1 //===-- SystemZTargetTransformInfo.cpp - SystemZ-specific TTI -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a TargetTransformInfo analysis pass specific to the 10 // SystemZ target machine. It uses the target's detailed information to provide 11 // more precise answers to certain TTI queries, while letting the target 12 // independent and default TTI implementations handle the rest. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "SystemZTargetTransformInfo.h" 17 #include "llvm/Analysis/TargetTransformInfo.h" 18 #include "llvm/CodeGen/BasicTTIImpl.h" 19 #include "llvm/CodeGen/CostTable.h" 20 #include "llvm/CodeGen/TargetLowering.h" 21 #include "llvm/IR/IntrinsicInst.h" 22 #include "llvm/Support/Debug.h" 23 using namespace llvm; 24 25 #define DEBUG_TYPE "systemztti" 26 27 //===----------------------------------------------------------------------===// 28 // 29 // SystemZ cost model. 30 // 31 //===----------------------------------------------------------------------===// 32 33 int SystemZTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) { 34 assert(Ty->isIntegerTy()); 35 36 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 37 // There is no cost model for constants with a bit size of 0. Return TCC_Free 38 // here, so that constant hoisting will ignore this constant. 39 if (BitSize == 0) 40 return TTI::TCC_Free; 41 // No cost model for operations on integers larger than 64 bit implemented yet. 42 if (BitSize > 64) 43 return TTI::TCC_Free; 44 45 if (Imm == 0) 46 return TTI::TCC_Free; 47 48 if (Imm.getBitWidth() <= 64) { 49 // Constants loaded via lgfi. 50 if (isInt<32>(Imm.getSExtValue())) 51 return TTI::TCC_Basic; 52 // Constants loaded via llilf. 53 if (isUInt<32>(Imm.getZExtValue())) 54 return TTI::TCC_Basic; 55 // Constants loaded via llihf: 56 if ((Imm.getZExtValue() & 0xffffffff) == 0) 57 return TTI::TCC_Basic; 58 59 return 2 * TTI::TCC_Basic; 60 } 61 62 return 4 * TTI::TCC_Basic; 63 } 64 65 int SystemZTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, 66 const APInt &Imm, Type *Ty) { 67 assert(Ty->isIntegerTy()); 68 69 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 70 // There is no cost model for constants with a bit size of 0. Return TCC_Free 71 // here, so that constant hoisting will ignore this constant. 72 if (BitSize == 0) 73 return TTI::TCC_Free; 74 // No cost model for operations on integers larger than 64 bit implemented yet. 75 if (BitSize > 64) 76 return TTI::TCC_Free; 77 78 switch (Opcode) { 79 default: 80 return TTI::TCC_Free; 81 case Instruction::GetElementPtr: 82 // Always hoist the base address of a GetElementPtr. This prevents the 83 // creation of new constants for every base constant that gets constant 84 // folded with the offset. 85 if (Idx == 0) 86 return 2 * TTI::TCC_Basic; 87 return TTI::TCC_Free; 88 case Instruction::Store: 89 if (Idx == 0 && Imm.getBitWidth() <= 64) { 90 // Any 8-bit immediate store can by implemented via mvi. 91 if (BitSize == 8) 92 return TTI::TCC_Free; 93 // 16-bit immediate values can be stored via mvhhi/mvhi/mvghi. 94 if (isInt<16>(Imm.getSExtValue())) 95 return TTI::TCC_Free; 96 } 97 break; 98 case Instruction::ICmp: 99 if (Idx == 1 && Imm.getBitWidth() <= 64) { 100 // Comparisons against signed 32-bit immediates implemented via cgfi. 101 if (isInt<32>(Imm.getSExtValue())) 102 return TTI::TCC_Free; 103 // Comparisons against unsigned 32-bit immediates implemented via clgfi. 104 if (isUInt<32>(Imm.getZExtValue())) 105 return TTI::TCC_Free; 106 } 107 break; 108 case Instruction::Add: 109 case Instruction::Sub: 110 if (Idx == 1 && Imm.getBitWidth() <= 64) { 111 // We use algfi/slgfi to add/subtract 32-bit unsigned immediates. 112 if (isUInt<32>(Imm.getZExtValue())) 113 return TTI::TCC_Free; 114 // Or their negation, by swapping addition vs. subtraction. 115 if (isUInt<32>(-Imm.getSExtValue())) 116 return TTI::TCC_Free; 117 } 118 break; 119 case Instruction::Mul: 120 if (Idx == 1 && Imm.getBitWidth() <= 64) { 121 // We use msgfi to multiply by 32-bit signed immediates. 122 if (isInt<32>(Imm.getSExtValue())) 123 return TTI::TCC_Free; 124 } 125 break; 126 case Instruction::Or: 127 case Instruction::Xor: 128 if (Idx == 1 && Imm.getBitWidth() <= 64) { 129 // Masks supported by oilf/xilf. 130 if (isUInt<32>(Imm.getZExtValue())) 131 return TTI::TCC_Free; 132 // Masks supported by oihf/xihf. 133 if ((Imm.getZExtValue() & 0xffffffff) == 0) 134 return TTI::TCC_Free; 135 } 136 break; 137 case Instruction::And: 138 if (Idx == 1 && Imm.getBitWidth() <= 64) { 139 // Any 32-bit AND operation can by implemented via nilf. 140 if (BitSize <= 32) 141 return TTI::TCC_Free; 142 // 64-bit masks supported by nilf. 143 if (isUInt<32>(~Imm.getZExtValue())) 144 return TTI::TCC_Free; 145 // 64-bit masks supported by nilh. 146 if ((Imm.getZExtValue() & 0xffffffff) == 0xffffffff) 147 return TTI::TCC_Free; 148 // Some 64-bit AND operations can be implemented via risbg. 149 const SystemZInstrInfo *TII = ST->getInstrInfo(); 150 unsigned Start, End; 151 if (TII->isRxSBGMask(Imm.getZExtValue(), BitSize, Start, End)) 152 return TTI::TCC_Free; 153 } 154 break; 155 case Instruction::Shl: 156 case Instruction::LShr: 157 case Instruction::AShr: 158 // Always return TCC_Free for the shift value of a shift instruction. 