createVirtualRegister(RC); 1962 Register Tmp2 = MRI.createVirtualRegister(RC); 1963 // Create following instructions for not local linkage PIC code. 1964 // lea %Tmp1, Symbol@got_lo 1965 // and %Tmp2, %Tmp1, (32)0 1966 // lea.sl %Tmp3, Symbol@gotoff_hi(%Tmp2, %s15) ; %s15 is GOT 1967 // ld %Result, 0(%Tmp3) 1968 Register Tmp3 = MRI.createVirtualRegister(RC); 1969 BuildMI(MBB, I, DL, TII->get(VE::LEAzii), Tmp1) 1970 .addImm(0) 1971 .addImm(0) 1972 .addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_GOT_LO32); 1973 BuildMI(MBB, I, DL, TII->get(VE::ANDrm), Tmp2) 1974 .addReg(Tmp1, getKillRegState(true)) 1975 .addImm(M0(32)); 1976 BuildMI(MBB, I, DL, TII->get(VE::LEASLrri), Tmp3) 1977 .addReg(VE::SX15) 1978 .addReg(Tmp2, getKillRegState(true)) 1979 .addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_GOT_HI32); 1980 BuildMI(MBB, I, DL, TII->get(VE::LDrii), Result) 1981 .addReg(Tmp3, getKillRegState(true)) 1982 .addImm(0) 1983 .addImm(0); 1984 } 1985 } else { 1986 Register Tmp1 = MRI.createVirtualRegister(RC); 1987 Register Tmp2 = MRI.createVirtualRegister(RC); 1988 // Create following instructions for non-PIC code. 1989 // lea %Tmp1, Symbol@lo 1990 // and %Tmp2, %Tmp1, (32)0 1991 // lea.sl %Result, Symbol@hi(%Tmp2) 1992 BuildMI(MBB, I, DL, TII->get(VE::LEAzii), Tmp1) 1993 .addImm(0) 1994 .addImm(0) 1995 .addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_LO32); 1996 BuildMI(MBB, I, DL, TII->get(VE::ANDrm), Tmp2) 1997 .addReg(Tmp1, getKillRegState(true)) 1998 .addImm(M0(32)); 1999 BuildMI(MBB, I, DL, TII->get(VE::LEASLrii), Result) 2000 .addReg(Tmp2, getKillRegState(true)) 2001 .addImm(0) 2002 .addExternalSymbol(Symbol.data(), VEMCExpr::VK_VE_HI32); 2003 } 2004 return Result; 2005 } 2006 2007 void VETargetLowering::setupEntryBlockForSjLj(MachineInstr &MI, 2008 MachineBasicBlock *MBB, 2009 MachineBasicBlock *DispatchBB, 2010 int FI, int Offset) const { 2011 DebugLoc DL = MI.getDebugLoc(); 2012 const VEInstrInfo *TII = Subtarget->getInstrInfo(); 2013 2014 Register LabelReg = 2015 prepareMBB(*MBB, MachineBasicBlock::iterator(MI), DispatchBB, DL); 2016 2017 // Store an address of DispatchBB to a given jmpbuf[1] where has next IC 2018 // referenced by longjmp (throw) later. 2019 MachineInstrBuilder MIB = BuildMI(*MBB, MI, DL, TII->get(VE::STrii)); 2020 addFrameReference(MIB, FI, Offset); // jmpbuf[1] 2021 MIB.addReg(LabelReg, getKillRegState(true)); 2022 } 2023 2024 MachineBasicBlock * 2025 VETargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 2026 MachineBasicBlock *MBB) const { 2027 DebugLoc DL = MI.getDebugLoc(); 2028 MachineFunction *MF = MBB->getParent(); 2029 const TargetInstrInfo *TII = Subtarget->getInstrInfo(); 2030 const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo(); 2031 MachineRegisterInfo &MRI = MF->getRegInfo(); 2032 2033 const BasicBlock *BB = MBB->getBasicBlock(); 2034 MachineFunction::iterator I = ++MBB->getIterator(); 2035 2036 // Memory Reference. 2037 SmallVector<MachineMemOperand *, 2> MMOs(MI.memoperands_begin(), 2038 MI.memoperands_end()); 2039 Register BufReg = MI.getOperand(1).getReg(); 2040 2041 Register DstReg; 2042 2043 DstReg = MI.getOperand(0).getReg(); 2044 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 2045 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 2046 (void)TRI; 2047 Register MainDestReg = MRI.createVirtualRegister(RC); 2048 Register RestoreDestReg = MRI.createVirtualRegister(RC); 2049 2050 // For `v = call @llvm.eh.sjlj.setjmp(buf)`, we generate following 2051 // instructions. SP/FP must be saved in jmpbuf before `llvm.eh.sjlj.setjmp`. 2052 // 2053 // ThisMBB: 2054 // buf[3] = %s17 iff %s17 is used as BP 2055 // buf[1] = RestoreMBB as IC after longjmp 2056 // # SjLjSetup RestoreMBB 2057 // 2058 // MainMBB: 2059 // v_main = 0 2060 // 2061 // SinkMBB: 2062 // v = phi(v_main, MainMBB, v_restore, RestoreMBB) 2063 // ... 