1 //===-- SystemZTargetTransformInfo.cpp - SystemZ-specific TTI -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a TargetTransformInfo analysis pass specific to the
11 // SystemZ target machine. It uses the target's detailed information to provide
12 // more precise answers to certain TTI queries, while letting the target
13 // independent and default TTI implementations handle the rest.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "SystemZTargetTransformInfo.h"
18 #include "llvm/Analysis/TargetTransformInfo.h"
19 #include "llvm/CodeGen/BasicTTIImpl.h"
20 #include "llvm/CodeGen/CostTable.h"
21 #include "llvm/CodeGen/TargetLowering.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/Support/Debug.h"
24 using namespace llvm;
25 
26 #define DEBUG_TYPE "systemztti"
27 
28 //===----------------------------------------------------------------------===//
29 //
30 // SystemZ cost model.
31 //
32 //===----------------------------------------------------------------------===//
33 
34 int SystemZTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
35   assert(Ty->isIntegerTy());
36 
37   unsigned BitSize = Ty->getPrimitiveSizeInBits();
38   // There is no cost model for constants with a bit size of 0. Return TCC_Free
39   // here, so that constant hoisting will ignore this constant.
40   if (BitSize == 0)
41     return TTI::TCC_Free;
42   // No cost model for operations on integers larger than 64 bit implemented yet.
43   if (BitSize > 64)
44     return TTI::TCC_Free;
45 
46   if (Imm == 0)
47     return TTI::TCC_Free;
48 
49   if (Imm.getBitWidth() <= 64) {
50     // Constants loaded via lgfi.
51     if (isInt<32>(Imm.getSExtValue()))
52       return TTI::TCC_Basic;
53     // Constants loaded via llilf.
54     if (isUInt<32>(Imm.getZExtValue()))
55       return TTI::TCC_Basic;
56     // Constants loaded via llihf:
57     if ((Imm.getZExtValue() & 0xffffffff) == 0)
58       return TTI::TCC_Basic;
59 
60     return 2 * TTI::TCC_Basic;
61   }
62 
63   return 4 * TTI::TCC_Basic;
64 }
65 
66 int SystemZTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx,
67                                   const APInt &Imm, Type *Ty) {
68   assert(Ty->isIntegerTy());
69 
70   unsigned BitSize = Ty->getPrimitiveSizeInBits();
71   // There is no cost model for constants with a bit size of 0. Return TCC_Free
72   // here, so that constant hoisting will ignore this constant.
73   if (BitSize == 0)
74     return TTI::TCC_Free;
75   // No cost model for operations on integers larger than 64 bit implemented yet.
76   if (BitSize > 64)
77     return TTI::TCC_Free;
78 
79   switch (Opcode) {
80   default:
81     return TTI::TCC_Free;
82   case Instruction::GetElementPtr:
83     // Always hoist the base address of a GetElementPtr. This prevents the
84     // creation of new constants for every base constant that gets constant
85     // folded with the offset.
86     if (Idx == 0)
87       return 2 * TTI::TCC_Basic;
88     return TTI::TCC_Free;
89   case Instruction::Store:
90     if (Idx == 0 && Imm.getBitWidth() <= 64) {
91       // Any 8-bit immediate store can by implemented via mvi.
92       if (BitSize == 8)
93         return TTI::TCC_Free;
94       // 16-bit immediate values can be stored via mvhhi/mvhi/mvghi.
95       if (isInt<16>(Imm.getSExtValue()))
96         return TTI::TCC_Free;
97     }
98     break;
99   case Instruction::ICmp:
100     if (Idx == 1 && Imm.getBitWidth() <= 64) {
101       // Comparisons against signed 32-bit immediates implemented via cgfi.
102       if (isInt<32>(Imm.getSExtValue()))
103         return TTI::TCC_Free;
104       // Comparisons against unsigned 32-bit immediates implemented via clgfi.
105       if (isUInt<32>(Imm.getZExtValue()))
106         return TTI::TCC_Free;
107     }
108     break;
109   case Instruction::Add:
110   case Instruction::Sub:
111     if (Idx == 1 && Imm.getBitWidth() <= 64) {
112       // We use algfi/slgfi to add/subtract 32-bit unsigned immediates.
113       if (isUInt<32>(Imm.getZExtValue()))
114         return TTI::TCC_Free;
115       // Or their negation, by swapping addition vs. subtraction.
116       if (isUInt<32>(-Imm.getSExtValue()))
117         return TTI::TCC_Free;
118     }
119     break;
120   case Instruction::Mul:
121     if (Idx == 1 && Imm.getBitWidth() <= 64) {
122       // We use msgfi to multiply by 32-bit signed immediates.
