1 //===-- SystemZTargetTransformInfo.cpp - SystemZ-specific TTI -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a TargetTransformInfo analysis pass specific to the 10 // SystemZ target machine. It uses the target's detailed information to provide 11 // more precise answers to certain TTI queries, while letting the target 12 // independent and default TTI implementations handle the rest. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "SystemZTargetTransformInfo.h" 17 #include "llvm/Analysis/TargetTransformInfo.h" 18 #include "llvm/CodeGen/BasicTTIImpl.h" 19 #include "llvm/CodeGen/CostTable.h" 20 #include "llvm/CodeGen/TargetLowering.h" 21 #include "llvm/IR/IntrinsicInst.h" 22 #include "llvm/Support/Debug.h" 23 using namespace llvm; 24 25 #define DEBUG_TYPE "systemztti" 26 27 //===----------------------------------------------------------------------===// 28 // 29 // SystemZ cost model. 30 // 31 //===----------------------------------------------------------------------===// 32 33 int SystemZTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) { 34 assert(Ty->isIntegerTy()); 35 36 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 37 // There is no cost model for constants with a bit size of 0. Return TCC_Free 38 // here, so that constant hoisting will ignore this constant. 39 if (BitSize == 0) 40 return TTI::TCC_Free; 41 // No cost model for operations on integers larger than 64 bit implemented yet. 42 if (BitSize > 64) 43 return TTI::TCC_Free; 44 45 if (Imm == 0) 46 return TTI::TCC_Free; 47 48 if (Imm.getBitWidth() <= 64) { 49 // Constants loaded via lgfi. 50 if (isInt<32>(Imm.getSExtValue())) 51 return TTI::TCC_Basic; 52 // Constants loaded via llilf. 53 if (isUInt<32>(Imm.getZExtValue())) 54 return TTI::TCC_Basic; 55 // Constants loaded via llihf: 56 if ((Imm.getZExtValue() & 0xffffffff) == 0) 57 return TTI::TCC_Basic; 58 59 return 2 * TTI::TCC_Basic; 60 } 61 62 return 4 * TTI::TCC_Basic; 63 } 64 65 int SystemZTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, 66 const APInt &Imm, Type *Ty) { 67 assert(Ty->isIntegerTy()); 68 69 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 70 // There is no cost model for constants with a bit size of 0. Return TCC_Free 71 // here, so that constant hoisting will ignore this constant. 72 if (BitSize == 0) 73 return TTI::TCC_Free; 74 // No cost model for operations on integers larger than 64 bit implemented yet. 75 if (BitSize > 64) 76 return TTI::TCC_Free; 77 78 switch (Opcode) { 79 default: 80 return TTI::TCC_Free; 81 case Instruction::GetElementPtr: 82 // Always hoist the base address of a GetElementPtr. This prevents the 83 // creation of new constants for every base constant that gets constant 84 // folded with the offset. 85 if (Idx == 0) 86 return 2 * TTI::TCC_Basic; 87 return TTI::TCC_Free; 88 case Instruction::Store: 89 if (Idx == 0 && Imm.getBitWidth() <= 64) { 90 // Any 8-bit immediate store can by implemented via mvi. 91 if (BitSize == 8) 92 return TTI::TCC_Free; 93 // 16-bit immediate values can be stored via mvhhi/mvhi/mvghi. 94 if (isInt<16>(Imm.getSExtValue())) 95 return TTI::TCC_Free; 96 } 97 break; 98 case Instruction::ICmp: 99 if (Idx == 1 && Imm.getBitWidth() <= 64) { 100 // Comparisons against signed 32-bit immediates implemented via cgfi. 101 if (isInt<32>(Imm.getSExtValue())) 102 return TTI::TCC_Free; 103 // Comparisons against unsigned 32-bit immediates implemented via clgfi. 104 if (isUInt<32>(Imm.getZExtValue())) 105 return TTI::TCC_Free; 106 } 107 break; 108 case Instruction::Add: 109 case Instruction::Sub: 110 if (Idx == 1 && Imm.getBitWidth() <= 64) { 111 // We use algfi/slgfi to add/subtract 32-bit unsigned immediates. 112 if (isUInt<32>(Imm.getZExtValue())) 113 return TTI::TCC_Free; 114 // Or their negation, by swapping addition vs. subtraction. 115 if (isUInt<32>(-Imm.getSExtValue())) 116 return TTI::TCC_Free; 117 } 118 break; 119 case Instruction::Mul: 120 if (Idx == 1 && Imm.getBitWidth() <= 64) { 121 // We use msgfi to multiply by 32-bit signed immediates. 122 if (isInt<32>(Imm.getSExtValue())) 123 return TTI::TCC_Free; 124 } 125 break; 126 case Instruction::Or: 127 case Instruction::Xor: 128 if (Idx == 1 && Imm.getBitWidth() <= 64) { 129 // Masks supported by oilf/xilf. 130 if (isUInt<32>(Imm.getZExtValue())) 131 return TTI::TCC_Free; 132 // Masks supported by oihf/xihf. 133 if ((Imm.getZExtValue() & 0xffffffff) == 0) 134 return TTI::TCC_Free; 135 } 136 break; 137 case Instruction::And: 138 if (Idx == 1 && Imm.getBitWidth() <= 64) { 139 // Any 32-bit AND operation can by implemented via nilf. 140 if (BitSize <= 32) 141 return TTI::TCC_Free; 142 // 64-bit masks supported by nilf. 143 if (isUInt<32>(~Imm.getZExtValue())) 144 return TTI::TCC_Free; 145 // 64-bit masks supported by nilh. 146 if ((Imm.getZExtValue() & 0xffffffff) == 0xffffffff) 147 return TTI::TCC_Free; 148 // Some 64-bit AND operations can be implemented via risbg. 149 const SystemZInstrInfo *TII = ST->getInstrInfo(); 150 unsigned Start, End; 151 if (TII->isRxSBGMask(Imm.getZExtValue(), BitSize, Start, End)) 152 return TTI::TCC_Free; 153 } 154 break; 155 case Instruction::Shl: 156 case Instruction::LShr: 157 case Instruction::AShr: 158 // Always return TCC_Free for the shift value of a shift instruction. 