1 //===-- SystemZTargetTransformInfo.cpp - SystemZ-specific TTI -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a TargetTransformInfo analysis pass specific to the 10 // SystemZ target machine. It uses the target's detailed information to provide 11 // more precise answers to certain TTI queries, while letting the target 12 // independent and default TTI implementations handle the rest. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "SystemZTargetTransformInfo.h" 17 #include "llvm/Analysis/TargetTransformInfo.h" 18 #include "llvm/CodeGen/BasicTTIImpl.h" 19 #include "llvm/CodeGen/CostTable.h" 20 #include "llvm/CodeGen/TargetLowering.h" 21 #include "llvm/IR/IntrinsicInst.h" 22 #include "llvm/Support/Debug.h" 23 using namespace llvm; 24 25 #define DEBUG_TYPE "systemztti" 26 27 //===----------------------------------------------------------------------===// 28 // 29 // SystemZ cost model. 30 // 31 //===----------------------------------------------------------------------===// 32 33 int SystemZTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) { 34 assert(Ty->isIntegerTy()); 35 36 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 37 // There is no cost model for constants with a bit size of 0. Return TCC_Free 38 // here, so that constant hoisting will ignore this constant. 39 if (BitSize == 0) 40 return TTI::TCC_Free; 41 // No cost model for operations on integers larger than 64 bit implemented yet. 42 if (BitSize > 64) 43 return TTI::TCC_Free; 44 45 if (Imm == 0) 46 return TTI::TCC_Free; 47 48 if (Imm.getBitWidth() <= 64) { 49 // Constants loaded via lgfi. 50 if (isInt<32>(Imm.getSExtValue())) 51 return TTI::TCC_Basic; 52 // Constants loaded via llilf. 53 if (isUInt<32>(Imm.getZExtValue())) 54 return TTI::TCC_Basic; 55 // Constants loaded via llihf: 56 if ((Imm.getZExtValue() & 0xffffffff) == 0) 57 return TTI::TCC_Basic; 58 59 return 2 * TTI::TCC_Basic; 60 } 61 62 return 4 * TTI::TCC_Basic; 63 } 64 65 int SystemZTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, 66 const APInt &Imm, Type *Ty) { 67 assert(Ty->isIntegerTy()); 68 69 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 70 // There is no cost model for constants with a bit size of 0. Return TCC_Free 71 // here, so that constant hoisting will ignore this constant. 72 if (BitSize == 0) 73 return TTI::TCC_Free; 74 // No cost model for operations on integers larger than 64 bit implemented yet. 75 if (BitSize > 64) 76 return TTI::TCC_Free; 77 78 switch (Opcode) { 79 default: 80 return TTI::TCC_Free; 81 case Instruction::GetElementPtr: 82 // Always hoist the base address of a GetElementPtr. This prevents the 83 // creation of new constants for every base constant that gets constant 84 // folded with the offset. 85 if (Idx == 0) 86 return 2 * TTI::TCC_Basic; 87 return TTI::TCC_Free; 88 case Instruction::Store: 89 if (Idx == 0 && Imm.getBitWidth() <= 64) { 90 // Any 8-bit immediate store can by implemented via mvi. 91 if (BitSize == 8) 92 return TTI::TCC_Free; 93 // 16-bit immediate values can be stored via mvhhi/mvhi/mvghi. 94 if (isInt<16>(Imm.getSExtValue())) 95 return TTI::TCC_Free; 96 } 97 break; 98 case Instruction::ICmp: 99 if (Idx == 1 && Imm.getBitWidth() <= 64) { 100 // Comparisons against signed 32-bit immediates implemented via cgfi. 101 if (isInt<32>(Imm.getSExtValue())) 102 return TTI::TCC_Free; 103 // Comparisons against unsigned 32-bit immediates implemented via clgfi. 104 if (isUInt<32>(Imm.getZExtValue())) 105 return TTI::TCC_Free; 106 } 107 break; 108 case Instruction::Add: 109 case Instruction::Sub: 110 if (Idx == 1 && Imm.getBitWidth() <= 64) { 111 // We use algfi/slgfi to add/subtract 32-bit unsigned immediates. 112 if (isUInt<32>(Imm.getZExtValue())) 113 return TTI::TCC_Free; 114 // Or their negation, by swapping addition vs. subtraction. 115 if (isUInt<32>(-Imm.getSExtValue())) 116 return TTI::TCC_Free; 117 } 118 break; 119 case Instruction::Mul: 120 if (Idx == 1 && Imm.getBitWidth() <= 64) { 121 // We use msgfi to multiply by 32-bit signed immediates. 122 if (isInt<32>(Imm.getSExtValue())) 123 return TTI::TCC_Free; 124 } 125 break; 126 case Instruction::Or: 127 case Instruction::Xor: 128 if (Idx == 1 && Imm.getBitWidth() <= 64) { 129 // Masks supported by oilf/xilf. 130 if (isUInt<32>(Imm.getZExtValue())) 131 return TTI::TCC_Free; 132 // Masks supported by oihf/xihf. 133 if ((Imm.getZExtValue() & 0xffffffff) == 0) 134 return TTI::TCC_Free; 135 } 136 break; 137 case Instruction::And: 138 if (Idx == 1 && Imm.getBitWidth() <= 64) { 139 // Any 32-bit AND operation can by implemented via nilf. 140 if (BitSize <= 32) 141 return TTI::TCC_Free; 142 // 64-bit masks supported by nilf. 143 if (isUInt<32>(~Imm.getZExtValue())) 144 return TTI::TCC_Free; 145 // 64-bit masks supported by nilh. 146 if ((Imm.getZExtValue() & 0xffffffff) == 0xffffffff) 147 return TTI::TCC_Free; 148 // Some 64-bit AND operations can be implemented via risbg. 149 const SystemZInstrInfo *TII = ST->getInstrInfo(); 150 unsigned Start, End; 151 if (TII->isRxSBGMask(Imm.getZExtValue(), BitSize, Start, End)) 152 return TTI::TCC_Free; 153 } 154 break; 155 case Instruction::Shl: 156 case Instruction::LShr: 157 case Instruction::AShr: 158 // Always return TCC_Free for the shift value of a shift instruction. 