123       if (isInt<32>(Imm.getSExtValue()))
124         return TTI::TCC_Free;
125     }
126     break;
127   case Instruction::Or:
128   case Instruction::Xor:
129     if (Idx == 1 && Imm.getBitWidth() <= 64) {
130       // Masks supported by oilf/xilf.
131       if (isUInt<32>(Imm.getZExtValue()))
132         return TTI::TCC_Free;
133       // Masks supported by oihf/xihf.
134       if ((Imm.getZExtValue() & 0xffffffff) == 0)
135         return TTI::TCC_Free;
136     }
137     break;
138   case Instruction::And:
139     if (Idx == 1 && Imm.getBitWidth() <= 64) {
140       // Any 32-bit AND operation can by implemented via nilf.
141       if (BitSize <= 32)
142         return TTI::TCC_Free;
143       // 64-bit masks supported by nilf.
144       if (isUInt<32>(~Imm.getZExtValue()))
145         return TTI::TCC_Free;
146       // 64-bit masks supported by nilh.
147       if ((Imm.getZExtValue() & 0xffffffff) == 0xffffffff)
148         return TTI::TCC_Free;
149       // Some 64-bit AND operations can be implemented via risbg.
150       const SystemZInstrInfo *TII = ST->getInstrInfo();
151       unsigned Start, End;
152       if (TII->isRxSBGMask(Imm.getZExtValue(), BitSize, Start, End))
153         return TTI::TCC_Free;
154     }
155     break;
156   case Instruction::Shl:
157   case Instruction::LShr:
158   case Instruction::AShr:
159     // Always return TCC_Free for the shift value of a shift instruction.
160     if (Idx == 1)
161       return TTI::TCC_Free;
162     break;
163   case Instruction::UDiv:
164   case Instruction::SDiv:
165   case Instruction::URem:
166   case Instruction::SRem:
167   case Instruction::Trunc:
168   case Instruction::ZExt:
169   case Instruction::SExt:
170   case Instruction::IntToPtr:
171   case Instruction::PtrToInt:
172   case Instruction::BitCast:
173   case Instruction::PHI:
174   case Instruction::Call:
175   case Instruction::Select:
176   case Instruction::Ret:
177   case Instruction::Load:
178     break;
179   }
180 
181   return SystemZTTIImpl::getIntImmCost(Imm, Ty);
182 }
183 
184 int SystemZTTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
185                                   const APInt &Imm, Type *Ty) {
186   assert(Ty->isIntegerTy());
187 
188   unsigned BitSize = Ty->getPrimitiveSizeInBits();
189   // There is no cost model for constants with a bit size of 0. Return TCC_Free
190   // here, so that constant hoisting will ignore this constant.
191   if (BitSize == 0)
192     return TTI::TCC_Free;
193   // No cost model for operations on integers larger than 64 bit implemented yet.
194   if (BitSize > 64)
195     return TTI::TCC_Free;
196 
197   switch (IID) {
198   default:
199     return TTI::TCC_Free;
200   case Intrinsic::sadd_with_overflow:
201   case Intrinsic::uadd_with_overflow:
202   case Intrinsic::ssub_with_overflow:
203   case Intrinsic::usub_with_overflow:
204     // These get expanded to include a normal addition/subtraction.
205     if (Idx == 1 && Imm.getBitWidth() <= 64) {
206       if (isUInt<32>(Imm.getZExtValue()))
207         return TTI::TCC_Free;
208       if (isUInt<32>(-Imm.getSExtValue()))
209         return TTI::TCC_Free;
210     }
211     break;
212   case Intrinsic::smul_with_overflow:
213   case Intrinsic::umul_with_overflow:
214     // These get expanded to include a normal multiplication.
215     if (Idx == 1 && Imm.getBitWidth() <= 64) {
216       if (isInt<32>(Imm.getSExtValue()))
217         return TTI::TCC_Free;
218     }
219     break;
220   case Intrinsic::experimental_stackmap:
221     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
222       return TTI::TCC_Free;
223     break;
224   case Intrinsic::experimental_patchpoint_void:
225   case Intrinsic::experimental_patchpoint_i64:
226     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
227       return TTI::TCC_Free;
228     break;
229   }
230   return SystemZTTIImpl::getIntImmCost(Imm, Ty);
231 }
232 
233 TargetTransformInfo::PopcntSupportKind
234 SystemZTTIImpl::getPopcntSupport(unsigned TyWidth) {
235   assert(isPowerOf2_32(TyWidth) && "Type width must be power of 2");
236   if (ST->hasPopulationCount() && TyWidth <= 64)
237     return TTI::PSK_FastHardware;
238   return TTI::PSK_Software;
239 }
240 
241 void SystemZTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
242                                              TTI::UnrollingPreferences &UP) {
243   // Find out if L contains a call, what the machine instruction count
244   // estimate is, and how many stores there are.
