1 //===-- SystemZTargetTransformInfo.cpp - SystemZ-specific TTI -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements a TargetTransformInfo analysis pass specific to the 11 // SystemZ target machine. It uses the target's detailed information to provide 12 // more precise answers to certain TTI queries, while letting the target 13 // independent and default TTI implementations handle the rest. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "SystemZTargetTransformInfo.h" 18 #include "llvm/Analysis/TargetTransformInfo.h" 19 #include "llvm/CodeGen/BasicTTIImpl.h" 20 #include "llvm/CodeGen/CostTable.h" 21 #include "llvm/CodeGen/TargetLowering.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/Support/Debug.h" 24 using namespace llvm; 25 26 #define DEBUG_TYPE "systemztti" 27 28 //===----------------------------------------------------------------------===// 29 // 30 // SystemZ cost model. 31 // 32 //===----------------------------------------------------------------------===// 33 34 int SystemZTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) { 35 assert(Ty->isIntegerTy()); 36 37 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 38 // There is no cost model for constants with a bit size of 0. Return TCC_Free 39 // here, so that constant hoisting will ignore this constant. 40 if (BitSize == 0) 41 return TTI::TCC_Free; 42 // No cost model for operations on integers larger than 64 bit implemented yet. 43 if (BitSize > 64) 44 return TTI::TCC_Free; 45 46 if (Imm == 0) 47 return TTI::TCC_Free; 48 49 if (Imm.getBitWidth() <= 64) { 50 // Constants loaded via lgfi. 51 if (isInt<32>(Imm.getSExtValue())) 52 return TTI::TCC_Basic; 53 // Constants loaded via llilf. 54 if (isUInt<32>(Imm.getZExtValue())) 55 return TTI::TCC_Basic; 56 // Constants loaded via llihf: 57 if ((Imm.getZExtValue() & 0xffffffff) == 0) 58 return TTI::TCC_Basic; 59 60 return 2 * TTI::TCC_Basic; 61 } 62 63 return 4 * TTI::TCC_Basic; 64 } 65 66 int SystemZTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, 67 const APInt &Imm, Type *Ty) { 68 assert(Ty->isIntegerTy()); 69 70 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 71 // There is no cost model for constants with a bit size of 0. Return TCC_Free 72 // here, so that constant hoisting will ignore this constant. 73 if (BitSize == 0) 74 return TTI::TCC_Free; 75 // No cost model for operations on integers larger than 64 bit implemented yet. 76 if (BitSize > 64) 77 return TTI::TCC_Free; 78 79 switch (Opcode) { 80 default: 81 return TTI::TCC_Free; 82 case Instruction::GetElementPtr: 83 // Always hoist the base address of a GetElementPtr. This prevents the 84 // creation of new constants for every base constant that gets constant 85 // folded with the offset. 86 if (Idx == 0) 87 return 2 * TTI::TCC_Basic; 88 return TTI::TCC_Free; 89 case Instruction::Store: 90 if (Idx == 0 && Imm.getBitWidth() <= 64) { 91 // Any 8-bit immediate store can by implemented via mvi. 92 if (BitSize == 8) 93 return TTI::TCC_Free; 94 // 16-bit immediate values can be stored via mvhhi/mvhi/mvghi. 95 if (isInt<16>(Imm.getSExtValue())) 96 return TTI::TCC_Free; 97 } 98 break; 99 case Instruction::ICmp: 100 if (Idx == 1 && Imm.getBitWidth() <= 64) { 101 // Comparisons against signed 32-bit immediates implemented via cgfi. 102 if (isInt<32>(Imm.getSExtValue())) 103 return TTI::TCC_Free; 104 // Comparisons against unsigned 32-bit immediates implemented via clgfi. 105 if (isUInt<32>(Imm.getZExtValue())) 106 return TTI::TCC_Free; 107 } 108 break; 109 case Instruction::Add: 110 case Instruction::Sub: 111 if (Idx == 1 && Imm.getBitWidth() <= 64) { 112 // We use algfi/slgfi to add/subtract 32-bit unsigned immediates. 113 if (isUInt<32>(Imm.getZExtValue())) 114 return TTI::TCC_Free; 115 // Or their negation, by swapping addition vs. subtraction. 116 if (isUInt<32>(-Imm.getSExtValue())) 117 return TTI::TCC_Free; 118 } 119 break; 120 case Instruction::Mul: 121 if (Idx == 1 && Imm.getBitWidth() <= 64) { 122 // We use msgfi to multiply by 32-bit signed immediates. 123 if (isInt<32>(Imm.getSExtValue())) 124 return TTI::TCC_Free; 125 } 126 break; 127 case Instruction::Or: 128 case Instruction::Xor: 129 if (Idx == 1 && Imm.getBitWidth() <= 64) { 130 // Masks supported by oilf/xilf. 131 if (isUInt<32>(Imm.getZExtValue())) 132 return TTI::TCC_Free; 133 // Masks supported by oihf/xihf. 134 if ((Imm.getZExtValue() & 0xffffffff) == 0) 135 return TTI::TCC_Free; 136 } 137 break; 138 case Instruction::And: 139 if (Idx == 1 && Imm.getBitWidth() <= 64) { 140 // Any 32-bit AND operation can by implemented via nilf. 141 if (BitSize <= 32) 142 return TTI::TCC_Free; 143 // 64-bit masks supported by nilf. 144 if (isUInt<32>(~Imm.getZExtValue())) 145 return TTI::TCC_Free; 146 // 64-bit masks supported by nilh. 147 if ((Imm.getZExtValue() & 0xffffffff) == 0xffffffff) 148 return TTI::TCC_Free; 149 // Some 64-bit AND operations can be implemented via risbg. 150 const SystemZInstrInfo *TII = ST->getInstrInfo(); 151 unsigned Start, End; 152 if (TII->isRxSBGMask(Imm.getZExtValue(), BitSize, Start, End)) 153 return TTI::TCC_Free; 154 } 155 break; 156 case Instruction::Shl: 157 case Instruction::LShr: 158 case Instruction::AShr: 159 // Always return TCC_Free for the shift value of a shift instruction. 