2064 // 2065 // RestoreMBB: 2066 // %s17 = buf[3] = iff %s17 is used as BP 2067 // v_restore = 1 2068 // goto SinkMBB 2069 2070 MachineBasicBlock *ThisMBB = MBB; 2071 MachineBasicBlock *MainMBB = MF->CreateMachineBasicBlock(BB); 2072 MachineBasicBlock *SinkMBB = MF->CreateMachineBasicBlock(BB); 2073 MachineBasicBlock *RestoreMBB = MF->CreateMachineBasicBlock(BB); 2074 MF->insert(I, MainMBB); 2075 MF->insert(I, SinkMBB); 2076 MF->push_back(RestoreMBB); 2077 RestoreMBB->setHasAddressTaken(); 2078 2079 // Transfer the remainder of BB and its successor edges to SinkMBB. 2080 SinkMBB->splice(SinkMBB->begin(), MBB, 2081 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 2082 SinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 2083 2084 // ThisMBB: 2085 Register LabelReg = 2086 prepareMBB(*MBB, MachineBasicBlock::iterator(MI), RestoreMBB, DL); 2087 2088 // Store BP in buf[3] iff this function is using BP. 2089 const VEFrameLowering *TFI = Subtarget->getFrameLowering(); 2090 if (TFI->hasBP(*MF)) { 2091 MachineInstrBuilder MIB = BuildMI(*MBB, MI, DL, TII->get(VE::STrii)); 2092 MIB.addReg(BufReg); 2093 MIB.addImm(0); 2094 MIB.addImm(24); 2095 MIB.addReg(VE::SX17); 2096 MIB.setMemRefs(MMOs); 2097 } 2098 2099 // Store IP in buf[1]. 2100 MachineInstrBuilder MIB = BuildMI(*MBB, MI, DL, TII->get(VE::STrii)); 2101 MIB.add(MI.getOperand(1)); // we can preserve the kill flags here. 2102 MIB.addImm(0); 2103 MIB.addImm(8); 2104 MIB.addReg(LabelReg, getKillRegState(true)); 2105 MIB.setMemRefs(MMOs); 2106 2107 // SP/FP are already stored in jmpbuf before `llvm.eh.sjlj.setjmp`. 2108 2109 // Insert setup. 2110 MIB = 2111 BuildMI(*ThisMBB, MI, DL, TII->get(VE::EH_SjLj_Setup)).addMBB(RestoreMBB); 2112 2113 const VERegisterInfo *RegInfo = Subtarget->getRegisterInfo(); 2114 MIB.addRegMask(RegInfo->getNoPreservedMask()); 2115 ThisMBB->addSuccessor(MainMBB); 2116 ThisMBB->addSuccessor(RestoreMBB); 2117 2118 // MainMBB: 2119 BuildMI(MainMBB, DL, TII->get(VE::LEAzii), MainDestReg) 2120 .addImm(0) 2121 .addImm(0) 2122 .addImm(0); 2123 MainMBB->addSuccessor(SinkMBB); 2124 2125 // SinkMBB: 2126 BuildMI(*SinkMBB, SinkMBB->begin(), DL, TII->get(VE::PHI), DstReg) 2127 .addReg(MainDestReg) 2128 .addMBB(MainMBB) 2129 .addReg(RestoreDestReg) 2130 .addMBB(RestoreMBB); 2131 2132 // RestoreMBB: 2133 // Restore BP from buf[3] iff this function is using BP. The address of 2134 // buf is in SX10. 2135 // FIXME: Better to not use SX10 here 2136 if (TFI->hasBP(*MF)) { 2137 MachineInstrBuilder MIB = 2138 BuildMI(RestoreMBB, DL, TII->get(VE::LDrii), VE::SX17); 2139 MIB.addReg(VE::SX10); 2140 MIB.addImm(0); 2141 MIB.addImm(24); 2142 MIB.setMemRefs(MMOs); 2143 } 2144 BuildMI(RestoreMBB, DL, TII->get(VE::LEAzii), RestoreDestReg) 2145 .addImm(0) 2146 .addImm(0) 2147 .addImm(1); 2148 BuildMI(RestoreMBB, DL, TII->get(VE::BRCFLa_t)).addMBB(SinkMBB); 2149 RestoreMBB->addSuccessor(SinkMBB); 2150 2151 MI.eraseFromParent(); 2152 return SinkMBB; 2153 } 2154 2155 MachineBasicBlock * 2156 VETargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 2157 MachineBasicBlock *MBB) const { 2158 DebugLoc DL = MI.getDebugLoc(); 2159 MachineFunction *MF = MBB->getParent(); 2160 const TargetInstrInfo *TII = Subtarget->getInstrInfo(); 2161 MachineRegisterInfo &MRI = MF->getRegInfo(); 2162 2163 // Memory Reference. 2164 SmallVector<MachineMemOperand *, 2> MMOs(MI.memoperands_begin(), 2165 MI.memoperands_end()); 2166 Register BufReg = MI.getOperand(0).getReg(); 2167 2168 Register Tmp = MRI.createVirtualRegister(&VE::I64RegClass); 2169 // Since FP is only updated here but NOT referenced, it's treated as GPR. 2170 Register FP = VE::SX9; 2171 Register SP = VE::SX11; 2172 2173 MachineInstrBuilder MIB; 2174 2175 MachineBasicBlock *ThisMBB = MBB; 2176 2177 // For `call @llvm.eh.sjlj.longjmp(buf)`, we generate following instructions. 