159 if (Idx == 1) 160 return TTI::TCC_Free; 161 break; 162 case Instruction::UDiv: 163 case Instruction::SDiv: 164 case Instruction::URem: 165 case Instruction::SRem: 166 case Instruction::Trunc: 167 case Instruction::ZExt: 168 case Instruction::SExt: 169 case Instruction::IntToPtr: 170 case Instruction::PtrToInt: 171 case Instruction::BitCast: 172 case Instruction::PHI: 173 case Instruction::Call: 174 case Instruction::Select: 175 case Instruction::Ret: 176 case Instruction::Load: 177 break; 178 } 179 180 return SystemZTTIImpl::getIntImmCost(Imm, Ty); 181 } 182 183 int SystemZTTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, 184 const APInt &Imm, Type *Ty) { 185 assert(Ty->isIntegerTy()); 186 187 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 188 // There is no cost model for constants with a bit size of 0. Return TCC_Free 189 // here, so that constant hoisting will ignore this constant. 190 if (BitSize == 0) 191 return TTI::TCC_Free; 192 // No cost model for operations on integers larger than 64 bit implemented yet. 193 if (BitSize > 64) 194 return TTI::TCC_Free; 195 196 switch (IID) { 197 default: 198 return TTI::TCC_Free; 199 case Intrinsic::sadd_with_overflow: 200 case Intrinsic::uadd_with_overflow: 201 case Intrinsic::ssub_with_overflow: 202 case Intrinsic::usub_with_overflow: 203 // These get expanded to include a normal addition/subtraction. 204 if (Idx == 1 && Imm.getBitWidth() <= 64) { 205 if (isUInt<32>(Imm.getZExtValue())) 206 return TTI::TCC_Free; 207 if (isUInt<32>(-Imm.getSExtValue())) 208 return TTI::TCC_Free; 209 } 210 break; 211 case Intrinsic::smul_with_overflow: 212 case Intrinsic::umul_with_overflow: 213 // These get expanded to include a normal multiplication. 214 if (Idx == 1 && Imm.getBitWidth() <= 64) { 215 if (isInt<32>(Imm.getSExtValue())) 216 return TTI::TCC_Free; 217 } 218 break; 219 case Intrinsic::experimental_stackmap: 220 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 221 return TTI::TCC_Free; 222 break; 223 case Intrinsic::experimental_patchpoint_void: 224 case Intrinsic::experimental_patchpoint_i64: 225 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 226 return TTI::TCC_Free; 227 break; 228 } 229 return SystemZTTIImpl::getIntImmCost(Imm, Ty); 230 } 231 232 TargetTransformInfo::PopcntSupportKind 233 SystemZTTIImpl::getPopcntSupport(unsigned TyWidth) { 234 assert(isPowerOf2_32(TyWidth) && "Type width must be power of 2"); 235 if (ST->hasPopulationCount() && TyWidth <= 64) 236 return TTI::PSK_FastHardware; 237 return TTI::PSK_Software; 238 } 239 240 void SystemZTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 241 TTI::UnrollingPreferences &UP) { 242 // Find out if L contains a call, what the machine instruction count 243 // estimate is, and how many stores there are. 244 bool HasCall = false; 245 unsigned NumStores = 0; 246 for (auto &BB : L->blocks()) 247 for (auto &I : *BB) { 248 if (isa<CallInst>(&I) || isa<InvokeInst>(&I)) { 249 ImmutableCallSite CS(&I); 250 if (const Function *F = CS.getCalledFunction()) { 251 if (isLoweredToCall(F)) 252 HasCall = true; 253 if (F->getIntrinsicID() == Intrinsic::memcpy || 254 F->getIntrinsicID() == Intrinsic::memset) 255 NumStores++; 256 } else { // indirect call. 257 HasCall = true; 258 } 259 } 260 if (isa<StoreInst>(&I)) { 261 Type *MemAccessTy = I.getOperand(0)->getType(); 262 NumStores += getMemoryOpCost(Instruction::Store, MemAccessTy, 0, 0); 263 } 264 } 265 266 // The z13 processor will run out of store tags if too many stores 267 // are fed into it too quickly. Therefore make sure there are not 268 // too many stores in the resulting unrolled loop. 269 unsigned const Max = (NumStores ? (12 / NumStores) : UINT_MAX); 270 271 if (HasCall) { 272 // Only allow full unrolling if loop has any calls. 273 UP.FullUnrollMaxCount = Max; 274 UP.MaxCount = 1; 275 return; 276 } 277 278 UP.MaxCount = Max; 279 if (UP.MaxCount <= 1) 280 return; 281 282 // Allow partial and runtime trip count unrolling. 283 UP.Partial = UP.Runtime = true; 284 285 UP.PartialThreshold = 75; 286 UP.DefaultUnrollRuntimeCount = 4; 287 288 // Allow expensive instructions in the pre-header of the loop. 289 UP.AllowExpensiveTripCount = true; 290 291 UP.Force = true; 292 } 293 294 295 bool SystemZTTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1, 296 TargetTransformInfo::LSRCost &C2) { 297 // SystemZ specific: check instruction count (first), and don't care about 298 // ImmCost, since offsets are checked explicitly. 299 return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost, 300 C1.NumIVMuls, C1.NumBaseAdds, 301 C1.ScaleCost, C1.SetupCost) < 302 std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost, 303 C2.NumIVMuls, C2.NumBaseAdds, 304 C2.ScaleCost, C2.SetupCost); 305 } 306 307 unsigned SystemZTTIImpl::getNumberOfRegisters(bool Vector) { 308 if (!Vector) 309 // Discount the stack pointer. Also leave out %r0, since it can't 310 // be used in an address. 