160 if (Idx == 1) 161 return TTI::TCC_Free; 162 break; 163 case Instruction::UDiv: 164 case Instruction::SDiv: 165 case Instruction::URem: 166 case Instruction::SRem: 167 case Instruction::Trunc: 168 case Instruction::ZExt: 169 case Instruction::SExt: 170 case Instruction::IntToPtr: 171 case Instruction::PtrToInt: 172 case Instruction::BitCast: 173 case Instruction::PHI: 174 case Instruction::Call: 175 case Instruction::Select: 176 case Instruction::Ret: 177 case Instruction::Load: 178 break; 179 } 180 181 return SystemZTTIImpl::getIntImmCost(Imm, Ty); 182 } 183 184 int SystemZTTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, 185 const APInt &Imm, Type *Ty) { 186 assert(Ty->isIntegerTy()); 187 188 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 189 // There is no cost model for constants with a bit size of 0. Return TCC_Free 190 // here, so that constant hoisting will ignore this constant. 191 if (BitSize == 0) 192 return TTI::TCC_Free; 193 // No cost model for operations on integers larger than 64 bit implemented yet. 194 if (BitSize > 64) 195 return TTI::TCC_Free; 196 197 switch (IID) { 198 default: 199 return TTI::TCC_Free; 200 case Intrinsic::sadd_with_overflow: 201 case Intrinsic::uadd_with_overflow: 202 case Intrinsic::ssub_with_overflow: 203 case Intrinsic::usub_with_overflow: 204 // These get expanded to include a normal addition/subtraction. 205 if (Idx == 1 && Imm.getBitWidth() <= 64) { 206 if (isUInt<32>(Imm.getZExtValue())) 207 return TTI::TCC_Free; 208 if (isUInt<32>(-Imm.getSExtValue())) 209 return TTI::TCC_Free; 210 } 211 break; 212 case Intrinsic::smul_with_overflow: 213 case Intrinsic::umul_with_overflow: 214 // These get expanded to include a normal multiplication. 215 if (Idx == 1 && Imm.getBitWidth() <= 64) { 216 if (isInt<32>(Imm.getSExtValue())) 217 return TTI::TCC_Free; 218 } 219 break; 220 case Intrinsic::experimental_stackmap: 221 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 222 return TTI::TCC_Free; 223 break; 224 case Intrinsic::experimental_patchpoint_void: 225 case Intrinsic::experimental_patchpoint_i64: 226 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 227 return TTI::TCC_Free; 228 break; 229 } 230 return SystemZTTIImpl::getIntImmCost(Imm, Ty); 231 } 232 233 TargetTransformInfo::PopcntSupportKind 234 SystemZTTIImpl::getPopcntSupport(unsigned TyWidth) { 235 assert(isPowerOf2_32(TyWidth) && "Type width must be power of 2"); 236 if (ST->hasPopulationCount() && TyWidth <= 64) 237 return TTI::PSK_FastHardware; 238 return TTI::PSK_Software; 239 } 240 241 void SystemZTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 242 TTI::UnrollingPreferences &UP) { 243 // Find out if L contains a call, what the machine instruction count 244 // estimate is, and how many stores there are. 245 bool HasCall = false; 246 unsigned NumStores = 0; 247 for (auto &BB : L->blocks()) 248 for (auto &I : *BB) { 249 if (isa<CallInst>(&I) || isa<InvokeInst>(&I)) { 250 ImmutableCallSite CS(&I); 251 if (const Function *F = CS.getCalledFunction()) { 252 if (isLoweredToCall(F)) 253 HasCall = true; 254 if (F->getIntrinsicID() == Intrinsic::memcpy || 255 F->getIntrinsicID() == Intrinsic::memset) 256 NumStores++; 257 } else { // indirect call. 258 HasCall = true; 259 } 260 } 261 if (isa<StoreInst>(&I)) { 262 Type *MemAccessTy = I.getOperand(0)->getType(); 263 NumStores += getMemoryOpCost(Instruction::Store, MemAccessTy, 0, 0); 264 } 265 } 266 267 // The z13 processor will run out of store tags if too many stores 268 // are fed into it too quickly. Therefore make sure there are not 269 // too many stores in the resulting unrolled loop. 270 unsigned const Max = (NumStores ? (12 / NumStores) : UINT_MAX); 271 272 if (HasCall) { 273 // Only allow full unrolling if loop has any calls. 274 UP.FullUnrollMaxCount = Max; 275 UP.MaxCount = 1; 276 return; 277 } 278 279 UP.MaxCount = Max; 280 if (UP.MaxCount <= 1) 281 return; 282 283 // Allow partial and runtime trip count unrolling. 284 UP.Partial = UP.Runtime = true; 285 286 UP.PartialThreshold = 75; 287 UP.DefaultUnrollRuntimeCount = 4; 288 289 // Allow expensive instructions in the pre-header of the loop. 290 UP.AllowExpensiveTripCount = true; 291 292 UP.Force = true; 293 } 294 295 296 bool SystemZTTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1, 297 TargetTransformInfo::LSRCost &C2) { 298 // SystemZ specific: check instruction count (first), and don't care about 299 // ImmCost, since offsets are checked explicitly. 300 return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost, 301 C1.NumIVMuls, C1.NumBaseAdds, 302 C1.ScaleCost, C1.SetupCost) < 303 std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost, 304 C2.NumIVMuls, C2.NumBaseAdds, 305 C2.ScaleCost, C2.SetupCost); 306 } 307 308 unsigned SystemZTTIImpl::getNumberOfRegisters(bool Vector) { 309 if (!Vector) 310 // Discount the stack pointer. Also leave out %r0, since it can't 311 // be used in an address. 