2178 // 2179 // ThisMBB: 2180 // %fp = load buf[0] 2181 // %jmp = load buf[1] 2182 // %s10 = buf ; Store an address of buf to SX10 for RestoreMBB 2183 // %sp = load buf[2] ; generated by llvm.eh.sjlj.setjmp. 2184 // jmp %jmp 2185 2186 // Reload FP. 2187 MIB = BuildMI(*ThisMBB, MI, DL, TII->get(VE::LDrii), FP); 2188 MIB.addReg(BufReg); 2189 MIB.addImm(0); 2190 MIB.addImm(0); 2191 MIB.setMemRefs(MMOs); 2192 2193 // Reload IP. 2194 MIB = BuildMI(*ThisMBB, MI, DL, TII->get(VE::LDrii), Tmp); 2195 MIB.addReg(BufReg); 2196 MIB.addImm(0); 2197 MIB.addImm(8); 2198 MIB.setMemRefs(MMOs); 2199 2200 // Copy BufReg to SX10 for later use in setjmp. 2201 // FIXME: Better to not use SX10 here 2202 BuildMI(*ThisMBB, MI, DL, TII->get(VE::ORri), VE::SX10) 2203 .addReg(BufReg) 2204 .addImm(0); 2205 2206 // Reload SP. 2207 MIB = BuildMI(*ThisMBB, MI, DL, TII->get(VE::LDrii), SP); 2208 MIB.add(MI.getOperand(0)); // we can preserve the kill flags here. 2209 MIB.addImm(0); 2210 MIB.addImm(16); 2211 MIB.setMemRefs(MMOs); 2212 2213 // Jump. 2214 BuildMI(*ThisMBB, MI, DL, TII->get(VE::BCFLari_t)) 2215 .addReg(Tmp, getKillRegState(true)) 2216 .addImm(0); 2217 2218 MI.eraseFromParent(); 2219 return ThisMBB; 2220 } 2221 2222 MachineBasicBlock * 2223 VETargetLowering::emitSjLjDispatchBlock(MachineInstr &MI, 2224 MachineBasicBlock *BB) const { 2225 DebugLoc DL = MI.getDebugLoc(); 2226 MachineFunction *MF = BB->getParent(); 2227 MachineFrameInfo &MFI = MF->getFrameInfo(); 2228 MachineRegisterInfo &MRI = MF->getRegInfo(); 2229 const VEInstrInfo *TII = Subtarget->getInstrInfo(); 2230 int FI = MFI.getFunctionContextIndex(); 2231 2232 // Get a mapping of the call site numbers to all of the landing pads they're 2233 // associated with. 2234 DenseMap<unsigned, SmallVector<MachineBasicBlock *, 2>> CallSiteNumToLPad; 2235 unsigned MaxCSNum = 0; 2236 for (auto &MBB : *MF) { 2237 if (!MBB.isEHPad()) 2238 continue; 2239 2240 MCSymbol *Sym = nullptr; 2241 for (const auto &MI : MBB) { 2242 if (MI.isDebugInstr()) 2243 continue; 2244 2245 assert(MI.isEHLabel() && "expected EH_LABEL"); 2246 Sym = MI.getOperand(0).getMCSymbol(); 2247 break; 2248 } 2249 2250 if (!MF->hasCallSiteLandingPad(Sym)) 2251 continue; 2252 2253 for (unsigned CSI : MF->getCallSiteLandingPad(Sym)) { 2254 CallSiteNumToLPad[CSI].push_back(&MBB); 2255 MaxCSNum = std::max(MaxCSNum, CSI); 2256 } 2257 } 2258 2259 // Get an ordered list of the machine basic blocks for the jump table. 2260 std::vector<MachineBasicBlock *> LPadList; 2261 SmallPtrSet<MachineBasicBlock *, 32> InvokeBBs; 2262 LPadList.reserve(CallSiteNumToLPad.size()); 2263 2264 for (unsigned CSI = 1; CSI <= MaxCSNum; ++CSI) { 2265 for (auto &LP : CallSiteNumToLPad[CSI]) { 2266 LPadList.push_back(LP); 2267 InvokeBBs.insert(LP->pred_begin(), LP->pred_end()); 2268 } 2269 } 2270 2271 assert(!LPadList.empty() && 2272 "No landing pad destinations for the dispatch jump table!"); 2273 2274 // The %fn_context is allocated like below (from --print-after=sjljehprepare): 2275 // %fn_context = alloca { i8*, i64, [4 x i64], i8*, i8*, [5 x i8*] } 2276 // 2277 // This `[5 x i8*]` is jmpbuf, so jmpbuf[1] is FI+72. 2278 // First `i64` is callsite, so callsite is FI+8. 2279 static const int OffsetIC = 72; 2280 static const int OffsetCS = 8; 2281 2282 // Create the MBBs for the dispatch code like following: 2283 // 2284 // ThisMBB: 2285 // Prepare DispatchBB address and store it to buf[1]. 2286 // ... 2287 // 2288 // DispatchBB: 2289 // %s15 = GETGOT iff isPositionIndependent 2290 // %callsite = load callsite 2291 // brgt.l.t #size of callsites, %callsite, DispContBB 2292 // 2293 // TrapBB: 2294 // Call abort. 2295 // 2296 // DispContBB: 2297 // %breg = address of jump table 2298 // %pc = load and calculate next pc from %breg and %callsite 2299 // jmp %pc 2300 2301 // Shove the dispatch's address into the return slot in the function context. 