311 return 14; 312 if (ST->hasVector()) 313 return 32; 314 return 0; 315 } 316 317 unsigned SystemZTTIImpl::getRegisterBitWidth(bool Vector) const { 318 if (!Vector) 319 return 64; 320 if (ST->hasVector()) 321 return 128; 322 return 0; 323 } 324 325 bool SystemZTTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) { 326 EVT VT = TLI->getValueType(DL, DataType); 327 return (VT.isScalarInteger() && TLI->isTypeLegal(VT)); 328 } 329 330 // Return the bit size for the scalar type or vector element 331 // type. getScalarSizeInBits() returns 0 for a pointer type. 332 static unsigned getScalarSizeInBits(Type *Ty) { 333 unsigned Size = 334 (Ty->isPtrOrPtrVectorTy() ? 64U : Ty->getScalarSizeInBits()); 335 assert(Size > 0 && "Element must have non-zero size."); 336 return Size; 337 } 338 339 // getNumberOfParts() calls getTypeLegalizationCost() which splits the vector 340 // type until it is legal. This would e.g. return 4 for <6 x i64>, instead of 341 // 3. 342 static unsigned getNumVectorRegs(Type *Ty) { 343 assert(Ty->isVectorTy() && "Expected vector type"); 344 unsigned WideBits = getScalarSizeInBits(Ty) * Ty->getVectorNumElements(); 345 assert(WideBits > 0 && "Could not compute size of vector"); 346 return ((WideBits % 128U) ? ((WideBits / 128U) + 1) : (WideBits / 128U)); 347 } 348 349 int SystemZTTIImpl::getArithmeticInstrCost( 350 unsigned Opcode, Type *Ty, 351 TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info, 352 TTI::OperandValueProperties Opd1PropInfo, 353 TTI::OperandValueProperties Opd2PropInfo, 354 ArrayRef<const Value *> Args) { 355 356 // TODO: return a good value for BB-VECTORIZER that includes the 357 // immediate loads, which we do not want to count for the loop 358 // vectorizer, since they are hopefully hoisted out of the loop. This 359 // would require a new parameter 'InLoop', but not sure if constant 360 // args are common enough to motivate this. 361 362 unsigned ScalarBits = Ty->getScalarSizeInBits(); 363 364 // There are thre cases of division and remainder: Dividing with a register 365 // needs a divide instruction. A divisor which is a power of two constant 366 // can be implemented with a sequence of shifts. Any other constant needs a 367 // multiply and shifts. 368 const unsigned DivInstrCost = 20; 369 const unsigned DivMulSeqCost = 10; 370 const unsigned SDivPow2Cost = 4; 371 372 bool SignedDivRem = 373 Opcode == Instruction::SDiv || Opcode == Instruction::SRem; 374 bool UnsignedDivRem = 375 Opcode == Instruction::UDiv || Opcode == Instruction::URem; 376 377 // Check for a constant divisor. 378 bool DivRemConst = false; 379 bool DivRemConstPow2 = false; 380 if ((SignedDivRem || UnsignedDivRem) && Args.size() == 2) { 381 if (const Constant *C = dyn_cast<Constant>(Args[1])) { 382 const ConstantInt *CVal = 383 (C->getType()->isVectorTy() 384 ? dyn_cast_or_null<const ConstantInt>(C->getSplatValue()) 385 : dyn_cast<const ConstantInt>(C)); 386 if (CVal != nullptr && 387 (CVal->getValue().isPowerOf2() || (-CVal->getValue()).isPowerOf2())) 388 DivRemConstPow2 = true; 389 else 390 DivRemConst = true; 391 } 392 } 393 394 if (Ty->isVectorTy()) { 395 assert(ST->hasVector() && 396 "getArithmeticInstrCost() called with vector type."); 397 unsigned VF = Ty->getVectorNumElements(); 398 unsigned NumVectors = getNumVectorRegs(Ty); 399 400 // These vector operations are custom handled, but are still supported 401 // with one instruction per vector, regardless of element size. 402 if (Opcode == Instruction::Shl || Opcode == Instruction::LShr || 403 Opcode == Instruction::AShr) { 404 return NumVectors; 405 } 406 407 if (DivRemConstPow2) 408 return (NumVectors * (SignedDivRem ? SDivPow2Cost : 1)); 409 if (DivRemConst) 410 return VF * DivMulSeqCost + getScalarizationOverhead(Ty, Args); 411 if ((SignedDivRem || UnsignedDivRem) && VF > 4) 412 // Temporary hack: disable high vectorization factors with integer 413 // division/remainder, which will get scalarized and handled with 414 // GR128 registers. The mischeduler is not clever enough to avoid 415 // spilling yet. 416 return 1000; 417 418 // These FP operations are supported with a single vector instruction for 419 // double (base implementation assumes float generally costs 2). For 420 // FP128, the scalar cost is 1, and there is no overhead since the values 421 // are already in scalar registers. 422 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub || 423 Opcode == Instruction::FMul || Opcode == Instruction::FDiv) { 424 switch (ScalarBits) { 425 case 32: { 426 // The vector enhancements facility 1 provides v4f32 instructions. 427 if (ST->hasVectorEnhancements1()) 428 return NumVectors; 429 // Return the cost of multiple scalar invocation plus the cost of 430 // inserting and extracting the values. 431 unsigned ScalarCost = 432 getArithmeticInstrCost(Opcode, Ty->getScalarType()); 433 unsigned Cost = (VF * ScalarCost) + getScalarizationOverhead(Ty, Args); 434 // FIXME: VF 2 for these FP operations are currently just as 435 // expensive as for VF 4. 