159 if (Idx == 1) 160 return TTI::TCC_Free; 161 break; 162 case Instruction::UDiv: 163 case Instruction::SDiv: 164 case Instruction::URem: 165 case Instruction::SRem: 166 case Instruction::Trunc: 167 case Instruction::ZExt: 168 case Instruction::SExt: 169 case Instruction::IntToPtr: 170 case Instruction::PtrToInt: 171 case Instruction::BitCast: 172 case Instruction::PHI: 173 case Instruction::Call: 174 case Instruction::Select: 175 case Instruction::Ret: 176 case Instruction::Load: 177 break; 178 } 179 180 return SystemZTTIImpl::getIntImmCost(Imm, Ty); 181 } 182 183 int SystemZTTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, 184 const APInt &Imm, Type *Ty) { 185 assert(Ty->isIntegerTy()); 186 187 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 188 // There is no cost model for constants with a bit size of 0. Return TCC_Free 189 // here, so that constant hoisting will ignore this constant. 190 if (BitSize == 0) 191 return TTI::TCC_Free; 192 // No cost model for operations on integers larger than 64 bit implemented yet. 193 if (BitSize > 64) 194 return TTI::TCC_Free; 195 196 switch (IID) { 197 default: 198 return TTI::TCC_Free; 199 case Intrinsic::sadd_with_overflow: 200 case Intrinsic::uadd_with_overflow: 201 case Intrinsic::ssub_with_overflow: 202 case Intrinsic::usub_with_overflow: 203 // These get expanded to include a normal addition/subtraction. 204 if (Idx == 1 && Imm.getBitWidth() <= 64) { 205 if (isUInt<32>(Imm.getZExtValue())) 206 return TTI::TCC_Free; 207 if (isUInt<32>(-Imm.getSExtValue())) 208 return TTI::TCC_Free; 209 } 210 break; 211 case Intrinsic::smul_with_overflow: 212 case Intrinsic::umul_with_overflow: 213 // These get expanded to include a normal multiplication. 214 if (Idx == 1 && Imm.getBitWidth() <= 64) { 215 if (isInt<32>(Imm.getSExtValue())) 216 return TTI::TCC_Free; 217 } 218 break; 219 case Intrinsic::experimental_stackmap: 220 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 221 return TTI::TCC_Free; 222 break; 223 case Intrinsic::experimental_patchpoint_void: 224 case Intrinsic::experimental_patchpoint_i64: 225 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 226 return TTI::TCC_Free; 227 break; 228 } 229 return SystemZTTIImpl::getIntImmCost(Imm, Ty); 230 } 231 232 TargetTransformInfo::PopcntSupportKind 233 SystemZTTIImpl::getPopcntSupport(unsigned TyWidth) { 234 assert(isPowerOf2_32(TyWidth) && "Type width must be power of 2"); 235 if (ST->hasPopulationCount() && TyWidth <= 64) 236 return TTI::PSK_FastHardware; 237 return TTI::PSK_Software; 238 } 239 240 void SystemZTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 241 TTI::UnrollingPreferences &UP) { 242 // Find out if L contains a call, what the machine instruction count 243 // estimate is, and how many stores there are. 244 bool HasCall = false; 245 unsigned NumStores = 0; 246 for (auto &BB : L->blocks()) 247 for (auto &I : *BB) { 248 if (isa<CallInst>(&I) || isa<InvokeInst>(&I)) { 249 if (const Function *F = cast<CallBase>(I).getCalledFunction()) { 250 if (isLoweredToCall(F)) 251 HasCall = true; 252 if (F->getIntrinsicID() == Intrinsic::memcpy || 253 F->getIntrinsicID() == Intrinsic::memset) 254 NumStores++; 255 } else { // indirect call. 256 HasCall = true; 257 } 258 } 259 if (isa<StoreInst>(&I)) { 260 Type *MemAccessTy = I.getOperand(0)->getType(); 261 NumStores += getMemoryOpCost(Instruction::Store, MemAccessTy, None, 0); 262 } 263 } 264 265 // The z13 processor will run out of store tags if too many stores 266 // are fed into it too quickly. Therefore make sure there are not 267 // too many stores in the resulting unrolled loop. 268 unsigned const Max = (NumStores ? (12 / NumStores) : UINT_MAX); 269 270 if (HasCall) { 271 // Only allow full unrolling if loop has any calls. 272 UP.FullUnrollMaxCount = Max; 273 UP.MaxCount = 1; 274 return; 275 } 276 277 UP.MaxCount = Max; 278 if (UP.MaxCount <= 1) 279 return; 280 281 // Allow partial and runtime trip count unrolling. 282 UP.Partial = UP.Runtime = true; 283 284 UP.PartialThreshold = 75; 285 UP.DefaultUnrollRuntimeCount = 4; 286 287 // Allow expensive instructions in the pre-header of the loop. 288 UP.AllowExpensiveTripCount = true; 289 290 UP.Force = true; 291 } 292 293 294 bool SystemZTTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1, 295 TargetTransformInfo::LSRCost &C2) { 296 // SystemZ specific: check instruction count (first), and don't care about 297 // ImmCost, since offsets are checked explicitly. 298 return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost, 299 C1.NumIVMuls, C1.NumBaseAdds, 300 C1.ScaleCost, C1.SetupCost) < 301 std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost, 302 C2.NumIVMuls, C2.NumBaseAdds, 303 C2.ScaleCost, C2.SetupCost); 304 } 305 306 unsigned SystemZTTIImpl::getNumberOfRegisters(unsigned ClassID) const { 307 bool Vector = (ClassID == 1); 308 if (!Vector) 309 // Discount the stack pointer. Also leave out %r0, since it can't 310 // be used in an address. 311 return 14; 312 if (ST->hasVector()) 313 return 32; 314 return 0; 315 } 316 317 unsigned SystemZTTIImpl::getRegisterBitWidth(bool Vector) const { 318 if (!Vector) 319 return 64; 320 if (ST->hasVector()) 321 return 128; 322 return 0; 323 } 324 325 unsigned SystemZTTIImpl::getMinPrefetchStride(unsigned NumMemAccesses, 326 unsigned NumStridedMemAccesses, 327 unsigned NumPrefetches, 328 bool HasCall) const { 329 // Don't prefetch a loop with many far apart accesses. 