1 //===-- SystemZTargetTransformInfo.cpp - SystemZ-specific TTI -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a TargetTransformInfo analysis pass specific to the
10 // SystemZ target machine. It uses the target's detailed information to provide
11 // more precise answers to certain TTI queries, while letting the target
12 // independent and default TTI implementations handle the rest.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "SystemZTargetTransformInfo.h"
17 #include "llvm/Analysis/TargetTransformInfo.h"
18 #include "llvm/CodeGen/BasicTTIImpl.h"
19 #include "llvm/CodeGen/CostTable.h"
20 #include "llvm/CodeGen/TargetLowering.h"
21 #include "llvm/IR/IntrinsicInst.h"
22 #include "llvm/Support/Debug.h"
23 using namespace llvm;
24 
25 #define DEBUG_TYPE "systemztti"
26 
27 //===----------------------------------------------------------------------===//
28 //
29 // SystemZ cost model.
30 //
31 //===----------------------------------------------------------------------===//
32 
33 InstructionCost SystemZTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
34                                               TTI::TargetCostKind CostKind) {
35   assert(Ty->isIntegerTy());
36 
37   unsigned BitSize = Ty->getPrimitiveSizeInBits();
38   // There is no cost model for constants with a bit size of 0. Return TCC_Free
39   // here, so that constant hoisting will ignore this constant.
40   if (BitSize == 0)
41     return TTI::TCC_Free;
42   // No cost model for operations on integers larger than 64 bit implemented yet.
43   if (BitSize > 64)
44     return TTI::TCC_Free;
45 
46   if (Imm == 0)
47     return TTI::TCC_Free;
48 
49   if (Imm.getBitWidth() <= 64) {
50     // Constants loaded via lgfi.
51     if (isInt<32>(Imm.getSExtValue()))
52       return TTI::TCC_Basic;
53     // Constants loaded via llilf.
54     if (isUInt<32>(Imm.getZExtValue()))
55       return TTI::TCC_Basic;
56     // Constants loaded via llihf:
57     if ((Imm.getZExtValue() & 0xffffffff) == 0)
58       return TTI::TCC_Basic;
59 
60     return 2 * TTI::TCC_Basic;
61   }
62 
63   return 4 * TTI::TCC_Basic;
64 }
65 
66 InstructionCost SystemZTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
67                                                   const APInt &Imm, Type *Ty,
68                                                   TTI::TargetCostKind CostKind,
69                                                   Instruction *Inst) {
70   assert(Ty->isIntegerTy());
71 
72   unsigned BitSize = Ty->getPrimitiveSizeInBits();
73   // There is no cost model for constants with a bit size of 0. Return TCC_Free
74   // here, so that constant hoisting will ignore this constant.
75   if (BitSize == 0)
76     return TTI::TCC_Free;
77   // No cost model for operations on integers larger than 64 bit implemented yet.
78   if (BitSize > 64)
79     return TTI::TCC_Free;
80 
81   switch (Opcode) {
82   default:
83     return TTI::TCC_Free;
84   case Instruction::GetElementPtr:
85     // Always hoist the base address of a GetElementPtr. This prevents the
86     // creation of new constants for every base constant that gets constant
87     // folded with the offset.
88     if (Idx == 0)
89       return 2 * TTI::TCC_Basic;
90     return TTI::TCC_Free;
91   case Instruction::Store:
92     if (Idx == 0 && Imm.getBitWidth() <= 64) {
93       // Any 8-bit immediate store can by implemented via mvi.
94       if (BitSize == 8)
95         return TTI::TCC_Free;
96       // 16-bit immediate values can be stored via mvhhi/mvhi/mvghi.
97       if (isInt<16>(Imm.getSExtValue()))
98         return TTI::TCC_Free;
99     }
100     break;
101   case Instruction::ICmp:
102     if (Idx == 1 && Imm.getBitWidth() <= 64) {
103       // Comparisons against signed 32-bit immediates implemented via cgfi.
104       if (isInt<32>(Imm.getSExtValue()))
105         return TTI::TCC_Free;
106       // Comparisons against unsigned 32-bit immediates implemented via clgfi.
107       if (isUInt<32>(Imm.getZExtValue()))
108         return TTI::TCC_Free;
109     }
110     break;
111   case Instruction::Add:
112   case Instruction::Sub:
113     if (Idx == 1 && Imm.getBitWidth() <= 64) {
114       // We use algfi/slgfi to add/subtract 32-bit unsigned immediates.
115       if (isUInt<32>(Imm.getZExtValue()))
116         return TTI::TCC_Free;
117       // Or their negation, by swapping addition vs. subtraction.
118       if (isUInt<32>(-Imm.getSExtValue()))
119         return TTI::TCC_Free;
120     }
121     break;
122   case Instruction::Mul:
123     if (Idx == 1 && Imm.getBitWidth() <= 64) {
124       // We use msgfi to multiply by 32-bit signed immediates.
125       if (isInt<32>(Imm.getSExtValue()))
126         return TTI::TCC_Free;
127     }
128     break;
129   case Instruction::Or:
130   case Instruction::Xor:
131     if (Idx == 1 && Imm.getBitWidth() <= 64) {
132       // Masks supported by oilf/xilf.
133       if (isUInt<32>(Imm.getZExtValue()))
134         return TTI::TCC_Free;
135       // Masks supported by oihf/xihf.
136       if ((Imm.getZExtValue() & 0xffffffff) == 0)
137         return TTI::TCC_Free;
138     }
139     break;
140   case Instruction::And:
141     if (Idx == 1 && Imm.getBitWidth() <= 64) {
142       // Any 32-bit AND operation can by implemented via nilf.
143       if (BitSize <= 32)
144         return TTI::TCC_Free;
145       // 64-bit masks supported by nilf.
146       if (isUInt<32>(~Imm.getZExtValue()))
147         return TTI::TCC_Free;
148       // 64-bit masks supported by nilh.
149       if ((Imm.getZExtValue() & 0xffffffff) == 0xffffffff)
150         return TTI::TCC_Free;
151       // Some 64-bit AND operations can be implemented via risbg.
152       const SystemZInstrInfo *TII = ST->getInstrInfo();
153       unsigned Start, End;
154       if (TII->isRxSBGMask(Imm.getZExtValue(), BitSize, Start, End))
155         return TTI::TCC_Free;
156     }
157     break;
158   case Instruction::Shl:
159   case Instruction::LShr:
160   case Instruction::AShr:
161     // Always return TCC_Free for the shift value of a shift instruction.
