1 //===-- SystemZTargetTransformInfo.cpp - SystemZ-specific TTI -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a TargetTransformInfo analysis pass specific to the 10 // SystemZ target machine. It uses the target's detailed information to provide 11 // more precise answers to certain TTI queries, while letting the target 12 // independent and default TTI implementations handle the rest. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "SystemZTargetTransformInfo.h" 17 #include "llvm/Analysis/TargetTransformInfo.h" 18 #include "llvm/CodeGen/BasicTTIImpl.h" 19 #include "llvm/CodeGen/CostTable.h" 20 #include "llvm/CodeGen/TargetLowering.h" 21 #include "llvm/IR/IntrinsicInst.h" 22 #include "llvm/Support/Debug.h" 23 using namespace llvm; 24 25 #define DEBUG_TYPE "systemztti" 26 27 //===----------------------------------------------------------------------===// 28 // 29 // SystemZ cost model. 30 // 31 //===----------------------------------------------------------------------===// 32 33 int SystemZTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) { 34 assert(Ty->isIntegerTy()); 35 36 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 37 // There is no cost model for constants with a bit size of 0. Return TCC_Free 38 // here, so that constant hoisting will ignore this constant. 39 if (BitSize == 0) 40 return TTI::TCC_Free; 41 // No cost model for operations on integers larger than 64 bit implemented yet. 42 if (BitSize > 64) 43 return TTI::TCC_Free; 44 45 if (Imm == 0) 46 return TTI::TCC_Free; 47 48 if (Imm.getBitWidth() <= 64) { 49 // Constants loaded via lgfi. 50 if (isInt<32>(Imm.getSExtValue())) 51 return TTI::TCC_Basic; 52 // Constants loaded via llilf. 53 if (isUInt<32>(Imm.getZExtValue())) 54 return TTI::TCC_Basic; 55 // Constants loaded via llihf: 56 if ((Imm.getZExtValue() & 0xffffffff) == 0) 57 return TTI::TCC_Basic; 58 59 return 2 * TTI::TCC_Basic; 60 } 61 62 return 4 * TTI::TCC_Basic; 63 } 64 65 int SystemZTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, 66 const APInt &Imm, Type *Ty) { 67 assert(Ty->isIntegerTy()); 68 69 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 70 // There is no cost model for constants with a bit size of 0. Return TCC_Free 71 // here, so that constant hoisting will ignore this constant. 72 if (BitSize == 0) 73 return TTI::TCC_Free; 74 // No cost model for operations on integers larger than 64 bit implemented yet. 75 if (BitSize > 64) 76 return TTI::TCC_Free; 77 78 switch (Opcode) { 79 default: 80 return TTI::TCC_Free; 81 case Instruction::GetElementPtr: 82 // Always hoist the base address of a GetElementPtr. This prevents the 83 // creation of new constants for every base constant that gets constant 84 // folded with the offset. 85 if (Idx == 0) 86 return 2 * TTI::TCC_Basic; 87 return TTI::TCC_Free; 88 case Instruction::Store: 89 if (Idx == 0 && Imm.getBitWidth() <= 64) { 90 // Any 8-bit immediate store can by implemented via mvi. 91 if (BitSize == 8) 92 return TTI::TCC_Free; 93 // 16-bit immediate values can be stored via mvhhi/mvhi/mvghi. 94 if (isInt<16>(Imm.getSExtValue())) 95 return TTI::TCC_Free; 96 } 97 break; 98 case Instruction::ICmp: 99 if (Idx == 1 && Imm.getBitWidth() <= 64) { 100 // Comparisons against signed 32-bit immediates implemented via cgfi. 101 if (isInt<32>(Imm.getSExtValue())) 102 return TTI::TCC_Free; 103 // Comparisons against unsigned 32-bit immediates implemented via clgfi. 104 if (isUInt<32>(Imm.getZExtValue())) 105 return TTI::TCC_Free; 106 } 107 break; 108 case Instruction::Add: 109 case Instruction::Sub: 110 if (Idx == 1 && Imm.getBitWidth() <= 64) { 111 // We use algfi/slgfi to add/subtract 32-bit unsigned immediates. 112 if (isUInt<32>(Imm.getZExtValue())) 113 return TTI::TCC_Free; 114 // Or their negation, by swapping addition vs. subtraction. 115 if (isUInt<32>(-Imm.getSExtValue())) 116 return TTI::TCC_Free; 117 } 118 break; 119 case Instruction::Mul: 120 if (Idx == 1 && Imm.getBitWidth() <= 64) { 121 // We use msgfi to multiply by 32-bit signed immediates. 122 if (isInt<32>(Imm.getSExtValue())) 123 return TTI::TCC_Free; 124 } 125 break; 126 case Instruction::Or: 127 case Instruction::Xor: 128 if (Idx == 1 && Imm.getBitWidth() <= 64) { 129 // Masks supported by oilf/xilf. 130 if (isUInt<32>(Imm.getZExtValue())) 131 return TTI::TCC_Free; 132 // Masks supported by oihf/xihf. 133 if ((Imm.getZExtValue() & 0xffffffff) == 0) 134 return TTI::TCC_Free; 135 } 136 break; 137 case Instruction::And: 138 if (Idx == 1 && Imm.getBitWidth() <= 64) { 139 // Any 32-bit AND operation can by implemented via nilf. 140 if (BitSize <= 32) 141 return TTI::TCC_Free; 142 // 64-bit masks supported by nilf. 143 if (isUInt<32>(~Imm.getZExtValue())) 144 return TTI::TCC_Free; 145 // 64-bit masks supported by nilh. 146 if ((Imm.getZExtValue() & 0xffffffff) == 0xffffffff) 147 return TTI::TCC_Free; 148 // Some 64-bit AND operations can be implemented via risbg. 149 const SystemZInstrInfo *TII = ST->getInstrInfo(); 150 unsigned Start, End; 151 if (TII->isRxSBGMask(Imm.getZExtValue(), BitSize, Start, End)) 152 return TTI::TCC_Free; 153 } 154 break; 155 case Instruction::Shl: 156 case Instruction::LShr: 157 case Instruction::AShr: 158 // Always return TCC_Free for the shift value of a shift instruction. 