330 if (NumPrefetches > 16) 331 return UINT_MAX; 332 333 // Emit prefetch instructions for smaller strides in cases where we think 334 // the hardware prefetcher might not be able to keep up. 335 if (NumStridedMemAccesses > 32 && 336 NumStridedMemAccesses == NumMemAccesses && !HasCall) 337 return 1; 338 339 return ST->hasMiscellaneousExtensions3() ? 8192 : 2048; 340 } 341 342 bool SystemZTTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) { 343 EVT VT = TLI->getValueType(DL, DataType); 344 return (VT.isScalarInteger() && TLI->isTypeLegal(VT)); 345 } 346 347 // Return the bit size for the scalar type or vector element 348 // type. getScalarSizeInBits() returns 0 for a pointer type. 349 static unsigned getScalarSizeInBits(Type *Ty) { 350 unsigned Size = 351 (Ty->isPtrOrPtrVectorTy() ? 64U : Ty->getScalarSizeInBits()); 352 assert(Size > 0 && "Element must have non-zero size."); 353 return Size; 354 } 355 356 // getNumberOfParts() calls getTypeLegalizationCost() which splits the vector 357 // type until it is legal. This would e.g. return 4 for <6 x i64>, instead of 358 // 3. 359 static unsigned getNumVectorRegs(Type *Ty) { 360 assert(Ty->isVectorTy() && "Expected vector type"); 361 unsigned WideBits = 362 getScalarSizeInBits(Ty) * cast<VectorType>(Ty)->getNumElements(); 363 assert(WideBits > 0 && "Could not compute size of vector"); 364 return ((WideBits % 128U) ? ((WideBits / 128U) + 1) : (WideBits / 128U)); 365 } 366 367 int SystemZTTIImpl::getArithmeticInstrCost( 368 unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info, 369 TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo, 370 TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args, 371 const Instruction *CxtI) { 372 373 // TODO: return a good value for BB-VECTORIZER that includes the 374 // immediate loads, which we do not want to count for the loop 375 // vectorizer, since they are hopefully hoisted out of the loop. This 376 // would require a new parameter 'InLoop', but not sure if constant 377 // args are common enough to motivate this. 378 379 unsigned ScalarBits = Ty->getScalarSizeInBits(); 380 381 // There are thre cases of division and remainder: Dividing with a register 382 // needs a divide instruction. A divisor which is a power of two constant 383 // can be implemented with a sequence of shifts. Any other constant needs a 384 // multiply and shifts. 385 const unsigned DivInstrCost = 20; 386 const unsigned DivMulSeqCost = 10; 387 const unsigned SDivPow2Cost = 4; 388 389 bool SignedDivRem = 390 Opcode == Instruction::SDiv || Opcode == Instruction::SRem; 391 bool UnsignedDivRem = 392 Opcode == Instruction::UDiv || Opcode == Instruction::URem; 393 394 // Check for a constant divisor. 395 bool DivRemConst = false; 396 bool DivRemConstPow2 = false; 397 if ((SignedDivRem || UnsignedDivRem) && Args.size() == 2) { 398 if (const Constant *C = dyn_cast<Constant>(Args[1])) { 399 const ConstantInt *CVal = 400 (C->getType()->isVectorTy() 401 ? dyn_cast_or_null<const ConstantInt>(C->getSplatValue()) 402 : dyn_cast<const ConstantInt>(C)); 403 if (CVal != nullptr && 404 (CVal->getValue().isPowerOf2() || (-CVal->getValue()).isPowerOf2())) 405 DivRemConstPow2 = true; 406 else 407 DivRemConst = true; 408 } 409 } 410 411 if (!Ty->isVectorTy()) { 412 // These FP operations are supported with a dedicated instruction for 413 // float, double and fp128 (base implementation assumes float generally 414 // costs 2). 415 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub || 416 Opcode == Instruction::FMul || Opcode == Instruction::FDiv) 417 return 1; 418 419 // There is no native support for FRem. 420 if (Opcode == Instruction::FRem) 421 return LIBCALL_COST; 422 423 // Give discount for some combined logical operations if supported. 424 if (Args.size() == 2 && ST->hasMiscellaneousExtensions3()) { 425 if (Opcode == Instruction::Xor) { 426 for (const Value *A : Args) { 427 if (const Instruction *I = dyn_cast<Instruction>(A)) 428 if (I->hasOneUse() && 429 (I->getOpcode() == Instruction::And || 430 I->getOpcode() == Instruction::Or || 431 I->getOpcode() == Instruction::Xor)) 432 return 0; 433 } 434 } 435 else if (Opcode == Instruction::Or || Opcode == Instruction::And) { 436 for (const Value *A : Args) { 437 if (const Instruction *I = dyn_cast<Instruction>(A)) 438 if (I->hasOneUse() && I->getOpcode() == Instruction::Xor) 439 return 0; 440 } 441 } 442 } 443 444 // Or requires one instruction, although it has custom handling for i64. 