162     if (Idx == 1)
163       return TTI::TCC_Free;
164     break;
165   case Instruction::UDiv:
166   case Instruction::SDiv:
167   case Instruction::URem:
168   case Instruction::SRem:
169   case Instruction::Trunc:
170   case Instruction::ZExt:
171   case Instruction::SExt:
172   case Instruction::IntToPtr:
173   case Instruction::PtrToInt:
174   case Instruction::BitCast:
175   case Instruction::PHI:
176   case Instruction::Call:
177   case Instruction::Select:
178   case Instruction::Ret:
179   case Instruction::Load:
180     break;
181   }
182 
183   return SystemZTTIImpl::getIntImmCost(Imm, Ty, CostKind);
184 }
185 
186 InstructionCost
187 SystemZTTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
188                                     const APInt &Imm, Type *Ty,
189                                     TTI::TargetCostKind CostKind) {
190   assert(Ty->isIntegerTy());
191 
192   unsigned BitSize = Ty->getPrimitiveSizeInBits();
193   // There is no cost model for constants with a bit size of 0. Return TCC_Free
194   // here, so that constant hoisting will ignore this constant.
195   if (BitSize == 0)
196     return TTI::TCC_Free;
197   // No cost model for operations on integers larger than 64 bit implemented yet.
198   if (BitSize > 64)
199     return TTI::TCC_Free;
200 
201   switch (IID) {
202   default:
203     return TTI::TCC_Free;
204   case Intrinsic::sadd_with_overflow:
205   case Intrinsic::uadd_with_overflow:
206   case Intrinsic::ssub_with_overflow:
207   case Intrinsic::usub_with_overflow:
208     // These get expanded to include a normal addition/subtraction.
209     if (Idx == 1 && Imm.getBitWidth() <= 64) {
210       if (isUInt<32>(Imm.getZExtValue()))
211         return TTI::TCC_Free;
212       if (isUInt<32>(-Imm.getSExtValue()))
213         return TTI::TCC_Free;
214     }
215     break;
216   case Intrinsic::smul_with_overflow:
217   case Intrinsic::umul_with_overflow:
218     // These get expanded to include a normal multiplication.
219     if (Idx == 1 && Imm.getBitWidth() <= 64) {
220       if (isInt<32>(Imm.getSExtValue()))
221         return TTI::TCC_Free;
222     }
223     break;
224   case Intrinsic::experimental_stackmap:
225     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
226       return TTI::TCC_Free;
227     break;
228   case Intrinsic::experimental_patchpoint_void:
229   case Intrinsic::experimental_patchpoint_i64:
230     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
231       return TTI::TCC_Free;
232     break;
233   }
234   return SystemZTTIImpl::getIntImmCost(Imm, Ty, CostKind);
235 }
236 
237 TargetTransformInfo::PopcntSupportKind
238 SystemZTTIImpl::getPopcntSupport(unsigned TyWidth) {
239   assert(isPowerOf2_32(TyWidth) && "Type width must be power of 2");
240   if (ST->hasPopulationCount() && TyWidth <= 64)
241     return TTI::PSK_FastHardware;
242   return TTI::PSK_Software;
243 }
244 
245 void SystemZTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
246                                              TTI::UnrollingPreferences &UP,
247                                              OptimizationRemarkEmitter *ORE) {
248   // Find out if L contains a call, what the machine instruction count
249   // estimate is, and how many stores there are.
250   bool HasCall = false;
251   InstructionCost NumStores = 0;
252   for (auto &BB : L->blocks())
253     for (auto &I : *BB) {
254       if (isa<CallInst>(&I) || isa<InvokeInst>(&I)) {
255         if (const Function *F = cast<CallBase>(I).getCalledFunction()) {
256           if (isLoweredToCall(F))
257             HasCall = true;
258           if (F->getIntrinsicID() == Intrinsic::memcpy ||
259               F->getIntrinsicID() == Intrinsic::memset)
260             NumStores++;
261         } else { // indirect call.
262           HasCall = true;
263         }
264       }
265       if (isa<StoreInst>(&I)) {
266         Type *MemAccessTy = I.getOperand(0)->getType();
267         NumStores += getMemoryOpCost(Instruction::Store, MemAccessTy, None, 0,
268                                      TTI::TCK_RecipThroughput);
269       }
270     }
271 
272   // The z13 processor will run out of store tags if too many stores
273   // are fed into it too quickly. Therefore make sure there are not
274   // too many stores in the resulting unrolled loop.
275   unsigned const NumStoresVal = *NumStores.getValue();
276   unsigned const Max = (NumStoresVal ? (12 / NumStoresVal) : UINT_MAX);
277 
278   if (HasCall) {
279     // Only allow full unrolling if loop has any calls.
280     UP.FullUnrollMaxCount = Max;
281     UP.MaxCount = 1;
282     return;
283   }
284 
285   UP.MaxCount = Max;
286   if (UP.MaxCount <= 1)
287     return;
288 
289   // Allow partial and runtime trip count unrolling.
290   UP.Partial = UP.Runtime = true;
291 
292   UP.PartialThreshold = 75;
293   UP.DefaultUnrollRuntimeCount = 4;
294 
295   // Allow expensive instructions in the pre-header of the loop.
296   UP.AllowExpensiveTripCount = true;
297 
298   UP.Force = true;
299 }
300 
301 void SystemZTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
302                                            TTI::PeelingPreferences &PP) {
303   BaseT::getPeelingPreferences(L, SE, PP);
304 }
305 
306 bool SystemZTTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1,
307                                    TargetTransformInfo::LSRCost &C2) {
308   // SystemZ specific: check instruction count (first), and don't care about
309   // ImmCost, since offsets are checked explicitly.
310   return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost,
311                   C1.NumIVMuls, C1.NumBaseAdds,
312                   C1.ScaleCost, C1.SetupCost) <
313     std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost,
314              C2.NumIVMuls, C2.NumBaseAdds,
315              C2.ScaleCost, C2.SetupCost);
316 }
317 
318 unsigned SystemZTTIImpl::getNumberOfRegisters(unsigned ClassID) const {
319   bool Vector = (ClassID == 1);
320   if (!Vector)
321     // Discount the stack pointer.  Also leave out %r0, since it can't
322     // be used in an address.