2302 MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock(); 2303 DispatchBB->setIsEHPad(true); 2304 2305 // Trap BB will causes trap like `assert(0)`. 2306 MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock(); 2307 DispatchBB->addSuccessor(TrapBB); 2308 2309 MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock(); 2310 DispatchBB->addSuccessor(DispContBB); 2311 2312 // Insert MBBs. 2313 MF->push_back(DispatchBB); 2314 MF->push_back(DispContBB); 2315 MF->push_back(TrapBB); 2316 2317 // Insert code to call abort in the TrapBB. 2318 Register Abort = prepareSymbol(*TrapBB, TrapBB->end(), "abort", DL, 2319 /* Local */ false, /* Call */ true); 2320 BuildMI(TrapBB, DL, TII->get(VE::BSICrii), VE::SX10) 2321 .addReg(Abort, getKillRegState(true)) 2322 .addImm(0) 2323 .addImm(0); 2324 2325 // Insert code into the entry block that creates and registers the function 2326 // context. 2327 setupEntryBlockForSjLj(MI, BB, DispatchBB, FI, OffsetIC); 2328 2329 // Create the jump table and associated information 2330 unsigned JTE = getJumpTableEncoding(); 2331 MachineJumpTableInfo *JTI = MF->getOrCreateJumpTableInfo(JTE); 2332 unsigned MJTI = JTI->createJumpTableIndex(LPadList); 2333 2334 const VERegisterInfo &RI = TII->getRegisterInfo(); 2335 // Add a register mask with no preserved registers. This results in all 2336 // registers being marked as clobbered. 2337 BuildMI(DispatchBB, DL, TII->get(VE::NOP)) 2338 .addRegMask(RI.getNoPreservedMask()); 2339 2340 if (isPositionIndependent()) { 2341 // Force to generate GETGOT, since current implementation doesn't store GOT 2342 // register. 2343 BuildMI(DispatchBB, DL, TII->get(VE::GETGOT), VE::SX15); 2344 } 2345 2346 // IReg is used as an index in a memory operand and therefore can't be SP 2347 const TargetRegisterClass *RC = &VE::I64RegClass; 2348 Register IReg = MRI.createVirtualRegister(RC); 2349 addFrameReference(BuildMI(DispatchBB, DL, TII->get(VE::LDLZXrii), IReg), FI, 2350 OffsetCS); 2351 if (LPadList.size() < 64) { 2352 BuildMI(DispatchBB, DL, TII->get(VE::BRCFLir_t)) 2353 .addImm(VECC::CC_ILE) 2354 .addImm(LPadList.size()) 2355 .addReg(IReg) 2356 .addMBB(TrapBB); 2357 } else { 2358 assert(LPadList.size() <= 0x7FFFFFFF && "Too large Landing Pad!"); 2359 Register TmpReg = MRI.createVirtualRegister(RC); 2360 BuildMI(DispatchBB, DL, TII->get(VE::LEAzii), TmpReg) 2361 .addImm(0) 2362 .addImm(0) 2363 .addImm(LPadList.size()); 2364 BuildMI(DispatchBB, DL, TII->get(VE::BRCFLrr_t)) 2365 .addImm(VECC::CC_ILE) 2366 .addReg(TmpReg, getKillRegState(true)) 2367 .addReg(IReg) 2368 .addMBB(TrapBB); 2369 } 2370 2371 Register BReg = MRI.createVirtualRegister(RC); 2372 Register Tmp1 = MRI.createVirtualRegister(RC); 2373 Register Tmp2 = MRI.createVirtualRegister(RC); 2374 2375 if (isPositionIndependent()) { 2376 // Create following instructions for local linkage PIC code. 2377 // lea %Tmp1, .LJTI0_0@gotoff_lo 2378 // and %Tmp2, %Tmp1, (32)0 2379 // lea.sl %BReg, .LJTI0_0@gotoff_hi(%Tmp2, %s15) ; %s15 is GOT 2380 BuildMI(DispContBB, DL, TII->get(VE::LEAzii), Tmp1) 2381 .addImm(0) 2382 .addImm(0) 2383 .addJumpTableIndex(MJTI, VEMCExpr::VK_VE_GOTOFF_LO32); 2384 BuildMI(DispContBB, DL, TII->get(VE::ANDrm), Tmp2) 2385 .addReg(Tmp1, getKillRegState(true)) 2386 .addImm(M0(32)); 2387 BuildMI(DispContBB, DL, TII->get(VE::LEASLrri), BReg) 2388 .addReg(VE::SX15) 2389 .addReg(Tmp2, getKillRegState(true)) 2390 .addJumpTableIndex(MJTI, VEMCExpr::VK_VE_GOTOFF_HI32); 2391 } else { 2392 // Create following instructions for non-PIC code. 2393 // lea %Tmp1, .LJTI0_0@lo 2394 // and %Tmp2, %Tmp1, (32)0 2395 // lea.sl %BReg, .LJTI0_0@hi(%Tmp2) 2396 BuildMI(DispContBB, DL, TII->get(VE::LEAzii), Tmp1) 2397 .addImm(0) 2398 .addImm(0) 2399 .addJumpTableIndex(MJTI, VEMCExpr::VK_VE_LO32); 2400 BuildMI(DispContBB, DL, TII->get(VE::ANDrm), Tmp2) 2401 .addReg(Tmp1, getKillRegState(true)) 2402 .addImm(M0(32)); 2403 BuildMI(DispContBB, DL, TII->get(VE::LEASLrii), BReg) 2404 .addReg(Tmp2, getKillRegState(true)) 2405 .addImm(0) 2406 .addJumpTableIndex(MJTI, VEMCExpr::VK_VE_HI32); 2407 } 2408 2409 switch (JTE) { 2410 case MachineJumpTableInfo::EK_BlockAddress: { 2411 // Generate simple block address code for no-PIC model. 