1 //===-- SystemZTargetTransformInfo.cpp - SystemZ-specific TTI -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a TargetTransformInfo analysis pass specific to the 10 // SystemZ target machine. It uses the target's detailed information to provide 11 // more precise answers to certain TTI queries, while letting the target 12 // independent and default TTI implementations handle the rest. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "SystemZTargetTransformInfo.h" 17 #include "llvm/Analysis/TargetTransformInfo.h" 18 #include "llvm/CodeGen/BasicTTIImpl.h" 19 #include "llvm/CodeGen/CostTable.h" 20 #include "llvm/CodeGen/TargetLowering.h" 21 #include "llvm/IR/IntrinsicInst.h" 22 #include "llvm/Support/Debug.h" 23 using namespace llvm; 24 25 #define DEBUG_TYPE "systemztti" 26 27 //===----------------------------------------------------------------------===// 28 // 29 // SystemZ cost model. 30 // 31 //===----------------------------------------------------------------------===// 32 33 int SystemZTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty, 34 TTI::TargetCostKind CostKind) { 35 assert(Ty->isIntegerTy()); 36 37 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 38 // There is no cost model for constants with a bit size of 0. Return TCC_Free 39 // here, so that constant hoisting will ignore this constant. 40 if (BitSize == 0) 41 return TTI::TCC_Free; 42 // No cost model for operations on integers larger than 64 bit implemented yet. 43 if (BitSize > 64) 44 return TTI::TCC_Free; 45 46 if (Imm == 0) 47 return TTI::TCC_Free; 48 49 if (Imm.getBitWidth() <= 64) { 50 // Constants loaded via lgfi. 51 if (isInt<32>(Imm.getSExtValue())) 52 return TTI::TCC_Basic; 53 // Constants loaded via llilf. 54 if (isUInt<32>(Imm.getZExtValue())) 55 return TTI::TCC_Basic; 56 // Constants loaded via llihf: 57 if ((Imm.getZExtValue() & 0xffffffff) == 0) 58 return TTI::TCC_Basic; 59 60 return 2 * TTI::TCC_Basic; 61 } 62 63 return 4 * TTI::TCC_Basic; 64 } 65 66 int SystemZTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, 67 const APInt &Imm, Type *Ty, 68 TTI::TargetCostKind CostKind) { 69 assert(Ty->isIntegerTy()); 70 71 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 72 // There is no cost model for constants with a bit size of 0. Return TCC_Free 73 // here, so that constant hoisting will ignore this constant. 74 if (BitSize == 0) 75 return TTI::TCC_Free; 76 // No cost model for operations on integers larger than 64 bit implemented yet. 77 if (BitSize > 64) 78 return TTI::TCC_Free; 79 80 switch (Opcode) { 81 default: 82 return TTI::TCC_Free; 83 case Instruction::GetElementPtr: 84 // Always hoist the base address of a GetElementPtr. This prevents the 85 // creation of new constants for every base constant that gets constant 86 // folded with the offset. 87 if (Idx == 0) 88 return 2 * TTI::TCC_Basic; 89 return TTI::TCC_Free; 90 case Instruction::Store: 91 if (Idx == 0 && Imm.getBitWidth() <= 64) { 92 // Any 8-bit immediate store can by implemented via mvi. 93 if (BitSize == 8) 94 return TTI::TCC_Free; 95 // 16-bit immediate values can be stored via mvhhi/mvhi/mvghi. 96 if (isInt<16>(Imm.getSExtValue())) 97 return TTI::TCC_Free; 98 } 99 break; 100 case Instruction::ICmp: 101 if (Idx == 1 && Imm.getBitWidth() <= 64) { 102 // Comparisons against signed 32-bit immediates implemented via cgfi. 103 if (isInt<32>(Imm.getSExtValue())) 104 return TTI::TCC_Free; 105 // Comparisons against unsigned 32-bit immediates implemented via clgfi. 106 if (isUInt<32>(Imm.getZExtValue())) 107 return TTI::TCC_Free; 108 } 109 break; 110 case Instruction::Add: 111 case Instruction::Sub: 112 if (Idx == 1 && Imm.getBitWidth() <= 64) { 113 // We use algfi/slgfi to add/subtract 32-bit unsigned immediates. 114 if (isUInt<32>(Imm.getZExtValue())) 115 return TTI::TCC_Free; 116 // Or their negation, by swapping addition vs. subtraction. 117 if (isUInt<32>(-Imm.getSExtValue())) 118 return TTI::TCC_Free; 119 } 120 break; 121 case Instruction::Mul: 122 if (Idx == 1 && Imm.getBitWidth() <= 64) { 123 // We use msgfi to multiply by 32-bit signed immediates. 124 if (isInt<32>(Imm.getSExtValue())) 125 return TTI::TCC_Free; 126 } 127 break; 128 case Instruction::Or: 129 case Instruction::Xor: 130 if (Idx == 1 && Imm.getBitWidth() <= 64) { 131 // Masks supported by oilf/xilf. 132 if (isUInt<32>(Imm.getZExtValue())) 133 return TTI::TCC_Free; 134 // Masks supported by oihf/xihf. 135 if ((Imm.getZExtValue() & 0xffffffff) == 0) 136 return TTI::TCC_Free; 137 } 138 break; 139 case Instruction::And: 140 if (Idx == 1 && Imm.getBitWidth() <= 64) { 141 // Any 32-bit AND operation can by implemented via nilf. 142 if (BitSize <= 32) 143 return TTI::TCC_Free; 144 // 64-bit masks supported by nilf. 145 if (isUInt<32>(~Imm.getZExtValue())) 146 return TTI::TCC_Free; 147 // 64-bit masks supported by nilh. 148 if ((Imm.getZExtValue() & 0xffffffff) == 0xffffffff) 149 return TTI::TCC_Free; 150 // Some 64-bit AND operations can be implemented via risbg. 151 const SystemZInstrInfo *TII = ST->getInstrInfo(); 152 unsigned Start, End; 153 if (TII->isRxSBGMask(Imm.getZExtValue(), BitSize, Start, End)) 154 return TTI::TCC_Free; 155 } 156 break; 157 case Instruction::Shl: 158 case Instruction::LShr: 159 case Instruction::AShr: 160 // Always return TCC_Free for the shift value of a shift instruction. 