159 if (Idx == 1) 160 return TTI::TCC_Free; 161 break; 162 case Instruction::UDiv: 163 case Instruction::SDiv: 164 case Instruction::URem: 165 case Instruction::SRem: 166 case Instruction::Trunc: 167 case Instruction::ZExt: 168 case Instruction::SExt: 169 case Instruction::IntToPtr: 170 case Instruction::PtrToInt: 171 case Instruction::BitCast: 172 case Instruction::PHI: 173 case Instruction::Call: 174 case Instruction::Select: 175 case Instruction::Ret: 176 case Instruction::Load: 177 break; 178 } 179 180 return SystemZTTIImpl::getIntImmCost(Imm, Ty); 181 } 182 183 int SystemZTTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, 184 const APInt &Imm, Type *Ty) { 185 assert(Ty->isIntegerTy()); 186 187 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 188 // There is no cost model for constants with a bit size of 0. Return TCC_Free 189 // here, so that constant hoisting will ignore this constant. 190 if (BitSize == 0) 191 return TTI::TCC_Free; 192 // No cost model for operations on integers larger than 64 bit implemented yet. 193 if (BitSize > 64) 194 return TTI::TCC_Free; 195 196 switch (IID) { 197 default: 198 return TTI::TCC_Free; 199 case Intrinsic::sadd_with_overflow: 200 case Intrinsic::uadd_with_overflow: 201 case Intrinsic::ssub_with_overflow: 202 case Intrinsic::usub_with_overflow: 203 // These get expanded to include a normal addition/subtraction. 204 if (Idx == 1 && Imm.getBitWidth() <= 64) { 205 if (isUInt<32>(Imm.getZExtValue())) 206 return TTI::TCC_Free; 207 if (isUInt<32>(-Imm.getSExtValue())) 208 return TTI::TCC_Free; 209 } 210 break; 211 case Intrinsic::smul_with_overflow: 212 case Intrinsic::umul_with_overflow: 213 // These get expanded to include a normal multiplication. 214 if (Idx == 1 && Imm.getBitWidth() <= 64) { 215 if (isInt<32>(Imm.getSExtValue())) 216 return TTI::TCC_Free; 217 } 218 break; 219 case Intrinsic::experimental_stackmap: 220 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 221 return TTI::TCC_Free; 222 break; 223 case Intrinsic::experimental_patchpoint_void: 224 case Intrinsic::experimental_patchpoint_i64: 225 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 226 return TTI::TCC_Free; 227 break; 228 } 229 return SystemZTTIImpl::getIntImmCost(Imm, Ty); 230 } 231 232 TargetTransformInfo::PopcntSupportKind 233 SystemZTTIImpl::getPopcntSupport(unsigned TyWidth) { 234 assert(isPowerOf2_32(TyWidth) && "Type width must be power of 2"); 235 if (ST->hasPopulationCount() && TyWidth <= 64) 236 return TTI::PSK_FastHardware; 237 return TTI::PSK_Software; 238 } 239 240 void SystemZTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 241 TTI::UnrollingPreferences &UP) { 242 // Find out if L contains a call, what the machine instruction count 243 // estimate is, and how many stores there are. 244 bool HasCall = false; 245 unsigned NumStores = 0; 246 for (auto &BB : L->blocks()) 247 for (auto &I : *BB) { 248 if (isa<CallInst>(&I) || isa<InvokeInst>(&I)) { 249 ImmutableCallSite CS(&I); 250 if (const Function *F = CS.getCalledFunction()) { 251 if (isLoweredToCall(F)) 252 HasCall = true; 253 if (F->getIntrinsicID() == Intrinsic::memcpy || 254 F->getIntrinsicID() == Intrinsic::memset) 255 NumStores++; 256 } else { // indirect call. 257 HasCall = true; 258 } 259 } 260 if (isa<StoreInst>(&I)) { 261 Type *MemAccessTy = I.getOperand(0)->getType(); 262 NumStores += getMemoryOpCost(Instruction::Store, MemAccessTy, None, 0); 263 } 264 } 265 266 // The z13 processor will run out of store tags if too many stores 267 // are fed into it too quickly. Therefore make sure there are not 268 // too many stores in the resulting unrolled loop. 269 unsigned const Max = (NumStores ? (12 / NumStores) : UINT_MAX); 270 271 if (HasCall) { 272 // Only allow full unrolling if loop has any calls. 273 UP.FullUnrollMaxCount = Max; 274 UP.MaxCount = 1; 275 return; 276 } 277 278 UP.MaxCount = Max; 279 if (UP.MaxCount <= 1) 280 return; 281 282 // Allow partial and runtime trip count unrolling. 283 UP.Partial = UP.Runtime = true; 284 285 UP.PartialThreshold = 75; 286 UP.DefaultUnrollRuntimeCount = 4; 287 288 // Allow expensive instructions in the pre-header of the loop. 289 UP.AllowExpensiveTripCount = true; 290 291 UP.Force = true; 292 } 293 294 295 bool SystemZTTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1, 296 TargetTransformInfo::LSRCost &C2) { 297 // SystemZ specific: check instruction count (first), and don't care about 298 // ImmCost, since offsets are checked explicitly. 299 return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost, 300 C1.NumIVMuls, C1.NumBaseAdds, 301 C1.ScaleCost, C1.SetupCost) < 302 std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost, 303 C2.NumIVMuls, C2.NumBaseAdds, 304 C2.ScaleCost, C2.SetupCost); 305 } 306 307 unsigned SystemZTTIImpl::getNumberOfRegisters(unsigned ClassID) const { 308 bool Vector = (ClassID == 1); 309 if (!Vector) 310 // Discount the stack pointer. Also leave out %r0, since it can't 311 // be used in an address. 312 return 14; 313 if (ST->hasVector()) 314 return 32; 315 return 0; 316 } 317 318 unsigned SystemZTTIImpl::getRegisterBitWidth(bool Vector) const { 319 if (!Vector) 320 return 64; 321 if (ST->hasVector()) 322 return 128; 323 return 0; 324 } 325 326 unsigned SystemZTTIImpl::getMinPrefetchStride(unsigned NumMemAccesses, 327 unsigned NumStridedMemAccesses, 328 unsigned NumPrefetches, 329 bool HasCall) const { 330 // Don't prefetch a loop with many far apart accesses. 