2412 // sll %Tmp1, %IReg, 3 2413 // lds %TReg, 0(%Tmp1, %BReg) 2414 // bcfla %TReg 2415 2416 Register TReg = MRI.createVirtualRegister(RC); 2417 Register Tmp1 = MRI.createVirtualRegister(RC); 2418 2419 BuildMI(DispContBB, DL, TII->get(VE::SLLri), Tmp1) 2420 .addReg(IReg, getKillRegState(true)) 2421 .addImm(3); 2422 BuildMI(DispContBB, DL, TII->get(VE::LDrri), TReg) 2423 .addReg(BReg, getKillRegState(true)) 2424 .addReg(Tmp1, getKillRegState(true)) 2425 .addImm(0); 2426 BuildMI(DispContBB, DL, TII->get(VE::BCFLari_t)) 2427 .addReg(TReg, getKillRegState(true)) 2428 .addImm(0); 2429 break; 2430 } 2431 case MachineJumpTableInfo::EK_Custom32: { 2432 // Generate block address code using differences from the function pointer 2433 // for PIC model. 2434 // sll %Tmp1, %IReg, 2 2435 // ldl.zx %OReg, 0(%Tmp1, %BReg) 2436 // Prepare function address in BReg2. 2437 // adds.l %TReg, %BReg2, %OReg 2438 // bcfla %TReg 2439 2440 assert(isPositionIndependent()); 2441 Register OReg = MRI.createVirtualRegister(RC); 2442 Register TReg = MRI.createVirtualRegister(RC); 2443 Register Tmp1 = MRI.createVirtualRegister(RC); 2444 2445 BuildMI(DispContBB, DL, TII->get(VE::SLLri), Tmp1) 2446 .addReg(IReg, getKillRegState(true)) 2447 .addImm(2); 2448 BuildMI(DispContBB, DL, TII->get(VE::LDLZXrri), OReg) 2449 .addReg(BReg, getKillRegState(true)) 2450 .addReg(Tmp1, getKillRegState(true)) 2451 .addImm(0); 2452 Register BReg2 = 2453 prepareSymbol(*DispContBB, DispContBB->end(), 2454 DispContBB->getParent()->getName(), DL, /* Local */ true); 2455 BuildMI(DispContBB, DL, TII->get(VE::ADDSLrr), TReg) 2456 .addReg(OReg, getKillRegState(true)) 2457 .addReg(BReg2, getKillRegState(true)); 2458 BuildMI(DispContBB, DL, TII->get(VE::BCFLari_t)) 2459 .addReg(TReg, getKillRegState(true)) 2460 .addImm(0); 2461 break; 2462 } 2463 default: 2464 llvm_unreachable("Unexpected jump table encoding"); 2465 } 2466 2467 // Add the jump table entries as successors to the MBB. 2468 SmallPtrSet<MachineBasicBlock *, 8> SeenMBBs; 2469 for (auto &LP : LPadList) 2470 if (SeenMBBs.insert(LP).second) 2471 DispContBB->addSuccessor(LP); 2472 2473 // N.B. the order the invoke BBs are processed in doesn't matter here. 2474 SmallVector<MachineBasicBlock *, 64> MBBLPads; 2475 const MCPhysReg *SavedRegs = MF->getRegInfo().getCalleeSavedRegs(); 2476 for (MachineBasicBlock *MBB : InvokeBBs) { 2477 // Remove the landing pad successor from the invoke block and replace it 2478 // with the new dispatch block. 2479 // Keep a copy of Successors since it's modified inside the loop. 2480 SmallVector<MachineBasicBlock *, 8> Successors(MBB->succ_rbegin(), 2481 MBB->succ_rend()); 2482 // FIXME: Avoid quadratic complexity. 2483 for (auto MBBS : Successors) { 2484 if (MBBS->isEHPad()) { 2485 MBB->removeSuccessor(MBBS); 2486 MBBLPads.push_back(MBBS); 2487 } 2488 } 2489 2490 MBB->addSuccessor(DispatchBB); 2491 2492 // Find the invoke call and mark all of the callee-saved registers as 2493 // 'implicit defined' so that they're spilled. This prevents code from 2494 // moving instructions to before the EH block, where they will never be 2495 // executed. 