161 if (Idx == 1) 162 return TTI::TCC_Free; 163 break; 164 case Instruction::UDiv: 165 case Instruction::SDiv: 166 case Instruction::URem: 167 case Instruction::SRem: 168 case Instruction::Trunc: 169 case Instruction::ZExt: 170 case Instruction::SExt: 171 case Instruction::IntToPtr: 172 case Instruction::PtrToInt: 173 case Instruction::BitCast: 174 case Instruction::PHI: 175 case Instruction::Call: 176 case Instruction::Select: 177 case Instruction::Ret: 178 case Instruction::Load: 179 break; 180 } 181 182 return SystemZTTIImpl::getIntImmCost(Imm, Ty, CostKind); 183 } 184 185 int SystemZTTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, 186 const APInt &Imm, Type *Ty, 187 TTI::TargetCostKind CostKind) { 188 assert(Ty->isIntegerTy()); 189 190 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 191 // There is no cost model for constants with a bit size of 0. Return TCC_Free 192 // here, so that constant hoisting will ignore this constant. 193 if (BitSize == 0) 194 return TTI::TCC_Free; 195 // No cost model for operations on integers larger than 64 bit implemented yet. 196 if (BitSize > 64) 197 return TTI::TCC_Free; 198 199 switch (IID) { 200 default: 201 return TTI::TCC_Free; 202 case Intrinsic::sadd_with_overflow: 203 case Intrinsic::uadd_with_overflow: 204 case Intrinsic::ssub_with_overflow: 205 case Intrinsic::usub_with_overflow: 206 // These get expanded to include a normal addition/subtraction. 207 if (Idx == 1 && Imm.getBitWidth() <= 64) { 208 if (isUInt<32>(Imm.getZExtValue())) 209 return TTI::TCC_Free; 210 if (isUInt<32>(-Imm.getSExtValue())) 211 return TTI::TCC_Free; 212 } 213 break; 214 case Intrinsic::smul_with_overflow: 215 case Intrinsic::umul_with_overflow: 216 // These get expanded to include a normal multiplication. 217 if (Idx == 1 && Imm.getBitWidth() <= 64) { 218 if (isInt<32>(Imm.getSExtValue())) 219 return TTI::TCC_Free; 220 } 221 break; 222 case Intrinsic::experimental_stackmap: 223 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 224 return TTI::TCC_Free; 225 break; 226 case Intrinsic::experimental_patchpoint_void: 227 case Intrinsic::experimental_patchpoint_i64: 228 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 229 return TTI::TCC_Free; 230 break; 231 } 232 return SystemZTTIImpl::getIntImmCost(Imm, Ty, CostKind); 233 } 234 235 TargetTransformInfo::PopcntSupportKind 236 SystemZTTIImpl::getPopcntSupport(unsigned TyWidth) { 237 assert(isPowerOf2_32(TyWidth) && "Type width must be power of 2"); 238 if (ST->hasPopulationCount() && TyWidth <= 64) 239 return TTI::PSK_FastHardware; 240 return TTI::PSK_Software; 241 } 242 243 void SystemZTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 244 TTI::UnrollingPreferences &UP) { 245 // Find out if L contains a call, what the machine instruction count 246 // estimate is, and how many stores there are. 247 bool HasCall = false; 248 unsigned NumStores = 0; 249 for (auto &BB : L->blocks()) 250 for (auto &I : *BB) { 251 if (isa<CallInst>(&I) || isa<InvokeInst>(&I)) { 252 if (const Function *F = cast<CallBase>(I).getCalledFunction()) { 253 if (isLoweredToCall(F)) 254 HasCall = true; 255 if (F->getIntrinsicID() == Intrinsic::memcpy || 256 F->getIntrinsicID() == Intrinsic::memset) 257 NumStores++; 258 } else { // indirect call. 259 HasCall = true; 260 } 261 } 262 if (isa<StoreInst>(&I)) { 263 Type *MemAccessTy = I.getOperand(0)->getType(); 264 NumStores += getMemoryOpCost(Instruction::Store, MemAccessTy, None, 0, 265 TTI::TCK_RecipThroughput); 266 } 267 } 268 269 // The z13 processor will run out of store tags if too many stores 270 // are fed into it too quickly. Therefore make sure there are not 271 // too many stores in the resulting unrolled loop. 272 unsigned const Max = (NumStores ? (12 / NumStores) : UINT_MAX); 273 274 if (HasCall) { 275 // Only allow full unrolling if loop has any calls. 276 UP.FullUnrollMaxCount = Max; 277 UP.MaxCount = 1; 278 return; 279 } 280 281 UP.MaxCount = Max; 282 if (UP.MaxCount <= 1) 283 return; 284 285 // Allow partial and runtime trip count unrolling. 286 UP.Partial = UP.Runtime = true; 287 288 UP.PartialThreshold = 75; 289 UP.DefaultUnrollRuntimeCount = 4; 290 291 // Allow expensive instructions in the pre-header of the loop. 292 UP.AllowExpensiveTripCount = true; 293 294 UP.Force = true; 295 } 296 297 298 bool SystemZTTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1, 299 TargetTransformInfo::LSRCost &C2) { 300 // SystemZ specific: check instruction count (first), and don't care about 301 // ImmCost, since offsets are checked explicitly. 302 return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost, 303 C1.NumIVMuls, C1.NumBaseAdds, 304 C1.ScaleCost, C1.SetupCost) < 305 std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost, 306 C2.NumIVMuls, C2.NumBaseAdds, 307 C2.ScaleCost, C2.SetupCost); 308 } 309 310 unsigned SystemZTTIImpl::getNumberOfRegisters(unsigned ClassID) const { 311 bool Vector = (ClassID == 1); 312 if (!Vector) 313 // Discount the stack pointer. Also leave out %r0, since it can't 314 // be used in an address. 315 return 14; 316 if (ST->hasVector()) 317 return 32; 318 return 0; 319 } 320 321 unsigned SystemZTTIImpl::getRegisterBitWidth(bool Vector) const { 322 if (!Vector) 323 return 64; 324 if (ST->hasVector()) 325 return 128; 326 return 0; 327 } 328 329 unsigned SystemZTTIImpl::getMinPrefetchStride(unsigned NumMemAccesses, 330 unsigned NumStridedMemAccesses, 331 unsigned NumPrefetches, 332 bool HasCall) const { 333 // Don't prefetch a loop with many far apart accesses. 