159 if (Idx == 1) 160 return TTI::TCC_Free; 161 break; 162 case Instruction::UDiv: 163 case Instruction::SDiv: 164 case Instruction::URem: 165 case Instruction::SRem: 166 case Instruction::Trunc: 167 case Instruction::ZExt: 168 case Instruction::SExt: 169 case Instruction::IntToPtr: 170 case Instruction::PtrToInt: 171 case Instruction::BitCast: 172 case Instruction::PHI: 173 case Instruction::Call: 174 case Instruction::Select: 175 case Instruction::Ret: 176 case Instruction::Load: 177 break; 178 } 179 180 return SystemZTTIImpl::getIntImmCost(Imm, Ty); 181 } 182 183 int SystemZTTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, 184 const APInt &Imm, Type *Ty) { 185 assert(Ty->isIntegerTy()); 186 187 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 188 // There is no cost model for constants with a bit size of 0. Return TCC_Free 189 // here, so that constant hoisting will ignore this constant. 190 if (BitSize == 0) 191 return TTI::TCC_Free; 192 // No cost model for operations on integers larger than 64 bit implemented yet. 193 if (BitSize > 64) 194 return TTI::TCC_Free; 195 196 switch (IID) { 197 default: 198 return TTI::TCC_Free; 199 case Intrinsic::sadd_with_overflow: 200 case Intrinsic::uadd_with_overflow: 201 case Intrinsic::ssub_with_overflow: 202 case Intrinsic::usub_with_overflow: 203 // These get expanded to include a normal addition/subtraction. 204 if (Idx == 1 && Imm.getBitWidth() <= 64) { 205 if (isUInt<32>(Imm.getZExtValue())) 206 return TTI::TCC_Free; 207 if (isUInt<32>(-Imm.getSExtValue())) 208 return TTI::TCC_Free; 209 } 210 break; 211 case Intrinsic::smul_with_overflow: 212 case Intrinsic::umul_with_overflow: 213 // These get expanded to include a normal multiplication. 214 if (Idx == 1 && Imm.getBitWidth() <= 64) { 215 if (isInt<32>(Imm.getSExtValue())) 216 return TTI::TCC_Free; 217 } 218 break; 219 case Intrinsic::experimental_stackmap: 220 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 221 return TTI::TCC_Free; 222 break; 223 case Intrinsic::experimental_patchpoint_void: 224 case Intrinsic::experimental_patchpoint_i64: 225 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 226 return TTI::TCC_Free; 227 break; 228 } 229 return SystemZTTIImpl::getIntImmCost(Imm, Ty); 230 } 231 232 TargetTransformInfo::PopcntSupportKind 233 SystemZTTIImpl::getPopcntSupport(unsigned TyWidth) { 234 assert(isPowerOf2_32(TyWidth) && "Type width must be power of 2"); 235 if (ST->hasPopulationCount() && TyWidth <= 64) 236 return TTI::PSK_FastHardware; 237 return TTI::PSK_Software; 238 } 239 240 void SystemZTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 241 TTI::UnrollingPreferences &UP) { 242 // Find out if L contains a call, what the machine instruction count 243 // estimate is, and how many stores there are. 244 bool HasCall = false; 245 unsigned NumStores = 0; 246 for (auto &BB : L->blocks()) 247 for (auto &I : *BB) { 248 if (isa<CallInst>(&I) || isa<InvokeInst>(&I)) { 249 ImmutableCallSite CS(&I); 250 if (const Function *F = CS.getCalledFunction()) { 251 if (isLoweredToCall(F)) 252 HasCall = true; 253 if (F->getIntrinsicID() == Intrinsic::memcpy || 254 F->getIntrinsicID() == Intrinsic::memset) 255 NumStores++; 256 } else { // indirect call. 257 HasCall = true; 258 } 259 } 260 if (isa<StoreInst>(&I)) { 261 Type *MemAccessTy = I.getOperand(0)->getType(); 262 NumStores += getMemoryOpCost(Instruction::Store, MemAccessTy, None, 0); 263 } 264 } 265 266 // The z13 processor will run out of store tags if too many stores 267 // are fed into it too quickly. Therefore make sure there are not 268 // too many stores in the resulting unrolled loop. 269 unsigned const Max = (NumStores ? (12 / NumStores) : UINT_MAX); 270 271 if (HasCall) { 272 // Only allow full unrolling if loop has any calls. 273 UP.FullUnrollMaxCount = Max; 274 UP.MaxCount = 1; 275 return; 276 } 277 278 UP.MaxCount = Max; 279 if (UP.MaxCount <= 1) 280 return; 281 282 // Allow partial and runtime trip count unrolling. 283 UP.Partial = UP.Runtime = true; 284 285 UP.PartialThreshold = 75; 286 UP.DefaultUnrollRuntimeCount = 4; 287 288 // Allow expensive instructions in the pre-header of the loop. 289 UP.AllowExpensiveTripCount = true; 290 291 UP.Force = true; 292 } 293 294 295 bool SystemZTTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1, 296 TargetTransformInfo::LSRCost &C2) { 297 // SystemZ specific: check instruction count (first), and don't care about 298 // ImmCost, since offsets are checked explicitly. 299 return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost, 300 C1.NumIVMuls, C1.NumBaseAdds, 301 C1.ScaleCost, C1.SetupCost) < 302 std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost, 303 C2.NumIVMuls, C2.NumBaseAdds, 304 C2.ScaleCost, C2.SetupCost); 305 } 306 307 unsigned SystemZTTIImpl::getNumberOfRegisters(unsigned ClassID) const { 308 bool Vector = (ClassID == 1); 309 if (!Vector) 310 // Discount the stack pointer. Also leave out %r0, since it can't 311 // be used in an address. 