436 if (VF == 2) 437 Cost *= 2; 438 return Cost; 439 } 440 case 64: 441 case 128: 442 return NumVectors; 443 default: 444 break; 445 } 446 } 447 448 // There is no native support for FRem. 449 if (Opcode == Instruction::FRem) { 450 unsigned Cost = (VF * LIBCALL_COST) + getScalarizationOverhead(Ty, Args); 451 // FIXME: VF 2 for float is currently just as expensive as for VF 4. 452 if (VF == 2 && ScalarBits == 32) 453 Cost *= 2; 454 return Cost; 455 } 456 } 457 else { // Scalar: 458 // These FP operations are supported with a dedicated instruction for 459 // float, double and fp128 (base implementation assumes float generally 460 // costs 2). 461 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub || 462 Opcode == Instruction::FMul || Opcode == Instruction::FDiv) 463 return 1; 464 465 // There is no native support for FRem. 466 if (Opcode == Instruction::FRem) 467 return LIBCALL_COST; 468 469 // Or requires one instruction, although it has custom handling for i64. 470 if (Opcode == Instruction::Or) 471 return 1; 472 473 if (Opcode == Instruction::Xor && ScalarBits == 1) { 474 if (ST->hasLoadStoreOnCond2()) 475 return 5; // 2 * (li 0; loc 1); xor 476 return 7; // 2 * ipm sequences ; xor ; shift ; compare 477 } 478 479 if (DivRemConstPow2) 480 return (SignedDivRem ? SDivPow2Cost : 1); 481 if (DivRemConst) 482 return DivMulSeqCost; 483 if (SignedDivRem || UnsignedDivRem) 484 return DivInstrCost; 485 } 486 487 // Fallback to the default implementation. 488 return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info, 489 Opd1PropInfo, Opd2PropInfo, Args); 490 } 491 492 int SystemZTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, 493 Type *SubTp) { 494 assert (Tp->isVectorTy()); 495 assert (ST->hasVector() && "getShuffleCost() called."); 496 unsigned NumVectors = getNumVectorRegs(Tp); 497 498 // TODO: Since fp32 is expanded, the shuffle cost should always be 0. 499 500 // FP128 values are always in scalar registers, so there is no work 501 // involved with a shuffle, except for broadcast. In that case register 502 // moves are done with a single instruction per element. 503 if (Tp->getScalarType()->isFP128Ty()) 504 return (Kind == TargetTransformInfo::SK_Broadcast ? NumVectors - 1 : 0); 505 506 switch (Kind) { 507 case TargetTransformInfo::SK_ExtractSubvector: 508 // ExtractSubvector Index indicates start offset. 509 510 // Extracting a subvector from first index is a noop. 511 return (Index == 0 ? 0 : NumVectors); 512 513 case TargetTransformInfo::SK_Broadcast: 514 // Loop vectorizer calls here to figure out the extra cost of 515 // broadcasting a loaded value to all elements of a vector. Since vlrep 516 // loads and replicates with a single instruction, adjust the returned 517 // value. 518 return NumVectors - 1; 519 520 default: 521 522 // SystemZ supports single instruction permutation / replication. 523 return NumVectors; 524 } 525 526 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); 527 } 528 529 // Return the log2 difference of the element sizes of the two vector types. 530 static unsigned getElSizeLog2Diff(Type *Ty0, Type *Ty1) { 531 unsigned Bits0 = Ty0->getScalarSizeInBits(); 532 unsigned Bits1 = Ty1->getScalarSizeInBits(); 533 534 if (Bits1 > Bits0) 535 return (Log2_32(Bits1) - Log2_32(Bits0)); 536 537 return (Log2_32(Bits0) - Log2_32(Bits1)); 538 } 539 540 // Return the number of instructions needed to truncate SrcTy to DstTy. 541 unsigned SystemZTTIImpl:: 542 getVectorTruncCost(Type *SrcTy, Type *DstTy) { 543 assert (SrcTy->isVectorTy() && DstTy->isVectorTy()); 544 assert (SrcTy->getPrimitiveSizeInBits() > DstTy->getPrimitiveSizeInBits() && 545 "Packing must reduce size of vector type."); 546 assert (SrcTy->getVectorNumElements() == DstTy->getVectorNumElements() && 547 "Packing should not change number of elements."); 548 549 // TODO: Since fp32 is expanded, the extract cost should always be 0. 550 551 unsigned NumParts = getNumVectorRegs(SrcTy); 552 if (NumParts <= 2) 553 // Up to 2 vector registers can be truncated efficiently with pack or 554 // permute. The latter requires an immediate mask to be loaded, which 555 // typically gets hoisted out of a loop. TODO: return a good value for 556 // BB-VECTORIZER that includes the immediate loads, which we do not want 557 // to count for the loop vectorizer. 558 return 1; 559 560 unsigned Cost = 0; 561 unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy); 562 unsigned VF = SrcTy->getVectorNumElements(); 563 for (unsigned P = 0; P < Log2Diff; ++P) { 564 if (NumParts > 1) 565 NumParts /= 2; 566 Cost += NumParts; 567 } 568 569 // Currently, a general mix of permutes and pack instructions is output by 570 // isel, which follow the cost computation above except for this case which 571 // is one instruction less: 572 if (VF == 8 && SrcTy->getScalarSizeInBits() == 64 && 573 DstTy->getScalarSizeInBits() == 8) 574 Cost--; 575 576 return Cost; 577 } 578 579 // Return the cost of converting a vector bitmask produced by a compare 580 // (SrcTy), to the type of the select or extend instruction (DstTy). 