312 return 14; 313 if (ST->hasVector()) 314 return 32; 315 return 0; 316 } 317 318 unsigned SystemZTTIImpl::getRegisterBitWidth(bool Vector) const { 319 if (!Vector) 320 return 64; 321 if (ST->hasVector()) 322 return 128; 323 return 0; 324 } 325 326 bool SystemZTTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) { 327 EVT VT = TLI->getValueType(DL, DataType); 328 return (VT.isScalarInteger() && TLI->isTypeLegal(VT)); 329 } 330 331 // Return the bit size for the scalar type or vector element 332 // type. getScalarSizeInBits() returns 0 for a pointer type. 333 static unsigned getScalarSizeInBits(Type *Ty) { 334 unsigned Size = 335 (Ty->isPtrOrPtrVectorTy() ? 64U : Ty->getScalarSizeInBits()); 336 assert(Size > 0 && "Element must have non-zero size."); 337 return Size; 338 } 339 340 // getNumberOfParts() calls getTypeLegalizationCost() which splits the vector 341 // type until it is legal. This would e.g. return 4 for <6 x i64>, instead of 342 // 3. 343 static unsigned getNumVectorRegs(Type *Ty) { 344 assert(Ty->isVectorTy() && "Expected vector type"); 345 unsigned WideBits = getScalarSizeInBits(Ty) * Ty->getVectorNumElements(); 346 assert(WideBits > 0 && "Could not compute size of vector"); 347 return ((WideBits % 128U) ? ((WideBits / 128U) + 1) : (WideBits / 128U)); 348 } 349 350 int SystemZTTIImpl::getArithmeticInstrCost( 351 unsigned Opcode, Type *Ty, 352 TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info, 353 TTI::OperandValueProperties Opd1PropInfo, 354 TTI::OperandValueProperties Opd2PropInfo, 355 ArrayRef<const Value *> Args) { 356 357 // TODO: return a good value for BB-VECTORIZER that includes the 358 // immediate loads, which we do not want to count for the loop 359 // vectorizer, since they are hopefully hoisted out of the loop. This 360 // would require a new parameter 'InLoop', but not sure if constant 361 // args are common enough to motivate this. 362 363 unsigned ScalarBits = Ty->getScalarSizeInBits(); 364 365 // There are thre cases of division and remainder: Dividing with a register 366 // needs a divide instruction. A divisor which is a power of two constant 367 // can be implemented with a sequence of shifts. Any other constant needs a 368 // multiply and shifts. 369 const unsigned DivInstrCost = 20; 370 const unsigned DivMulSeqCost = 10; 371 const unsigned SDivPow2Cost = 4; 372 373 bool SignedDivRem = 374 Opcode == Instruction::SDiv || Opcode == Instruction::SRem; 375 bool UnsignedDivRem = 376 Opcode == Instruction::UDiv || Opcode == Instruction::URem; 377 378 // Check for a constant divisor. 379 bool DivRemConst = false; 380 bool DivRemConstPow2 = false; 381 if ((SignedDivRem || UnsignedDivRem) && Args.size() == 2) { 382 if (const Constant *C = dyn_cast<Constant>(Args[1])) { 383 const ConstantInt *CVal = 384 (C->getType()->isVectorTy() 385 ? dyn_cast_or_null<const ConstantInt>(C->getSplatValue()) 386 : dyn_cast<const ConstantInt>(C)); 387 if (CVal != nullptr && 388 (CVal->getValue().isPowerOf2() || (-CVal->getValue()).isPowerOf2())) 389 DivRemConstPow2 = true; 390 else 391 DivRemConst = true; 392 } 393 } 394 395 if (Ty->isVectorTy()) { 396 assert(ST->hasVector() && 397 "getArithmeticInstrCost() called with vector type."); 398 unsigned VF = Ty->getVectorNumElements(); 399 unsigned NumVectors = getNumVectorRegs(Ty); 400 401 // These vector operations are custom handled, but are still supported 402 // with one instruction per vector, regardless of element size. 403 if (Opcode == Instruction::Shl || Opcode == Instruction::LShr || 404 Opcode == Instruction::AShr) { 405 return NumVectors; 406 } 407 408 if (DivRemConstPow2) 409 return (NumVectors * (SignedDivRem ? SDivPow2Cost : 1)); 410 if (DivRemConst) 411 return VF * DivMulSeqCost + getScalarizationOverhead(Ty, Args); 412 if ((SignedDivRem || UnsignedDivRem) && VF > 4) 413 // Temporary hack: disable high vectorization factors with integer 414 // division/remainder, which will get scalarized and handled with 415 // GR128 registers. The mischeduler is not clever enough to avoid 416 // spilling yet. 417 return 1000; 418 419 // These FP operations are supported with a single vector instruction for 420 // double (base implementation assumes float generally costs 2). For 421 // FP128, the scalar cost is 1, and there is no overhead since the values 422 // are already in scalar registers. 423 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub || 424 Opcode == Instruction::FMul || Opcode == Instruction::FDiv) { 425 switch (ScalarBits) { 426 case 32: { 427 // The vector enhancements facility 1 provides v4f32 instructions. 428 if (ST->hasVectorEnhancements1()) 429 return NumVectors; 430 // Return the cost of multiple scalar invocation plus the cost of 431 // inserting and extracting the values. 432 unsigned ScalarCost = 433 getArithmeticInstrCost(Opcode, Ty->getScalarType()); 434 unsigned Cost = (VF * ScalarCost) + getScalarizationOverhead(Ty, Args); 435 // FIXME: VF 2 for these FP operations are currently just as 436 // expensive as for VF 4. 