312 return 14; 313 if (ST->hasVector()) 314 return 32; 315 return 0; 316 } 317 318 unsigned SystemZTTIImpl::getRegisterBitWidth(bool Vector) const { 319 if (!Vector) 320 return 64; 321 if (ST->hasVector()) 322 return 128; 323 return 0; 324 } 325 326 bool SystemZTTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) { 327 EVT VT = TLI->getValueType(DL, DataType); 328 return (VT.isScalarInteger() && TLI->isTypeLegal(VT)); 329 } 330 331 // Return the bit size for the scalar type or vector element 332 // type. getScalarSizeInBits() returns 0 for a pointer type. 333 static unsigned getScalarSizeInBits(Type *Ty) { 334 unsigned Size = 335 (Ty->isPtrOrPtrVectorTy() ? 64U : Ty->getScalarSizeInBits()); 336 assert(Size > 0 && "Element must have non-zero size."); 337 return Size; 338 } 339 340 // getNumberOfParts() calls getTypeLegalizationCost() which splits the vector 341 // type until it is legal. This would e.g. return 4 for <6 x i64>, instead of 342 // 3. 343 static unsigned getNumVectorRegs(Type *Ty) { 344 assert(Ty->isVectorTy() && "Expected vector type"); 345 unsigned WideBits = getScalarSizeInBits(Ty) * Ty->getVectorNumElements(); 346 assert(WideBits > 0 && "Could not compute size of vector"); 347 return ((WideBits % 128U) ? ((WideBits / 128U) + 1) : (WideBits / 128U)); 348 } 349 350 int SystemZTTIImpl::getArithmeticInstrCost( 351 unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info, 352 TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo, 353 TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args, 354 const Instruction *CxtI) { 355 356 // TODO: return a good value for BB-VECTORIZER that includes the 357 // immediate loads, which we do not want to count for the loop 358 // vectorizer, since they are hopefully hoisted out of the loop. This 359 // would require a new parameter 'InLoop', but not sure if constant 360 // args are common enough to motivate this. 361 362 unsigned ScalarBits = Ty->getScalarSizeInBits(); 363 364 // There are thre cases of division and remainder: Dividing with a register 365 // needs a divide instruction. A divisor which is a power of two constant 366 // can be implemented with a sequence of shifts. Any other constant needs a 367 // multiply and shifts. 368 const unsigned DivInstrCost = 20; 369 const unsigned DivMulSeqCost = 10; 370 const unsigned SDivPow2Cost = 4; 371 372 bool SignedDivRem = 373 Opcode == Instruction::SDiv || Opcode == Instruction::SRem; 374 bool UnsignedDivRem = 375 Opcode == Instruction::UDiv || Opcode == Instruction::URem; 376 377 // Check for a constant divisor. 378 bool DivRemConst = false; 379 bool DivRemConstPow2 = false; 380 if ((SignedDivRem || UnsignedDivRem) && Args.size() == 2) { 381 if (const Constant *C = dyn_cast<Constant>(Args[1])) { 382 const ConstantInt *CVal = 383 (C->getType()->isVectorTy() 384 ? dyn_cast_or_null<const ConstantInt>(C->getSplatValue()) 385 : dyn_cast<const ConstantInt>(C)); 386 if (CVal != nullptr && 387 (CVal->getValue().isPowerOf2() || (-CVal->getValue()).isPowerOf2())) 388 DivRemConstPow2 = true; 389 else 390 DivRemConst = true; 391 } 392 } 393 394 if (!Ty->isVectorTy()) { 395 // These FP operations are supported with a dedicated instruction for 396 // float, double and fp128 (base implementation assumes float generally 397 // costs 2). 398 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub || 399 Opcode == Instruction::FMul || Opcode == Instruction::FDiv) 400 return 1; 401 402 // There is no native support for FRem. 403 if (Opcode == Instruction::FRem) 404 return LIBCALL_COST; 405 406 // Give discount for some combined logical operations if supported. 407 if (Args.size() == 2 && ST->hasMiscellaneousExtensions3()) { 408 if (Opcode == Instruction::Xor) { 409 for (const Value *A : Args) { 410 if (const Instruction *I = dyn_cast<Instruction>(A)) 411 if (I->hasOneUse() && 412 (I->getOpcode() == Instruction::And || 413 I->getOpcode() == Instruction::Or || 414 I->getOpcode() == Instruction::Xor)) 415 return 0; 416 } 417 } 418 else if (Opcode == Instruction::Or || Opcode == Instruction::And) { 419 for (const Value *A : Args) { 420 if (const Instruction *I = dyn_cast<Instruction>(A)) 421 if (I->hasOneUse() && I->getOpcode() == Instruction::Xor) 422 return 0; 423 } 424 } 425 } 426 427 // Or requires one instruction, although it has custom handling for i64. 428 if (Opcode == Instruction::Or) 429 return 1; 430 431 if (Opcode == Instruction::Xor && ScalarBits == 1) { 432 if (ST->hasLoadStoreOnCond2()) 433 return 5; // 2 * (li 0; loc 1); xor 434 return 7; // 2 * ipm sequences ; xor ; shift ; compare 435 } 436 437 if (DivRemConstPow2) 438 return (SignedDivRem ? SDivPow2Cost : 1); 439 if (DivRemConst) 440 return DivMulSeqCost; 441 if (SignedDivRem || UnsignedDivRem) 442 return DivInstrCost; 443 } 444 else if (ST->hasVector()) { 445 unsigned VF = Ty->getVectorNumElements(); 446 unsigned NumVectors = getNumVectorRegs(Ty); 447 448 // These vector operations are custom handled, but are still supported 449 // with one instruction per vector, regardless of element size. 450 if (Opcode == Instruction::Shl || Opcode == Instruction::LShr || 451 Opcode == Instruction::AShr) { 452 return NumVectors; 453 } 454 455 if (DivRemConstPow2) 456 return (NumVectors * (SignedDivRem ? SDivPow2Cost : 1)); 457 if (DivRemConst) 458 return VF * DivMulSeqCost + getScalarizationOverhead(Ty, Args); 459 if ((SignedDivRem || UnsignedDivRem) && VF > 4) 460 // Temporary hack: disable high vectorization factors with integer 461 // division/remainder, which will get scalarized and handled with 462 // GR128 registers. The mischeduler is not clever enough to avoid 463 // spilling yet. 464 return 1000; 465 466 // These FP operations are supported with a single vector instruction for 467 // double (base implementation assumes float generally costs 2). For 468 // FP128, the scalar cost is 1, and there is no overhead since the values 469 // are already in scalar registers. 