334 if (NumPrefetches > 16) 335 return UINT_MAX; 336 337 // Emit prefetch instructions for smaller strides in cases where we think 338 // the hardware prefetcher might not be able to keep up. 339 if (NumStridedMemAccesses > 32 && 340 NumStridedMemAccesses == NumMemAccesses && !HasCall) 341 return 1; 342 343 return ST->hasMiscellaneousExtensions3() ? 8192 : 2048; 344 } 345 346 bool SystemZTTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) { 347 EVT VT = TLI->getValueType(DL, DataType); 348 return (VT.isScalarInteger() && TLI->isTypeLegal(VT)); 349 } 350 351 // Return the bit size for the scalar type or vector element 352 // type. getScalarSizeInBits() returns 0 for a pointer type. 353 static unsigned getScalarSizeInBits(Type *Ty) { 354 unsigned Size = 355 (Ty->isPtrOrPtrVectorTy() ? 64U : Ty->getScalarSizeInBits()); 356 assert(Size > 0 && "Element must have non-zero size."); 357 return Size; 358 } 359 360 // getNumberOfParts() calls getTypeLegalizationCost() which splits the vector 361 // type until it is legal. This would e.g. return 4 for <6 x i64>, instead of 362 // 3. 363 static unsigned getNumVectorRegs(Type *Ty) { 364 auto *VTy = cast<FixedVectorType>(Ty); 365 unsigned WideBits = getScalarSizeInBits(Ty) * VTy->getNumElements(); 366 assert(WideBits > 0 && "Could not compute size of vector"); 367 return ((WideBits % 128U) ? ((WideBits / 128U) + 1) : (WideBits / 128U)); 368 } 369 370 int SystemZTTIImpl::getArithmeticInstrCost( 371 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, 372 TTI::OperandValueKind Op1Info, 373 TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo, 374 TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args, 375 const Instruction *CxtI) { 376 377 // TODO: return a good value for BB-VECTORIZER that includes the 378 // immediate loads, which we do not want to count for the loop 379 // vectorizer, since they are hopefully hoisted out of the loop. This 380 // would require a new parameter 'InLoop', but not sure if constant 381 // args are common enough to motivate this. 382 383 unsigned ScalarBits = Ty->getScalarSizeInBits(); 384 385 // There are thre cases of division and remainder: Dividing with a register 386 // needs a divide instruction. A divisor which is a power of two constant 387 // can be implemented with a sequence of shifts. Any other constant needs a 388 // multiply and shifts. 389 const unsigned DivInstrCost = 20; 390 const unsigned DivMulSeqCost = 10; 391 const unsigned SDivPow2Cost = 4; 392 393 bool SignedDivRem = 394 Opcode == Instruction::SDiv || Opcode == Instruction::SRem; 395 bool UnsignedDivRem = 396 Opcode == Instruction::UDiv || Opcode == Instruction::URem; 397 398 // Check for a constant divisor. 399 bool DivRemConst = false; 400 bool DivRemConstPow2 = false; 401 if ((SignedDivRem || UnsignedDivRem) && Args.size() == 2) { 402 if (const Constant *C = dyn_cast<Constant>(Args[1])) { 403 const ConstantInt *CVal = 404 (C->getType()->isVectorTy() 405 ? dyn_cast_or_null<const ConstantInt>(C->getSplatValue()) 406 : dyn_cast<const ConstantInt>(C)); 407 if (CVal != nullptr && 408 (CVal->getValue().isPowerOf2() || (-CVal->getValue()).isPowerOf2())) 409 DivRemConstPow2 = true; 410 else 411 DivRemConst = true; 412 } 413 } 414 415 if (!Ty->isVectorTy()) { 416 // These FP operations are supported with a dedicated instruction for 417 // float, double and fp128 (base implementation assumes float generally 418 // costs 2). 419 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub || 420 Opcode == Instruction::FMul || Opcode == Instruction::FDiv) 421 return 1; 422 423 // There is no native support for FRem. 424 if (Opcode == Instruction::FRem) 425 return LIBCALL_COST; 426 427 // Give discount for some combined logical operations if supported. 428 if (Args.size() == 2 && ST->hasMiscellaneousExtensions3()) { 429 if (Opcode == Instruction::Xor) { 430 for (const Value *A : Args) { 431 if (const Instruction *I = dyn_cast<Instruction>(A)) 432 if (I->hasOneUse() && 433 (I->getOpcode() == Instruction::And || 434 I->getOpcode() == Instruction::Or || 435 I->getOpcode() == Instruction::Xor)) 436 return 0; 437 } 438 } 439 else if (Opcode == Instruction::Or || Opcode == Instruction::And) { 440 for (const Value *A : Args) { 441 if (const Instruction *I = dyn_cast<Instruction>(A)) 442 if (I->hasOneUse() && I->getOpcode() == Instruction::Xor) 443 return 0; 444 } 445 } 446 } 447 448 // Or requires one instruction, although it has custom handling for i64. 