445 if (Opcode == Instruction::Or) 446 return 1; 447 448 if (Opcode == Instruction::Xor && ScalarBits == 1) { 449 if (ST->hasLoadStoreOnCond2()) 450 return 5; // 2 * (li 0; loc 1); xor 451 return 7; // 2 * ipm sequences ; xor ; shift ; compare 452 } 453 454 if (DivRemConstPow2) 455 return (SignedDivRem ? SDivPow2Cost : 1); 456 if (DivRemConst) 457 return DivMulSeqCost; 458 if (SignedDivRem || UnsignedDivRem) 459 return DivInstrCost; 460 } 461 else if (ST->hasVector()) { 462 unsigned VF = cast<VectorType>(Ty)->getNumElements(); 463 unsigned NumVectors = getNumVectorRegs(Ty); 464 465 // These vector operations are custom handled, but are still supported 466 // with one instruction per vector, regardless of element size. 467 if (Opcode == Instruction::Shl || Opcode == Instruction::LShr || 468 Opcode == Instruction::AShr) { 469 return NumVectors; 470 } 471 472 if (DivRemConstPow2) 473 return (NumVectors * (SignedDivRem ? SDivPow2Cost : 1)); 474 if (DivRemConst) 475 return VF * DivMulSeqCost + getScalarizationOverhead(Ty, Args); 476 if ((SignedDivRem || UnsignedDivRem) && VF > 4) 477 // Temporary hack: disable high vectorization factors with integer 478 // division/remainder, which will get scalarized and handled with 479 // GR128 registers. The mischeduler is not clever enough to avoid 480 // spilling yet. 481 return 1000; 482 483 // These FP operations are supported with a single vector instruction for 484 // double (base implementation assumes float generally costs 2). For 485 // FP128, the scalar cost is 1, and there is no overhead since the values 486 // are already in scalar registers. 487 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub || 488 Opcode == Instruction::FMul || Opcode == Instruction::FDiv) { 489 switch (ScalarBits) { 490 case 32: { 491 // The vector enhancements facility 1 provides v4f32 instructions. 492 if (ST->hasVectorEnhancements1()) 493 return NumVectors; 494 // Return the cost of multiple scalar invocation plus the cost of 495 // inserting and extracting the values. 496 unsigned ScalarCost = 497 getArithmeticInstrCost(Opcode, Ty->getScalarType()); 498 unsigned Cost = (VF * ScalarCost) + getScalarizationOverhead(Ty, Args); 499 // FIXME: VF 2 for these FP operations are currently just as 500 // expensive as for VF 4. 501 if (VF == 2) 502 Cost *= 2; 503 return Cost; 504 } 505 case 64: 506 case 128: 507 return NumVectors; 508 default: 509 break; 510 } 511 } 512 513 // There is no native support for FRem. 514 if (Opcode == Instruction::FRem) { 515 unsigned Cost = (VF * LIBCALL_COST) + getScalarizationOverhead(Ty, Args); 516 // FIXME: VF 2 for float is currently just as expensive as for VF 4. 517 if (VF == 2 && ScalarBits == 32) 518 Cost *= 2; 519 return Cost; 520 } 521 } 522 523 // Fallback to the default implementation. 524 return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info, 525 Opd1PropInfo, Opd2PropInfo, Args, CxtI); 526 } 527 528 int SystemZTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, VectorType *Tp, 529 int Index, VectorType *SubTp) { 530 if (ST->hasVector()) { 531 unsigned NumVectors = getNumVectorRegs(Tp); 532 533 // TODO: Since fp32 is expanded, the shuffle cost should always be 0. 534 535 // FP128 values are always in scalar registers, so there is no work 536 // involved with a shuffle, except for broadcast. In that case register 537 // moves are done with a single instruction per element. 538 if (Tp->getScalarType()->isFP128Ty()) 539 return (Kind == TargetTransformInfo::SK_Broadcast ? NumVectors - 1 : 0); 540 541 switch (Kind) { 542 case TargetTransformInfo::SK_ExtractSubvector: 543 // ExtractSubvector Index indicates start offset. 544 545 // Extracting a subvector from first index is a noop. 546 return (Index == 0 ? 0 : NumVectors); 547 548 case TargetTransformInfo::SK_Broadcast: 549 // Loop vectorizer calls here to figure out the extra cost of 550 // broadcasting a loaded value to all elements of a vector. Since vlrep 551 // loads and replicates with a single instruction, adjust the returned 552 // value. 553 return NumVectors - 1; 554 555 default: 556 557 // SystemZ supports single instruction permutation / replication. 558 return NumVectors; 559 } 560 } 561 562 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); 563 } 564 565 // Return the log2 difference of the element sizes of the two vector types. 566 static unsigned getElSizeLog2Diff(Type *Ty0, Type *Ty1) { 567 unsigned Bits0 = Ty0->getScalarSizeInBits(); 568 unsigned Bits1 = Ty1->getScalarSizeInBits(); 569 570 if (Bits1 > Bits0) 571 return (Log2_32(Bits1) - Log2_32(Bits0)); 572 573 return (Log2_32(Bits0) - Log2_32(Bits1)); 574 } 575 576 // Return the number of instructions needed to truncate SrcTy to DstTy. 577 unsigned SystemZTTIImpl:: 578 getVectorTruncCost(Type *SrcTy, Type *DstTy) { 579 assert (SrcTy->isVectorTy() && DstTy->isVectorTy()); 580 assert (SrcTy->getPrimitiveSizeInBits() > DstTy->getPrimitiveSizeInBits() && 581 "Packing must reduce size of vector type."); 582 assert(cast<VectorType>(SrcTy)->getNumElements() == 583 cast<VectorType>(DstTy)->getNumElements() && 584 "Packing should not change number of elements."); 585 586 // TODO: Since fp32 is expanded, the extract cost should always be 0. 587 588 unsigned NumParts = getNumVectorRegs(SrcTy); 589 if (NumParts <= 2) 590 // Up to 2 vector registers can be truncated efficiently with pack or 591 // permute. The latter requires an immediate mask to be loaded, which 592 // typically gets hoisted out of a loop. TODO: return a good value for 593 // BB-VECTORIZER that includes the immediate loads, which we do not want 594 // to count for the loop vectorizer. 