470 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub || 471 Opcode == Instruction::FMul || Opcode == Instruction::FDiv) { 472 switch (ScalarBits) { 473 case 32: { 474 // The vector enhancements facility 1 provides v4f32 instructions. 475 if (ST->hasVectorEnhancements1()) 476 return NumVectors; 477 // Return the cost of multiple scalar invocation plus the cost of 478 // inserting and extracting the values. 479 unsigned ScalarCost = 480 getArithmeticInstrCost(Opcode, Ty->getScalarType()); 481 unsigned Cost = (VF * ScalarCost) + getScalarizationOverhead(Ty, Args); 482 // FIXME: VF 2 for these FP operations are currently just as 483 // expensive as for VF 4. 484 if (VF == 2) 485 Cost *= 2; 486 return Cost; 487 } 488 case 64: 489 case 128: 490 return NumVectors; 491 default: 492 break; 493 } 494 } 495 496 // There is no native support for FRem. 497 if (Opcode == Instruction::FRem) { 498 unsigned Cost = (VF * LIBCALL_COST) + getScalarizationOverhead(Ty, Args); 499 // FIXME: VF 2 for float is currently just as expensive as for VF 4. 500 if (VF == 2 && ScalarBits == 32) 501 Cost *= 2; 502 return Cost; 503 } 504 } 505 506 // Fallback to the default implementation. 507 return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info, 508 Opd1PropInfo, Opd2PropInfo, Args, CxtI); 509 } 510 511 int SystemZTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, 512 Type *SubTp) { 513 assert (Tp->isVectorTy()); 514 if (ST->hasVector()) { 515 unsigned NumVectors = getNumVectorRegs(Tp); 516 517 // TODO: Since fp32 is expanded, the shuffle cost should always be 0. 518 519 // FP128 values are always in scalar registers, so there is no work 520 // involved with a shuffle, except for broadcast. In that case register 521 // moves are done with a single instruction per element. 522 if (Tp->getScalarType()->isFP128Ty()) 523 return (Kind == TargetTransformInfo::SK_Broadcast ? NumVectors - 1 : 0); 524 525 switch (Kind) { 526 case TargetTransformInfo::SK_ExtractSubvector: 527 // ExtractSubvector Index indicates start offset. 528 529 // Extracting a subvector from first index is a noop. 530 return (Index == 0 ? 0 : NumVectors); 531 532 case TargetTransformInfo::SK_Broadcast: 533 // Loop vectorizer calls here to figure out the extra cost of 534 // broadcasting a loaded value to all elements of a vector. Since vlrep 535 // loads and replicates with a single instruction, adjust the returned 536 // value. 537 return NumVectors - 1; 538 539 default: 540 541 // SystemZ supports single instruction permutation / replication. 542 return NumVectors; 543 } 544 } 545 546 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); 547 } 548 549 // Return the log2 difference of the element sizes of the two vector types. 550 static unsigned getElSizeLog2Diff(Type *Ty0, Type *Ty1) { 551 unsigned Bits0 = Ty0->getScalarSizeInBits(); 552 unsigned Bits1 = Ty1->getScalarSizeInBits(); 553 554 if (Bits1 > Bits0) 555 return (Log2_32(Bits1) - Log2_32(Bits0)); 556 557 return (Log2_32(Bits0) - Log2_32(Bits1)); 558 } 559 560 // Return the number of instructions needed to truncate SrcTy to DstTy. 561 unsigned SystemZTTIImpl:: 562 getVectorTruncCost(Type *SrcTy, Type *DstTy) { 563 assert (SrcTy->isVectorTy() && DstTy->isVectorTy()); 564 assert (SrcTy->getPrimitiveSizeInBits() > DstTy->getPrimitiveSizeInBits() && 565 "Packing must reduce size of vector type."); 566 assert (SrcTy->getVectorNumElements() == DstTy->getVectorNumElements() && 567 "Packing should not change number of elements."); 568 569 // TODO: Since fp32 is expanded, the extract cost should always be 0. 570 571 unsigned NumParts = getNumVectorRegs(SrcTy); 572 if (NumParts <= 2) 573 // Up to 2 vector registers can be truncated efficiently with pack or 574 // permute. The latter requires an immediate mask to be loaded, which 575 // typically gets hoisted out of a loop. TODO: return a good value for 576 // BB-VECTORIZER that includes the immediate loads, which we do not want 577 // to count for the loop vectorizer. 578 return 1; 579 580 unsigned Cost = 0; 581 unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy); 582 unsigned VF = SrcTy->getVectorNumElements(); 583 for (unsigned P = 0; P < Log2Diff; ++P) { 584 if (NumParts > 1) 585 NumParts /= 2; 586 Cost += NumParts; 587 } 588 589 // Currently, a general mix of permutes and pack instructions is output by 590 // isel, which follow the cost computation above except for this case which 591 // is one instruction less: 592 if (VF == 8 && SrcTy->getScalarSizeInBits() == 64 && 593 DstTy->getScalarSizeInBits() == 8) 594 Cost--; 595 596 return Cost; 597 } 598 599 // Return the cost of converting a vector bitmask produced by a compare 600 // (SrcTy), to the type of the select or extend instruction (DstTy). 