331 if (NumPrefetches > 16) 332 return UINT_MAX; 333 334 // Emit prefetch instructions for smaller strides in cases where we think 335 // the hardware prefetcher might not be able to keep up. 336 if (NumStridedMemAccesses > 32 && 337 NumStridedMemAccesses == NumMemAccesses && !HasCall) 338 return 1; 339 340 return ST->hasMiscellaneousExtensions3() ? 8192 : 2048; 341 } 342 343 bool SystemZTTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) { 344 EVT VT = TLI->getValueType(DL, DataType); 345 return (VT.isScalarInteger() && TLI->isTypeLegal(VT)); 346 } 347 348 // Return the bit size for the scalar type or vector element 349 // type. getScalarSizeInBits() returns 0 for a pointer type. 350 static unsigned getScalarSizeInBits(Type *Ty) { 351 unsigned Size = 352 (Ty->isPtrOrPtrVectorTy() ? 64U : Ty->getScalarSizeInBits()); 353 assert(Size > 0 && "Element must have non-zero size."); 354 return Size; 355 } 356 357 // getNumberOfParts() calls getTypeLegalizationCost() which splits the vector 358 // type until it is legal. This would e.g. return 4 for <6 x i64>, instead of 359 // 3. 360 static unsigned getNumVectorRegs(Type *Ty) { 361 assert(Ty->isVectorTy() && "Expected vector type"); 362 unsigned WideBits = 363 getScalarSizeInBits(Ty) * cast<VectorType>(Ty)->getNumElements(); 364 assert(WideBits > 0 && "Could not compute size of vector"); 365 return ((WideBits % 128U) ? ((WideBits / 128U) + 1) : (WideBits / 128U)); 366 } 367 368 int SystemZTTIImpl::getArithmeticInstrCost( 369 unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info, 370 TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo, 371 TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args, 372 const Instruction *CxtI) { 373 374 // TODO: return a good value for BB-VECTORIZER that includes the 375 // immediate loads, which we do not want to count for the loop 376 // vectorizer, since they are hopefully hoisted out of the loop. This 377 // would require a new parameter 'InLoop', but not sure if constant 378 // args are common enough to motivate this. 379 380 unsigned ScalarBits = Ty->getScalarSizeInBits(); 381 382 // There are thre cases of division and remainder: Dividing with a register 383 // needs a divide instruction. A divisor which is a power of two constant 384 // can be implemented with a sequence of shifts. Any other constant needs a 385 // multiply and shifts. 386 const unsigned DivInstrCost = 20; 387 const unsigned DivMulSeqCost = 10; 388 const unsigned SDivPow2Cost = 4; 389 390 bool SignedDivRem = 391 Opcode == Instruction::SDiv || Opcode == Instruction::SRem; 392 bool UnsignedDivRem = 393 Opcode == Instruction::UDiv || Opcode == Instruction::URem; 394 395 // Check for a constant divisor. 396 bool DivRemConst = false; 397 bool DivRemConstPow2 = false; 398 if ((SignedDivRem || UnsignedDivRem) && Args.size() == 2) { 399 if (const Constant *C = dyn_cast<Constant>(Args[1])) { 400 const ConstantInt *CVal = 401 (C->getType()->isVectorTy() 402 ? dyn_cast_or_null<const ConstantInt>(C->getSplatValue()) 403 : dyn_cast<const ConstantInt>(C)); 404 if (CVal != nullptr && 405 (CVal->getValue().isPowerOf2() || (-CVal->getValue()).isPowerOf2())) 406 DivRemConstPow2 = true; 407 else 408 DivRemConst = true; 409 } 410 } 411 412 if (!Ty->isVectorTy()) { 413 // These FP operations are supported with a dedicated instruction for 414 // float, double and fp128 (base implementation assumes float generally 415 // costs 2). 416 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub || 417 Opcode == Instruction::FMul || Opcode == Instruction::FDiv) 418 return 1; 419 420 // There is no native support for FRem. 421 if (Opcode == Instruction::FRem) 422 return LIBCALL_COST; 423 424 // Give discount for some combined logical operations if supported. 425 if (Args.size() == 2 && ST->hasMiscellaneousExtensions3()) { 426 if (Opcode == Instruction::Xor) { 427 for (const Value *A : Args) { 428 if (const Instruction *I = dyn_cast<Instruction>(A)) 429 if (I->hasOneUse() && 430 (I->getOpcode() == Instruction::And || 431 I->getOpcode() == Instruction::Or || 432 I->getOpcode() == Instruction::Xor)) 433 return 0; 434 } 435 } 436 else if (Opcode == Instruction::Or || Opcode == Instruction::And) { 437 for (const Value *A : Args) { 438 if (const Instruction *I = dyn_cast<Instruction>(A)) 439 if (I->hasOneUse() && I->getOpcode() == Instruction::Xor) 440 return 0; 441 } 442 } 443 } 444 445 // Or requires one instruction, although it has custom handling for i64. 