581 unsigned SystemZTTIImpl:: 582 getVectorBitmaskConversionCost(Type *SrcTy, Type *DstTy) { 583 assert (SrcTy->isVectorTy() && DstTy->isVectorTy() && 584 "Should only be called with vector types."); 585 586 unsigned PackCost = 0; 587 unsigned SrcScalarBits = SrcTy->getScalarSizeInBits(); 588 unsigned DstScalarBits = DstTy->getScalarSizeInBits(); 589 unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy); 590 if (SrcScalarBits > DstScalarBits) 591 // The bitmask will be truncated. 592 PackCost = getVectorTruncCost(SrcTy, DstTy); 593 else if (SrcScalarBits < DstScalarBits) { 594 unsigned DstNumParts = getNumVectorRegs(DstTy); 595 // Each vector select needs its part of the bitmask unpacked. 596 PackCost = Log2Diff * DstNumParts; 597 // Extra cost for moving part of mask before unpacking. 598 PackCost += DstNumParts - 1; 599 } 600 601 return PackCost; 602 } 603 604 // Return the type of the compared operands. This is needed to compute the 605 // cost for a Select / ZExt or SExt instruction. 606 static Type *getCmpOpsType(const Instruction *I, unsigned VF = 1) { 607 Type *OpTy = nullptr; 608 if (CmpInst *CI = dyn_cast<CmpInst>(I->getOperand(0))) 609 OpTy = CI->getOperand(0)->getType(); 610 else if (Instruction *LogicI = dyn_cast<Instruction>(I->getOperand(0))) 611 if (LogicI->getNumOperands() == 2) 612 if (CmpInst *CI0 = dyn_cast<CmpInst>(LogicI->getOperand(0))) 613 if (isa<CmpInst>(LogicI->getOperand(1))) 614 OpTy = CI0->getOperand(0)->getType(); 615 616 if (OpTy != nullptr) { 617 if (VF == 1) { 618 assert (!OpTy->isVectorTy() && "Expected scalar type"); 619 return OpTy; 620 } 621 // Return the potentially vectorized type based on 'I' and 'VF'. 'I' may 622 // be either scalar or already vectorized with a same or lesser VF. 623 Type *ElTy = OpTy->getScalarType(); 624 return VectorType::get(ElTy, VF); 625 } 626 627 return nullptr; 628 } 629 630 // Get the cost of converting a boolean vector to a vector with same width 631 // and element size as Dst, plus the cost of zero extending if needed. 632 unsigned SystemZTTIImpl:: 633 getBoolVecToIntConversionCost(unsigned Opcode, Type *Dst, 634 const Instruction *I) { 635 assert (Dst->isVectorTy()); 636 unsigned VF = Dst->getVectorNumElements(); 637 unsigned Cost = 0; 638 // If we know what the widths of the compared operands, get any cost of 639 // converting it to match Dst. Otherwise assume same widths. 640 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr); 641 if (CmpOpTy != nullptr) 642 Cost = getVectorBitmaskConversionCost(CmpOpTy, Dst); 643 if (Opcode == Instruction::ZExt || Opcode == Instruction::UIToFP) 644 // One 'vn' per dst vector with an immediate mask. 645 Cost += getNumVectorRegs(Dst); 646 return Cost; 647 } 648 649 int SystemZTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, 650 const Instruction *I) { 651 unsigned DstScalarBits = Dst->getScalarSizeInBits(); 652 unsigned SrcScalarBits = Src->getScalarSizeInBits(); 653 654 if (Src->isVectorTy()) { 655 assert (ST->hasVector() && "getCastInstrCost() called with vector type."); 656 assert (Dst->isVectorTy()); 657 unsigned VF = Src->getVectorNumElements(); 658 unsigned NumDstVectors = getNumVectorRegs(Dst); 659 unsigned NumSrcVectors = getNumVectorRegs(Src); 660 661 if (Opcode == Instruction::Trunc) { 662 if (Src->getScalarSizeInBits() == Dst->getScalarSizeInBits()) 663 return 0; // Check for NOOP conversions. 664 return getVectorTruncCost(Src, Dst); 665 } 666 667 if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 668 if (SrcScalarBits >= 8) { 669 // ZExt/SExt will be handled with one unpack per doubling of width. 670 unsigned NumUnpacks = getElSizeLog2Diff(Src, Dst); 671 672 // For types that spans multiple vector registers, some additional 673 // instructions are used to setup the unpacking. 674 unsigned NumSrcVectorOps = 675 (NumUnpacks > 1 ? (NumDstVectors - NumSrcVectors) 676 : (NumDstVectors / 2)); 677 678 return (NumUnpacks * NumDstVectors) + NumSrcVectorOps; 679 } 680 else if (SrcScalarBits == 1) 681 return getBoolVecToIntConversionCost(Opcode, Dst, I); 682 } 683 684 if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP || 685 Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI) { 686 // TODO: Fix base implementation which could simplify things a bit here 687 // (seems to miss on differentiating on scalar/vector types). 688 689 // Only 64 bit vector conversions are natively supported. 690 if (DstScalarBits == 64) { 691 if (SrcScalarBits == 64) 692 return NumDstVectors; 693 694 if (SrcScalarBits == 1) 695 return getBoolVecToIntConversionCost(Opcode, Dst, I) + NumDstVectors; 696 } 697 698 // Return the cost of multiple scalar invocation plus the cost of 699 // inserting and extracting the values. Base implementation does not 700 // realize float->int gets scalarized. 701 unsigned ScalarCost = getCastInstrCost(Opcode, Dst->getScalarType(), 702 Src->getScalarType()); 703 unsigned TotCost = VF * ScalarCost; 704 bool NeedsInserts = true, NeedsExtracts = true; 705 // FP128 registers do not get inserted or extracted. 706 if (DstScalarBits == 128 && 707 (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP)) 708 NeedsInserts = false; 709 if (SrcScalarBits == 128 && 710 (Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI)) 711 NeedsExtracts = false; 712 713 TotCost += getScalarizationOverhead(Src, false, NeedsExtracts); 714 TotCost += getScalarizationOverhead(Dst, NeedsInserts, false); 715 716 // FIXME: VF 2 for float<->i32 is currently just as expensive as for VF 4. 