595 return 1; 596 597 unsigned Cost = 0; 598 unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy); 599 unsigned VF = cast<VectorType>(SrcTy)->getNumElements(); 600 for (unsigned P = 0; P < Log2Diff; ++P) { 601 if (NumParts > 1) 602 NumParts /= 2; 603 Cost += NumParts; 604 } 605 606 // Currently, a general mix of permutes and pack instructions is output by 607 // isel, which follow the cost computation above except for this case which 608 // is one instruction less: 609 if (VF == 8 && SrcTy->getScalarSizeInBits() == 64 && 610 DstTy->getScalarSizeInBits() == 8) 611 Cost--; 612 613 return Cost; 614 } 615 616 // Return the cost of converting a vector bitmask produced by a compare 617 // (SrcTy), to the type of the select or extend instruction (DstTy). 618 unsigned SystemZTTIImpl:: 619 getVectorBitmaskConversionCost(Type *SrcTy, Type *DstTy) { 620 assert (SrcTy->isVectorTy() && DstTy->isVectorTy() && 621 "Should only be called with vector types."); 622 623 unsigned PackCost = 0; 624 unsigned SrcScalarBits = SrcTy->getScalarSizeInBits(); 625 unsigned DstScalarBits = DstTy->getScalarSizeInBits(); 626 unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy); 627 if (SrcScalarBits > DstScalarBits) 628 // The bitmask will be truncated. 629 PackCost = getVectorTruncCost(SrcTy, DstTy); 630 else if (SrcScalarBits < DstScalarBits) { 631 unsigned DstNumParts = getNumVectorRegs(DstTy); 632 // Each vector select needs its part of the bitmask unpacked. 633 PackCost = Log2Diff * DstNumParts; 634 // Extra cost for moving part of mask before unpacking. 635 PackCost += DstNumParts - 1; 636 } 637 638 return PackCost; 639 } 640 641 // Return the type of the compared operands. This is needed to compute the 642 // cost for a Select / ZExt or SExt instruction. 643 static Type *getCmpOpsType(const Instruction *I, unsigned VF = 1) { 644 Type *OpTy = nullptr; 645 if (CmpInst *CI = dyn_cast<CmpInst>(I->getOperand(0))) 646 OpTy = CI->getOperand(0)->getType(); 647 else if (Instruction *LogicI = dyn_cast<Instruction>(I->getOperand(0))) 648 if (LogicI->getNumOperands() == 2) 649 if (CmpInst *CI0 = dyn_cast<CmpInst>(LogicI->getOperand(0))) 650 if (isa<CmpInst>(LogicI->getOperand(1))) 651 OpTy = CI0->getOperand(0)->getType(); 652 653 if (OpTy != nullptr) { 654 if (VF == 1) { 655 assert (!OpTy->isVectorTy() && "Expected scalar type"); 656 return OpTy; 657 } 658 // Return the potentially vectorized type based on 'I' and 'VF'. 'I' may 659 // be either scalar or already vectorized with a same or lesser VF. 660 Type *ElTy = OpTy->getScalarType(); 661 return VectorType::get(ElTy, VF); 662 } 663 664 return nullptr; 665 } 666 667 // Get the cost of converting a boolean vector to a vector with same width 668 // and element size as Dst, plus the cost of zero extending if needed. 669 unsigned SystemZTTIImpl:: 670 getBoolVecToIntConversionCost(unsigned Opcode, Type *Dst, 671 const Instruction *I) { 672 assert (Dst->isVectorTy()); 673 unsigned VF = cast<VectorType>(Dst)->getNumElements(); 674 unsigned Cost = 0; 675 // If we know what the widths of the compared operands, get any cost of 676 // converting it to match Dst. Otherwise assume same widths. 677 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr); 678 if (CmpOpTy != nullptr) 679 Cost = getVectorBitmaskConversionCost(CmpOpTy, Dst); 680 if (Opcode == Instruction::ZExt || Opcode == Instruction::UIToFP) 681 // One 'vn' per dst vector with an immediate mask. 682 Cost += getNumVectorRegs(Dst); 683 return Cost; 684 } 685 686 int SystemZTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, 687 const Instruction *I) { 688 unsigned DstScalarBits = Dst->getScalarSizeInBits(); 689 unsigned SrcScalarBits = Src->getScalarSizeInBits(); 690 691 if (!Src->isVectorTy()) { 692 assert (!Dst->isVectorTy()); 693 694 if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP) { 695 if (SrcScalarBits >= 32 || 696 (I != nullptr && isa<LoadInst>(I->getOperand(0)))) 697 return 1; 698 return SrcScalarBits > 1 ? 2 /*i8/i16 extend*/ : 5 /*branch seq.*/; 699 } 700 701 if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) && 702 Src->isIntegerTy(1)) { 703 if (ST->hasLoadStoreOnCond2()) 704 return 2; // li 0; loc 1 705 706 // This should be extension of a compare i1 result, which is done with 707 // ipm and a varying sequence of instructions. 708 unsigned Cost = 0; 709 if (Opcode == Instruction::SExt) 710 Cost = (DstScalarBits < 64 ? 3 : 4); 711 if (Opcode == Instruction::ZExt) 712 Cost = 3; 713 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I) : nullptr); 714 if (CmpOpTy != nullptr && CmpOpTy->isFloatingPointTy()) 715 // If operands of an fp-type was compared, this costs +1. 716 Cost++; 717 return Cost; 718 } 719 } 720 else if (ST->hasVector()) { 721 assert (Dst->isVectorTy()); 722 unsigned VF = cast<VectorType>(Src)->getNumElements(); 723 unsigned NumDstVectors = getNumVectorRegs(Dst); 724 unsigned NumSrcVectors = getNumVectorRegs(Src); 725 726 if (Opcode == Instruction::Trunc) { 727 if (Src->getScalarSizeInBits() == Dst->getScalarSizeInBits()) 728 return 0; // Check for NOOP conversions. 729 return getVectorTruncCost(Src, Dst); 730 } 731 732 if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 733 if (SrcScalarBits >= 8) { 734 // ZExt/SExt will be handled with one unpack per doubling of width. 735 unsigned NumUnpacks = getElSizeLog2Diff(Src, Dst); 736 737 // For types that spans multiple vector registers, some additional 738 // instructions are used to setup the unpacking. 