2496 for (auto &II : reverse(*MBB)) { 2497 if (!II.isCall()) 2498 continue; 2499 2500 DenseMap<Register, bool> DefRegs; 2501 for (auto &MOp : II.operands()) 2502 if (MOp.isReg()) 2503 DefRegs[MOp.getReg()] = true; 2504 2505 MachineInstrBuilder MIB(*MF, &II); 2506 for (unsigned RI = 0; SavedRegs[RI]; ++RI) { 2507 Register Reg = SavedRegs[RI]; 2508 if (!DefRegs[Reg]) 2509 MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead); 2510 } 2511 2512 break; 2513 } 2514 } 2515 2516 // Mark all former landing pads as non-landing pads. The dispatch is the only 2517 // landing pad now. 2518 for (auto &LP : MBBLPads) 2519 LP->setIsEHPad(false); 2520 2521 // The instruction is gone now. 2522 MI.eraseFromParent(); 2523 return BB; 2524 } 2525 2526 MachineBasicBlock * 2527 VETargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 2528 MachineBasicBlock *BB) const { 2529 switch (MI.getOpcode()) { 2530 default: 2531 llvm_unreachable("Unknown Custom Instruction!"); 2532 case VE::EH_SjLj_LongJmp: 2533 return emitEHSjLjLongJmp(MI, BB); 2534 case VE::EH_SjLj_SetJmp: 2535 return emitEHSjLjSetJmp(MI, BB); 2536 case VE::EH_SjLj_Setup_Dispatch: 2537 return emitSjLjDispatchBlock(MI, BB); 2538 } 2539 } 2540 2541 static bool isI32Insn(const SDNode *User, const SDNode *N) { 2542 switch (User->getOpcode()) { 2543 default: 2544 return false; 2545 case ISD::ADD: 2546 case ISD::SUB: 2547 case ISD::MUL: 2548 case ISD::SDIV: 2549 case ISD::UDIV: 2550 case ISD::SETCC: 2551 case ISD::SMIN: 2552 case ISD::SMAX: 2553 case ISD::SHL: 2554 case ISD::SRA: 2555 case ISD::BSWAP: 2556 case ISD::SINT_TO_FP: 2557 case ISD::UINT_TO_FP: 2558 case ISD::BR_CC: 2559 case ISD::BITCAST: 2560 case ISD::ATOMIC_CMP_SWAP: 2561 case ISD::ATOMIC_SWAP: 2562 return true; 2563 case ISD::SRL: 2564 if (N->getOperand(0).getOpcode() != ISD::SRL) 2565 return true; 2566 // (srl (trunc (srl ...))) may be optimized by combining srl, so 2567 // doesn't optimize trunc now. 2568 return false; 2569 case ISD::SELECT_CC: 2570 if (User->getOperand(2).getNode() != N && 2571 User->getOperand(3).getNode() != N) 2572 return true; 2573 LLVM_FALLTHROUGH; 2574 case ISD::AND: 2575 case ISD::OR: 2576 case ISD::XOR: 2577 case ISD::SELECT: 2578 case ISD::CopyToReg: 2579 // Check all use of selections, bit operations, and copies. If all of them 2580 // are safe, optimize truncate to extract_subreg. 2581 for (const SDNode *U : User->uses()) { 2582 switch (U->getOpcode()) { 2583 default: 2584 // If the use is an instruction which treats the source operand as i32, 2585 // it is safe to avoid truncate here. 2586 if (isI32Insn(U, N)) 2587 continue; 2588 break; 2589 case ISD::ANY_EXTEND: 2590 case ISD::SIGN_EXTEND: 2591 case ISD::ZERO_EXTEND: { 2592 // Special optimizations to the combination of ext and trunc. 2593 // (ext ... (select ... (trunc ...))) is safe to avoid truncate here 2594 // since this truncate instruction clears higher 32 bits which is filled 2595 // by one of ext instructions later. 2596 assert(N->getValueType(0) == MVT::i32 && 2597 "find truncate to not i32 integer"); 2598 if (User->getOpcode() == ISD::SELECT_CC || 2599 User->getOpcode() == ISD::SELECT) 2600 continue; 2601 break; 2602 } 2603 } 2604 return false; 2605 } 2606 return true; 2607 } 2608 } 2609 2610 // Optimize TRUNCATE in DAG combining. Optimizing it in CUSTOM lower is 2611 // sometime too early. Optimizing it in DAG pattern matching in VEInstrInfo.td 2612 // is sometime too late. So, doing it at here. 2613 SDValue VETargetLowering::combineTRUNCATE(SDNode *N, 2614 DAGCombinerInfo &DCI) const { 2615 assert(N->getOpcode() == ISD::TRUNCATE && 2616 "Should be called with a TRUNCATE node"); 2617 2618 SelectionDAG &DAG = DCI.DAG; 2619 SDLoc DL(N); 2620 EVT VT = N->getValueType(0); 2621 2622 // We prefer to do this when all types are legal. 2623 if (!DCI.isAfterLegalizeDAG()) 2624 return SDValue(); 2625 2626 // Skip combine TRUNCATE atm if the operand of TRUNCATE might be a constant. 2627 if (N->getOperand(0)->getOpcode() == ISD::SELECT_CC && 2628 isa<ConstantSDNode>(N->getOperand(0)->getOperand(0)) && 2629 isa<ConstantSDNode>(N->getOperand(0)->getOperand(1))) 2630 return SDValue(); 2631 2632 // Check all use of this TRUNCATE. 