717 if (VF == 2 && SrcScalarBits == 32 && DstScalarBits == 32) 718 TotCost *= 2; 719 720 return TotCost; 721 } 722 723 if (Opcode == Instruction::FPTrunc) { 724 if (SrcScalarBits == 128) // fp128 -> double/float + inserts of elements. 725 return VF /*ldxbr/lexbr*/ + getScalarizationOverhead(Dst, true, false); 726 else // double -> float 727 return VF / 2 /*vledb*/ + std::max(1U, VF / 4 /*vperm*/); 728 } 729 730 if (Opcode == Instruction::FPExt) { 731 if (SrcScalarBits == 32 && DstScalarBits == 64) { 732 // float -> double is very rare and currently unoptimized. Instead of 733 // using vldeb, which can do two at a time, all conversions are 734 // scalarized. 735 return VF * 2; 736 } 737 // -> fp128. VF * lxdb/lxeb + extraction of elements. 738 return VF + getScalarizationOverhead(Src, false, true); 739 } 740 } 741 else { // Scalar 742 assert (!Dst->isVectorTy()); 743 744 if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP) { 745 if (SrcScalarBits >= 32 || 746 (I != nullptr && isa<LoadInst>(I->getOperand(0)))) 747 return 1; 748 return SrcScalarBits > 1 ? 2 /*i8/i16 extend*/ : 5 /*branch seq.*/; 749 } 750 751 if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) && 752 Src->isIntegerTy(1)) { 753 if (ST->hasLoadStoreOnCond2()) 754 return 2; // li 0; loc 1 755 756 // This should be extension of a compare i1 result, which is done with 757 // ipm and a varying sequence of instructions. 758 unsigned Cost = 0; 759 if (Opcode == Instruction::SExt) 760 Cost = (DstScalarBits < 64 ? 3 : 4); 761 if (Opcode == Instruction::ZExt) 762 Cost = 3; 763 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I) : nullptr); 764 if (CmpOpTy != nullptr && CmpOpTy->isFloatingPointTy()) 765 // If operands of an fp-type was compared, this costs +1. 766 Cost++; 767 return Cost; 768 } 769 } 770 771 return BaseT::getCastInstrCost(Opcode, Dst, Src, I); 772 } 773 774 // Scalar i8 / i16 operations will typically be made after first extending 775 // the operands to i32. 776 static unsigned getOperandsExtensionCost(const Instruction *I) { 777 unsigned ExtCost = 0; 778 for (Value *Op : I->operands()) 779 // A load of i8 or i16 sign/zero extends to i32. 780 if (!isa<LoadInst>(Op) && !isa<ConstantInt>(Op)) 781 ExtCost++; 782 783 return ExtCost; 784 } 785 786 int SystemZTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 787 Type *CondTy, const Instruction *I) { 788 if (ValTy->isVectorTy()) { 789 assert (ST->hasVector() && "getCmpSelInstrCost() called with vector type."); 790 unsigned VF = ValTy->getVectorNumElements(); 791 792 // Called with a compare instruction. 793 if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) { 794 unsigned PredicateExtraCost = 0; 795 if (I != nullptr) { 796 // Some predicates cost one or two extra instructions. 797 switch (cast<CmpInst>(I)->getPredicate()) { 798 case CmpInst::Predicate::ICMP_NE: 799 case CmpInst::Predicate::ICMP_UGE: 800 case CmpInst::Predicate::ICMP_ULE: 801 case CmpInst::Predicate::ICMP_SGE: 802 case CmpInst::Predicate::ICMP_SLE: 803 PredicateExtraCost = 1; 804 break; 805 case CmpInst::Predicate::FCMP_ONE: 806 case CmpInst::Predicate::FCMP_ORD: 807 case CmpInst::Predicate::FCMP_UEQ: 808 case CmpInst::Predicate::FCMP_UNO: 809 PredicateExtraCost = 2; 810 break; 811 default: 812 break; 813 } 814 } 815 816 // Float is handled with 2*vmr[lh]f + 2*vldeb + vfchdb for each pair of 817 // floats. FIXME: <2 x float> generates same code as <4 x float>. 818 unsigned CmpCostPerVector = (ValTy->getScalarType()->isFloatTy() ? 10 : 1); 819 unsigned NumVecs_cmp = getNumVectorRegs(ValTy); 820 821 unsigned Cost = (NumVecs_cmp * (CmpCostPerVector + PredicateExtraCost)); 822 return Cost; 823 } 824 else { // Called with a select instruction. 825 assert (Opcode == Instruction::Select); 826 827 // We can figure out the extra cost of packing / unpacking if the 828 // instruction was passed and the compare instruction is found. 829 unsigned PackCost = 0; 830 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr); 831 if (CmpOpTy != nullptr) 832 PackCost = 833 getVectorBitmaskConversionCost(CmpOpTy, ValTy); 834 835 return getNumVectorRegs(ValTy) /*vsel*/ + PackCost; 836 } 837 } 838 else { // Scalar 839 switch (Opcode) { 840 case Instruction::ICmp: { 841 // A loaded value compared with 0 with multiple users becomes Load and 842 // Test. The load is then not foldable, so return 0 cost for the ICmp. 843 unsigned ScalarBits = ValTy->getScalarSizeInBits(); 844 if (I != nullptr && ScalarBits >= 32) 845 if (LoadInst *Ld = dyn_cast<LoadInst>(I->getOperand(0))) 846 if (const ConstantInt *C = dyn_cast<ConstantInt>(I->getOperand(1))) 847 if (!Ld->hasOneUse() && Ld->getParent() == I->getParent() && 848 C->getZExtValue() == 0) 849 return 0; 850 851 unsigned Cost = 1; 852 if (ValTy->isIntegerTy() && ValTy->getScalarSizeInBits() <= 16) 853 Cost += (I != nullptr ? getOperandsExtensionCost(I) : 2); 854 return Cost; 855 } 856 case Instruction::Select: 857 if (ValTy->isFloatingPointTy()) 858 return 4; // No load on condition for FP - costs a conditional jump. 859 return 1; // Load On Condition. 