739 unsigned NumSrcVectorOps = 740 (NumUnpacks > 1 ? (NumDstVectors - NumSrcVectors) 741 : (NumDstVectors / 2)); 742 743 return (NumUnpacks * NumDstVectors) + NumSrcVectorOps; 744 } 745 else if (SrcScalarBits == 1) 746 return getBoolVecToIntConversionCost(Opcode, Dst, I); 747 } 748 749 if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP || 750 Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI) { 751 // TODO: Fix base implementation which could simplify things a bit here 752 // (seems to miss on differentiating on scalar/vector types). 753 754 // Only 64 bit vector conversions are natively supported before z15. 755 if (DstScalarBits == 64 || ST->hasVectorEnhancements2()) { 756 if (SrcScalarBits == DstScalarBits) 757 return NumDstVectors; 758 759 if (SrcScalarBits == 1) 760 return getBoolVecToIntConversionCost(Opcode, Dst, I) + NumDstVectors; 761 } 762 763 // Return the cost of multiple scalar invocation plus the cost of 764 // inserting and extracting the values. Base implementation does not 765 // realize float->int gets scalarized. 766 unsigned ScalarCost = getCastInstrCost(Opcode, Dst->getScalarType(), 767 Src->getScalarType()); 768 unsigned TotCost = VF * ScalarCost; 769 bool NeedsInserts = true, NeedsExtracts = true; 770 // FP128 registers do not get inserted or extracted. 771 if (DstScalarBits == 128 && 772 (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP)) 773 NeedsInserts = false; 774 if (SrcScalarBits == 128 && 775 (Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI)) 776 NeedsExtracts = false; 777 778 TotCost += getScalarizationOverhead(Src, false, NeedsExtracts); 779 TotCost += getScalarizationOverhead(Dst, NeedsInserts, false); 780 781 // FIXME: VF 2 for float<->i32 is currently just as expensive as for VF 4. 782 if (VF == 2 && SrcScalarBits == 32 && DstScalarBits == 32) 783 TotCost *= 2; 784 785 return TotCost; 786 } 787 788 if (Opcode == Instruction::FPTrunc) { 789 if (SrcScalarBits == 128) // fp128 -> double/float + inserts of elements. 790 return VF /*ldxbr/lexbr*/ + getScalarizationOverhead(Dst, true, false); 791 else // double -> float 792 return VF / 2 /*vledb*/ + std::max(1U, VF / 4 /*vperm*/); 793 } 794 795 if (Opcode == Instruction::FPExt) { 796 if (SrcScalarBits == 32 && DstScalarBits == 64) { 797 // float -> double is very rare and currently unoptimized. Instead of 798 // using vldeb, which can do two at a time, all conversions are 799 // scalarized. 800 return VF * 2; 801 } 802 // -> fp128. VF * lxdb/lxeb + extraction of elements. 803 return VF + getScalarizationOverhead(Src, false, true); 804 } 805 } 806 807 return BaseT::getCastInstrCost(Opcode, Dst, Src, I); 808 } 809 810 // Scalar i8 / i16 operations will typically be made after first extending 811 // the operands to i32. 812 static unsigned getOperandsExtensionCost(const Instruction *I) { 813 unsigned ExtCost = 0; 814 for (Value *Op : I->operands()) 815 // A load of i8 or i16 sign/zero extends to i32. 816 if (!isa<LoadInst>(Op) && !isa<ConstantInt>(Op)) 817 ExtCost++; 818 819 return ExtCost; 820 } 821 822 int SystemZTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 823 Type *CondTy, const Instruction *I) { 824 if (!ValTy->isVectorTy()) { 825 switch (Opcode) { 826 case Instruction::ICmp: { 827 // A loaded value compared with 0 with multiple users becomes Load and 828 // Test. The load is then not foldable, so return 0 cost for the ICmp. 829 unsigned ScalarBits = ValTy->getScalarSizeInBits(); 830 if (I != nullptr && ScalarBits >= 32) 831 if (LoadInst *Ld = dyn_cast<LoadInst>(I->getOperand(0))) 832 if (const ConstantInt *C = dyn_cast<ConstantInt>(I->getOperand(1))) 833 if (!Ld->hasOneUse() && Ld->getParent() == I->getParent() && 834 C->getZExtValue() == 0) 835 return 0; 836 837 unsigned Cost = 1; 838 if (ValTy->isIntegerTy() && ValTy->getScalarSizeInBits() <= 16) 839 Cost += (I != nullptr ? getOperandsExtensionCost(I) : 2); 840 return Cost; 841 } 842 case Instruction::Select: 843 if (ValTy->isFloatingPointTy()) 844 return 4; // No load on condition for FP - costs a conditional jump. 845 return 1; // Load On Condition / Select Register. 846 } 847 } 848 else if (ST->hasVector()) { 849 unsigned VF = cast<VectorType>(ValTy)->getNumElements(); 850 851 // Called with a compare instruction. 852 if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) { 853 unsigned PredicateExtraCost = 0; 854 if (I != nullptr) { 855 // Some predicates cost one or two extra instructions. 856 switch (cast<CmpInst>(I)->getPredicate()) { 857 case CmpInst::Predicate::ICMP_NE: 858 case CmpInst::Predicate::ICMP_UGE: 859 case CmpInst::Predicate::ICMP_ULE: 860 case CmpInst::Predicate::ICMP_SGE: 861 case CmpInst::Predicate::ICMP_SLE: 862 PredicateExtraCost = 1; 863 break; 864 case CmpInst::Predicate::FCMP_ONE: 865 case CmpInst::Predicate::FCMP_ORD: 866 case CmpInst::Predicate::FCMP_UEQ: 867 case CmpInst::Predicate::FCMP_UNO: 868 PredicateExtraCost = 2; 869 break; 870 default: 871 break; 872 } 873 } 874 875 // Float is handled with 2*vmr[lh]f + 2*vldeb + vfchdb for each pair of 876 // floats. FIXME: <2 x float> generates same code as <4 x float>. 877 unsigned CmpCostPerVector = (ValTy->getScalarType()->isFloatTy() ? 10 : 1); 878 unsigned NumVecs_cmp = getNumVectorRegs(ValTy); 879 880 unsigned Cost = (NumVecs_cmp * (CmpCostPerVector + PredicateExtraCost)); 881 return Cost; 882 } 883 else { // Called with a select instruction. 