449 if (Opcode == Instruction::Or) 450 return 1; 451 452 if (Opcode == Instruction::Xor && ScalarBits == 1) { 453 if (ST->hasLoadStoreOnCond2()) 454 return 5; // 2 * (li 0; loc 1); xor 455 return 7; // 2 * ipm sequences ; xor ; shift ; compare 456 } 457 458 if (DivRemConstPow2) 459 return (SignedDivRem ? SDivPow2Cost : 1); 460 if (DivRemConst) 461 return DivMulSeqCost; 462 if (SignedDivRem || UnsignedDivRem) 463 return DivInstrCost; 464 } 465 else if (ST->hasVector()) { 466 auto *VTy = cast<FixedVectorType>(Ty); 467 unsigned VF = VTy->getNumElements(); 468 unsigned NumVectors = getNumVectorRegs(Ty); 469 470 // These vector operations are custom handled, but are still supported 471 // with one instruction per vector, regardless of element size. 472 if (Opcode == Instruction::Shl || Opcode == Instruction::LShr || 473 Opcode == Instruction::AShr) { 474 return NumVectors; 475 } 476 477 if (DivRemConstPow2) 478 return (NumVectors * (SignedDivRem ? SDivPow2Cost : 1)); 479 if (DivRemConst) 480 return VF * DivMulSeqCost + getScalarizationOverhead(VTy, Args); 481 if ((SignedDivRem || UnsignedDivRem) && VF > 4) 482 // Temporary hack: disable high vectorization factors with integer 483 // division/remainder, which will get scalarized and handled with 484 // GR128 registers. The mischeduler is not clever enough to avoid 485 // spilling yet. 486 return 1000; 487 488 // These FP operations are supported with a single vector instruction for 489 // double (base implementation assumes float generally costs 2). For 490 // FP128, the scalar cost is 1, and there is no overhead since the values 491 // are already in scalar registers. 492 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub || 493 Opcode == Instruction::FMul || Opcode == Instruction::FDiv) { 494 switch (ScalarBits) { 495 case 32: { 496 // The vector enhancements facility 1 provides v4f32 instructions. 497 if (ST->hasVectorEnhancements1()) 498 return NumVectors; 499 // Return the cost of multiple scalar invocation plus the cost of 500 // inserting and extracting the values. 501 unsigned ScalarCost = 502 getArithmeticInstrCost(Opcode, Ty->getScalarType(), CostKind); 503 unsigned Cost = (VF * ScalarCost) + getScalarizationOverhead(VTy, Args); 504 // FIXME: VF 2 for these FP operations are currently just as 505 // expensive as for VF 4. 506 if (VF == 2) 507 Cost *= 2; 508 return Cost; 509 } 510 case 64: 511 case 128: 512 return NumVectors; 513 default: 514 break; 515 } 516 } 517 518 // There is no native support for FRem. 519 if (Opcode == Instruction::FRem) { 520 unsigned Cost = (VF * LIBCALL_COST) + getScalarizationOverhead(VTy, Args); 521 // FIXME: VF 2 for float is currently just as expensive as for VF 4. 522 if (VF == 2 && ScalarBits == 32) 523 Cost *= 2; 524 return Cost; 525 } 526 } 527 528 // Fallback to the default implementation. 529 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info, 530 Opd1PropInfo, Opd2PropInfo, Args, CxtI); 531 } 532 533 int SystemZTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, VectorType *Tp, 534 int Index, VectorType *SubTp) { 535 if (ST->hasVector()) { 536 unsigned NumVectors = getNumVectorRegs(Tp); 537 538 // TODO: Since fp32 is expanded, the shuffle cost should always be 0. 539 540 // FP128 values are always in scalar registers, so there is no work 541 // involved with a shuffle, except for broadcast. In that case register 542 // moves are done with a single instruction per element. 543 if (Tp->getScalarType()->isFP128Ty()) 544 return (Kind == TargetTransformInfo::SK_Broadcast ? NumVectors - 1 : 0); 545 546 switch (Kind) { 547 case TargetTransformInfo::SK_ExtractSubvector: 548 // ExtractSubvector Index indicates start offset. 549 550 // Extracting a subvector from first index is a noop. 551 return (Index == 0 ? 0 : NumVectors); 552 553 case TargetTransformInfo::SK_Broadcast: 554 // Loop vectorizer calls here to figure out the extra cost of 555 // broadcasting a loaded value to all elements of a vector. Since vlrep 556 // loads and replicates with a single instruction, adjust the returned 557 // value. 558 return NumVectors - 1; 559 560 default: 561 562 // SystemZ supports single instruction permutation / replication. 563 return NumVectors; 564 } 565 } 566 567 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); 568 } 569 570 // Return the log2 difference of the element sizes of the two vector types. 571 static unsigned getElSizeLog2Diff(Type *Ty0, Type *Ty1) { 572 unsigned Bits0 = Ty0->getScalarSizeInBits(); 573 unsigned Bits1 = Ty1->getScalarSizeInBits(); 574 575 if (Bits1 > Bits0) 576 return (Log2_32(Bits1) - Log2_32(Bits0)); 577 578 return (Log2_32(Bits0) - Log2_32(Bits1)); 579 } 580 581 // Return the number of instructions needed to truncate SrcTy to DstTy. 582 unsigned SystemZTTIImpl:: 583 getVectorTruncCost(Type *SrcTy, Type *DstTy) { 584 assert (SrcTy->isVectorTy() && DstTy->isVectorTy()); 585 assert (SrcTy->getPrimitiveSizeInBits() > DstTy->getPrimitiveSizeInBits() && 586 "Packing must reduce size of vector type."); 587 assert(cast<FixedVectorType>(SrcTy)->getNumElements() == 588 cast<FixedVectorType>(DstTy)->getNumElements() && 589 "Packing should not change number of elements."); 590 591 // TODO: Since fp32 is expanded, the extract cost should always be 0. 592 593 unsigned NumParts = getNumVectorRegs(SrcTy); 594 if (NumParts <= 2) 595 // Up to 2 vector registers can be truncated efficiently with pack or 596 // permute. The latter requires an immediate mask to be loaded, which 597 // typically gets hoisted out of a loop. TODO: return a good value for 598 // BB-VECTORIZER that includes the immediate loads, which we do not want 599 // to count for the loop vectorizer. 600 return 1; 601 602 unsigned Cost = 0; 603 unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy); 604 unsigned VF = cast<FixedVectorType>(SrcTy)->getNumElements(); 605 for (unsigned P = 0; P < Log2Diff; ++P) { 606 if (NumParts > 1) 607 NumParts /= 2; 608 Cost += NumParts; 609 } 610 611 // Currently, a general mix of permutes and pack instructions is output by 612 // isel, which follow the cost computation above except for this case which 613 // is one instruction less: 614 if (VF == 8 && SrcTy->getScalarSizeInBits() == 64 && 615 DstTy->getScalarSizeInBits() == 8) 616 Cost--; 617 618 return Cost; 619 } 620 621 // Return the cost of converting a vector bitmask produced by a compare 622 // (SrcTy), to the type of the select or extend instruction (DstTy). 