446 if (Opcode == Instruction::Or) 447 return 1; 448 449 if (Opcode == Instruction::Xor && ScalarBits == 1) { 450 if (ST->hasLoadStoreOnCond2()) 451 return 5; // 2 * (li 0; loc 1); xor 452 return 7; // 2 * ipm sequences ; xor ; shift ; compare 453 } 454 455 if (DivRemConstPow2) 456 return (SignedDivRem ? SDivPow2Cost : 1); 457 if (DivRemConst) 458 return DivMulSeqCost; 459 if (SignedDivRem || UnsignedDivRem) 460 return DivInstrCost; 461 } 462 else if (ST->hasVector()) { 463 unsigned VF = cast<VectorType>(Ty)->getNumElements(); 464 unsigned NumVectors = getNumVectorRegs(Ty); 465 466 // These vector operations are custom handled, but are still supported 467 // with one instruction per vector, regardless of element size. 468 if (Opcode == Instruction::Shl || Opcode == Instruction::LShr || 469 Opcode == Instruction::AShr) { 470 return NumVectors; 471 } 472 473 if (DivRemConstPow2) 474 return (NumVectors * (SignedDivRem ? SDivPow2Cost : 1)); 475 if (DivRemConst) 476 return VF * DivMulSeqCost + getScalarizationOverhead(Ty, Args); 477 if ((SignedDivRem || UnsignedDivRem) && VF > 4) 478 // Temporary hack: disable high vectorization factors with integer 479 // division/remainder, which will get scalarized and handled with 480 // GR128 registers. The mischeduler is not clever enough to avoid 481 // spilling yet. 482 return 1000; 483 484 // These FP operations are supported with a single vector instruction for 485 // double (base implementation assumes float generally costs 2). For 486 // FP128, the scalar cost is 1, and there is no overhead since the values 487 // are already in scalar registers. 488 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub || 489 Opcode == Instruction::FMul || Opcode == Instruction::FDiv) { 490 switch (ScalarBits) { 491 case 32: { 492 // The vector enhancements facility 1 provides v4f32 instructions. 493 if (ST->hasVectorEnhancements1()) 494 return NumVectors; 495 // Return the cost of multiple scalar invocation plus the cost of 496 // inserting and extracting the values. 497 unsigned ScalarCost = 498 getArithmeticInstrCost(Opcode, Ty->getScalarType()); 499 unsigned Cost = (VF * ScalarCost) + getScalarizationOverhead(Ty, Args); 500 // FIXME: VF 2 for these FP operations are currently just as 501 // expensive as for VF 4. 502 if (VF == 2) 503 Cost *= 2; 504 return Cost; 505 } 506 case 64: 507 case 128: 508 return NumVectors; 509 default: 510 break; 511 } 512 } 513 514 // There is no native support for FRem. 515 if (Opcode == Instruction::FRem) { 516 unsigned Cost = (VF * LIBCALL_COST) + getScalarizationOverhead(Ty, Args); 517 // FIXME: VF 2 for float is currently just as expensive as for VF 4. 518 if (VF == 2 && ScalarBits == 32) 519 Cost *= 2; 520 return Cost; 521 } 522 } 523 524 // Fallback to the default implementation. 525 return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info, 526 Opd1PropInfo, Opd2PropInfo, Args, CxtI); 527 } 528 529 int SystemZTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, 530 Type *SubTp) { 531 assert (Tp->isVectorTy()); 532 if (ST->hasVector()) { 533 unsigned NumVectors = getNumVectorRegs(Tp); 534 535 // TODO: Since fp32 is expanded, the shuffle cost should always be 0. 536 537 // FP128 values are always in scalar registers, so there is no work 538 // involved with a shuffle, except for broadcast. In that case register 539 // moves are done with a single instruction per element. 540 if (Tp->getScalarType()->isFP128Ty()) 541 return (Kind == TargetTransformInfo::SK_Broadcast ? NumVectors - 1 : 0); 542 543 switch (Kind) { 544 case TargetTransformInfo::SK_ExtractSubvector: 545 // ExtractSubvector Index indicates start offset. 546 547 // Extracting a subvector from first index is a noop. 548 return (Index == 0 ? 0 : NumVectors); 549 550 case TargetTransformInfo::SK_Broadcast: 551 // Loop vectorizer calls here to figure out the extra cost of 552 // broadcasting a loaded value to all elements of a vector. Since vlrep 553 // loads and replicates with a single instruction, adjust the returned 554 // value. 555 return NumVectors - 1; 556 557 default: 558 559 // SystemZ supports single instruction permutation / replication. 560 return NumVectors; 561 } 562 } 563 564 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); 565 } 566 567 // Return the log2 difference of the element sizes of the two vector types. 568 static unsigned getElSizeLog2Diff(Type *Ty0, Type *Ty1) { 569 unsigned Bits0 = Ty0->getScalarSizeInBits(); 570 unsigned Bits1 = Ty1->getScalarSizeInBits(); 571 572 if (Bits1 > Bits0) 573 return (Log2_32(Bits1) - Log2_32(Bits0)); 574 575 return (Log2_32(Bits0) - Log2_32(Bits1)); 576 } 577 578 // Return the number of instructions needed to truncate SrcTy to DstTy. 579 unsigned SystemZTTIImpl:: 580 getVectorTruncCost(Type *SrcTy, Type *DstTy) { 581 assert (SrcTy->isVectorTy() && DstTy->isVectorTy()); 582 assert (SrcTy->getPrimitiveSizeInBits() > DstTy->getPrimitiveSizeInBits() && 583 "Packing must reduce size of vector type."); 584 assert(cast<VectorType>(SrcTy)->getNumElements() == 585 cast<VectorType>(DstTy)->getNumElements() && 586 "Packing should not change number of elements."); 587 588 // TODO: Since fp32 is expanded, the extract cost should always be 0. 589 590 unsigned NumParts = getNumVectorRegs(SrcTy); 591 if (NumParts <= 2) 592 // Up to 2 vector registers can be truncated efficiently with pack or 593 // permute. The latter requires an immediate mask to be loaded, which 594 // typically gets hoisted out of a loop. TODO: return a good value for 595 // BB-VECTORIZER that includes the immediate loads, which we do not want 596 // to count for the loop vectorizer. 