323     return 14;
324   if (ST->hasVector())
325     return 32;
326   return 0;
327 }
328 
329 TypeSize
330 SystemZTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
331   switch (K) {
332   case TargetTransformInfo::RGK_Scalar:
333     return TypeSize::getFixed(64);
334   case TargetTransformInfo::RGK_FixedWidthVector:
335     return TypeSize::getFixed(ST->hasVector() ? 128 : 0);
336   case TargetTransformInfo::RGK_ScalableVector:
337     return TypeSize::getScalable(0);
338   }
339 
340   llvm_unreachable("Unsupported register kind");
341 }
342 
343 unsigned SystemZTTIImpl::getMinPrefetchStride(unsigned NumMemAccesses,
344                                               unsigned NumStridedMemAccesses,
345                                               unsigned NumPrefetches,
346                                               bool HasCall) const {
347   // Don't prefetch a loop with many far apart accesses.
348   if (NumPrefetches > 16)
349     return UINT_MAX;
350 
351   // Emit prefetch instructions for smaller strides in cases where we think
352   // the hardware prefetcher might not be able to keep up.
353   if (NumStridedMemAccesses > 32 && !HasCall &&
354       (NumMemAccesses - NumStridedMemAccesses) * 32 <= NumStridedMemAccesses)
355     return 1;
356 
357   return ST->hasMiscellaneousExtensions3() ? 8192 : 2048;
358 }
359 
360 bool SystemZTTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) {
361   EVT VT = TLI->getValueType(DL, DataType);
362   return (VT.isScalarInteger() && TLI->isTypeLegal(VT));
363 }
364 
365 // Return the bit size for the scalar type or vector element
366 // type. getScalarSizeInBits() returns 0 for a pointer type.
367 static unsigned getScalarSizeInBits(Type *Ty) {
368   unsigned Size =
369     (Ty->isPtrOrPtrVectorTy() ? 64U : Ty->getScalarSizeInBits());
370   assert(Size > 0 && "Element must have non-zero size.");
371   return Size;
372 }
373 
374 // getNumberOfParts() calls getTypeLegalizationCost() which splits the vector
375 // type until it is legal. This would e.g. return 4 for <6 x i64>, instead of
376 // 3.
377 static unsigned getNumVectorRegs(Type *Ty) {
378   auto *VTy = cast<FixedVectorType>(Ty);
379   unsigned WideBits = getScalarSizeInBits(Ty) * VTy->getNumElements();
380   assert(WideBits > 0 && "Could not compute size of vector");
381   return ((WideBits % 128U) ? ((WideBits / 128U) + 1) : (WideBits / 128U));
382 }
383 
384 InstructionCost SystemZTTIImpl::getArithmeticInstrCost(
385     unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
386     TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info,
387     TTI::OperandValueProperties Opd1PropInfo,
388     TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
389     const Instruction *CxtI) {
390 
391   // TODO: Handle more cost kinds.
392   if (CostKind != TTI::TCK_RecipThroughput)
393     return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
394                                          Op2Info, Opd1PropInfo,
395                                          Opd2PropInfo, Args, CxtI);
396 
397   // TODO: return a good value for BB-VECTORIZER that includes the
398   // immediate loads, which we do not want to count for the loop
399   // vectorizer, since they are hopefully hoisted out of the loop. This
400   // would require a new parameter 'InLoop', but not sure if constant
401   // args are common enough to motivate this.
402 
403   unsigned ScalarBits = Ty->getScalarSizeInBits();
404 
405   // There are thre cases of division and remainder: Dividing with a register
406   // needs a divide instruction. A divisor which is a power of two constant
407   // can be implemented with a sequence of shifts. Any other constant needs a
408   // multiply and shifts.
409   const unsigned DivInstrCost = 20;
410   const unsigned DivMulSeqCost = 10;
411   const unsigned SDivPow2Cost = 4;
412 
413   bool SignedDivRem =
414       Opcode == Instruction::SDiv || Opcode == Instruction::SRem;
415   bool UnsignedDivRem =
416       Opcode == Instruction::UDiv || Opcode == Instruction::URem;
417 
418   // Check for a constant divisor.
419   bool DivRemConst = false;
420   bool DivRemConstPow2 = false;
421   if ((SignedDivRem || UnsignedDivRem) && Args.size() == 2) {
422     if (const Constant *C = dyn_cast<Constant>(Args[1])) {
423       const ConstantInt *CVal =
424           (C->getType()->isVectorTy()
425                ? dyn_cast_or_null<const ConstantInt>(C->getSplatValue())
426                : dyn_cast<const ConstantInt>(C));
427       if (CVal && (CVal->getValue().isPowerOf2() ||
428                    CVal->getValue().isNegatedPowerOf2()))
429         DivRemConstPow2 = true;
430       else
431         DivRemConst = true;
432     }
433   }
434 
435   if (!Ty->isVectorTy()) {
436     // These FP operations are supported with a dedicated instruction for
437     // float, double and fp128 (base implementation assumes float generally
438     // costs 2).
439     if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub ||
440         Opcode == Instruction::FMul || Opcode == Instruction::FDiv)
441       return 1;
442 
443     // There is no native support for FRem.
444     if (Opcode == Instruction::FRem)
445       return LIBCALL_COST;
446 
447     // Give discount for some combined logical operations if supported.
448     if (Args.size() == 2 && ST->hasMiscellaneousExtensions3()) {
449       if (Opcode == Instruction::Xor) {
450         for (const Value *A : Args) {
451           if (const Instruction *I = dyn_cast<Instruction>(A))
452             if (I->hasOneUse() &&
453                 (I->getOpcode() == Instruction::And ||
454                  I->getOpcode() == Instruction::Or ||
455                  I->getOpcode() == Instruction::Xor))
456               return 0;
457         }
458       }
459       else if (Opcode == Instruction::Or || Opcode == Instruction::And) {
460         for (const Value *A : Args) {
461           if (const Instruction *I = dyn_cast<Instruction>(A))
462             if (I->hasOneUse() && I->getOpcode() == Instruction::Xor)
463               return 0;
464         }
465       }
466     }
467 
468     // Or requires one instruction, although it has custom handling for i64.
469     if (Opcode == Instruction::Or)
470       return 1;
471 
472     if (Opcode == Instruction::Xor && ScalarBits == 1) {
473       if (ST->hasLoadStoreOnCond2())
474         return 5; // 2 * (li 0; loc 1); xor
475       return 7; // 2 * ipm sequences ; xor ; shift ; compare
476     }
477 
478     if (DivRemConstPow2)
479       return (SignedDivRem ? SDivPow2Cost : 1);
480     if (DivRemConst)
481       return DivMulSeqCost;
482     if (SignedDivRem || UnsignedDivRem)
483       return DivInstrCost;
484   }
485   else if (ST->hasVector()) {
486     auto *VTy = cast<FixedVectorType>(Ty);
487     unsigned VF = VTy->getNumElements();
488     unsigned NumVectors = getNumVectorRegs(Ty);
489 
490     // These vector operations are custom handled, but are still supported
491     // with one instruction per vector, regardless of element size.