623 unsigned SystemZTTIImpl:: 624 getVectorBitmaskConversionCost(Type *SrcTy, Type *DstTy) { 625 assert (SrcTy->isVectorTy() && DstTy->isVectorTy() && 626 "Should only be called with vector types."); 627 628 unsigned PackCost = 0; 629 unsigned SrcScalarBits = SrcTy->getScalarSizeInBits(); 630 unsigned DstScalarBits = DstTy->getScalarSizeInBits(); 631 unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy); 632 if (SrcScalarBits > DstScalarBits) 633 // The bitmask will be truncated. 634 PackCost = getVectorTruncCost(SrcTy, DstTy); 635 else if (SrcScalarBits < DstScalarBits) { 636 unsigned DstNumParts = getNumVectorRegs(DstTy); 637 // Each vector select needs its part of the bitmask unpacked. 638 PackCost = Log2Diff * DstNumParts; 639 // Extra cost for moving part of mask before unpacking. 640 PackCost += DstNumParts - 1; 641 } 642 643 return PackCost; 644 } 645 646 // Return the type of the compared operands. This is needed to compute the 647 // cost for a Select / ZExt or SExt instruction. 648 static Type *getCmpOpsType(const Instruction *I, unsigned VF = 1) { 649 Type *OpTy = nullptr; 650 if (CmpInst *CI = dyn_cast<CmpInst>(I->getOperand(0))) 651 OpTy = CI->getOperand(0)->getType(); 652 else if (Instruction *LogicI = dyn_cast<Instruction>(I->getOperand(0))) 653 if (LogicI->getNumOperands() == 2) 654 if (CmpInst *CI0 = dyn_cast<CmpInst>(LogicI->getOperand(0))) 655 if (isa<CmpInst>(LogicI->getOperand(1))) 656 OpTy = CI0->getOperand(0)->getType(); 657 658 if (OpTy != nullptr) { 659 if (VF == 1) { 660 assert (!OpTy->isVectorTy() && "Expected scalar type"); 661 return OpTy; 662 } 663 // Return the potentially vectorized type based on 'I' and 'VF'. 'I' may 664 // be either scalar or already vectorized with a same or lesser VF. 665 Type *ElTy = OpTy->getScalarType(); 666 return FixedVectorType::get(ElTy, VF); 667 } 668 669 return nullptr; 670 } 671 672 // Get the cost of converting a boolean vector to a vector with same width 673 // and element size as Dst, plus the cost of zero extending if needed. 674 unsigned SystemZTTIImpl:: 675 getBoolVecToIntConversionCost(unsigned Opcode, Type *Dst, 676 const Instruction *I) { 677 auto *DstVTy = cast<FixedVectorType>(Dst); 678 unsigned VF = DstVTy->getNumElements(); 679 unsigned Cost = 0; 680 // If we know what the widths of the compared operands, get any cost of 681 // converting it to match Dst. Otherwise assume same widths. 682 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr); 683 if (CmpOpTy != nullptr) 684 Cost = getVectorBitmaskConversionCost(CmpOpTy, Dst); 685 if (Opcode == Instruction::ZExt || Opcode == Instruction::UIToFP) 686 // One 'vn' per dst vector with an immediate mask. 687 Cost += getNumVectorRegs(Dst); 688 return Cost; 689 } 690 691 int SystemZTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, 692 TTI::TargetCostKind CostKind, 693 const Instruction *I) { 694 // FIXME: Can the logic below also be used for these cost kinds? 695 if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency) { 696 int BaseCost = BaseT::getCastInstrCost(Opcode, Dst, Src, CostKind, I); 697 return BaseCost == 0 ? BaseCost : 1; 698 } 699 700 unsigned DstScalarBits = Dst->getScalarSizeInBits(); 701 unsigned SrcScalarBits = Src->getScalarSizeInBits(); 702 703 if (!Src->isVectorTy()) { 704 assert (!Dst->isVectorTy()); 705 706 if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP) { 707 if (SrcScalarBits >= 32 || 708 (I != nullptr && isa<LoadInst>(I->getOperand(0)))) 709 return 1; 710 return SrcScalarBits > 1 ? 2 /*i8/i16 extend*/ : 5 /*branch seq.*/; 711 } 712 713 if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) && 714 Src->isIntegerTy(1)) { 715 if (ST->hasLoadStoreOnCond2()) 716 return 2; // li 0; loc 1 717 718 // This should be extension of a compare i1 result, which is done with 719 // ipm and a varying sequence of instructions. 720 unsigned Cost = 0; 721 if (Opcode == Instruction::SExt) 722 Cost = (DstScalarBits < 64 ? 3 : 4); 723 if (Opcode == Instruction::ZExt) 724 Cost = 3; 725 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I) : nullptr); 726 if (CmpOpTy != nullptr && CmpOpTy->isFloatingPointTy()) 727 // If operands of an fp-type was compared, this costs +1. 728 Cost++; 729 return Cost; 730 } 731 } 732 else if (ST->hasVector()) { 733 auto *SrcVecTy = cast<FixedVectorType>(Src); 734 auto *DstVecTy = cast<FixedVectorType>(Dst); 735 unsigned VF = SrcVecTy->getNumElements(); 736 unsigned NumDstVectors = getNumVectorRegs(Dst); 737 unsigned NumSrcVectors = getNumVectorRegs(Src); 738 739 if (Opcode == Instruction::Trunc) { 740 if (Src->getScalarSizeInBits() == Dst->getScalarSizeInBits()) 741 return 0; // Check for NOOP conversions. 742 return getVectorTruncCost(Src, Dst); 743 } 744 745 if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 746 if (SrcScalarBits >= 8) { 747 // ZExt/SExt will be handled with one unpack per doubling of width. 748 unsigned NumUnpacks = getElSizeLog2Diff(Src, Dst); 749 750 // For types that spans multiple vector registers, some additional 751 // instructions are used to setup the unpacking. 