597 return 1; 598 599 unsigned Cost = 0; 600 unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy); 601 unsigned VF = cast<VectorType>(SrcTy)->getNumElements(); 602 for (unsigned P = 0; P < Log2Diff; ++P) { 603 if (NumParts > 1) 604 NumParts /= 2; 605 Cost += NumParts; 606 } 607 608 // Currently, a general mix of permutes and pack instructions is output by 609 // isel, which follow the cost computation above except for this case which 610 // is one instruction less: 611 if (VF == 8 && SrcTy->getScalarSizeInBits() == 64 && 612 DstTy->getScalarSizeInBits() == 8) 613 Cost--; 614 615 return Cost; 616 } 617 618 // Return the cost of converting a vector bitmask produced by a compare 619 // (SrcTy), to the type of the select or extend instruction (DstTy). 620 unsigned SystemZTTIImpl:: 621 getVectorBitmaskConversionCost(Type *SrcTy, Type *DstTy) { 622 assert (SrcTy->isVectorTy() && DstTy->isVectorTy() && 623 "Should only be called with vector types."); 624 625 unsigned PackCost = 0; 626 unsigned SrcScalarBits = SrcTy->getScalarSizeInBits(); 627 unsigned DstScalarBits = DstTy->getScalarSizeInBits(); 628 unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy); 629 if (SrcScalarBits > DstScalarBits) 630 // The bitmask will be truncated. 631 PackCost = getVectorTruncCost(SrcTy, DstTy); 632 else if (SrcScalarBits < DstScalarBits) { 633 unsigned DstNumParts = getNumVectorRegs(DstTy); 634 // Each vector select needs its part of the bitmask unpacked. 635 PackCost = Log2Diff * DstNumParts; 636 // Extra cost for moving part of mask before unpacking. 637 PackCost += DstNumParts - 1; 638 } 639 640 return PackCost; 641 } 642 643 // Return the type of the compared operands. This is needed to compute the 644 // cost for a Select / ZExt or SExt instruction. 645 static Type *getCmpOpsType(const Instruction *I, unsigned VF = 1) { 646 Type *OpTy = nullptr; 647 if (CmpInst *CI = dyn_cast<CmpInst>(I->getOperand(0))) 648 OpTy = CI->getOperand(0)->getType(); 649 else if (Instruction *LogicI = dyn_cast<Instruction>(I->getOperand(0))) 650 if (LogicI->getNumOperands() == 2) 651 if (CmpInst *CI0 = dyn_cast<CmpInst>(LogicI->getOperand(0))) 652 if (isa<CmpInst>(LogicI->getOperand(1))) 653 OpTy = CI0->getOperand(0)->getType(); 654 655 if (OpTy != nullptr) { 656 if (VF == 1) { 657 assert (!OpTy->isVectorTy() && "Expected scalar type"); 658 return OpTy; 659 } 660 // Return the potentially vectorized type based on 'I' and 'VF'. 'I' may 661 // be either scalar or already vectorized with a same or lesser VF. 662 Type *ElTy = OpTy->getScalarType(); 663 return VectorType::get(ElTy, VF); 664 } 665 666 return nullptr; 667 } 668 669 // Get the cost of converting a boolean vector to a vector with same width 670 // and element size as Dst, plus the cost of zero extending if needed. 671 unsigned SystemZTTIImpl:: 672 getBoolVecToIntConversionCost(unsigned Opcode, Type *Dst, 673 const Instruction *I) { 674 assert (Dst->isVectorTy()); 675 unsigned VF = cast<VectorType>(Dst)->getNumElements(); 676 unsigned Cost = 0; 677 // If we know what the widths of the compared operands, get any cost of 678 // converting it to match Dst. Otherwise assume same widths. 679 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr); 680 if (CmpOpTy != nullptr) 681 Cost = getVectorBitmaskConversionCost(CmpOpTy, Dst); 682 if (Opcode == Instruction::ZExt || Opcode == Instruction::UIToFP) 683 // One 'vn' per dst vector with an immediate mask. 684 Cost += getNumVectorRegs(Dst); 685 return Cost; 686 } 687 688 int SystemZTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, 689 const Instruction *I) { 690 unsigned DstScalarBits = Dst->getScalarSizeInBits(); 691 unsigned SrcScalarBits = Src->getScalarSizeInBits(); 692 693 if (!Src->isVectorTy()) { 694 assert (!Dst->isVectorTy()); 695 696 if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP) { 697 if (SrcScalarBits >= 32 || 698 (I != nullptr && isa<LoadInst>(I->getOperand(0)))) 699 return 1; 700 return SrcScalarBits > 1 ? 2 /*i8/i16 extend*/ : 5 /*branch seq.*/; 701 } 702 703 if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) && 704 Src->isIntegerTy(1)) { 705 if (ST->hasLoadStoreOnCond2()) 706 return 2; // li 0; loc 1 707 708 // This should be extension of a compare i1 result, which is done with 709 // ipm and a varying sequence of instructions. 710 unsigned Cost = 0; 711 if (Opcode == Instruction::SExt) 712 Cost = (DstScalarBits < 64 ? 3 : 4); 713 if (Opcode == Instruction::ZExt) 714 Cost = 3; 715 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I) : nullptr); 716 if (CmpOpTy != nullptr && CmpOpTy->isFloatingPointTy()) 717 // If operands of an fp-type was compared, this costs +1. 718 Cost++; 719 return Cost; 720 } 721 } 722 else if (ST->hasVector()) { 723 assert (Dst->isVectorTy()); 724 unsigned VF = cast<VectorType>(Src)->getNumElements(); 725 unsigned NumDstVectors = getNumVectorRegs(Dst); 726 unsigned NumSrcVectors = getNumVectorRegs(Src); 727 728 if (Opcode == Instruction::Trunc) { 729 if (Src->getScalarSizeInBits() == Dst->getScalarSizeInBits()) 730 return 0; // Check for NOOP conversions. 731 return getVectorTruncCost(Src, Dst); 732 } 733 734 if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 735 if (SrcScalarBits >= 8) { 736 // ZExt/SExt will be handled with one unpack per doubling of width. 737 unsigned NumUnpacks = getElSizeLog2Diff(Src, Dst); 738 739 // For types that spans multiple vector registers, some additional 740 // instructions are used to setup the unpacking. 