884 assert (Opcode == Instruction::Select); 885 886 // We can figure out the extra cost of packing / unpacking if the 887 // instruction was passed and the compare instruction is found. 888 unsigned PackCost = 0; 889 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr); 890 if (CmpOpTy != nullptr) 891 PackCost = 892 getVectorBitmaskConversionCost(CmpOpTy, ValTy); 893 894 return getNumVectorRegs(ValTy) /*vsel*/ + PackCost; 895 } 896 } 897 898 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, nullptr); 899 } 900 901 int SystemZTTIImpl:: 902 getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) { 903 // vlvgp will insert two grs into a vector register, so only count half the 904 // number of instructions. 905 if (Opcode == Instruction::InsertElement && Val->isIntOrIntVectorTy(64)) 906 return ((Index % 2 == 0) ? 1 : 0); 907 908 if (Opcode == Instruction::ExtractElement) { 909 int Cost = ((getScalarSizeInBits(Val) == 1) ? 2 /*+test-under-mask*/ : 1); 910 911 // Give a slight penalty for moving out of vector pipeline to FXU unit. 912 if (Index == 0 && Val->isIntOrIntVectorTy()) 913 Cost += 1; 914 915 return Cost; 916 } 917 918 return BaseT::getVectorInstrCost(Opcode, Val, Index); 919 } 920 921 // Check if a load may be folded as a memory operand in its user. 922 bool SystemZTTIImpl:: 923 isFoldableLoad(const LoadInst *Ld, const Instruction *&FoldedValue) { 924 if (!Ld->hasOneUse()) 925 return false; 926 FoldedValue = Ld; 927 const Instruction *UserI = cast<Instruction>(*Ld->user_begin()); 928 unsigned LoadedBits = getScalarSizeInBits(Ld->getType()); 929 unsigned TruncBits = 0; 930 unsigned SExtBits = 0; 931 unsigned ZExtBits = 0; 932 if (UserI->hasOneUse()) { 933 unsigned UserBits = UserI->getType()->getScalarSizeInBits(); 934 if (isa<TruncInst>(UserI)) 935 TruncBits = UserBits; 936 else if (isa<SExtInst>(UserI)) 937 SExtBits = UserBits; 938 else if (isa<ZExtInst>(UserI)) 939 ZExtBits = UserBits; 940 } 941 if (TruncBits || SExtBits || ZExtBits) { 942 FoldedValue = UserI; 943 UserI = cast<Instruction>(*UserI->user_begin()); 944 // Load (single use) -> trunc/extend (single use) -> UserI 945 } 946 if ((UserI->getOpcode() == Instruction::Sub || 947 UserI->getOpcode() == Instruction::SDiv || 948 UserI->getOpcode() == Instruction::UDiv) && 949 UserI->getOperand(1) != FoldedValue) 950 return false; // Not commutative, only RHS foldable. 951 // LoadOrTruncBits holds the number of effectively loaded bits, but 0 if an 952 // extension was made of the load. 953 unsigned LoadOrTruncBits = 954 ((SExtBits || ZExtBits) ? 0 : (TruncBits ? TruncBits : LoadedBits)); 955 switch (UserI->getOpcode()) { 956 case Instruction::Add: // SE: 16->32, 16/32->64, z14:16->64. ZE: 32->64 957 case Instruction::Sub: 958 case Instruction::ICmp: 959 if (LoadedBits == 32 && ZExtBits == 64) 960 return true; 961 LLVM_FALLTHROUGH; 962 case Instruction::Mul: // SE: 16->32, 32->64, z14:16->64 963 if (UserI->getOpcode() != Instruction::ICmp) { 964 if (LoadedBits == 16 && 965 (SExtBits == 32 || 966 (SExtBits == 64 && ST->hasMiscellaneousExtensions2()))) 967 return true; 968 if (LoadOrTruncBits == 16) 969 return true; 970 } 971 LLVM_FALLTHROUGH; 972 case Instruction::SDiv:// SE: 32->64 973 if (LoadedBits == 32 && SExtBits == 64) 974 return true; 975 LLVM_FALLTHROUGH; 976 case Instruction::UDiv: 977 case Instruction::And: 978 case Instruction::Or: 979 case Instruction::Xor: 980 // This also makes sense for float operations, but disabled for now due 981 // to regressions. 982 // case Instruction::FCmp: 983 // case Instruction::FAdd: 984 // case Instruction::FSub: 985 // case Instruction::FMul: 986 // case Instruction::FDiv: 987 988 // All possible extensions of memory checked above. 989 990 // Comparison between memory and immediate. 991 if (UserI->getOpcode() == Instruction::ICmp) 992 if (ConstantInt *CI = dyn_cast<ConstantInt>(UserI->getOperand(1))) 993 if (isUInt<16>(CI->getZExtValue())) 994 return true; 995 return (LoadOrTruncBits == 32 || LoadOrTruncBits == 64); 996 break; 997 } 998 return false; 999 } 1000 1001 static bool isBswapIntrinsicCall(const Value *V) { 1002 if (const Instruction *I = dyn_cast<Instruction>(V)) 1003 if (auto *CI = dyn_cast<CallInst>(I)) 1004 if (auto *F = CI->getCalledFunction()) 1005 if (F->getIntrinsicID() == Intrinsic::bswap) 1006 return true; 1007 return false; 1008 } 1009 1010 int SystemZTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, 1011 MaybeAlign Alignment, unsigned AddressSpace, 1012 const Instruction *I) { 1013 assert(!Src->isVoidTy() && "Invalid type"); 1014 1015 if (!Src->isVectorTy() && Opcode == Instruction::Load && I != nullptr) { 1016 // Store the load or its truncated or extended value in FoldedValue. 1017 const Instruction *FoldedValue = nullptr; 1018 if (isFoldableLoad(cast<LoadInst>(I), FoldedValue)) { 1019 const Instruction *UserI = cast<Instruction>(*FoldedValue->user_begin()); 1020 assert (UserI->getNumOperands() == 2 && "Expected a binop."); 1021 1022 // UserI can't fold two loads, so in that case return 0 cost only 1023 // half of the time. 1024 for (unsigned i = 0; i < 2; ++i) { 1025 if (UserI->getOperand(i) == FoldedValue) 1026 continue; 1027 1028 if (Instruction *OtherOp = dyn_cast<Instruction>(UserI->getOperand(i))){ 1029 LoadInst *OtherLoad = dyn_cast<LoadInst>(OtherOp); 1030 if (!OtherLoad && 1031 (isa<TruncInst>(OtherOp) || isa<SExtInst>(OtherOp) || 1032 isa<ZExtInst>(OtherOp))) 1033 OtherLoad = dyn_cast<LoadInst>(OtherOp->getOperand(0)); 1034 if (OtherLoad && isFoldableLoad(OtherLoad, FoldedValue/*dummy*/)) 1035 return i == 0; // Both operands foldable. 