752 unsigned NumSrcVectorOps = 753 (NumUnpacks > 1 ? (NumDstVectors - NumSrcVectors) 754 : (NumDstVectors / 2)); 755 756 return (NumUnpacks * NumDstVectors) + NumSrcVectorOps; 757 } 758 else if (SrcScalarBits == 1) 759 return getBoolVecToIntConversionCost(Opcode, Dst, I); 760 } 761 762 if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP || 763 Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI) { 764 // TODO: Fix base implementation which could simplify things a bit here 765 // (seems to miss on differentiating on scalar/vector types). 766 767 // Only 64 bit vector conversions are natively supported before z15. 768 if (DstScalarBits == 64 || ST->hasVectorEnhancements2()) { 769 if (SrcScalarBits == DstScalarBits) 770 return NumDstVectors; 771 772 if (SrcScalarBits == 1) 773 return getBoolVecToIntConversionCost(Opcode, Dst, I) + NumDstVectors; 774 } 775 776 // Return the cost of multiple scalar invocation plus the cost of 777 // inserting and extracting the values. Base implementation does not 778 // realize float->int gets scalarized. 779 unsigned ScalarCost = getCastInstrCost(Opcode, Dst->getScalarType(), 780 Src->getScalarType(), CostKind); 781 unsigned TotCost = VF * ScalarCost; 782 bool NeedsInserts = true, NeedsExtracts = true; 783 // FP128 registers do not get inserted or extracted. 784 if (DstScalarBits == 128 && 785 (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP)) 786 NeedsInserts = false; 787 if (SrcScalarBits == 128 && 788 (Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI)) 789 NeedsExtracts = false; 790 791 TotCost += getScalarizationOverhead(SrcVecTy, false, NeedsExtracts); 792 TotCost += getScalarizationOverhead(DstVecTy, NeedsInserts, false); 793 794 // FIXME: VF 2 for float<->i32 is currently just as expensive as for VF 4. 795 if (VF == 2 && SrcScalarBits == 32 && DstScalarBits == 32) 796 TotCost *= 2; 797 798 return TotCost; 799 } 800 801 if (Opcode == Instruction::FPTrunc) { 802 if (SrcScalarBits == 128) // fp128 -> double/float + inserts of elements. 803 return VF /*ldxbr/lexbr*/ + 804 getScalarizationOverhead(DstVecTy, true, false); 805 else // double -> float 806 return VF / 2 /*vledb*/ + std::max(1U, VF / 4 /*vperm*/); 807 } 808 809 if (Opcode == Instruction::FPExt) { 810 if (SrcScalarBits == 32 && DstScalarBits == 64) { 811 // float -> double is very rare and currently unoptimized. Instead of 812 // using vldeb, which can do two at a time, all conversions are 813 // scalarized. 814 return VF * 2; 815 } 816 // -> fp128. VF * lxdb/lxeb + extraction of elements. 817 return VF + getScalarizationOverhead(SrcVecTy, false, true); 818 } 819 } 820 821 return BaseT::getCastInstrCost(Opcode, Dst, Src, CostKind, I); 822 } 823 824 // Scalar i8 / i16 operations will typically be made after first extending 825 // the operands to i32. 826 static unsigned getOperandsExtensionCost(const Instruction *I) { 827 unsigned ExtCost = 0; 828 for (Value *Op : I->operands()) 829 // A load of i8 or i16 sign/zero extends to i32. 830 if (!isa<LoadInst>(Op) && !isa<ConstantInt>(Op)) 831 ExtCost++; 832 833 return ExtCost; 834 } 835 836 int SystemZTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 837 Type *CondTy, 838 TTI::TargetCostKind CostKind, 839 const Instruction *I) { 840 if (CostKind != TTI::TCK_RecipThroughput) 841 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, CostKind); 842 843 if (!ValTy->isVectorTy()) { 844 switch (Opcode) { 845 case Instruction::ICmp: { 846 // A loaded value compared with 0 with multiple users becomes Load and 847 // Test. The load is then not foldable, so return 0 cost for the ICmp. 848 unsigned ScalarBits = ValTy->getScalarSizeInBits(); 849 if (I != nullptr && ScalarBits >= 32) 850 if (LoadInst *Ld = dyn_cast<LoadInst>(I->getOperand(0))) 851 if (const ConstantInt *C = dyn_cast<ConstantInt>(I->getOperand(1))) 852 if (!Ld->hasOneUse() && Ld->getParent() == I->getParent() && 853 C->getZExtValue() == 0) 854 return 0; 855 856 unsigned Cost = 1; 857 if (ValTy->isIntegerTy() && ValTy->getScalarSizeInBits() <= 16) 858 Cost += (I != nullptr ? getOperandsExtensionCost(I) : 2); 859 return Cost; 860 } 861 case Instruction::Select: 862 if (ValTy->isFloatingPointTy()) 863 return 4; // No load on condition for FP - costs a conditional jump. 864 return 1; // Load On Condition / Select Register. 865 } 866 } 867 else if (ST->hasVector()) { 868 unsigned VF = cast<FixedVectorType>(ValTy)->getNumElements(); 869 870 // Called with a compare instruction. 871 if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) { 872 unsigned PredicateExtraCost = 0; 873 if (I != nullptr) { 874 // Some predicates cost one or two extra instructions. 875 switch (cast<CmpInst>(I)->getPredicate()) { 876 case CmpInst::Predicate::ICMP_NE: 877 case CmpInst::Predicate::ICMP_UGE: 878 case CmpInst::Predicate::ICMP_ULE: 879 case CmpInst::Predicate::ICMP_SGE: 880 case CmpInst::Predicate::ICMP_SLE: 881 PredicateExtraCost = 1; 882 break; 883 case CmpInst::Predicate::FCMP_ONE: 884 case CmpInst::Predicate::FCMP_ORD: 885 case CmpInst::Predicate::FCMP_UEQ: 886 case CmpInst::Predicate::FCMP_UNO: 887 PredicateExtraCost = 2; 888 break; 889 default: 890 break; 891 } 892 } 893 894 // Float is handled with 2*vmr[lh]f + 2*vldeb + vfchdb for each pair of 895 // floats. FIXME: <2 x float> generates same code as <4 x float>. 