741 unsigned NumSrcVectorOps = 742 (NumUnpacks > 1 ? (NumDstVectors - NumSrcVectors) 743 : (NumDstVectors / 2)); 744 745 return (NumUnpacks * NumDstVectors) + NumSrcVectorOps; 746 } 747 else if (SrcScalarBits == 1) 748 return getBoolVecToIntConversionCost(Opcode, Dst, I); 749 } 750 751 if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP || 752 Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI) { 753 // TODO: Fix base implementation which could simplify things a bit here 754 // (seems to miss on differentiating on scalar/vector types). 755 756 // Only 64 bit vector conversions are natively supported before z15. 757 if (DstScalarBits == 64 || ST->hasVectorEnhancements2()) { 758 if (SrcScalarBits == DstScalarBits) 759 return NumDstVectors; 760 761 if (SrcScalarBits == 1) 762 return getBoolVecToIntConversionCost(Opcode, Dst, I) + NumDstVectors; 763 } 764 765 // Return the cost of multiple scalar invocation plus the cost of 766 // inserting and extracting the values. Base implementation does not 767 // realize float->int gets scalarized. 768 unsigned ScalarCost = getCastInstrCost(Opcode, Dst->getScalarType(), 769 Src->getScalarType()); 770 unsigned TotCost = VF * ScalarCost; 771 bool NeedsInserts = true, NeedsExtracts = true; 772 // FP128 registers do not get inserted or extracted. 773 if (DstScalarBits == 128 && 774 (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP)) 775 NeedsInserts = false; 776 if (SrcScalarBits == 128 && 777 (Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI)) 778 NeedsExtracts = false; 779 780 TotCost += getScalarizationOverhead(Src, false, NeedsExtracts); 781 TotCost += getScalarizationOverhead(Dst, NeedsInserts, false); 782 783 // FIXME: VF 2 for float<->i32 is currently just as expensive as for VF 4. 784 if (VF == 2 && SrcScalarBits == 32 && DstScalarBits == 32) 785 TotCost *= 2; 786 787 return TotCost; 788 } 789 790 if (Opcode == Instruction::FPTrunc) { 791 if (SrcScalarBits == 128) // fp128 -> double/float + inserts of elements. 792 return VF /*ldxbr/lexbr*/ + getScalarizationOverhead(Dst, true, false); 793 else // double -> float 794 return VF / 2 /*vledb*/ + std::max(1U, VF / 4 /*vperm*/); 795 } 796 797 if (Opcode == Instruction::FPExt) { 798 if (SrcScalarBits == 32 && DstScalarBits == 64) { 799 // float -> double is very rare and currently unoptimized. Instead of 800 // using vldeb, which can do two at a time, all conversions are 801 // scalarized. 802 return VF * 2; 803 } 804 // -> fp128. VF * lxdb/lxeb + extraction of elements. 805 return VF + getScalarizationOverhead(Src, false, true); 806 } 807 } 808 809 return BaseT::getCastInstrCost(Opcode, Dst, Src, I); 810 } 811 812 // Scalar i8 / i16 operations will typically be made after first extending 813 // the operands to i32. 814 static unsigned getOperandsExtensionCost(const Instruction *I) { 815 unsigned ExtCost = 0; 816 for (Value *Op : I->operands()) 817 // A load of i8 or i16 sign/zero extends to i32. 818 if (!isa<LoadInst>(Op) && !isa<ConstantInt>(Op)) 819 ExtCost++; 820 821 return ExtCost; 822 } 823 824 int SystemZTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 825 Type *CondTy, const Instruction *I) { 826 if (!ValTy->isVectorTy()) { 827 switch (Opcode) { 828 case Instruction::ICmp: { 829 // A loaded value compared with 0 with multiple users becomes Load and 830 // Test. The load is then not foldable, so return 0 cost for the ICmp. 831 unsigned ScalarBits = ValTy->getScalarSizeInBits(); 832 if (I != nullptr && ScalarBits >= 32) 833 if (LoadInst *Ld = dyn_cast<LoadInst>(I->getOperand(0))) 834 if (const ConstantInt *C = dyn_cast<ConstantInt>(I->getOperand(1))) 835 if (!Ld->hasOneUse() && Ld->getParent() == I->getParent() && 836 C->getZExtValue() == 0) 837 return 0; 838 839 unsigned Cost = 1; 840 if (ValTy->isIntegerTy() && ValTy->getScalarSizeInBits() <= 16) 841 Cost += (I != nullptr ? getOperandsExtensionCost(I) : 2); 842 return Cost; 843 } 844 case Instruction::Select: 845 if (ValTy->isFloatingPointTy()) 846 return 4; // No load on condition for FP - costs a conditional jump. 847 return 1; // Load On Condition / Select Register. 848 } 849 } 850 else if (ST->hasVector()) { 851 unsigned VF = cast<VectorType>(ValTy)->getNumElements(); 852 853 // Called with a compare instruction. 854 if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) { 855 unsigned PredicateExtraCost = 0; 856 if (I != nullptr) { 857 // Some predicates cost one or two extra instructions. 858 switch (cast<CmpInst>(I)->getPredicate()) { 859 case CmpInst::Predicate::ICMP_NE: 860 case CmpInst::Predicate::ICMP_UGE: 861 case CmpInst::Predicate::ICMP_ULE: 862 case CmpInst::Predicate::ICMP_SGE: 863 case CmpInst::Predicate::ICMP_SLE: 864 PredicateExtraCost = 1; 865 break; 866 case CmpInst::Predicate::FCMP_ONE: 867 case CmpInst::Predicate::FCMP_ORD: 868 case CmpInst::Predicate::FCMP_UEQ: 869 case CmpInst::Predicate::FCMP_UNO: 870 PredicateExtraCost = 2; 871 break; 872 default: 873 break; 874 } 875 } 876 877 // Float is handled with 2*vmr[lh]f + 2*vldeb + vfchdb for each pair of 878 // floats. FIXME: <2 x float> generates same code as <4 x float>. 879 unsigned CmpCostPerVector = (ValTy->getScalarType()->isFloatTy() ? 10 : 1); 880 unsigned NumVecs_cmp = getNumVectorRegs(ValTy); 881 882 unsigned Cost = (NumVecs_cmp * (CmpCostPerVector + PredicateExtraCost)); 883 return Cost; 884 } 885 else { // Called with a select instruction. 