492     if (Opcode == Instruction::Shl || Opcode == Instruction::LShr ||
493         Opcode == Instruction::AShr) {
494       return NumVectors;
495     }
496 
497     if (DivRemConstPow2)
498       return (NumVectors * (SignedDivRem ? SDivPow2Cost : 1));
499     if (DivRemConst) {
500       SmallVector<Type *> Tys(Args.size(), Ty);
501       return VF * DivMulSeqCost + getScalarizationOverhead(VTy, Args, Tys);
502     }
503     if ((SignedDivRem || UnsignedDivRem) && VF > 4)
504       // Temporary hack: disable high vectorization factors with integer
505       // division/remainder, which will get scalarized and handled with
506       // GR128 registers. The mischeduler is not clever enough to avoid
507       // spilling yet.
508       return 1000;
509 
510     // These FP operations are supported with a single vector instruction for
511     // double (base implementation assumes float generally costs 2). For
512     // FP128, the scalar cost is 1, and there is no overhead since the values
513     // are already in scalar registers.
514     if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub ||
515         Opcode == Instruction::FMul || Opcode == Instruction::FDiv) {
516       switch (ScalarBits) {
517       case 32: {
518         // The vector enhancements facility 1 provides v4f32 instructions.
519         if (ST->hasVectorEnhancements1())
520           return NumVectors;
521         // Return the cost of multiple scalar invocation plus the cost of
522         // inserting and extracting the values.
523         InstructionCost ScalarCost =
524             getArithmeticInstrCost(Opcode, Ty->getScalarType(), CostKind);
525         SmallVector<Type *> Tys(Args.size(), Ty);
526         InstructionCost Cost =
527             (VF * ScalarCost) + getScalarizationOverhead(VTy, Args, Tys);
528         // FIXME: VF 2 for these FP operations are currently just as
529         // expensive as for VF 4.
530         if (VF == 2)
531           Cost *= 2;
532         return Cost;
533       }
534       case 64:
535       case 128:
536         return NumVectors;
537       default:
538         break;
539       }
540     }
541 
542     // There is no native support for FRem.
543     if (Opcode == Instruction::FRem) {
544       SmallVector<Type *> Tys(Args.size(), Ty);
545       InstructionCost Cost =
546           (VF * LIBCALL_COST) + getScalarizationOverhead(VTy, Args, Tys);
547       // FIXME: VF 2 for float is currently just as expensive as for VF 4.
548       if (VF == 2 && ScalarBits == 32)
549         Cost *= 2;
550       return Cost;
551     }
552   }
553 
554   // Fallback to the default implementation.
555   return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info,
556                                        Opd1PropInfo, Opd2PropInfo, Args, CxtI);
557 }
558 
559 InstructionCost SystemZTTIImpl::getShuffleCost(TTI::ShuffleKind Kind,
560                                                VectorType *Tp,
561                                                ArrayRef<int> Mask, int Index,
562                                                VectorType *SubTp,
563                                                ArrayRef<Value *> Args) {
564   Kind = improveShuffleKindFromMask(Kind, Mask);
565   if (ST->hasVector()) {
566     unsigned NumVectors = getNumVectorRegs(Tp);
567 
568     // TODO: Since fp32 is expanded, the shuffle cost should always be 0.
569 
570     // FP128 values are always in scalar registers, so there is no work
571     // involved with a shuffle, except for broadcast. In that case register
572     // moves are done with a single instruction per element.
573     if (Tp->getScalarType()->isFP128Ty())
574       return (Kind == TargetTransformInfo::SK_Broadcast ? NumVectors - 1 : 0);
575 
576     switch (Kind) {
577     case  TargetTransformInfo::SK_ExtractSubvector:
578       // ExtractSubvector Index indicates start offset.
579 
580       // Extracting a subvector from first index is a noop.
581       return (Index == 0 ? 0 : NumVectors);
582 
583     case TargetTransformInfo::SK_Broadcast:
584       // Loop vectorizer calls here to figure out the extra cost of
585       // broadcasting a loaded value to all elements of a vector. Since vlrep
586       // loads and replicates with a single instruction, adjust the returned
587       // value.
588       return NumVectors - 1;
589 
590     default:
591 
592       // SystemZ supports single instruction permutation / replication.
593       return NumVectors;
594     }
595   }
596 
597   return BaseT::getShuffleCost(Kind, Tp, Mask, Index, SubTp);
598 }
599 
600 // Return the log2 difference of the element sizes of the two vector types.
601 static unsigned getElSizeLog2Diff(Type *Ty0, Type *Ty1) {
602   unsigned Bits0 = Ty0->getScalarSizeInBits();
603   unsigned Bits1 = Ty1->getScalarSizeInBits();
604 
605   if (Bits1 >  Bits0)
606     return (Log2_32(Bits1) - Log2_32(Bits0));
607 
608   return (Log2_32(Bits0) - Log2_32(Bits1));
609 }
610 
611 // Return the number of instructions needed to truncate SrcTy to DstTy.
612 unsigned SystemZTTIImpl::
613 getVectorTruncCost(Type *SrcTy, Type *DstTy) {
614   assert (SrcTy->isVectorTy() && DstTy->isVectorTy());
615   assert(SrcTy->getPrimitiveSizeInBits().getFixedSize() >
616              DstTy->getPrimitiveSizeInBits().getFixedSize() &&
617          "Packing must reduce size of vector type.");
618   assert(cast<FixedVectorType>(SrcTy)->getNumElements() ==
619              cast<FixedVectorType>(DstTy)->getNumElements() &&
620          "Packing should not change number of elements.");
621 
622   // TODO: Since fp32 is expanded, the extract cost should always be 0.
623 
624   unsigned NumParts = getNumVectorRegs(SrcTy);
625   if (NumParts <= 2)
626     // Up to 2 vector registers can be truncated efficiently with pack or
627     // permute. The latter requires an immediate mask to be loaded, which
628     // typically gets hoisted out of a loop.  TODO: return a good value for
629     // BB-VECTORIZER that includes the immediate loads, which we do not want
630     // to count for the loop vectorizer.