601 unsigned SystemZTTIImpl:: 602 getVectorBitmaskConversionCost(Type *SrcTy, Type *DstTy) { 603 assert (SrcTy->isVectorTy() && DstTy->isVectorTy() && 604 "Should only be called with vector types."); 605 606 unsigned PackCost = 0; 607 unsigned SrcScalarBits = SrcTy->getScalarSizeInBits(); 608 unsigned DstScalarBits = DstTy->getScalarSizeInBits(); 609 unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy); 610 if (SrcScalarBits > DstScalarBits) 611 // The bitmask will be truncated. 612 PackCost = getVectorTruncCost(SrcTy, DstTy); 613 else if (SrcScalarBits < DstScalarBits) { 614 unsigned DstNumParts = getNumVectorRegs(DstTy); 615 // Each vector select needs its part of the bitmask unpacked. 616 PackCost = Log2Diff * DstNumParts; 617 // Extra cost for moving part of mask before unpacking. 618 PackCost += DstNumParts - 1; 619 } 620 621 return PackCost; 622 } 623 624 // Return the type of the compared operands. This is needed to compute the 625 // cost for a Select / ZExt or SExt instruction. 626 static Type *getCmpOpsType(const Instruction *I, unsigned VF = 1) { 627 Type *OpTy = nullptr; 628 if (CmpInst *CI = dyn_cast<CmpInst>(I->getOperand(0))) 629 OpTy = CI->getOperand(0)->getType(); 630 else if (Instruction *LogicI = dyn_cast<Instruction>(I->getOperand(0))) 631 if (LogicI->getNumOperands() == 2) 632 if (CmpInst *CI0 = dyn_cast<CmpInst>(LogicI->getOperand(0))) 633 if (isa<CmpInst>(LogicI->getOperand(1))) 634 OpTy = CI0->getOperand(0)->getType(); 635 636 if (OpTy != nullptr) { 637 if (VF == 1) { 638 assert (!OpTy->isVectorTy() && "Expected scalar type"); 639 return OpTy; 640 } 641 // Return the potentially vectorized type based on 'I' and 'VF'. 'I' may 642 // be either scalar or already vectorized with a same or lesser VF. 643 Type *ElTy = OpTy->getScalarType(); 644 return VectorType::get(ElTy, VF); 645 } 646 647 return nullptr; 648 } 649 650 // Get the cost of converting a boolean vector to a vector with same width 651 // and element size as Dst, plus the cost of zero extending if needed. 652 unsigned SystemZTTIImpl:: 653 getBoolVecToIntConversionCost(unsigned Opcode, Type *Dst, 654 const Instruction *I) { 655 assert (Dst->isVectorTy()); 656 unsigned VF = Dst->getVectorNumElements(); 657 unsigned Cost = 0; 658 // If we know what the widths of the compared operands, get any cost of 659 // converting it to match Dst. Otherwise assume same widths. 660 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr); 661 if (CmpOpTy != nullptr) 662 Cost = getVectorBitmaskConversionCost(CmpOpTy, Dst); 663 if (Opcode == Instruction::ZExt || Opcode == Instruction::UIToFP) 664 // One 'vn' per dst vector with an immediate mask. 665 Cost += getNumVectorRegs(Dst); 666 return Cost; 667 } 668 669 int SystemZTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, 670 const Instruction *I) { 671 unsigned DstScalarBits = Dst->getScalarSizeInBits(); 672 unsigned SrcScalarBits = Src->getScalarSizeInBits(); 673 674 if (!Src->isVectorTy()) { 675 assert (!Dst->isVectorTy()); 676 677 if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP) { 678 if (SrcScalarBits >= 32 || 679 (I != nullptr && isa<LoadInst>(I->getOperand(0)))) 680 return 1; 681 return SrcScalarBits > 1 ? 2 /*i8/i16 extend*/ : 5 /*branch seq.*/; 682 } 683 684 if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) && 685 Src->isIntegerTy(1)) { 686 if (ST->hasLoadStoreOnCond2()) 687 return 2; // li 0; loc 1 688 689 // This should be extension of a compare i1 result, which is done with 690 // ipm and a varying sequence of instructions. 691 unsigned Cost = 0; 692 if (Opcode == Instruction::SExt) 693 Cost = (DstScalarBits < 64 ? 3 : 4); 694 if (Opcode == Instruction::ZExt) 695 Cost = 3; 696 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I) : nullptr); 697 if (CmpOpTy != nullptr && CmpOpTy->isFloatingPointTy()) 698 // If operands of an fp-type was compared, this costs +1. 699 Cost++; 700 return Cost; 701 } 702 } 703 else if (ST->hasVector()) { 704 assert (Dst->isVectorTy()); 705 unsigned VF = Src->getVectorNumElements(); 706 unsigned NumDstVectors = getNumVectorRegs(Dst); 707 unsigned NumSrcVectors = getNumVectorRegs(Src); 708 709 if (Opcode == Instruction::Trunc) { 710 if (Src->getScalarSizeInBits() == Dst->getScalarSizeInBits()) 711 return 0; // Check for NOOP conversions. 712 return getVectorTruncCost(Src, Dst); 713 } 714 715 if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 716 if (SrcScalarBits >= 8) { 717 // ZExt/SExt will be handled with one unpack per doubling of width. 718 unsigned NumUnpacks = getElSizeLog2Diff(Src, Dst); 719 720 // For types that spans multiple vector registers, some additional 721 // instructions are used to setup the unpacking. 722 unsigned NumSrcVectorOps = 723 (NumUnpacks > 1 ? (NumDstVectors - NumSrcVectors) 724 : (NumDstVectors / 2)); 725 726 return (NumUnpacks * NumDstVectors) + NumSrcVectorOps; 727 } 728 else if (SrcScalarBits == 1) 729 return getBoolVecToIntConversionCost(Opcode, Dst, I); 730 } 731 732 if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP || 733 Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI) { 734 // TODO: Fix base implementation which could simplify things a bit here 735 // (seems to miss on differentiating on scalar/vector types). 