2633 for (const SDNode *User : N->uses()) { 2634 // Make sure that we're not going to replace TRUNCATE for non i32 2635 // instructions. 2636 // 2637 // FIXME: Although we could sometimes handle this, and it does occur in 2638 // practice that one of the condition inputs to the select is also one of 2639 // the outputs, we currently can't deal with this. 2640 if (isI32Insn(User, N)) 2641 continue; 2642 2643 return SDValue(); 2644 } 2645 2646 SDValue SubI32 = DAG.getTargetConstant(VE::sub_i32, DL, MVT::i32); 2647 return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, VT, 2648 N->getOperand(0), SubI32), 2649 0); 2650 } 2651 2652 SDValue VETargetLowering::PerformDAGCombine(SDNode *N, 2653 DAGCombinerInfo &DCI) const { 2654 switch (N->getOpcode()) { 2655 default: 2656 break; 2657 case ISD::TRUNCATE: 2658 return combineTRUNCATE(N, DCI); 2659 } 2660 2661 return SDValue(); 2662 } 2663 2664 //===----------------------------------------------------------------------===// 2665 // VE Inline Assembly Support 2666 //===----------------------------------------------------------------------===// 2667 2668 VETargetLowering::ConstraintType 2669 VETargetLowering::getConstraintType(StringRef Constraint) const { 2670 if (Constraint.size() == 1) { 2671 switch (Constraint[0]) { 2672 default: 2673 break; 2674 case 'v': // vector registers 2675 return C_RegisterClass; 2676 } 2677 } 2678 return TargetLowering::getConstraintType(Constraint); 2679 } 2680 2681 std::pair<unsigned, const TargetRegisterClass *> 2682 VETargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 2683 StringRef Constraint, 2684 MVT VT) const { 2685 const TargetRegisterClass *RC = nullptr; 2686 if (Constraint.size() == 1) { 2687 switch (Constraint[0]) { 2688 default: 2689 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 2690 case 'r': 2691 RC = &VE::I64RegClass; 2692 break; 2693 case 'v': 2694 RC = &VE::V64RegClass; 2695 break; 2696 } 2697 return std::make_pair(0U, RC); 2698 } 2699 2700 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 2701 } 2702 2703 //===----------------------------------------------------------------------===// 2704 // VE Target Optimization Support 2705 //===----------------------------------------------------------------------===// 2706 2707 unsigned VETargetLowering::getMinimumJumpTableEntries() const { 2708 // Specify 8 for PIC model to relieve the impact of PIC load instructions. 2709 if (isJumpTableRelative()) 2710 return 8; 2711 2712 return TargetLowering::getMinimumJumpTableEntries(); 2713 } 2714 2715 bool VETargetLowering::hasAndNot(SDValue Y) const { 2716 EVT VT = Y.getValueType(); 2717 2718 // VE doesn't have vector and not instruction. 2719 if (VT.isVector()) 2720 return false; 2721 2722 // VE allows different immediate values for X and Y where ~X & Y. 2723 // Only simm7 works for X, and only mimm works for Y on VE. However, this 2724 // function is used to check whether an immediate value is OK for and-not 2725 // instruction as both X and Y. Generating additional instruction to 2726 // retrieve an immediate value is no good since the purpose of this 2727 // function is to convert a series of 3 instructions to another series of 2728 // 3 instructions with better parallelism. Therefore, we return false 2729 // for all immediate values now. 2730 // FIXME: Change hasAndNot function to have two operands to make it work 2731 // correctly with Aurora VE. 2732 if (isa<ConstantSDNode>(Y)) 2733 return false; 2734 2735 // It's ok for generic registers. 2736 return true; 2737 } 2738 2739 SDValue VETargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 2740 SelectionDAG &DAG) const { 2741 assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!"); 2742 MVT VT = Op.getOperand(0).getSimpleValueType(); 2743 2744 // Special treatment for packed V64 types. 