437 if (VF == 2) 438 Cost *= 2; 439 return Cost; 440 } 441 case 64: 442 case 128: 443 return NumVectors; 444 default: 445 break; 446 } 447 } 448 449 // There is no native support for FRem. 450 if (Opcode == Instruction::FRem) { 451 unsigned Cost = (VF * LIBCALL_COST) + getScalarizationOverhead(Ty, Args); 452 // FIXME: VF 2 for float is currently just as expensive as for VF 4. 453 if (VF == 2 && ScalarBits == 32) 454 Cost *= 2; 455 return Cost; 456 } 457 } 458 else { // Scalar: 459 // These FP operations are supported with a dedicated instruction for 460 // float, double and fp128 (base implementation assumes float generally 461 // costs 2). 462 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub || 463 Opcode == Instruction::FMul || Opcode == Instruction::FDiv) 464 return 1; 465 466 // There is no native support for FRem. 467 if (Opcode == Instruction::FRem) 468 return LIBCALL_COST; 469 470 // Or requires one instruction, although it has custom handling for i64. 471 if (Opcode == Instruction::Or) 472 return 1; 473 474 if (Opcode == Instruction::Xor && ScalarBits == 1) { 475 if (ST->hasLoadStoreOnCond2()) 476 return 5; // 2 * (li 0; loc 1); xor 477 return 7; // 2 * ipm sequences ; xor ; shift ; compare 478 } 479 480 if (DivRemConstPow2) 481 return (SignedDivRem ? SDivPow2Cost : 1); 482 if (DivRemConst) 483 return DivMulSeqCost; 484 if (SignedDivRem || UnsignedDivRem) 485 return DivInstrCost; 486 } 487 488 // Fallback to the default implementation. 489 return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info, 490 Opd1PropInfo, Opd2PropInfo, Args); 491 } 492 493 int SystemZTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, 494 Type *SubTp) { 495 assert (Tp->isVectorTy()); 496 assert (ST->hasVector() && "getShuffleCost() called."); 497 unsigned NumVectors = getNumVectorRegs(Tp); 498 499 // TODO: Since fp32 is expanded, the shuffle cost should always be 0. 500 501 // FP128 values are always in scalar registers, so there is no work 502 // involved with a shuffle, except for broadcast. In that case register 503 // moves are done with a single instruction per element. 504 if (Tp->getScalarType()->isFP128Ty()) 505 return (Kind == TargetTransformInfo::SK_Broadcast ? NumVectors - 1 : 0); 506 507 switch (Kind) { 508 case TargetTransformInfo::SK_ExtractSubvector: 509 // ExtractSubvector Index indicates start offset. 510 511 // Extracting a subvector from first index is a noop. 512 return (Index == 0 ? 0 : NumVectors); 513 514 case TargetTransformInfo::SK_Broadcast: 515 // Loop vectorizer calls here to figure out the extra cost of 516 // broadcasting a loaded value to all elements of a vector. Since vlrep 517 // loads and replicates with a single instruction, adjust the returned 518 // value. 519 return NumVectors - 1; 520 521 default: 522 523 // SystemZ supports single instruction permutation / replication. 524 return NumVectors; 525 } 526 527 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); 528 } 529 530 // Return the log2 difference of the element sizes of the two vector types. 531 static unsigned getElSizeLog2Diff(Type *Ty0, Type *Ty1) { 532 unsigned Bits0 = Ty0->getScalarSizeInBits(); 533 unsigned Bits1 = Ty1->getScalarSizeInBits(); 534 535 if (Bits1 > Bits0) 536 return (Log2_32(Bits1) - Log2_32(Bits0)); 537 538 return (Log2_32(Bits0) - Log2_32(Bits1)); 539 } 540 541 // Return the number of instructions needed to truncate SrcTy to DstTy. 542 unsigned SystemZTTIImpl:: 543 getVectorTruncCost(Type *SrcTy, Type *DstTy) { 544 assert (SrcTy->isVectorTy() && DstTy->isVectorTy()); 545 assert (SrcTy->getPrimitiveSizeInBits() > DstTy->getPrimitiveSizeInBits() && 546 "Packing must reduce size of vector type."); 547 assert (SrcTy->getVectorNumElements() == DstTy->getVectorNumElements() && 548 "Packing should not change number of elements."); 549 550 // TODO: Since fp32 is expanded, the extract cost should always be 0. 551 552 unsigned NumParts = getNumVectorRegs(SrcTy); 553 if (NumParts <= 2) 554 // Up to 2 vector registers can be truncated efficiently with pack or 555 // permute. The latter requires an immediate mask to be loaded, which 556 // typically gets hoisted out of a loop. TODO: return a good value for 557 // BB-VECTORIZER that includes the immediate loads, which we do not want 558 // to count for the loop vectorizer. 559 return 1; 560 561 unsigned Cost = 0; 562 unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy); 563 unsigned VF = SrcTy->getVectorNumElements(); 564 for (unsigned P = 0; P < Log2Diff; ++P) { 565 if (NumParts > 1) 566 NumParts /= 2; 567 Cost += NumParts; 568 } 569 570 // Currently, a general mix of permutes and pack instructions is output by 571 // isel, which follow the cost computation above except for this case which 572 // is one instruction less: 573 if (VF == 8 && SrcTy->getScalarSizeInBits() == 64 && 574 DstTy->getScalarSizeInBits() == 8) 575 Cost--; 576 577 return Cost; 578 } 579 580 // Return the cost of converting a vector bitmask produced by a compare 581 // (SrcTy), to the type of the select or extend instruction (DstTy). 