886 assert (Opcode == Instruction::Select); 887 888 // We can figure out the extra cost of packing / unpacking if the 889 // instruction was passed and the compare instruction is found. 890 unsigned PackCost = 0; 891 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr); 892 if (CmpOpTy != nullptr) 893 PackCost = 894 getVectorBitmaskConversionCost(CmpOpTy, ValTy); 895 896 return getNumVectorRegs(ValTy) /*vsel*/ + PackCost; 897 } 898 } 899 900 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, nullptr); 901 } 902 903 int SystemZTTIImpl:: 904 getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) { 905 // vlvgp will insert two grs into a vector register, so only count half the 906 // number of instructions. 907 if (Opcode == Instruction::InsertElement && Val->isIntOrIntVectorTy(64)) 908 return ((Index % 2 == 0) ? 1 : 0); 909 910 if (Opcode == Instruction::ExtractElement) { 911 int Cost = ((getScalarSizeInBits(Val) == 1) ? 2 /*+test-under-mask*/ : 1); 912 913 // Give a slight penalty for moving out of vector pipeline to FXU unit. 914 if (Index == 0 && Val->isIntOrIntVectorTy()) 915 Cost += 1; 916 917 return Cost; 918 } 919 920 return BaseT::getVectorInstrCost(Opcode, Val, Index); 921 } 922 923 // Check if a load may be folded as a memory operand in its user. 924 bool SystemZTTIImpl:: 925 isFoldableLoad(const LoadInst *Ld, const Instruction *&FoldedValue) { 926 if (!Ld->hasOneUse()) 927 return false; 928 FoldedValue = Ld; 929 const Instruction *UserI = cast<Instruction>(*Ld->user_begin()); 930 unsigned LoadedBits = getScalarSizeInBits(Ld->getType()); 931 unsigned TruncBits = 0; 932 unsigned SExtBits = 0; 933 unsigned ZExtBits = 0; 934 if (UserI->hasOneUse()) { 935 unsigned UserBits = UserI->getType()->getScalarSizeInBits(); 936 if (isa<TruncInst>(UserI)) 937 TruncBits = UserBits; 938 else if (isa<SExtInst>(UserI)) 939 SExtBits = UserBits; 940 else if (isa<ZExtInst>(UserI)) 941 ZExtBits = UserBits; 942 } 943 if (TruncBits || SExtBits || ZExtBits) { 944 FoldedValue = UserI; 945 UserI = cast<Instruction>(*UserI->user_begin()); 946 // Load (single use) -> trunc/extend (single use) -> UserI 947 } 948 if ((UserI->getOpcode() == Instruction::Sub || 949 UserI->getOpcode() == Instruction::SDiv || 950 UserI->getOpcode() == Instruction::UDiv) && 951 UserI->getOperand(1) != FoldedValue) 952 return false; // Not commutative, only RHS foldable. 953 // LoadOrTruncBits holds the number of effectively loaded bits, but 0 if an 954 // extension was made of the load. 955 unsigned LoadOrTruncBits = 956 ((SExtBits || ZExtBits) ? 0 : (TruncBits ? TruncBits : LoadedBits)); 957 switch (UserI->getOpcode()) { 958 case Instruction::Add: // SE: 16->32, 16/32->64, z14:16->64. ZE: 32->64 959 case Instruction::Sub: 960 case Instruction::ICmp: 961 if (LoadedBits == 32 && ZExtBits == 64) 962 return true; 963 LLVM_FALLTHROUGH; 964 case Instruction::Mul: // SE: 16->32, 32->64, z14:16->64 965 if (UserI->getOpcode() != Instruction::ICmp) { 966 if (LoadedBits == 16 && 967 (SExtBits == 32 || 968 (SExtBits == 64 && ST->hasMiscellaneousExtensions2()))) 969 return true; 970 if (LoadOrTruncBits == 16) 971 return true; 972 } 973 LLVM_FALLTHROUGH; 974 case Instruction::SDiv:// SE: 32->64 975 if (LoadedBits == 32 && SExtBits == 64) 976 return true; 977 LLVM_FALLTHROUGH; 978 case Instruction::UDiv: 979 case Instruction::And: 980 case Instruction::Or: 981 case Instruction::Xor: 982 // This also makes sense for float operations, but disabled for now due 983 // to regressions. 984 // case Instruction::FCmp: 985 // case Instruction::FAdd: 986 // case Instruction::FSub: 987 // case Instruction::FMul: 988 // case Instruction::FDiv: 989 990 // All possible extensions of memory checked above. 991 992 // Comparison between memory and immediate. 993 if (UserI->getOpcode() == Instruction::ICmp) 994 if (ConstantInt *CI = dyn_cast<ConstantInt>(UserI->getOperand(1))) 995 if (isUInt<16>(CI->getZExtValue())) 996 return true; 997 return (LoadOrTruncBits == 32 || LoadOrTruncBits == 64); 998 break; 999 } 1000 return false; 1001 } 1002 1003 static bool isBswapIntrinsicCall(const Value *V) { 1004 if (const Instruction *I = dyn_cast<Instruction>(V)) 1005 if (auto *CI = dyn_cast<CallInst>(I)) 1006 if (auto *F = CI->getCalledFunction()) 1007 if (F->getIntrinsicID() == Intrinsic::bswap) 1008 return true; 1009 return false; 1010 } 1011 1012 int SystemZTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, 1013 MaybeAlign Alignment, unsigned AddressSpace, 1014 const Instruction *I) { 1015 assert(!Src->isVoidTy() && "Invalid type"); 1016 1017 if (!Src->isVectorTy() && Opcode == Instruction::Load && I != nullptr) { 1018 // Store the load or its truncated or extended value in FoldedValue. 1019 const Instruction *FoldedValue = nullptr; 1020 if (isFoldableLoad(cast<LoadInst>(I), FoldedValue)) { 1021 const Instruction *UserI = cast<Instruction>(*FoldedValue->user_begin()); 1022 assert (UserI->getNumOperands() == 2 && "Expected a binop."); 1023 1024 // UserI can't fold two loads, so in that case return 0 cost only 1025 // half of the time. 1026 for (unsigned i = 0; i < 2; ++i) { 1027 if (UserI->getOperand(i) == FoldedValue) 1028 continue; 1029 1030 if (Instruction *OtherOp = dyn_cast<Instruction>(UserI->getOperand(i))){ 1031 LoadInst *OtherLoad = dyn_cast<LoadInst>(OtherOp); 1032 if (!OtherLoad && 1033 (isa<TruncInst>(OtherOp) || isa<SExtInst>(OtherOp) || 1034 isa<ZExtInst>(OtherOp))) 1035 OtherLoad = dyn_cast<LoadInst>(OtherOp->getOperand(0)); 1036 if (OtherLoad && isFoldableLoad(OtherLoad, FoldedValue/*dummy*/)) 1037 return i == 0; // Both operands foldable. 