631     return 1;
632 
633   unsigned Cost = 0;
634   unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy);
635   unsigned VF = cast<FixedVectorType>(SrcTy)->getNumElements();
636   for (unsigned P = 0; P < Log2Diff; ++P) {
637     if (NumParts > 1)
638       NumParts /= 2;
639     Cost += NumParts;
640   }
641 
642   // Currently, a general mix of permutes and pack instructions is output by
643   // isel, which follow the cost computation above except for this case which
644   // is one instruction less:
645   if (VF == 8 && SrcTy->getScalarSizeInBits() == 64 &&
646       DstTy->getScalarSizeInBits() == 8)
647     Cost--;
648 
649   return Cost;
650 }
651 
652 // Return the cost of converting a vector bitmask produced by a compare
653 // (SrcTy), to the type of the select or extend instruction (DstTy).
654 unsigned SystemZTTIImpl::
655 getVectorBitmaskConversionCost(Type *SrcTy, Type *DstTy) {
656   assert (SrcTy->isVectorTy() && DstTy->isVectorTy() &&
657           "Should only be called with vector types.");
658 
659   unsigned PackCost = 0;
660   unsigned SrcScalarBits = SrcTy->getScalarSizeInBits();
661   unsigned DstScalarBits = DstTy->getScalarSizeInBits();
662   unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy);
663   if (SrcScalarBits > DstScalarBits)
664     // The bitmask will be truncated.
665     PackCost = getVectorTruncCost(SrcTy, DstTy);
666   else if (SrcScalarBits < DstScalarBits) {
667     unsigned DstNumParts = getNumVectorRegs(DstTy);
668     // Each vector select needs its part of the bitmask unpacked.
669     PackCost = Log2Diff * DstNumParts;
670     // Extra cost for moving part of mask before unpacking.
671     PackCost += DstNumParts - 1;
672   }
673 
674   return PackCost;
675 }
676 
677 // Return the type of the compared operands. This is needed to compute the
678 // cost for a Select / ZExt or SExt instruction.
679 static Type *getCmpOpsType(const Instruction *I, unsigned VF = 1) {
680   Type *OpTy = nullptr;
681   if (CmpInst *CI = dyn_cast<CmpInst>(I->getOperand(0)))
682     OpTy = CI->getOperand(0)->getType();
683   else if (Instruction *LogicI = dyn_cast<Instruction>(I->getOperand(0)))
684     if (LogicI->getNumOperands() == 2)
685       if (CmpInst *CI0 = dyn_cast<CmpInst>(LogicI->getOperand(0)))
686         if (isa<CmpInst>(LogicI->getOperand(1)))
687           OpTy = CI0->getOperand(0)->getType();
688 
689   if (OpTy != nullptr) {
690     if (VF == 1) {
691       assert (!OpTy->isVectorTy() && "Expected scalar type");
692       return OpTy;
693     }
694     // Return the potentially vectorized type based on 'I' and 'VF'.  'I' may
695     // be either scalar or already vectorized with a same or lesser VF.
696     Type *ElTy = OpTy->getScalarType();
697     return FixedVectorType::get(ElTy, VF);
698   }
699 
700   return nullptr;
701 }
702 
703 // Get the cost of converting a boolean vector to a vector with same width
704 // and element size as Dst, plus the cost of zero extending if needed.
705 unsigned SystemZTTIImpl::
706 getBoolVecToIntConversionCost(unsigned Opcode, Type *Dst,
707                               const Instruction *I) {
708   auto *DstVTy = cast<FixedVectorType>(Dst);
709   unsigned VF = DstVTy->getNumElements();
710   unsigned Cost = 0;
711   // If we know what the widths of the compared operands, get any cost of
712   // converting it to match Dst. Otherwise assume same widths.
713   Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr);
714   if (CmpOpTy != nullptr)
715     Cost = getVectorBitmaskConversionCost(CmpOpTy, Dst);
716   if (Opcode == Instruction::ZExt || Opcode == Instruction::UIToFP)
717     // One 'vn' per dst vector with an immediate mask.
718     Cost += getNumVectorRegs(Dst);
719   return Cost;
720 }
721 
722 InstructionCost SystemZTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
723                                                  Type *Src,
724                                                  TTI::CastContextHint CCH,
725                                                  TTI::TargetCostKind CostKind,
726                                                  const Instruction *I) {
727   // FIXME: Can the logic below also be used for these cost kinds?
728   if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency) {
729     auto BaseCost = BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
730     return BaseCost == 0 ? BaseCost : 1;
731   }
732 
733   unsigned DstScalarBits = Dst->getScalarSizeInBits();
734   unsigned SrcScalarBits = Src->getScalarSizeInBits();
735 
736   if (!Src->isVectorTy()) {
737     assert (!Dst->isVectorTy());
738 
739     if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP) {
740       if (SrcScalarBits >= 32 ||
741           (I != nullptr && isa<LoadInst>(I->getOperand(0))))
742         return 1;
743       return SrcScalarBits > 1 ? 2 /*i8/i16 extend*/ : 5 /*branch seq.*/;
744     }
745 
746     if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
747         Src->isIntegerTy(1)) {
748       if (ST->hasLoadStoreOnCond2())
749         return 2; // li 0; loc 1
750 
751       // This should be extension of a compare i1 result, which is done with
752       // ipm and a varying sequence of instructions.
753       unsigned Cost = 0;
754       if (Opcode == Instruction::SExt)
755         Cost = (DstScalarBits < 64 ? 3 : 4);
756       if (Opcode == Instruction::ZExt)
757         Cost = 3;
758       Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I) : nullptr);
759       if (CmpOpTy != nullptr && CmpOpTy->isFloatingPointTy())
760         // If operands of an fp-type was compared, this costs +1.
761         Cost++;
762       return Cost;
763     }
764   }
765   else if (ST->hasVector()) {
766     // Vector to scalar cast.
767     auto *SrcVecTy = cast<FixedVectorType>(Src);
768     auto *DstVecTy = dyn_cast<FixedVectorType>(Dst);
769     if (!DstVecTy) {
770       // TODO: tune vector-to-scalar cast.
771       return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
772     }
773     unsigned VF = SrcVecTy->getNumElements();
774     unsigned NumDstVectors = getNumVectorRegs(Dst);
775     unsigned NumSrcVectors = getNumVectorRegs(Src);
776 
777     if (Opcode == Instruction::Trunc) {
778       if (Src->getScalarSizeInBits() == Dst->getScalarSizeInBits())
779         return 0; // Check for NOOP conversions.