736 737 // Only 64 bit vector conversions are natively supported before z15. 738 if (DstScalarBits == 64 || ST->hasVectorEnhancements2()) { 739 if (SrcScalarBits == DstScalarBits) 740 return NumDstVectors; 741 742 if (SrcScalarBits == 1) 743 return getBoolVecToIntConversionCost(Opcode, Dst, I) + NumDstVectors; 744 } 745 746 // Return the cost of multiple scalar invocation plus the cost of 747 // inserting and extracting the values. Base implementation does not 748 // realize float->int gets scalarized. 749 unsigned ScalarCost = getCastInstrCost(Opcode, Dst->getScalarType(), 750 Src->getScalarType()); 751 unsigned TotCost = VF * ScalarCost; 752 bool NeedsInserts = true, NeedsExtracts = true; 753 // FP128 registers do not get inserted or extracted. 754 if (DstScalarBits == 128 && 755 (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP)) 756 NeedsInserts = false; 757 if (SrcScalarBits == 128 && 758 (Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI)) 759 NeedsExtracts = false; 760 761 TotCost += getScalarizationOverhead(Src, false, NeedsExtracts); 762 TotCost += getScalarizationOverhead(Dst, NeedsInserts, false); 763 764 // FIXME: VF 2 for float<->i32 is currently just as expensive as for VF 4. 765 if (VF == 2 && SrcScalarBits == 32 && DstScalarBits == 32) 766 TotCost *= 2; 767 768 return TotCost; 769 } 770 771 if (Opcode == Instruction::FPTrunc) { 772 if (SrcScalarBits == 128) // fp128 -> double/float + inserts of elements. 773 return VF /*ldxbr/lexbr*/ + getScalarizationOverhead(Dst, true, false); 774 else // double -> float 775 return VF / 2 /*vledb*/ + std::max(1U, VF / 4 /*vperm*/); 776 } 777 778 if (Opcode == Instruction::FPExt) { 779 if (SrcScalarBits == 32 && DstScalarBits == 64) { 780 // float -> double is very rare and currently unoptimized. Instead of 781 // using vldeb, which can do two at a time, all conversions are 782 // scalarized. 783 return VF * 2; 784 } 785 // -> fp128. VF * lxdb/lxeb + extraction of elements. 786 return VF + getScalarizationOverhead(Src, false, true); 787 } 788 } 789 790 return BaseT::getCastInstrCost(Opcode, Dst, Src, I); 791 } 792 793 // Scalar i8 / i16 operations will typically be made after first extending 794 // the operands to i32. 795 static unsigned getOperandsExtensionCost(const Instruction *I) { 796 unsigned ExtCost = 0; 797 for (Value *Op : I->operands()) 798 // A load of i8 or i16 sign/zero extends to i32. 799 if (!isa<LoadInst>(Op) && !isa<ConstantInt>(Op)) 800 ExtCost++; 801 802 return ExtCost; 803 } 804 805 int SystemZTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 806 Type *CondTy, const Instruction *I) { 807 if (!ValTy->isVectorTy()) { 808 switch (Opcode) { 809 case Instruction::ICmp: { 810 // A loaded value compared with 0 with multiple users becomes Load and 811 // Test. The load is then not foldable, so return 0 cost for the ICmp. 812 unsigned ScalarBits = ValTy->getScalarSizeInBits(); 813 if (I != nullptr && ScalarBits >= 32) 814 if (LoadInst *Ld = dyn_cast<LoadInst>(I->getOperand(0))) 815 if (const ConstantInt *C = dyn_cast<ConstantInt>(I->getOperand(1))) 816 if (!Ld->hasOneUse() && Ld->getParent() == I->getParent() && 817 C->getZExtValue() == 0) 818 return 0; 819 820 unsigned Cost = 1; 821 if (ValTy->isIntegerTy() && ValTy->getScalarSizeInBits() <= 16) 822 Cost += (I != nullptr ? getOperandsExtensionCost(I) : 2); 823 return Cost; 824 } 825 case Instruction::Select: 826 if (ValTy->isFloatingPointTy()) 827 return 4; // No load on condition for FP - costs a conditional jump. 828 return 1; // Load On Condition / Select Register. 829 } 830 } 831 else if (ST->hasVector()) { 832 unsigned VF = ValTy->getVectorNumElements(); 833 834 // Called with a compare instruction. 835 if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) { 836 unsigned PredicateExtraCost = 0; 837 if (I != nullptr) { 838 // Some predicates cost one or two extra instructions. 839 switch (cast<CmpInst>(I)->getPredicate()) { 840 case CmpInst::Predicate::ICMP_NE: 841 case CmpInst::Predicate::ICMP_UGE: 842 case CmpInst::Predicate::ICMP_ULE: 843 case CmpInst::Predicate::ICMP_SGE: 844 case CmpInst::Predicate::ICMP_SLE: 845 PredicateExtraCost = 1; 846 break; 847 case CmpInst::Predicate::FCMP_ONE: 848 case CmpInst::Predicate::FCMP_ORD: 849 case CmpInst::Predicate::FCMP_UEQ: 850 case CmpInst::Predicate::FCMP_UNO: 851 PredicateExtraCost = 2; 852 break; 853 default: 854 break; 855 } 856 } 857 858 // Float is handled with 2*vmr[lh]f + 2*vldeb + vfchdb for each pair of 859 // floats. FIXME: <2 x float> generates same code as <4 x float>. 860 unsigned CmpCostPerVector = (ValTy->getScalarType()->isFloatTy() ? 10 : 1); 861 unsigned NumVecs_cmp = getNumVectorRegs(ValTy); 862 863 unsigned Cost = (NumVecs_cmp * (CmpCostPerVector + PredicateExtraCost)); 864 return Cost; 865 } 866 else { // Called with a select instruction. 867 assert (Opcode == Instruction::Select); 868 869 // We can figure out the extra cost of packing / unpacking if the 870 // instruction was passed and the compare instruction is found. 