1038 } 1039 } 1040 1041 return 0; // Only I is foldable in user. 1042 } 1043 } 1044 1045 unsigned NumOps = 1046 (Src->isVectorTy() ? getNumVectorRegs(Src) : getNumberOfParts(Src)); 1047 1048 // Store/Load reversed saves one instruction. 1049 if (((!Src->isVectorTy() && NumOps == 1) || ST->hasVectorEnhancements2()) && 1050 I != nullptr) { 1051 if (Opcode == Instruction::Load && I->hasOneUse()) { 1052 const Instruction *LdUser = cast<Instruction>(*I->user_begin()); 1053 // In case of load -> bswap -> store, return normal cost for the load. 1054 if (isBswapIntrinsicCall(LdUser) && 1055 (!LdUser->hasOneUse() || !isa<StoreInst>(*LdUser->user_begin()))) 1056 return 0; 1057 } 1058 else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) { 1059 const Value *StoredVal = SI->getValueOperand(); 1060 if (StoredVal->hasOneUse() && isBswapIntrinsicCall(StoredVal)) 1061 return 0; 1062 } 1063 } 1064 1065 if (Src->getScalarSizeInBits() == 128) 1066 // 128 bit scalars are held in a pair of two 64 bit registers. 1067 NumOps *= 2; 1068 1069 return NumOps; 1070 } 1071 1072 // The generic implementation of getInterleavedMemoryOpCost() is based on 1073 // adding costs of the memory operations plus all the extracts and inserts 1074 // needed for using / defining the vector operands. The SystemZ version does 1075 // roughly the same but bases the computations on vector permutations 1076 // instead. 1077 int SystemZTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, 1078 unsigned Factor, 1079 ArrayRef<unsigned> Indices, 1080 unsigned Alignment, 1081 unsigned AddressSpace, 1082 bool UseMaskForCond, 1083 bool UseMaskForGaps) { 1084 if (UseMaskForCond || UseMaskForGaps) 1085 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 1086 Alignment, AddressSpace, 1087 UseMaskForCond, UseMaskForGaps); 1088 assert(isa<VectorType>(VecTy) && 1089 "Expect a vector type for interleaved memory op"); 1090 1091 // Return the ceiling of dividing A by B. 1092 auto ceil = [](unsigned A, unsigned B) { return (A + B - 1) / B; }; 1093 1094 unsigned NumElts = cast<VectorType>(VecTy)->getNumElements(); 1095 assert(Factor > 1 && NumElts % Factor == 0 && "Invalid interleave factor"); 1096 unsigned VF = NumElts / Factor; 1097 unsigned NumEltsPerVecReg = (128U / getScalarSizeInBits(VecTy)); 1098 unsigned NumVectorMemOps = getNumVectorRegs(VecTy); 1099 unsigned NumPermutes = 0; 1100 1101 if (Opcode == Instruction::Load) { 1102 // Loading interleave groups may have gaps, which may mean fewer 1103 // loads. Find out how many vectors will be loaded in total, and in how 1104 // many of them each value will be in. 1105 BitVector UsedInsts(NumVectorMemOps, false); 1106 std::vector<BitVector> ValueVecs(Factor, BitVector(NumVectorMemOps, false)); 1107 for (unsigned Index : Indices) 1108 for (unsigned Elt = 0; Elt < VF; ++Elt) { 1109 unsigned Vec = (Index + Elt * Factor) / NumEltsPerVecReg; 1110 UsedInsts.set(Vec); 1111 ValueVecs[Index].set(Vec); 1112 } 1113 NumVectorMemOps = UsedInsts.count(); 1114 1115 for (unsigned Index : Indices) { 1116 // Estimate that each loaded source vector containing this Index 1117 // requires one operation, except that vperm can handle two input 1118 // registers first time for each dst vector. 1119 unsigned NumSrcVecs = ValueVecs[Index].count(); 1120 unsigned NumDstVecs = ceil(VF * getScalarSizeInBits(VecTy), 128U); 1121 assert (NumSrcVecs >= NumDstVecs && "Expected at least as many sources"); 1122 NumPermutes += std::max(1U, NumSrcVecs - NumDstVecs); 1123 } 1124 } else { 1125 // Estimate the permutes for each stored vector as the smaller of the 1126 // number of elements and the number of source vectors. Subtract one per 1127 // dst vector for vperm (S.A.). 1128 unsigned NumSrcVecs = std::min(NumEltsPerVecReg, Factor); 1129 unsigned NumDstVecs = NumVectorMemOps; 1130 assert (NumSrcVecs > 1 && "Expected at least two source vectors."); 1131 NumPermutes += (NumDstVecs * NumSrcVecs) - NumDstVecs; 1132 } 1133 1134 // Cost of load/store operations and the permutations needed. 1135 return NumVectorMemOps + NumPermutes; 1136 } 1137 1138 static int getVectorIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy) { 1139 if (RetTy->isVectorTy() && ID == Intrinsic::bswap) 1140 return getNumVectorRegs(RetTy); // VPERM 1141 return -1; 1142 } 1143 1144 int SystemZTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 1145 ArrayRef<Value *> Args, 1146 FastMathFlags FMF, unsigned VF, 1147 const Instruction *I) { 1148 int Cost = getVectorIntrinsicInstrCost(ID, RetTy); 1149 if (Cost != -1) 1150 return Cost; 1151 return BaseT::getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF, I); 1152 } 1153 1154 int SystemZTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 1155 ArrayRef<Type *> Tys, 1156 FastMathFlags FMF, 1157 unsigned ScalarizationCostPassed, 1158 const Instruction *I) { 1159 int Cost = getVectorIntrinsicInstrCost(ID, RetTy); 1160 if (Cost != -1) 1161 return Cost; 1162 return BaseT::getIntrinsicInstrCost(ID, RetTy, Tys, FMF, 1163 ScalarizationCostPassed, I); 1164 } 1165