860 } 861 } 862 863 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, nullptr); 864 } 865 866 int SystemZTTIImpl:: 867 getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) { 868 // vlvgp will insert two grs into a vector register, so only count half the 869 // number of instructions. 870 if (Opcode == Instruction::InsertElement && Val->isIntOrIntVectorTy(64)) 871 return ((Index % 2 == 0) ? 1 : 0); 872 873 if (Opcode == Instruction::ExtractElement) { 874 int Cost = ((getScalarSizeInBits(Val) == 1) ? 2 /*+test-under-mask*/ : 1); 875 876 // Give a slight penalty for moving out of vector pipeline to FXU unit. 877 if (Index == 0 && Val->isIntOrIntVectorTy()) 878 Cost += 1; 879 880 return Cost; 881 } 882 883 return BaseT::getVectorInstrCost(Opcode, Val, Index); 884 } 885 886 // Check if a load may be folded as a memory operand in its user. 887 bool SystemZTTIImpl:: 888 isFoldableLoad(const LoadInst *Ld, const Instruction *&FoldedValue) { 889 if (!Ld->hasOneUse()) 890 return false; 891 FoldedValue = Ld; 892 const Instruction *UserI = cast<Instruction>(*Ld->user_begin()); 893 unsigned LoadedBits = getScalarSizeInBits(Ld->getType()); 894 unsigned TruncBits = 0; 895 unsigned SExtBits = 0; 896 unsigned ZExtBits = 0; 897 if (UserI->hasOneUse()) { 898 unsigned UserBits = UserI->getType()->getScalarSizeInBits(); 899 if (isa<TruncInst>(UserI)) 900 TruncBits = UserBits; 901 else if (isa<SExtInst>(UserI)) 902 SExtBits = UserBits; 903 else if (isa<ZExtInst>(UserI)) 904 ZExtBits = UserBits; 905 } 906 if (TruncBits || SExtBits || ZExtBits) { 907 FoldedValue = UserI; 908 UserI = cast<Instruction>(*UserI->user_begin()); 909 // Load (single use) -> trunc/extend (single use) -> UserI 910 } 911 if ((UserI->getOpcode() == Instruction::Sub || 912 UserI->getOpcode() == Instruction::SDiv || 913 UserI->getOpcode() == Instruction::UDiv) && 914 UserI->getOperand(1) != FoldedValue) 915 return false; // Not commutative, only RHS foldable. 916 // LoadOrTruncBits holds the number of effectively loaded bits, but 0 if an 917 // extension was made of the load. 918 unsigned LoadOrTruncBits = 919 ((SExtBits || ZExtBits) ? 0 : (TruncBits ? TruncBits : LoadedBits)); 920 switch (UserI->getOpcode()) { 921 case Instruction::Add: // SE: 16->32, 16/32->64, z14:16->64. ZE: 32->64 922 case Instruction::Sub: 923 case Instruction::ICmp: 924 if (LoadedBits == 32 && ZExtBits == 64) 925 return true; 926 LLVM_FALLTHROUGH; 927 case Instruction::Mul: // SE: 16->32, 32->64, z14:16->64 928 if (UserI->getOpcode() != Instruction::ICmp) { 929 if (LoadedBits == 16 && 930 (SExtBits == 32 || 931 (SExtBits == 64 && ST->hasMiscellaneousExtensions2()))) 932 return true; 933 if (LoadOrTruncBits == 16) 934 return true; 935 } 936 LLVM_FALLTHROUGH; 937 case Instruction::SDiv:// SE: 32->64 938 if (LoadedBits == 32 && SExtBits == 64) 939 return true; 940 LLVM_FALLTHROUGH; 941 case Instruction::UDiv: 942 case Instruction::And: 943 case Instruction::Or: 944 case Instruction::Xor: 945 // This also makes sense for float operations, but disabled for now due 946 // to regressions. 947 // case Instruction::FCmp: 948 // case Instruction::FAdd: 949 // case Instruction::FSub: 950 // case Instruction::FMul: 951 // case Instruction::FDiv: 952 953 // All possible extensions of memory checked above. 954 955 // Comparison between memory and immediate. 956 if (UserI->getOpcode() == Instruction::ICmp) 957 if (ConstantInt *CI = dyn_cast<ConstantInt>(UserI->getOperand(1))) 958 if (isUInt<16>(CI->getZExtValue())) 959 return true; 960 return (LoadOrTruncBits == 32 || LoadOrTruncBits == 64); 961 break; 962 } 963 return false; 964 } 965 966 static bool isBswapIntrinsicCall(const Value *V) { 967 if (const Instruction *I = dyn_cast<Instruction>(V)) 968 if (auto *CI = dyn_cast<CallInst>(I)) 969 if (auto *F = CI->getCalledFunction()) 970 if (F->getIntrinsicID() == Intrinsic::bswap) 971 return true; 972 return false; 973 } 974 975 int SystemZTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, 976 unsigned Alignment, unsigned AddressSpace, 977 const Instruction *I) { 978 assert(!Src->isVoidTy() && "Invalid type"); 979 980 if (!Src->isVectorTy() && Opcode == Instruction::Load && I != nullptr) { 981 // Store the load or its truncated or extended value in FoldedValue. 982 const Instruction *FoldedValue = nullptr; 983 if (isFoldableLoad(cast<LoadInst>(I), FoldedValue)) { 984 const Instruction *UserI = cast<Instruction>(*FoldedValue->user_begin()); 985 assert (UserI->getNumOperands() == 2 && "Expected a binop."); 986 987 // UserI can't fold two loads, so in that case return 0 cost only 988 // half of the time. 989 for (unsigned i = 0; i < 2; ++i) { 990 if (UserI->getOperand(i) == FoldedValue) 991 continue; 992 993 if (Instruction *OtherOp = dyn_cast<Instruction>(UserI->getOperand(i))){ 994 LoadInst *OtherLoad = dyn_cast<LoadInst>(OtherOp); 995 if (!OtherLoad && 996 (isa<TruncInst>(OtherOp) || isa<SExtInst>(OtherOp) || 997 isa<ZExtInst>(OtherOp))) 998 OtherLoad = dyn_cast<LoadInst>(OtherOp->getOperand(0)); 999 if (OtherLoad && isFoldableLoad(OtherLoad, FoldedValue/*dummy*/)) 1000 return i == 0; // Both operands foldable. 