582 unsigned SystemZTTIImpl:: 583 getVectorBitmaskConversionCost(Type *SrcTy, Type *DstTy) { 584 assert (SrcTy->isVectorTy() && DstTy->isVectorTy() && 585 "Should only be called with vector types."); 586 587 unsigned PackCost = 0; 588 unsigned SrcScalarBits = SrcTy->getScalarSizeInBits(); 589 unsigned DstScalarBits = DstTy->getScalarSizeInBits(); 590 unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy); 591 if (SrcScalarBits > DstScalarBits) 592 // The bitmask will be truncated. 593 PackCost = getVectorTruncCost(SrcTy, DstTy); 594 else if (SrcScalarBits < DstScalarBits) { 595 unsigned DstNumParts = getNumVectorRegs(DstTy); 596 // Each vector select needs its part of the bitmask unpacked. 597 PackCost = Log2Diff * DstNumParts; 598 // Extra cost for moving part of mask before unpacking. 599 PackCost += DstNumParts - 1; 600 } 601 602 return PackCost; 603 } 604 605 // Return the type of the compared operands. This is needed to compute the 606 // cost for a Select / ZExt or SExt instruction. 607 static Type *getCmpOpsType(const Instruction *I, unsigned VF = 1) { 608 Type *OpTy = nullptr; 609 if (CmpInst *CI = dyn_cast<CmpInst>(I->getOperand(0))) 610 OpTy = CI->getOperand(0)->getType(); 611 else if (Instruction *LogicI = dyn_cast<Instruction>(I->getOperand(0))) 612 if (LogicI->getNumOperands() == 2) 613 if (CmpInst *CI0 = dyn_cast<CmpInst>(LogicI->getOperand(0))) 614 if (isa<CmpInst>(LogicI->getOperand(1))) 615 OpTy = CI0->getOperand(0)->getType(); 616 617 if (OpTy != nullptr) { 618 if (VF == 1) { 619 assert (!OpTy->isVectorTy() && "Expected scalar type"); 620 return OpTy; 621 } 622 // Return the potentially vectorized type based on 'I' and 'VF'. 'I' may 623 // be either scalar or already vectorized with a same or lesser VF. 624 Type *ElTy = OpTy->getScalarType(); 625 return VectorType::get(ElTy, VF); 626 } 627 628 return nullptr; 629 } 630 631 // Get the cost of converting a boolean vector to a vector with same width 632 // and element size as Dst, plus the cost of zero extending if needed. 633 unsigned SystemZTTIImpl:: 634 getBoolVecToIntConversionCost(unsigned Opcode, Type *Dst, 635 const Instruction *I) { 636 assert (Dst->isVectorTy()); 637 unsigned VF = Dst->getVectorNumElements(); 638 unsigned Cost = 0; 639 // If we know what the widths of the compared operands, get any cost of 640 // converting it to match Dst. Otherwise assume same widths. 641 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr); 642 if (CmpOpTy != nullptr) 643 Cost = getVectorBitmaskConversionCost(CmpOpTy, Dst); 644 if (Opcode == Instruction::ZExt || Opcode == Instruction::UIToFP) 645 // One 'vn' per dst vector with an immediate mask. 646 Cost += getNumVectorRegs(Dst); 647 return Cost; 648 } 649 650 int SystemZTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, 651 const Instruction *I) { 652 unsigned DstScalarBits = Dst->getScalarSizeInBits(); 653 unsigned SrcScalarBits = Src->getScalarSizeInBits(); 654 655 if (Src->isVectorTy()) { 656 assert (ST->hasVector() && "getCastInstrCost() called with vector type."); 657 assert (Dst->isVectorTy()); 658 unsigned VF = Src->getVectorNumElements(); 659 unsigned NumDstVectors = getNumVectorRegs(Dst); 660 unsigned NumSrcVectors = getNumVectorRegs(Src); 661 662 if (Opcode == Instruction::Trunc) { 663 if (Src->getScalarSizeInBits() == Dst->getScalarSizeInBits()) 664 return 0; // Check for NOOP conversions. 665 return getVectorTruncCost(Src, Dst); 666 } 667 668 if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 669 if (SrcScalarBits >= 8) { 670 // ZExt/SExt will be handled with one unpack per doubling of width. 671 unsigned NumUnpacks = getElSizeLog2Diff(Src, Dst); 672 673 // For types that spans multiple vector registers, some additional 674 // instructions are used to setup the unpacking. 675 unsigned NumSrcVectorOps = 676 (NumUnpacks > 1 ? (NumDstVectors - NumSrcVectors) 677 : (NumDstVectors / 2)); 678 679 return (NumUnpacks * NumDstVectors) + NumSrcVectorOps; 680 } 681 else if (SrcScalarBits == 1) 682 return getBoolVecToIntConversionCost(Opcode, Dst, I); 683 } 684 685 if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP || 686 Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI) { 687 // TODO: Fix base implementation which could simplify things a bit here 688 // (seems to miss on differentiating on scalar/vector types). 689 690 // Only 64 bit vector conversions are natively supported. 691 if (DstScalarBits == 64) { 692 if (SrcScalarBits == 64) 693 return NumDstVectors; 694 695 if (SrcScalarBits == 1) 696 return getBoolVecToIntConversionCost(Opcode, Dst, I) + NumDstVectors; 697 } 698 699 // Return the cost of multiple scalar invocation plus the cost of 700 // inserting and extracting the values. Base implementation does not 701 // realize float->int gets scalarized. 702 unsigned ScalarCost = getCastInstrCost(Opcode, Dst->getScalarType(), 703 Src->getScalarType()); 704 unsigned TotCost = VF * ScalarCost; 705 bool NeedsInserts = true, NeedsExtracts = true; 706 // FP128 registers do not get inserted or extracted. 707 if (DstScalarBits == 128 && 708 (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP)) 709 NeedsInserts = false; 710 if (SrcScalarBits == 128 && 711 (Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI)) 712 NeedsExtracts = false; 713 714 TotCost += getScalarizationOverhead(Src, false, NeedsExtracts); 715 TotCost += getScalarizationOverhead(Dst, NeedsInserts, false); 716 717 // FIXME: VF 2 for float<->i32 is currently just as expensive as for VF 4. 