780       return getVectorTruncCost(Src, Dst);
781     }
782 
783     if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
784       if (SrcScalarBits >= 8) {
785         // ZExt/SExt will be handled with one unpack per doubling of width.
786         unsigned NumUnpacks = getElSizeLog2Diff(Src, Dst);
787 
788         // For types that spans multiple vector registers, some additional
789         // instructions are used to setup the unpacking.
790         unsigned NumSrcVectorOps =
791           (NumUnpacks > 1 ? (NumDstVectors - NumSrcVectors)
792                           : (NumDstVectors / 2));
793 
794         return (NumUnpacks * NumDstVectors) + NumSrcVectorOps;
795       }
796       else if (SrcScalarBits == 1)
797         return getBoolVecToIntConversionCost(Opcode, Dst, I);
798     }
799 
800     if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP ||
801         Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI) {
802       // TODO: Fix base implementation which could simplify things a bit here
803       // (seems to miss on differentiating on scalar/vector types).
804 
805       // Only 64 bit vector conversions are natively supported before z15.
806       if (DstScalarBits == 64 || ST->hasVectorEnhancements2()) {
807         if (SrcScalarBits == DstScalarBits)
808           return NumDstVectors;
809 
810         if (SrcScalarBits == 1)
811           return getBoolVecToIntConversionCost(Opcode, Dst, I) + NumDstVectors;
812       }
813 
814       // Return the cost of multiple scalar invocation plus the cost of
815       // inserting and extracting the values. Base implementation does not
816       // realize float->int gets scalarized.
817       InstructionCost ScalarCost = getCastInstrCost(
818           Opcode, Dst->getScalarType(), Src->getScalarType(), CCH, CostKind);
819       InstructionCost TotCost = VF * ScalarCost;
820       bool NeedsInserts = true, NeedsExtracts = true;
821       // FP128 registers do not get inserted or extracted.
822       if (DstScalarBits == 128 &&
823           (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP))
824         NeedsInserts = false;
825       if (SrcScalarBits == 128 &&
826           (Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI))
827         NeedsExtracts = false;
828 
829       TotCost += getScalarizationOverhead(SrcVecTy, false, NeedsExtracts);
830       TotCost += getScalarizationOverhead(DstVecTy, NeedsInserts, false);
831 
832       // FIXME: VF 2 for float<->i32 is currently just as expensive as for VF 4.
833       if (VF == 2 && SrcScalarBits == 32 && DstScalarBits == 32)
834         TotCost *= 2;
835 
836       return TotCost;
837     }
838 
839     if (Opcode == Instruction::FPTrunc) {
840       if (SrcScalarBits == 128)  // fp128 -> double/float + inserts of elements.
841         return VF /*ldxbr/lexbr*/ +
842                getScalarizationOverhead(DstVecTy, true, false);
843       else // double -> float
844         return VF / 2 /*vledb*/ + std::max(1U, VF / 4 /*vperm*/);
845     }
846 
847     if (Opcode == Instruction::FPExt) {
848       if (SrcScalarBits == 32 && DstScalarBits == 64) {
849         // float -> double is very rare and currently unoptimized. Instead of
850         // using vldeb, which can do two at a time, all conversions are
851         // scalarized.
852         return VF * 2;
853       }
854       // -> fp128.  VF * lxdb/lxeb + extraction of elements.
855       return VF + getScalarizationOverhead(SrcVecTy, false, true);
856     }
857   }
858 
859   return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
860 }
861 
862 // Scalar i8 / i16 operations will typically be made after first extending
863 // the operands to i32.
864 static unsigned getOperandsExtensionCost(const Instruction *I) {
865   unsigned ExtCost = 0;
866   for (Value *Op : I->operands())
867     // A load of i8 or i16 sign/zero extends to i32.
868     if (!isa<LoadInst>(Op) && !isa<ConstantInt>(Op))
869       ExtCost++;
870 
871   return ExtCost;
872 }
873 
874 InstructionCost SystemZTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
875                                                    Type *CondTy,
876                                                    CmpInst::Predicate VecPred,
877                                                    TTI::TargetCostKind CostKind,
878                                                    const Instruction *I) {
879   if (CostKind != TTI::TCK_RecipThroughput)
880     return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind);
881 
882   if (!ValTy->isVectorTy()) {
883     switch (Opcode) {
884     case Instruction::ICmp: {
885       // A loaded value compared with 0 with multiple users becomes Load and
886       // Test. The load is then not foldable, so return 0 cost for the ICmp.
887       unsigned ScalarBits = ValTy->getScalarSizeInBits();
888       if (I != nullptr && ScalarBits >= 32)
889         if (LoadInst *Ld = dyn_cast<LoadInst>(I->getOperand(0)))
890           if (const ConstantInt *C = dyn_cast<ConstantInt>(I->getOperand(1)))
891             if (!Ld->hasOneUse() && Ld->getParent() == I->getParent() &&
892                 C->isZero())
893               return 0;
894 
895       unsigned Cost = 1;
896       if (ValTy->isIntegerTy() && ValTy->getScalarSizeInBits() <= 16)
897         Cost += (I != nullptr ? getOperandsExtensionCost(I) : 2);
898       return Cost;
899     }
900     case Instruction::Select:
901       if (ValTy->isFloatingPointTy())
902         return 4; // No load on condition for FP - costs a conditional jump.
903       return 1; // Load On Condition / Select Register.
904     }
905   }
906   else if (ST->hasVector()) {
907     unsigned VF = cast<FixedVectorType>(ValTy)->getNumElements();
908 
909     // Called with a compare instruction.
910     if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) {
911       unsigned PredicateExtraCost = 0;
912       if (I != nullptr) {
913         // Some predicates cost one or two extra instructions.
914         switch (cast<CmpInst>(I)->getPredicate()) {
915         case CmpInst::Predicate::ICMP_NE:
916         case CmpInst::Predicate::ICMP_UGE:
917         case CmpInst::Predicate::ICMP_ULE:
918         case CmpInst::Predicate::ICMP_SGE:
919         case CmpInst::Predicate::ICMP_SLE:
920           PredicateExtraCost = 1;
921           break;
922         case CmpInst::Predicate::FCMP_ONE:
923         case CmpInst::Predicate::FCMP_ORD:
924         case CmpInst::Predicate::FCMP_UEQ:
925         case CmpInst::Predicate::FCMP_UNO:
926           PredicateExtraCost = 2;
927           break;
928         default:
929           break;
930         }
931       }
932 
933       // Float is handled with 2*vmr[lh]f + 2*vldeb + vfchdb for each pair of
934       // floats.  FIXME: <2 x float> generates same code as <4 x float>.