871 unsigned PackCost = 0; 872 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr); 873 if (CmpOpTy != nullptr) 874 PackCost = 875 getVectorBitmaskConversionCost(CmpOpTy, ValTy); 876 877 return getNumVectorRegs(ValTy) /*vsel*/ + PackCost; 878 } 879 } 880 881 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, nullptr); 882 } 883 884 int SystemZTTIImpl:: 885 getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) { 886 // vlvgp will insert two grs into a vector register, so only count half the 887 // number of instructions. 888 if (Opcode == Instruction::InsertElement && Val->isIntOrIntVectorTy(64)) 889 return ((Index % 2 == 0) ? 1 : 0); 890 891 if (Opcode == Instruction::ExtractElement) { 892 int Cost = ((getScalarSizeInBits(Val) == 1) ? 2 /*+test-under-mask*/ : 1); 893 894 // Give a slight penalty for moving out of vector pipeline to FXU unit. 895 if (Index == 0 && Val->isIntOrIntVectorTy()) 896 Cost += 1; 897 898 return Cost; 899 } 900 901 return BaseT::getVectorInstrCost(Opcode, Val, Index); 902 } 903 904 // Check if a load may be folded as a memory operand in its user. 905 bool SystemZTTIImpl:: 906 isFoldableLoad(const LoadInst *Ld, const Instruction *&FoldedValue) { 907 if (!Ld->hasOneUse()) 908 return false; 909 FoldedValue = Ld; 910 const Instruction *UserI = cast<Instruction>(*Ld->user_begin()); 911 unsigned LoadedBits = getScalarSizeInBits(Ld->getType()); 912 unsigned TruncBits = 0; 913 unsigned SExtBits = 0; 914 unsigned ZExtBits = 0; 915 if (UserI->hasOneUse()) { 916 unsigned UserBits = UserI->getType()->getScalarSizeInBits(); 917 if (isa<TruncInst>(UserI)) 918 TruncBits = UserBits; 919 else if (isa<SExtInst>(UserI)) 920 SExtBits = UserBits; 921 else if (isa<ZExtInst>(UserI)) 922 ZExtBits = UserBits; 923 } 924 if (TruncBits || SExtBits || ZExtBits) { 925 FoldedValue = UserI; 926 UserI = cast<Instruction>(*UserI->user_begin()); 927 // Load (single use) -> trunc/extend (single use) -> UserI 928 } 929 if ((UserI->getOpcode() == Instruction::Sub || 930 UserI->getOpcode() == Instruction::SDiv || 931 UserI->getOpcode() == Instruction::UDiv) && 932 UserI->getOperand(1) != FoldedValue) 933 return false; // Not commutative, only RHS foldable. 934 // LoadOrTruncBits holds the number of effectively loaded bits, but 0 if an 935 // extension was made of the load. 936 unsigned LoadOrTruncBits = 937 ((SExtBits || ZExtBits) ? 0 : (TruncBits ? TruncBits : LoadedBits)); 938 switch (UserI->getOpcode()) { 939 case Instruction::Add: // SE: 16->32, 16/32->64, z14:16->64. ZE: 32->64 940 case Instruction::Sub: 941 case Instruction::ICmp: 942 if (LoadedBits == 32 && ZExtBits == 64) 943 return true; 944 LLVM_FALLTHROUGH; 945 case Instruction::Mul: // SE: 16->32, 32->64, z14:16->64 946 if (UserI->getOpcode() != Instruction::ICmp) { 947 if (LoadedBits == 16 && 948 (SExtBits == 32 || 949 (SExtBits == 64 && ST->hasMiscellaneousExtensions2()))) 950 return true; 951 if (LoadOrTruncBits == 16) 952 return true; 953 } 954 LLVM_FALLTHROUGH; 955 case Instruction::SDiv:// SE: 32->64 956 if (LoadedBits == 32 && SExtBits == 64) 957 return true; 958 LLVM_FALLTHROUGH; 959 case Instruction::UDiv: 960 case Instruction::And: 961 case Instruction::Or: 962 case Instruction::Xor: 963 // This also makes sense for float operations, but disabled for now due 964 // to regressions. 965 // case Instruction::FCmp: 966 // case Instruction::FAdd: 967 // case Instruction::FSub: 968 // case Instruction::FMul: 969 // case Instruction::FDiv: 970 971 // All possible extensions of memory checked above. 972 973 // Comparison between memory and immediate. 974 if (UserI->getOpcode() == Instruction::ICmp) 975 if (ConstantInt *CI = dyn_cast<ConstantInt>(UserI->getOperand(1))) 976 if (isUInt<16>(CI->getZExtValue())) 977 return true; 978 return (LoadOrTruncBits == 32 || LoadOrTruncBits == 64); 979 break; 980 } 981 return false; 982 } 983 984 static bool isBswapIntrinsicCall(const Value *V) { 985 if (const Instruction *I = dyn_cast<Instruction>(V)) 986 if (auto *CI = dyn_cast<CallInst>(I)) 987 if (auto *F = CI->getCalledFunction()) 988 if (F->getIntrinsicID() == Intrinsic::bswap) 989 return true; 990 return false; 991 } 992 993 int SystemZTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, 994 MaybeAlign Alignment, unsigned AddressSpace, 995 const Instruction *I) { 996 assert(!Src->isVoidTy() && "Invalid type"); 997 998 if (!Src->isVectorTy() && Opcode == Instruction::Load && I != nullptr) { 999 // Store the load or its truncated or extended value in FoldedValue. 1000 const Instruction *FoldedValue = nullptr; 1001 if (isFoldableLoad(cast<LoadInst>(I), FoldedValue)) { 1002 const Instruction *UserI = cast<Instruction>(*FoldedValue->user_begin()); 1003 assert (UserI->getNumOperands() == 2 && "Expected a binop."); 1004 1005 // UserI can't fold two loads, so in that case return 0 cost only 1006 // half of the time. 1007 for (unsigned i = 0; i < 2; ++i) { 1008 if (UserI->getOperand(i) == FoldedValue) 1009 continue; 1010 1011 if (Instruction *OtherOp = dyn_cast<Instruction>(UserI->getOperand(i))){ 1012 LoadInst *OtherLoad = dyn_cast<LoadInst>(OtherOp); 1013 if (!OtherLoad && 1014 (isa<TruncInst>(OtherOp) || isa<SExtInst>(OtherOp) || 1015 isa<ZExtInst>(OtherOp))) 1016 OtherLoad = dyn_cast<LoadInst>(OtherOp->getOperand(0)); 1017 if (OtherLoad && isFoldableLoad(OtherLoad, FoldedValue/*dummy*/)) 1018 return i == 0; // Both operands foldable. 