718 if (VF == 2 && SrcScalarBits == 32 && DstScalarBits == 32) 719 TotCost *= 2; 720 721 return TotCost; 722 } 723 724 if (Opcode == Instruction::FPTrunc) { 725 if (SrcScalarBits == 128) // fp128 -> double/float + inserts of elements. 726 return VF /*ldxbr/lexbr*/ + getScalarizationOverhead(Dst, true, false); 727 else // double -> float 728 return VF / 2 /*vledb*/ + std::max(1U, VF / 4 /*vperm*/); 729 } 730 731 if (Opcode == Instruction::FPExt) { 732 if (SrcScalarBits == 32 && DstScalarBits == 64) { 733 // float -> double is very rare and currently unoptimized. Instead of 734 // using vldeb, which can do two at a time, all conversions are 735 // scalarized. 736 return VF * 2; 737 } 738 // -> fp128. VF * lxdb/lxeb + extraction of elements. 739 return VF + getScalarizationOverhead(Src, false, true); 740 } 741 } 742 else { // Scalar 743 assert (!Dst->isVectorTy()); 744 745 if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP) { 746 if (SrcScalarBits >= 32 || 747 (I != nullptr && isa<LoadInst>(I->getOperand(0)))) 748 return 1; 749 return SrcScalarBits > 1 ? 2 /*i8/i16 extend*/ : 5 /*branch seq.*/; 750 } 751 752 if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) && 753 Src->isIntegerTy(1)) { 754 if (ST->hasLoadStoreOnCond2()) 755 return 2; // li 0; loc 1 756 757 // This should be extension of a compare i1 result, which is done with 758 // ipm and a varying sequence of instructions. 759 unsigned Cost = 0; 760 if (Opcode == Instruction::SExt) 761 Cost = (DstScalarBits < 64 ? 3 : 4); 762 if (Opcode == Instruction::ZExt) 763 Cost = 3; 764 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I) : nullptr); 765 if (CmpOpTy != nullptr && CmpOpTy->isFloatingPointTy()) 766 // If operands of an fp-type was compared, this costs +1. 767 Cost++; 768 return Cost; 769 } 770 } 771 772 return BaseT::getCastInstrCost(Opcode, Dst, Src, I); 773 } 774 775 // Scalar i8 / i16 operations will typically be made after first extending 776 // the operands to i32. 777 static unsigned getOperandsExtensionCost(const Instruction *I) { 778 unsigned ExtCost = 0; 779 for (Value *Op : I->operands()) 780 // A load of i8 or i16 sign/zero extends to i32. 781 if (!isa<LoadInst>(Op) && !isa<ConstantInt>(Op)) 782 ExtCost++; 783 784 return ExtCost; 785 } 786 787 int SystemZTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 788 Type *CondTy, const Instruction *I) { 789 if (ValTy->isVectorTy()) { 790 assert (ST->hasVector() && "getCmpSelInstrCost() called with vector type."); 791 unsigned VF = ValTy->getVectorNumElements(); 792 793 // Called with a compare instruction. 794 if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) { 795 unsigned PredicateExtraCost = 0; 796 if (I != nullptr) { 797 // Some predicates cost one or two extra instructions. 798 switch (cast<CmpInst>(I)->getPredicate()) { 799 case CmpInst::Predicate::ICMP_NE: 800 case CmpInst::Predicate::ICMP_UGE: 801 case CmpInst::Predicate::ICMP_ULE: 802 case CmpInst::Predicate::ICMP_SGE: 803 case CmpInst::Predicate::ICMP_SLE: 804 PredicateExtraCost = 1; 805 break; 806 case CmpInst::Predicate::FCMP_ONE: 807 case CmpInst::Predicate::FCMP_ORD: 808 case CmpInst::Predicate::FCMP_UEQ: 809 case CmpInst::Predicate::FCMP_UNO: 810 PredicateExtraCost = 2; 811 break; 812 default: 813 break; 814 } 815 } 816 817 // Float is handled with 2*vmr[lh]f + 2*vldeb + vfchdb for each pair of 818 // floats. FIXME: <2 x float> generates same code as <4 x float>. 819 unsigned CmpCostPerVector = (ValTy->getScalarType()->isFloatTy() ? 10 : 1); 820 unsigned NumVecs_cmp = getNumVectorRegs(ValTy); 821 822 unsigned Cost = (NumVecs_cmp * (CmpCostPerVector + PredicateExtraCost)); 823 return Cost; 824 } 825 else { // Called with a select instruction. 826 assert (Opcode == Instruction::Select); 827 828 // We can figure out the extra cost of packing / unpacking if the 829 // instruction was passed and the compare instruction is found. 830 unsigned PackCost = 0; 831 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr); 832 if (CmpOpTy != nullptr) 833 PackCost = 834 getVectorBitmaskConversionCost(CmpOpTy, ValTy); 835 836 return getNumVectorRegs(ValTy) /*vsel*/ + PackCost; 837 } 838 } 839 else { // Scalar 840 switch (Opcode) { 841 case Instruction::ICmp: { 842 // A loaded value compared with 0 with multiple users becomes Load and 843 // Test. The load is then not foldable, so return 0 cost for the ICmp. 844 unsigned ScalarBits = ValTy->getScalarSizeInBits(); 845 if (I != nullptr && ScalarBits >= 32) 846 if (LoadInst *Ld = dyn_cast<LoadInst>(I->getOperand(0))) 847 if (const ConstantInt *C = dyn_cast<ConstantInt>(I->getOperand(1))) 848 if (!Ld->hasOneUse() && Ld->getParent() == I->getParent() && 849 C->getZExtValue() == 0) 850 return 0; 851 852 unsigned Cost = 1; 853 if (ValTy->isIntegerTy() && ValTy->getScalarSizeInBits() <= 16) 854 Cost += (I != nullptr ? getOperandsExtensionCost(I) : 2); 855 return Cost; 856 } 857 case Instruction::Select: 858 if (ValTy->isFloatingPointTy()) 859 return 4; // No load on condition for FP - costs a conditional jump. 860 return 1; // Load On Condition. 