935       unsigned CmpCostPerVector = (ValTy->getScalarType()->isFloatTy() ? 10 : 1);
936       unsigned NumVecs_cmp = getNumVectorRegs(ValTy);
937 
938       unsigned Cost = (NumVecs_cmp * (CmpCostPerVector + PredicateExtraCost));
939       return Cost;
940     }
941     else { // Called with a select instruction.
942       assert (Opcode == Instruction::Select);
943 
944       // We can figure out the extra cost of packing / unpacking if the
945       // instruction was passed and the compare instruction is found.
946       unsigned PackCost = 0;
947       Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr);
948       if (CmpOpTy != nullptr)
949         PackCost =
950           getVectorBitmaskConversionCost(CmpOpTy, ValTy);
951 
952       return getNumVectorRegs(ValTy) /*vsel*/ + PackCost;
953     }
954   }
955 
956   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind);
957 }
958 
959 InstructionCost SystemZTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
960                                                    unsigned Index) {
961   // vlvgp will insert two grs into a vector register, so only count half the
962   // number of instructions.
963   if (Opcode == Instruction::InsertElement && Val->isIntOrIntVectorTy(64))
964     return ((Index % 2 == 0) ? 1 : 0);
965 
966   if (Opcode == Instruction::ExtractElement) {
967     int Cost = ((getScalarSizeInBits(Val) == 1) ? 2 /*+test-under-mask*/ : 1);
968 
969     // Give a slight penalty for moving out of vector pipeline to FXU unit.
970     if (Index == 0 && Val->isIntOrIntVectorTy())
971       Cost += 1;
972 
973     return Cost;
974   }
975 
976   return BaseT::getVectorInstrCost(Opcode, Val, Index);
977 }
978 
979 // Check if a load may be folded as a memory operand in its user.
980 bool SystemZTTIImpl::
981 isFoldableLoad(const LoadInst *Ld, const Instruction *&FoldedValue) {
982   if (!Ld->hasOneUse())
983     return false;
984   FoldedValue = Ld;
985   const Instruction *UserI = cast<Instruction>(*Ld->user_begin());
986   unsigned LoadedBits = getScalarSizeInBits(Ld->getType());
987   unsigned TruncBits = 0;
988   unsigned SExtBits = 0;
989   unsigned ZExtBits = 0;
990   if (UserI->hasOneUse()) {
991     unsigned UserBits = UserI->getType()->getScalarSizeInBits();
992     if (isa<TruncInst>(UserI))
993       TruncBits = UserBits;
994     else if (isa<SExtInst>(UserI))
995       SExtBits = UserBits;
996     else if (isa<ZExtInst>(UserI))
997       ZExtBits = UserBits;
998   }
999   if (TruncBits || SExtBits || ZExtBits) {
1000     FoldedValue = UserI;
1001     UserI = cast<Instruction>(*UserI->user_begin());
1002     // Load (single use) -> trunc/extend (single use) -> UserI
1003   }
1004   if ((UserI->getOpcode() == Instruction::Sub ||
1005        UserI->getOpcode() == Instruction::SDiv ||
1006        UserI->getOpcode() == Instruction::UDiv) &&
1007       UserI->getOperand(1) != FoldedValue)
1008     return false; // Not commutative, only RHS foldable.
1009   // LoadOrTruncBits holds the number of effectively loaded bits, but 0 if an
1010   // extension was made of the load.
1011   unsigned LoadOrTruncBits =
1012       ((SExtBits || ZExtBits) ? 0 : (TruncBits ? TruncBits : LoadedBits));
1013   switch (UserI->getOpcode()) {
1014   case Instruction::Add: // SE: 16->32, 16/32->64, z14:16->64. ZE: 32->64
1015   case Instruction::Sub:
1016   case Instruction::ICmp:
1017     if (LoadedBits == 32 && ZExtBits == 64)
1018       return true;
1019     LLVM_FALLTHROUGH;
1020   case Instruction::Mul: // SE: 16->32, 32->64, z14:16->64
1021     if (UserI->getOpcode() != Instruction::ICmp) {
1022       if (LoadedBits == 16 &&
1023           (SExtBits == 32 ||
1024            (SExtBits == 64 && ST->hasMiscellaneousExtensions2())))
1025         return true;
1026       if (LoadOrTruncBits == 16)
1027         return true;
1028     }
1029     LLVM_FALLTHROUGH;
1030   case Instruction::SDiv:// SE: 32->64
1031     if (LoadedBits == 32 && SExtBits == 64)
1032       return true;
1033     LLVM_FALLTHROUGH;
1034   case Instruction::UDiv:
1035   case Instruction::And:
1036   case Instruction::Or:
1037   case Instruction::Xor:
1038     // This also makes sense for float operations, but disabled for now due
1039     // to regressions.
1040     // case Instruction::FCmp:
1041     // case Instruction::FAdd:
1042     // case Instruction::FSub:
1043     // case Instruction::FMul:
1044     // case Instruction::FDiv:
1045 
1046     // All possible extensions of memory checked above.
1047 
1048     // Comparison between memory and immediate.
1049     if (UserI->getOpcode() == Instruction::ICmp)
1050       if (ConstantInt *CI = dyn_cast<ConstantInt>(UserI->getOperand(1)))
1051         if (CI->getValue().isIntN(16))
1052           return true;
1053     return (LoadOrTruncBits == 32 || LoadOrTruncBits == 64);
1054     break;
1055   }
1056   return false;
1057 }
1058 
1059 static bool isBswapIntrinsicCall(const Value *V) {
1060   if (const Instruction *I = dyn_cast<Instruction>(V))
1061     if (auto *CI = dyn_cast<CallInst>(I))
1062       if (auto *F = CI->getCalledFunction())
1063         if (F->getIntrinsicID() == Intrinsic::bswap)
1064           return true;
1065   return false;
1066 }
1067 
1068 InstructionCost SystemZTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
1069                                                 MaybeAlign Alignment,
1070                                                 unsigned AddressSpace,
1071                                                 TTI::TargetCostKind CostKind,
1072                                                 const Instruction *I) {
1073   assert(!Src->isVoidTy() && "Invalid type");
1074 
1075   // TODO: Handle other cost kinds.
1076   if (CostKind != TTI::TCK_RecipThroughput)
1077     return 1;
1078 
1079   if (!Src->isVectorTy() && Opcode == Instruction::Load && I != nullptr) {
1080     // Store the load or its truncated or extended value in FoldedValue.