1036 } 1037 } 1038 1039 return 0; // Only I is foldable in user. 1040 } 1041 } 1042 1043 unsigned NumOps = 1044 (Src->isVectorTy() ? getNumVectorRegs(Src) : getNumberOfParts(Src)); 1045 1046 // Store/Load reversed saves one instruction. 1047 if (((!Src->isVectorTy() && NumOps == 1) || ST->hasVectorEnhancements2()) && 1048 I != nullptr) { 1049 if (Opcode == Instruction::Load && I->hasOneUse()) { 1050 const Instruction *LdUser = cast<Instruction>(*I->user_begin()); 1051 // In case of load -> bswap -> store, return normal cost for the load. 1052 if (isBswapIntrinsicCall(LdUser) && 1053 (!LdUser->hasOneUse() || !isa<StoreInst>(*LdUser->user_begin()))) 1054 return 0; 1055 } 1056 else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) { 1057 const Value *StoredVal = SI->getValueOperand(); 1058 if (StoredVal->hasOneUse() && isBswapIntrinsicCall(StoredVal)) 1059 return 0; 1060 } 1061 } 1062 1063 if (Src->getScalarSizeInBits() == 128) 1064 // 128 bit scalars are held in a pair of two 64 bit registers. 1065 NumOps *= 2; 1066 1067 return NumOps; 1068 } 1069 1070 // The generic implementation of getInterleavedMemoryOpCost() is based on 1071 // adding costs of the memory operations plus all the extracts and inserts 1072 // needed for using / defining the vector operands. The SystemZ version does 1073 // roughly the same but bases the computations on vector permutations 1074 // instead. 1075 int SystemZTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, 1076 unsigned Factor, 1077 ArrayRef<unsigned> Indices, 1078 unsigned Alignment, 1079 unsigned AddressSpace, 1080 bool UseMaskForCond, 1081 bool UseMaskForGaps) { 1082 if (UseMaskForCond || UseMaskForGaps) 1083 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 1084 Alignment, AddressSpace, 1085 UseMaskForCond, UseMaskForGaps); 1086 assert(isa<VectorType>(VecTy) && 1087 "Expect a vector type for interleaved memory op"); 1088 1089 // Return the ceiling of dividing A by B. 1090 auto ceil = [](unsigned A, unsigned B) { return (A + B - 1) / B; }; 1091 1092 unsigned NumElts = cast<VectorType>(VecTy)->getNumElements(); 1093 assert(Factor > 1 && NumElts % Factor == 0 && "Invalid interleave factor"); 1094 unsigned VF = NumElts / Factor; 1095 unsigned NumEltsPerVecReg = (128U / getScalarSizeInBits(VecTy)); 1096 unsigned NumVectorMemOps = getNumVectorRegs(VecTy); 1097 unsigned NumPermutes = 0; 1098 1099 if (Opcode == Instruction::Load) { 1100 // Loading interleave groups may have gaps, which may mean fewer 1101 // loads. Find out how many vectors will be loaded in total, and in how 1102 // many of them each value will be in. 1103 BitVector UsedInsts(NumVectorMemOps, false); 1104 std::vector<BitVector> ValueVecs(Factor, BitVector(NumVectorMemOps, false)); 1105 for (unsigned Index : Indices) 1106 for (unsigned Elt = 0; Elt < VF; ++Elt) { 1107 unsigned Vec = (Index + Elt * Factor) / NumEltsPerVecReg; 1108 UsedInsts.set(Vec); 1109 ValueVecs[Index].set(Vec); 1110 } 1111 NumVectorMemOps = UsedInsts.count(); 1112 1113 for (unsigned Index : Indices) { 1114 // Estimate that each loaded source vector containing this Index 1115 // requires one operation, except that vperm can handle two input 1116 // registers first time for each dst vector. 1117 unsigned NumSrcVecs = ValueVecs[Index].count(); 1118 unsigned NumDstVecs = ceil(VF * getScalarSizeInBits(VecTy), 128U); 1119 assert (NumSrcVecs >= NumDstVecs && "Expected at least as many sources"); 1120 NumPermutes += std::max(1U, NumSrcVecs - NumDstVecs); 1121 } 1122 } else { 1123 // Estimate the permutes for each stored vector as the smaller of the 1124 // number of elements and the number of source vectors. Subtract one per 1125 // dst vector for vperm (S.A.). 1126 unsigned NumSrcVecs = std::min(NumEltsPerVecReg, Factor); 1127 unsigned NumDstVecs = NumVectorMemOps; 1128 assert (NumSrcVecs > 1 && "Expected at least two source vectors."); 1129 NumPermutes += (NumDstVecs * NumSrcVecs) - NumDstVecs; 1130 } 1131 1132 // Cost of load/store operations and the permutations needed. 1133 return NumVectorMemOps + NumPermutes; 1134 } 1135 1136 static int getVectorIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy) { 1137 if (RetTy->isVectorTy() && ID == Intrinsic::bswap) 1138 return getNumVectorRegs(RetTy); // VPERM 1139 return -1; 1140 } 1141 1142 int SystemZTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 1143 ArrayRef<Value *> Args, 1144 FastMathFlags FMF, unsigned VF, 1145 const Instruction *I) { 1146 int Cost = getVectorIntrinsicInstrCost(ID, RetTy); 1147 if (Cost != -1) 1148 return Cost; 1149 return BaseT::getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF, I); 1150 } 1151 1152 int SystemZTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 1153 ArrayRef<Type *> Tys, 1154 FastMathFlags FMF, 1155 unsigned ScalarizationCostPassed, 1156 const Instruction *I) { 1157 int Cost = getVectorIntrinsicInstrCost(ID, RetTy); 1158 if (Cost != -1) 1159 return Cost; 1160 return BaseT::getIntrinsicInstrCost(ID, RetTy, Tys, FMF, 1161 ScalarizationCostPassed, I); 1162 } 1163