861 } 862 } 863 864 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, nullptr); 865 } 866 867 int SystemZTTIImpl:: 868 getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) { 869 // vlvgp will insert two grs into a vector register, so only count half the 870 // number of instructions. 871 if (Opcode == Instruction::InsertElement && Val->isIntOrIntVectorTy(64)) 872 return ((Index % 2 == 0) ? 1 : 0); 873 874 if (Opcode == Instruction::ExtractElement) { 875 int Cost = ((getScalarSizeInBits(Val) == 1) ? 2 /*+test-under-mask*/ : 1); 876 877 // Give a slight penalty for moving out of vector pipeline to FXU unit. 878 if (Index == 0 && Val->isIntOrIntVectorTy()) 879 Cost += 1; 880 881 return Cost; 882 } 883 884 return BaseT::getVectorInstrCost(Opcode, Val, Index); 885 } 886 887 // Check if a load may be folded as a memory operand in its user. 888 bool SystemZTTIImpl:: 889 isFoldableLoad(const LoadInst *Ld, const Instruction *&FoldedValue) { 890 if (!Ld->hasOneUse()) 891 return false; 892 FoldedValue = Ld; 893 const Instruction *UserI = cast<Instruction>(*Ld->user_begin()); 894 unsigned LoadedBits = getScalarSizeInBits(Ld->getType()); 895 unsigned TruncBits = 0; 896 unsigned SExtBits = 0; 897 unsigned ZExtBits = 0; 898 if (UserI->hasOneUse()) { 899 unsigned UserBits = UserI->getType()->getScalarSizeInBits(); 900 if (isa<TruncInst>(UserI)) 901 TruncBits = UserBits; 902 else if (isa<SExtInst>(UserI)) 903 SExtBits = UserBits; 904 else if (isa<ZExtInst>(UserI)) 905 ZExtBits = UserBits; 906 } 907 if (TruncBits || SExtBits || ZExtBits) { 908 FoldedValue = UserI; 909 UserI = cast<Instruction>(*UserI->user_begin()); 910 // Load (single use) -> trunc/extend (single use) -> UserI 911 } 912 if ((UserI->getOpcode() == Instruction::Sub || 913 UserI->getOpcode() == Instruction::SDiv || 914 UserI->getOpcode() == Instruction::UDiv) && 915 UserI->getOperand(1) != FoldedValue) 916 return false; // Not commutative, only RHS foldable. 917 // LoadOrTruncBits holds the number of effectively loaded bits, but 0 if an 918 // extension was made of the load. 919 unsigned LoadOrTruncBits = 920 ((SExtBits || ZExtBits) ? 0 : (TruncBits ? TruncBits : LoadedBits)); 921 switch (UserI->getOpcode()) { 922 case Instruction::Add: // SE: 16->32, 16/32->64, z14:16->64. ZE: 32->64 923 case Instruction::Sub: 924 case Instruction::ICmp: 925 if (LoadedBits == 32 && ZExtBits == 64) 926 return true; 927 LLVM_FALLTHROUGH; 928 case Instruction::Mul: // SE: 16->32, 32->64, z14:16->64 929 if (UserI->getOpcode() != Instruction::ICmp) { 930 if (LoadedBits == 16 && 931 (SExtBits == 32 || 932 (SExtBits == 64 && ST->hasMiscellaneousExtensions2()))) 933 return true; 934 if (LoadOrTruncBits == 16) 935 return true; 936 } 937 LLVM_FALLTHROUGH; 938 case Instruction::SDiv:// SE: 32->64 939 if (LoadedBits == 32 && SExtBits == 64) 940 return true; 941 LLVM_FALLTHROUGH; 942 case Instruction::UDiv: 943 case Instruction::And: 944 case Instruction::Or: 945 case Instruction::Xor: 946 // This also makes sense for float operations, but disabled for now due 947 // to regressions. 948 // case Instruction::FCmp: 949 // case Instruction::FAdd: 950 // case Instruction::FSub: 951 // case Instruction::FMul: 952 // case Instruction::FDiv: 953 954 // All possible extensions of memory checked above. 955 956 // Comparison between memory and immediate. 957 if (UserI->getOpcode() == Instruction::ICmp) 958 if (ConstantInt *CI = dyn_cast<ConstantInt>(UserI->getOperand(1))) 959 if (isUInt<16>(CI->getZExtValue())) 960 return true; 961 return (LoadOrTruncBits == 32 || LoadOrTruncBits == 64); 962 break; 963 } 964 return false; 965 } 966 967 static bool isBswapIntrinsicCall(const Value *V) { 968 if (const Instruction *I = dyn_cast<Instruction>(V)) 969 if (auto *CI = dyn_cast<CallInst>(I)) 970 if (auto *F = CI->getCalledFunction()) 971 if (F->getIntrinsicID() == Intrinsic::bswap) 972 return true; 973 return false; 974 } 975 976 int SystemZTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, 977 unsigned Alignment, unsigned AddressSpace, 978 const Instruction *I) { 979 assert(!Src->isVoidTy() && "Invalid type"); 980 981 if (!Src->isVectorTy() && Opcode == Instruction::Load && I != nullptr) { 982 // Store the load or its truncated or extended value in FoldedValue. 983 const Instruction *FoldedValue = nullptr; 984 if (isFoldableLoad(cast<LoadInst>(I), FoldedValue)) { 985 const Instruction *UserI = cast<Instruction>(*FoldedValue->user_begin()); 986 assert (UserI->getNumOperands() == 2 && "Expected a binop."); 987 988 // UserI can't fold two loads, so in that case return 0 cost only 989 // half of the time. 990 for (unsigned i = 0; i < 2; ++i) { 991 if (UserI->getOperand(i) == FoldedValue) 992 continue; 993 994 if (Instruction *OtherOp = dyn_cast<Instruction>(UserI->getOperand(i))){ 995 LoadInst *OtherLoad = dyn_cast<LoadInst>(OtherOp); 996 if (!OtherLoad && 997 (isa<TruncInst>(OtherOp) || isa<SExtInst>(OtherOp) || 998 isa<ZExtInst>(OtherOp))) 999 OtherLoad = dyn_cast<LoadInst>(OtherOp->getOperand(0)); 1000 if (OtherLoad && isFoldableLoad(OtherLoad, FoldedValue/*dummy*/)) 1001 return i == 0; // Both operands foldable. 