1081     const Instruction *FoldedValue = nullptr;
1082     if (isFoldableLoad(cast<LoadInst>(I), FoldedValue)) {
1083       const Instruction *UserI = cast<Instruction>(*FoldedValue->user_begin());
1084       assert (UserI->getNumOperands() == 2 && "Expected a binop.");
1085 
1086       // UserI can't fold two loads, so in that case return 0 cost only
1087       // half of the time.
1088       for (unsigned i = 0; i < 2; ++i) {
1089         if (UserI->getOperand(i) == FoldedValue)
1090           continue;
1091 
1092         if (Instruction *OtherOp = dyn_cast<Instruction>(UserI->getOperand(i))){
1093           LoadInst *OtherLoad = dyn_cast<LoadInst>(OtherOp);
1094           if (!OtherLoad &&
1095               (isa<TruncInst>(OtherOp) || isa<SExtInst>(OtherOp) ||
1096                isa<ZExtInst>(OtherOp)))
1097             OtherLoad = dyn_cast<LoadInst>(OtherOp->getOperand(0));
1098           if (OtherLoad && isFoldableLoad(OtherLoad, FoldedValue/*dummy*/))
1099             return i == 0; // Both operands foldable.
1100         }
1101       }
1102 
1103       return 0; // Only I is foldable in user.
1104     }
1105   }
1106 
1107   unsigned NumOps =
1108     (Src->isVectorTy() ? getNumVectorRegs(Src) : getNumberOfParts(Src));
1109 
1110   // Store/Load reversed saves one instruction.
1111   if (((!Src->isVectorTy() && NumOps == 1) || ST->hasVectorEnhancements2()) &&
1112       I != nullptr) {
1113     if (Opcode == Instruction::Load && I->hasOneUse()) {
1114       const Instruction *LdUser = cast<Instruction>(*I->user_begin());
1115       // In case of load -> bswap -> store, return normal cost for the load.
1116       if (isBswapIntrinsicCall(LdUser) &&
1117           (!LdUser->hasOneUse() || !isa<StoreInst>(*LdUser->user_begin())))
1118         return 0;
1119     }
1120     else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) {
1121       const Value *StoredVal = SI->getValueOperand();
1122       if (StoredVal->hasOneUse() && isBswapIntrinsicCall(StoredVal))
1123         return 0;
1124     }
1125   }
1126 
1127   if (Src->getScalarSizeInBits() == 128)
1128     // 128 bit scalars are held in a pair of two 64 bit registers.
1129     NumOps *= 2;
1130 
1131   return  NumOps;
1132 }
1133 
1134 // The generic implementation of getInterleavedMemoryOpCost() is based on
1135 // adding costs of the memory operations plus all the extracts and inserts
1136 // needed for using / defining the vector operands. The SystemZ version does
1137 // roughly the same but bases the computations on vector permutations
1138 // instead.
1139 InstructionCost SystemZTTIImpl::getInterleavedMemoryOpCost(
1140     unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
1141     Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
1142     bool UseMaskForCond, bool UseMaskForGaps) {
1143   if (UseMaskForCond || UseMaskForGaps)
1144     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
1145                                              Alignment, AddressSpace, CostKind,
1146                                              UseMaskForCond, UseMaskForGaps);
1147   assert(isa<VectorType>(VecTy) &&
1148          "Expect a vector type for interleaved memory op");
1149 
1150   unsigned NumElts = cast<FixedVectorType>(VecTy)->getNumElements();
1151   assert(Factor > 1 && NumElts % Factor == 0 && "Invalid interleave factor");
1152   unsigned VF = NumElts / Factor;
1153   unsigned NumEltsPerVecReg = (128U / getScalarSizeInBits(VecTy));
1154   unsigned NumVectorMemOps = getNumVectorRegs(VecTy);
1155   unsigned NumPermutes = 0;
1156 
1157   if (Opcode == Instruction::Load) {
1158     // Loading interleave groups may have gaps, which may mean fewer
1159     // loads. Find out how many vectors will be loaded in total, and in how
1160     // many of them each value will be in.
1161     BitVector UsedInsts(NumVectorMemOps, false);
1162     std::vector<BitVector> ValueVecs(Factor, BitVector(NumVectorMemOps, false));
1163     for (unsigned Index : Indices)
1164       for (unsigned Elt = 0; Elt < VF; ++Elt) {
1165         unsigned Vec = (Index + Elt * Factor) / NumEltsPerVecReg;
1166         UsedInsts.set(Vec);
1167         ValueVecs[Index].set(Vec);
1168       }
1169     NumVectorMemOps = UsedInsts.count();
1170 
1171     for (unsigned Index : Indices) {
1172       // Estimate that each loaded source vector containing this Index
1173       // requires one operation, except that vperm can handle two input
1174       // registers first time for each dst vector.
1175       unsigned NumSrcVecs = ValueVecs[Index].count();
1176       unsigned NumDstVecs = divideCeil(VF * getScalarSizeInBits(VecTy), 128U);
1177       assert (NumSrcVecs >= NumDstVecs && "Expected at least as many sources");
1178       NumPermutes += std::max(1U, NumSrcVecs - NumDstVecs);
1179     }
1180   } else {
1181     // Estimate the permutes for each stored vector as the smaller of the
1182     // number of elements and the number of source vectors. Subtract one per
1183     // dst vector for vperm (S.A.).
1184     unsigned NumSrcVecs = std::min(NumEltsPerVecReg, Factor);
1185     unsigned NumDstVecs = NumVectorMemOps;
1186     assert (NumSrcVecs > 1 && "Expected at least two source vectors.");
1187     NumPermutes += (NumDstVecs * NumSrcVecs) - NumDstVecs;
1188   }
1189 
1190   // Cost of load/store operations and the permutations needed.
1191   return NumVectorMemOps + NumPermutes;
1192 }
1193 
1194 static int getVectorIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy) {
1195   if (RetTy->isVectorTy() && ID == Intrinsic::bswap)
1196     return getNumVectorRegs(RetTy); // VPERM
1197   return -1;
1198 }
1199 
1200 InstructionCost
1201 SystemZTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
1202                                       TTI::TargetCostKind CostKind) {
1203   InstructionCost Cost =
1204       getVectorIntrinsicInstrCost(ICA.getID(), ICA.getReturnType());
1205   if (Cost != -1)
1206     return Cost;
1207   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
1208 }
1209