896 unsigned CmpCostPerVector = (ValTy->getScalarType()->isFloatTy() ? 10 : 1); 897 unsigned NumVecs_cmp = getNumVectorRegs(ValTy); 898 899 unsigned Cost = (NumVecs_cmp * (CmpCostPerVector + PredicateExtraCost)); 900 return Cost; 901 } 902 else { // Called with a select instruction. 903 assert (Opcode == Instruction::Select); 904 905 // We can figure out the extra cost of packing / unpacking if the 906 // instruction was passed and the compare instruction is found. 907 unsigned PackCost = 0; 908 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr); 909 if (CmpOpTy != nullptr) 910 PackCost = 911 getVectorBitmaskConversionCost(CmpOpTy, ValTy); 912 913 return getNumVectorRegs(ValTy) /*vsel*/ + PackCost; 914 } 915 } 916 917 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, CostKind); 918 } 919 920 int SystemZTTIImpl:: 921 getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) { 922 // vlvgp will insert two grs into a vector register, so only count half the 923 // number of instructions. 924 if (Opcode == Instruction::InsertElement && Val->isIntOrIntVectorTy(64)) 925 return ((Index % 2 == 0) ? 1 : 0); 926 927 if (Opcode == Instruction::ExtractElement) { 928 int Cost = ((getScalarSizeInBits(Val) == 1) ? 2 /*+test-under-mask*/ : 1); 929 930 // Give a slight penalty for moving out of vector pipeline to FXU unit. 931 if (Index == 0 && Val->isIntOrIntVectorTy()) 932 Cost += 1; 933 934 return Cost; 935 } 936 937 return BaseT::getVectorInstrCost(Opcode, Val, Index); 938 } 939 940 // Check if a load may be folded as a memory operand in its user. 941 bool SystemZTTIImpl:: 942 isFoldableLoad(const LoadInst *Ld, const Instruction *&FoldedValue) { 943 if (!Ld->hasOneUse()) 944 return false; 945 FoldedValue = Ld; 946 const Instruction *UserI = cast<Instruction>(*Ld->user_begin()); 947 unsigned LoadedBits = getScalarSizeInBits(Ld->getType()); 948 unsigned TruncBits = 0; 949 unsigned SExtBits = 0; 950 unsigned ZExtBits = 0; 951 if (UserI->hasOneUse()) { 952 unsigned UserBits = UserI->getType()->getScalarSizeInBits(); 953 if (isa<TruncInst>(UserI)) 954 TruncBits = UserBits; 955 else if (isa<SExtInst>(UserI)) 956 SExtBits = UserBits; 957 else if (isa<ZExtInst>(UserI)) 958 ZExtBits = UserBits; 959 } 960 if (TruncBits || SExtBits || ZExtBits) { 961 FoldedValue = UserI; 962 UserI = cast<Instruction>(*UserI->user_begin()); 963 // Load (single use) -> trunc/extend (single use) -> UserI 964 } 965 if ((UserI->getOpcode() == Instruction::Sub || 966 UserI->getOpcode() == Instruction::SDiv || 967 UserI->getOpcode() == Instruction::UDiv) && 968 UserI->getOperand(1) != FoldedValue) 969 return false; // Not commutative, only RHS foldable. 970 // LoadOrTruncBits holds the number of effectively loaded bits, but 0 if an 971 // extension was made of the load. 972 unsigned LoadOrTruncBits = 973 ((SExtBits || ZExtBits) ? 0 : (TruncBits ? TruncBits : LoadedBits)); 974 switch (UserI->getOpcode()) { 975 case Instruction::Add: // SE: 16->32, 16/32->64, z14:16->64. ZE: 32->64 976 case Instruction::Sub: 977 case Instruction::ICmp: 978 if (LoadedBits == 32 && ZExtBits == 64) 979 return true; 980 LLVM_FALLTHROUGH; 981 case Instruction::Mul: // SE: 16->32, 32->64, z14:16->64 982 if (UserI->getOpcode() != Instruction::ICmp) { 983 if (LoadedBits == 16 && 984 (SExtBits == 32 || 985 (SExtBits == 64 && ST->hasMiscellaneousExtensions2()))) 986 return true; 987 if (LoadOrTruncBits == 16) 988 return true; 989 } 990 LLVM_FALLTHROUGH; 991 case Instruction::SDiv:// SE: 32->64 992 if (LoadedBits == 32 && SExtBits == 64) 993 return true; 994 LLVM_FALLTHROUGH; 995 case Instruction::UDiv: 996 case Instruction::And: 997 case Instruction::Or: 998 case Instruction::Xor: 999 // This also makes sense for float operations, but disabled for now due 1000 // to regressions. 1001 // case Instruction::FCmp: 1002 // case Instruction::FAdd: 1003 // case Instruction::FSub: 1004 // case Instruction::FMul: 1005 // case Instruction::FDiv: 1006 1007 // All possible extensions of memory checked above. 1008 1009 // Comparison between memory and immediate. 1010 if (UserI->getOpcode() == Instruction::ICmp) 1011 if (ConstantInt *CI = dyn_cast<ConstantInt>(UserI->getOperand(1))) 1012 if (isUInt<16>(CI->getZExtValue())) 1013 return true; 1014 return (LoadOrTruncBits == 32 || LoadOrTruncBits == 64); 1015 break; 1016 } 1017 return false; 1018 } 1019 1020 static bool isBswapIntrinsicCall(const Value *V) { 1021 if (const Instruction *I = dyn_cast<Instruction>(V)) 1022 if (auto *CI = dyn_cast<CallInst>(I)) 1023 if (auto *F = CI->getCalledFunction()) 1024 if (F->getIntrinsicID() == Intrinsic::bswap) 1025 return true; 1026 return false; 1027 } 1028 1029 int SystemZTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, 1030 MaybeAlign Alignment, unsigned AddressSpace, 1031 TTI::TargetCostKind CostKind, 1032 const Instruction *I) { 1033 assert(!Src->isVoidTy() && "Invalid type"); 1034 1035 // TODO: Handle other cost kinds. 1036 if (CostKind != TTI::TCK_RecipThroughput) 1037 return 1; 1038 1039 if (!Src->isVectorTy() && Opcode == Instruction::Load && I != nullptr) { 1040 // Store the load or its truncated or extended value in FoldedValue. 