1019 } 1020 } 1021 1022 return 0; // Only I is foldable in user. 1023 } 1024 } 1025 1026 unsigned NumOps = 1027 (Src->isVectorTy() ? getNumVectorRegs(Src) : getNumberOfParts(Src)); 1028 1029 // Store/Load reversed saves one instruction. 1030 if (((!Src->isVectorTy() && NumOps == 1) || ST->hasVectorEnhancements2()) && 1031 I != nullptr) { 1032 if (Opcode == Instruction::Load && I->hasOneUse()) { 1033 const Instruction *LdUser = cast<Instruction>(*I->user_begin()); 1034 // In case of load -> bswap -> store, return normal cost for the load. 1035 if (isBswapIntrinsicCall(LdUser) && 1036 (!LdUser->hasOneUse() || !isa<StoreInst>(*LdUser->user_begin()))) 1037 return 0; 1038 } 1039 else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) { 1040 const Value *StoredVal = SI->getValueOperand(); 1041 if (StoredVal->hasOneUse() && isBswapIntrinsicCall(StoredVal)) 1042 return 0; 1043 } 1044 } 1045 1046 if (Src->getScalarSizeInBits() == 128) 1047 // 128 bit scalars are held in a pair of two 64 bit registers. 1048 NumOps *= 2; 1049 1050 return NumOps; 1051 } 1052 1053 // The generic implementation of getInterleavedMemoryOpCost() is based on 1054 // adding costs of the memory operations plus all the extracts and inserts 1055 // needed for using / defining the vector operands. The SystemZ version does 1056 // roughly the same but bases the computations on vector permutations 1057 // instead. 1058 int SystemZTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, 1059 unsigned Factor, 1060 ArrayRef<unsigned> Indices, 1061 unsigned Alignment, 1062 unsigned AddressSpace, 1063 bool UseMaskForCond, 1064 bool UseMaskForGaps) { 1065 if (UseMaskForCond || UseMaskForGaps) 1066 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 1067 Alignment, AddressSpace, 1068 UseMaskForCond, UseMaskForGaps); 1069 assert(isa<VectorType>(VecTy) && 1070 "Expect a vector type for interleaved memory op"); 1071 1072 // Return the ceiling of dividing A by B. 1073 auto ceil = [](unsigned A, unsigned B) { return (A + B - 1) / B; }; 1074 1075 unsigned NumElts = VecTy->getVectorNumElements(); 1076 assert(Factor > 1 && NumElts % Factor == 0 && "Invalid interleave factor"); 1077 unsigned VF = NumElts / Factor; 1078 unsigned NumEltsPerVecReg = (128U / getScalarSizeInBits(VecTy)); 1079 unsigned NumVectorMemOps = getNumVectorRegs(VecTy); 1080 unsigned NumPermutes = 0; 1081 1082 if (Opcode == Instruction::Load) { 1083 // Loading interleave groups may have gaps, which may mean fewer 1084 // loads. Find out how many vectors will be loaded in total, and in how 1085 // many of them each value will be in. 1086 BitVector UsedInsts(NumVectorMemOps, false); 1087 std::vector<BitVector> ValueVecs(Factor, BitVector(NumVectorMemOps, false)); 1088 for (unsigned Index : Indices) 1089 for (unsigned Elt = 0; Elt < VF; ++Elt) { 1090 unsigned Vec = (Index + Elt * Factor) / NumEltsPerVecReg; 1091 UsedInsts.set(Vec); 1092 ValueVecs[Index].set(Vec); 1093 } 1094 NumVectorMemOps = UsedInsts.count(); 1095 1096 for (unsigned Index : Indices) { 1097 // Estimate that each loaded source vector containing this Index 1098 // requires one operation, except that vperm can handle two input 1099 // registers first time for each dst vector. 1100 unsigned NumSrcVecs = ValueVecs[Index].count(); 1101 unsigned NumDstVecs = ceil(VF * getScalarSizeInBits(VecTy), 128U); 1102 assert (NumSrcVecs >= NumDstVecs && "Expected at least as many sources"); 1103 NumPermutes += std::max(1U, NumSrcVecs - NumDstVecs); 1104 } 1105 } else { 1106 // Estimate the permutes for each stored vector as the smaller of the 1107 // number of elements and the number of source vectors. Subtract one per 1108 // dst vector for vperm (S.A.). 1109 unsigned NumSrcVecs = std::min(NumEltsPerVecReg, Factor); 1110 unsigned NumDstVecs = NumVectorMemOps; 1111 assert (NumSrcVecs > 1 && "Expected at least two source vectors."); 1112 NumPermutes += (NumDstVecs * NumSrcVecs) - NumDstVecs; 1113 } 1114 1115 // Cost of load/store operations and the permutations needed. 1116 return NumVectorMemOps + NumPermutes; 1117 } 1118 1119 static int getVectorIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy) { 1120 if (RetTy->isVectorTy() && ID == Intrinsic::bswap) 1121 return getNumVectorRegs(RetTy); // VPERM 1122 return -1; 1123 } 1124 1125 int SystemZTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 1126 ArrayRef<Value *> Args, 1127 FastMathFlags FMF, unsigned VF) { 1128 int Cost = getVectorIntrinsicInstrCost(ID, RetTy); 1129 if (Cost != -1) 1130 return Cost; 1131 return BaseT::getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF); 1132 } 1133 1134 int SystemZTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 1135 ArrayRef<Type *> Tys, 1136 FastMathFlags FMF, 1137 unsigned ScalarizationCostPassed) { 1138 int Cost = getVectorIntrinsicInstrCost(ID, RetTy); 1139 if (Cost != -1) 1140 return Cost; 1141 return BaseT::getIntrinsicInstrCost(ID, RetTy, Tys, 1142 FMF, ScalarizationCostPassed); 1143 } 1144