1001 } 1002 } 1003 1004 return 0; // Only I is foldable in user. 1005 } 1006 } 1007 1008 unsigned NumOps = 1009 (Src->isVectorTy() ? getNumVectorRegs(Src) : getNumberOfParts(Src)); 1010 1011 // Store/Load reversed saves one instruction. 1012 if (!Src->isVectorTy() && NumOps == 1 && I != nullptr) { 1013 if (Opcode == Instruction::Load && I->hasOneUse()) { 1014 const Instruction *LdUser = cast<Instruction>(*I->user_begin()); 1015 // In case of load -> bswap -> store, return normal cost for the load. 1016 if (isBswapIntrinsicCall(LdUser) && 1017 (!LdUser->hasOneUse() || !isa<StoreInst>(*LdUser->user_begin()))) 1018 return 0; 1019 } 1020 else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) { 1021 const Value *StoredVal = SI->getValueOperand(); 1022 if (StoredVal->hasOneUse() && isBswapIntrinsicCall(StoredVal)) 1023 return 0; 1024 } 1025 } 1026 1027 if (Src->getScalarSizeInBits() == 128) 1028 // 128 bit scalars are held in a pair of two 64 bit registers. 1029 NumOps *= 2; 1030 1031 return NumOps; 1032 } 1033 1034 // The generic implementation of getInterleavedMemoryOpCost() is based on 1035 // adding costs of the memory operations plus all the extracts and inserts 1036 // needed for using / defining the vector operands. The SystemZ version does 1037 // roughly the same but bases the computations on vector permutations 1038 // instead. 1039 int SystemZTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, 1040 unsigned Factor, 1041 ArrayRef<unsigned> Indices, 1042 unsigned Alignment, 1043 unsigned AddressSpace, 1044 bool UseMaskForCond, 1045 bool UseMaskForGaps) { 1046 if (UseMaskForCond || UseMaskForGaps) 1047 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 1048 Alignment, AddressSpace, 1049 UseMaskForCond, UseMaskForGaps); 1050 assert(isa<VectorType>(VecTy) && 1051 "Expect a vector type for interleaved memory op"); 1052 1053 // Return the ceiling of dividing A by B. 1054 auto ceil = [](unsigned A, unsigned B) { return (A + B - 1) / B; }; 1055 1056 unsigned NumElts = VecTy->getVectorNumElements(); 1057 assert(Factor > 1 && NumElts % Factor == 0 && "Invalid interleave factor"); 1058 unsigned VF = NumElts / Factor; 1059 unsigned NumEltsPerVecReg = (128U / getScalarSizeInBits(VecTy)); 1060 unsigned NumVectorMemOps = getNumVectorRegs(VecTy); 1061 unsigned NumPermutes = 0; 1062 1063 if (Opcode == Instruction::Load) { 1064 // Loading interleave groups may have gaps, which may mean fewer 1065 // loads. Find out how many vectors will be loaded in total, and in how 1066 // many of them each value will be in. 1067 BitVector UsedInsts(NumVectorMemOps, false); 1068 std::vector<BitVector> ValueVecs(Factor, BitVector(NumVectorMemOps, false)); 1069 for (unsigned Index : Indices) 1070 for (unsigned Elt = 0; Elt < VF; ++Elt) { 1071 unsigned Vec = (Index + Elt * Factor) / NumEltsPerVecReg; 1072 UsedInsts.set(Vec); 1073 ValueVecs[Index].set(Vec); 1074 } 1075 NumVectorMemOps = UsedInsts.count(); 1076 1077 for (unsigned Index : Indices) { 1078 // Estimate that each loaded source vector containing this Index 1079 // requires one operation, except that vperm can handle two input 1080 // registers first time for each dst vector. 1081 unsigned NumSrcVecs = ValueVecs[Index].count(); 1082 unsigned NumDstVecs = ceil(VF * getScalarSizeInBits(VecTy), 128U); 1083 assert (NumSrcVecs >= NumDstVecs && "Expected at least as many sources"); 1084 NumPermutes += std::max(1U, NumSrcVecs - NumDstVecs); 1085 } 1086 } else { 1087 // Estimate the permutes for each stored vector as the smaller of the 1088 // number of elements and the number of source vectors. Subtract one per 1089 // dst vector for vperm (S.A.). 1090 unsigned NumSrcVecs = std::min(NumEltsPerVecReg, Factor); 1091 unsigned NumDstVecs = NumVectorMemOps; 1092 assert (NumSrcVecs > 1 && "Expected at least two source vectors."); 1093 NumPermutes += (NumDstVecs * NumSrcVecs) - NumDstVecs; 1094 } 1095 1096 // Cost of load/store operations and the permutations needed. 1097 return NumVectorMemOps + NumPermutes; 1098 } 1099 1100 static int getVectorIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy) { 1101 if (RetTy->isVectorTy() && ID == Intrinsic::bswap) 1102 return getNumVectorRegs(RetTy); // VPERM 1103 return -1; 1104 } 1105 1106 int SystemZTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 1107 ArrayRef<Value *> Args, 1108 FastMathFlags FMF, unsigned VF) { 1109 int Cost = getVectorIntrinsicInstrCost(ID, RetTy); 1110 if (Cost != -1) 1111 return Cost; 1112 return BaseT::getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF); 1113 } 1114 1115 int SystemZTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 1116 ArrayRef<Type *> Tys, 1117 FastMathFlags FMF, 1118 unsigned ScalarizationCostPassed) { 1119 int Cost = getVectorIntrinsicInstrCost(ID, RetTy); 1120 if (Cost != -1) 1121 return Cost; 1122 return BaseT::getIntrinsicInstrCost(ID, RetTy, Tys, 1123 FMF, ScalarizationCostPassed); 1124 } 1125