1041 const Instruction *FoldedValue = nullptr; 1042 if (isFoldableLoad(cast<LoadInst>(I), FoldedValue)) { 1043 const Instruction *UserI = cast<Instruction>(*FoldedValue->user_begin()); 1044 assert (UserI->getNumOperands() == 2 && "Expected a binop."); 1045 1046 // UserI can't fold two loads, so in that case return 0 cost only 1047 // half of the time. 1048 for (unsigned i = 0; i < 2; ++i) { 1049 if (UserI->getOperand(i) == FoldedValue) 1050 continue; 1051 1052 if (Instruction *OtherOp = dyn_cast<Instruction>(UserI->getOperand(i))){ 1053 LoadInst *OtherLoad = dyn_cast<LoadInst>(OtherOp); 1054 if (!OtherLoad && 1055 (isa<TruncInst>(OtherOp) || isa<SExtInst>(OtherOp) || 1056 isa<ZExtInst>(OtherOp))) 1057 OtherLoad = dyn_cast<LoadInst>(OtherOp->getOperand(0)); 1058 if (OtherLoad && isFoldableLoad(OtherLoad, FoldedValue/*dummy*/)) 1059 return i == 0; // Both operands foldable. 1060 } 1061 } 1062 1063 return 0; // Only I is foldable in user. 1064 } 1065 } 1066 1067 unsigned NumOps = 1068 (Src->isVectorTy() ? getNumVectorRegs(Src) : getNumberOfParts(Src)); 1069 1070 // Store/Load reversed saves one instruction. 1071 if (((!Src->isVectorTy() && NumOps == 1) || ST->hasVectorEnhancements2()) && 1072 I != nullptr) { 1073 if (Opcode == Instruction::Load && I->hasOneUse()) { 1074 const Instruction *LdUser = cast<Instruction>(*I->user_begin()); 1075 // In case of load -> bswap -> store, return normal cost for the load. 1076 if (isBswapIntrinsicCall(LdUser) && 1077 (!LdUser->hasOneUse() || !isa<StoreInst>(*LdUser->user_begin()))) 1078 return 0; 1079 } 1080 else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) { 1081 const Value *StoredVal = SI->getValueOperand(); 1082 if (StoredVal->hasOneUse() && isBswapIntrinsicCall(StoredVal)) 1083 return 0; 1084 } 1085 } 1086 1087 if (Src->getScalarSizeInBits() == 128) 1088 // 128 bit scalars are held in a pair of two 64 bit registers. 1089 NumOps *= 2; 1090 1091 return NumOps; 1092 } 1093 1094 // The generic implementation of getInterleavedMemoryOpCost() is based on 1095 // adding costs of the memory operations plus all the extracts and inserts 1096 // needed for using / defining the vector operands. The SystemZ version does 1097 // roughly the same but bases the computations on vector permutations 1098 // instead. 1099 int SystemZTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, 1100 unsigned Factor, 1101 ArrayRef<unsigned> Indices, 1102 unsigned Alignment, 1103 unsigned AddressSpace, 1104 TTI::TargetCostKind CostKind, 1105 bool UseMaskForCond, 1106 bool UseMaskForGaps) { 1107 if (UseMaskForCond || UseMaskForGaps) 1108 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 1109 Alignment, AddressSpace, CostKind, 1110 UseMaskForCond, UseMaskForGaps); 1111 assert(isa<VectorType>(VecTy) && 1112 "Expect a vector type for interleaved memory op"); 1113 1114 // Return the ceiling of dividing A by B. 1115 auto ceil = [](unsigned A, unsigned B) { return (A + B - 1) / B; }; 1116 1117 unsigned NumElts = cast<FixedVectorType>(VecTy)->getNumElements(); 1118 assert(Factor > 1 && NumElts % Factor == 0 && "Invalid interleave factor"); 1119 unsigned VF = NumElts / Factor; 1120 unsigned NumEltsPerVecReg = (128U / getScalarSizeInBits(VecTy)); 1121 unsigned NumVectorMemOps = getNumVectorRegs(VecTy); 1122 unsigned NumPermutes = 0; 1123 1124 if (Opcode == Instruction::Load) { 1125 // Loading interleave groups may have gaps, which may mean fewer 1126 // loads. Find out how many vectors will be loaded in total, and in how 1127 // many of them each value will be in. 1128 BitVector UsedInsts(NumVectorMemOps, false); 1129 std::vector<BitVector> ValueVecs(Factor, BitVector(NumVectorMemOps, false)); 1130 for (unsigned Index : Indices) 1131 for (unsigned Elt = 0; Elt < VF; ++Elt) { 1132 unsigned Vec = (Index + Elt * Factor) / NumEltsPerVecReg; 1133 UsedInsts.set(Vec); 1134 ValueVecs[Index].set(Vec); 1135 } 1136 NumVectorMemOps = UsedInsts.count(); 1137 1138 for (unsigned Index : Indices) { 1139 // Estimate that each loaded source vector containing this Index 1140 // requires one operation, except that vperm can handle two input 1141 // registers first time for each dst vector. 1142 unsigned NumSrcVecs = ValueVecs[Index].count(); 1143 unsigned NumDstVecs = ceil(VF * getScalarSizeInBits(VecTy), 128U); 1144 assert (NumSrcVecs >= NumDstVecs && "Expected at least as many sources"); 1145 NumPermutes += std::max(1U, NumSrcVecs - NumDstVecs); 1146 } 1147 } else { 1148 // Estimate the permutes for each stored vector as the smaller of the 1149 // number of elements and the number of source vectors. Subtract one per 1150 // dst vector for vperm (S.A.). 1151 unsigned NumSrcVecs = std::min(NumEltsPerVecReg, Factor); 1152 unsigned NumDstVecs = NumVectorMemOps; 1153 assert (NumSrcVecs > 1 && "Expected at least two source vectors."); 1154 NumPermutes += (NumDstVecs * NumSrcVecs) - NumDstVecs; 1155 } 1156 1157 // Cost of load/store operations and the permutations needed. 1158 return NumVectorMemOps + NumPermutes; 1159 } 1160 1161 static int getVectorIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy) { 1162 if (RetTy->isVectorTy() && ID == Intrinsic::bswap) 1163 return getNumVectorRegs(RetTy); // VPERM 1164 return -1; 1165 } 1166 1167 int SystemZTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, 1168 TTI::TargetCostKind CostKind) { 1169 int Cost = getVectorIntrinsicInstrCost(ICA.getID(), ICA.getReturnType()); 1170 if (Cost != -1) 1171 return Cost; 1172 return BaseT::getIntrinsicInstrCost(ICA, CostKind); 1173 } 1174