1002 } 1003 } 1004 1005 return 0; // Only I is foldable in user. 1006 } 1007 } 1008 1009 unsigned NumOps = 1010 (Src->isVectorTy() ? getNumVectorRegs(Src) : getNumberOfParts(Src)); 1011 1012 // Store/Load reversed saves one instruction. 1013 if (!Src->isVectorTy() && NumOps == 1 && I != nullptr) { 1014 if (Opcode == Instruction::Load && I->hasOneUse()) { 1015 const Instruction *LdUser = cast<Instruction>(*I->user_begin()); 1016 // In case of load -> bswap -> store, return normal cost for the load. 1017 if (isBswapIntrinsicCall(LdUser) && 1018 (!LdUser->hasOneUse() || !isa<StoreInst>(*LdUser->user_begin()))) 1019 return 0; 1020 } 1021 else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) { 1022 const Value *StoredVal = SI->getValueOperand(); 1023 if (StoredVal->hasOneUse() && isBswapIntrinsicCall(StoredVal)) 1024 return 0; 1025 } 1026 } 1027 1028 if (Src->getScalarSizeInBits() == 128) 1029 // 128 bit scalars are held in a pair of two 64 bit registers. 1030 NumOps *= 2; 1031 1032 return NumOps; 1033 } 1034 1035 // The generic implementation of getInterleavedMemoryOpCost() is based on 1036 // adding costs of the memory operations plus all the extracts and inserts 1037 // needed for using / defining the vector operands. The SystemZ version does 1038 // roughly the same but bases the computations on vector permutations 1039 // instead. 1040 int SystemZTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, 1041 unsigned Factor, 1042 ArrayRef<unsigned> Indices, 1043 unsigned Alignment, 1044 unsigned AddressSpace, 1045 bool UseMaskForCond, 1046 bool UseMaskForGaps) { 1047 if (UseMaskForCond || UseMaskForGaps) 1048 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 1049 Alignment, AddressSpace, 1050 UseMaskForCond, UseMaskForGaps); 1051 assert(isa<VectorType>(VecTy) && 1052 "Expect a vector type for interleaved memory op"); 1053 1054 // Return the ceiling of dividing A by B. 1055 auto ceil = [](unsigned A, unsigned B) { return (A + B - 1) / B; }; 1056 1057 unsigned NumElts = VecTy->getVectorNumElements(); 1058 assert(Factor > 1 && NumElts % Factor == 0 && "Invalid interleave factor"); 1059 unsigned VF = NumElts / Factor; 1060 unsigned NumEltsPerVecReg = (128U / getScalarSizeInBits(VecTy)); 1061 unsigned NumVectorMemOps = getNumVectorRegs(VecTy); 1062 unsigned NumPermutes = 0; 1063 1064 if (Opcode == Instruction::Load) { 1065 // Loading interleave groups may have gaps, which may mean fewer 1066 // loads. Find out how many vectors will be loaded in total, and in how 1067 // many of them each value will be in. 1068 BitVector UsedInsts(NumVectorMemOps, false); 1069 std::vector<BitVector> ValueVecs(Factor, BitVector(NumVectorMemOps, false)); 1070 for (unsigned Index : Indices) 1071 for (unsigned Elt = 0; Elt < VF; ++Elt) { 1072 unsigned Vec = (Index + Elt * Factor) / NumEltsPerVecReg; 1073 UsedInsts.set(Vec); 1074 ValueVecs[Index].set(Vec); 1075 } 1076 NumVectorMemOps = UsedInsts.count(); 1077 1078 for (unsigned Index : Indices) { 1079 // Estimate that each loaded source vector containing this Index 1080 // requires one operation, except that vperm can handle two input 1081 // registers first time for each dst vector. 1082 unsigned NumSrcVecs = ValueVecs[Index].count(); 1083 unsigned NumDstVecs = ceil(VF * getScalarSizeInBits(VecTy), 128U); 1084 assert (NumSrcVecs >= NumDstVecs && "Expected at least as many sources"); 1085 NumPermutes += std::max(1U, NumSrcVecs - NumDstVecs); 1086 } 1087 } else { 1088 // Estimate the permutes for each stored vector as the smaller of the 1089 // number of elements and the number of source vectors. Subtract one per 1090 // dst vector for vperm (S.A.). 1091 unsigned NumSrcVecs = std::min(NumEltsPerVecReg, Factor); 1092 unsigned NumDstVecs = NumVectorMemOps; 1093 assert (NumSrcVecs > 1 && "Expected at least two source vectors."); 1094 NumPermutes += (NumDstVecs * NumSrcVecs) - NumDstVecs; 1095 } 1096 1097 // Cost of load/store operations and the permutations needed. 1098 return NumVectorMemOps + NumPermutes; 1099 } 1100 1101 static int getVectorIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy) { 1102 if (RetTy->isVectorTy() && ID == Intrinsic::bswap) 1103 return getNumVectorRegs(RetTy); // VPERM 1104 return -1; 1105 } 1106 1107 int SystemZTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 1108 ArrayRef<Value *> Args, 1109 FastMathFlags FMF, unsigned VF) { 1110 int Cost = getVectorIntrinsicInstrCost(ID, RetTy); 1111 if (Cost != -1) 1112 return Cost; 1113 return BaseT::getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF); 1114 } 1115 1116 int SystemZTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 1117 ArrayRef<Type *> Tys, 1118 FastMathFlags FMF, 1119 unsigned ScalarizationCostPassed) { 1120 int Cost = getVectorIntrinsicInstrCost(ID, RetTy); 1121 if (Cost != -1) 1122 return Cost; 1123 return BaseT::getIntrinsicInstrCost(ID, RetTy, Tys, 1124 FMF, ScalarizationCostPassed); 1125 } 1126