2745 assert(VT == MVT::v512i32 || VT == MVT::v512f32); 2746 (void)VT; 2747 // Example of codes: 2748 // %packed_v = extractelt %vr, %idx / 2 2749 // %v = %packed_v >> (%idx % 2 * 32) 2750 // %res = %v & 0xffffffff 2751 2752 SDValue Vec = Op.getOperand(0); 2753 SDValue Idx = Op.getOperand(1); 2754 SDLoc DL(Op); 2755 SDValue Result = Op; 2756 if (false /* Idx->isConstant() */) { 2757 // TODO: optimized implementation using constant values 2758 } else { 2759 SDValue Const1 = DAG.getConstant(1, DL, MVT::i64); 2760 SDValue HalfIdx = DAG.getNode(ISD::SRL, DL, MVT::i64, {Idx, Const1}); 2761 SDValue PackedElt = 2762 SDValue(DAG.getMachineNode(VE::LVSvr, DL, MVT::i64, {Vec, HalfIdx}), 0); 2763 SDValue AndIdx = DAG.getNode(ISD::AND, DL, MVT::i64, {Idx, Const1}); 2764 SDValue Shift = DAG.getNode(ISD::XOR, DL, MVT::i64, {AndIdx, Const1}); 2765 SDValue Const5 = DAG.getConstant(5, DL, MVT::i64); 2766 Shift = DAG.getNode(ISD::SHL, DL, MVT::i64, {Shift, Const5}); 2767 PackedElt = DAG.getNode(ISD::SRL, DL, MVT::i64, {PackedElt, Shift}); 2768 SDValue Mask = DAG.getConstant(0xFFFFFFFFL, DL, MVT::i64); 2769 PackedElt = DAG.getNode(ISD::AND, DL, MVT::i64, {PackedElt, Mask}); 2770 SDValue SubI32 = DAG.getTargetConstant(VE::sub_i32, DL, MVT::i32); 2771 Result = SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 2772 MVT::i32, PackedElt, SubI32), 2773 0); 2774 2775 if (Op.getSimpleValueType() == MVT::f32) { 2776 Result = DAG.getBitcast(MVT::f32, Result); 2777 } else { 2778 assert(Op.getSimpleValueType() == MVT::i32); 2779 } 2780 } 2781 return Result; 2782 } 2783 2784 SDValue VETargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 2785 SelectionDAG &DAG) const { 2786 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!"); 2787 MVT VT = Op.getOperand(0).getSimpleValueType(); 2788 2789 // Special treatment for packed V64 types. 2790 assert(VT == MVT::v512i32 || VT == MVT::v512f32); 2791 (void)VT; 2792 // The v512i32 and v512f32 starts from upper bits (0..31). This "upper 2793 // bits" required `val << 32` from C implementation's point of view. 2794 // 2795 // Example of codes: 2796 // %packed_elt = extractelt %vr, (%idx >> 1) 2797 // %shift = ((%idx & 1) ^ 1) << 5 2798 // %packed_elt &= 0xffffffff00000000 >> shift 2799 // %packed_elt |= (zext %val) << shift 2800 // %vr = insertelt %vr, %packed_elt, (%idx >> 1) 2801 2802 SDLoc DL(Op); 2803 SDValue Vec = Op.getOperand(0); 2804 SDValue Val = Op.getOperand(1); 2805 SDValue Idx = Op.getOperand(2); 2806 if (Idx.getSimpleValueType() == MVT::i32) 2807 Idx = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Idx); 2808 if (Val.getSimpleValueType() == MVT::f32) 2809 Val = DAG.getBitcast(MVT::i32, Val); 2810 assert(Val.getSimpleValueType() == MVT::i32); 2811 Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val); 2812 2813 SDValue Result = Op; 2814 if (false /* Idx->isConstant()*/) { 2815 // TODO: optimized implementation using constant values 2816 } else { 2817 SDValue Const1 = DAG.getConstant(1, DL, MVT::i64); 2818 SDValue HalfIdx = DAG.getNode(ISD::SRL, DL, MVT::i64, {Idx, Const1}); 2819 SDValue PackedElt = 2820 SDValue(DAG.getMachineNode(VE::LVSvr, DL, MVT::i64, {Vec, HalfIdx}), 0); 2821 SDValue AndIdx = DAG.getNode(ISD::AND, DL, MVT::i64, {Idx, Const1}); 2822 SDValue Shift = DAG.getNode(ISD::XOR, DL, MVT::i64, {AndIdx, Const1}); 2823 SDValue Const5 = DAG.getConstant(5, DL, MVT::i64); 2824 Shift = DAG.getNode(ISD::SHL, DL, MVT::i64, {Shift, Const5}); 2825 SDValue Mask = DAG.getConstant(0xFFFFFFFF00000000L, DL, MVT::i64); 2826 Mask = DAG.getNode(ISD::SRL, DL, MVT::i64, {Mask, Shift}); 2827 PackedElt = DAG.getNode(ISD::AND, DL, MVT::i64, {PackedElt, Mask}); 2828 Val = DAG.getNode(ISD::SHL, DL, MVT::i64, {Val, Shift}); 2829 PackedElt = DAG.getNode(ISD::OR, DL, MVT::i64, {PackedElt, Val}); 2830 Result = 2831 SDValue(DAG.getMachineNode(VE::LSVrr_v, DL, Vec.getSimpleValueType(), 2832 {HalfIdx, PackedElt, Vec}), 2833 0); 2834 } 2835 return Result; 2836 } 2837