245   bool HasCall = false;
246   unsigned NumStores = 0;
247   for (auto &BB : L->blocks())
248     for (auto &I : *BB) {
249       if (isa<CallInst>(&I) || isa<InvokeInst>(&I)) {
250         ImmutableCallSite CS(&I);
251         if (const Function *F = CS.getCalledFunction()) {
252           if (isLoweredToCall(F))
253             HasCall = true;
254           if (F->getIntrinsicID() == Intrinsic::memcpy ||
255               F->getIntrinsicID() == Intrinsic::memset)
256             NumStores++;
257         } else { // indirect call.
258           HasCall = true;
259         }
260       }
261       if (isa<StoreInst>(&I)) {
262         Type *MemAccessTy = I.getOperand(0)->getType();
263         NumStores += getMemoryOpCost(Instruction::Store, MemAccessTy, 0, 0);
264       }
265     }
266 
267   // The z13 processor will run out of store tags if too many stores
268   // are fed into it too quickly. Therefore make sure there are not
269   // too many stores in the resulting unrolled loop.
270   unsigned const Max = (NumStores ? (12 / NumStores) : UINT_MAX);
271 
272   if (HasCall) {
273     // Only allow full unrolling if loop has any calls.
274     UP.FullUnrollMaxCount = Max;
275     UP.MaxCount = 1;
276     return;
277   }
278 
279   UP.MaxCount = Max;
280   if (UP.MaxCount <= 1)
281     return;
282 
283   // Allow partial and runtime trip count unrolling.
284   UP.Partial = UP.Runtime = true;
285 
286   UP.PartialThreshold = 75;
287   UP.DefaultUnrollRuntimeCount = 4;
288 
289   // Allow expensive instructions in the pre-header of the loop.
290   UP.AllowExpensiveTripCount = true;
291 
292   UP.Force = true;
293 }
294 
295 
296 bool SystemZTTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1,
297                                    TargetTransformInfo::LSRCost &C2) {
298   // SystemZ specific: check instruction count (first), and don't care about
299   // ImmCost, since offsets are checked explicitly.
300   return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost,
301                   C1.NumIVMuls, C1.NumBaseAdds,
302                   C1.ScaleCost, C1.SetupCost) <
303     std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost,
304              C2.NumIVMuls, C2.NumBaseAdds,
305              C2.ScaleCost, C2.SetupCost);
306 }
307 
308 unsigned SystemZTTIImpl::getNumberOfRegisters(bool Vector) {
309   if (!Vector)
310     // Discount the stack pointer.  Also leave out %r0, since it can't
311     // be used in an address.
312     return 14;
313   if (ST->hasVector())
314     return 32;
315   return 0;
316 }
317 
318 unsigned SystemZTTIImpl::getRegisterBitWidth(bool Vector) const {
319   if (!Vector)
320     return 64;
321   if (ST->hasVector())
322     return 128;
323   return 0;
324 }
325 
326 bool SystemZTTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) {
327   EVT VT = TLI->getValueType(DL, DataType);
328   return (VT.isScalarInteger() && TLI->isTypeLegal(VT));
329 }
330 
331 // Return the bit size for the scalar type or vector element
332 // type. getScalarSizeInBits() returns 0 for a pointer type.
333 static unsigned getScalarSizeInBits(Type *Ty) {
334   unsigned Size =
335     (Ty->isPtrOrPtrVectorTy() ? 64U : Ty->getScalarSizeInBits());
336   assert(Size > 0 && "Element must have non-zero size.");
337   return Size;
338 }
339 
340 // getNumberOfParts() calls getTypeLegalizationCost() which splits the vector
341 // type until it is legal. This would e.g. return 4 for <6 x i64>, instead of
342 // 3.
343 static unsigned getNumVectorRegs(Type *Ty) {
344   assert(Ty->isVectorTy() && "Expected vector type");
345   unsigned WideBits = getScalarSizeInBits(Ty) * Ty->getVectorNumElements();
346   assert(WideBits > 0 && "Could not compute size of vector");
347   return ((WideBits % 128U) ? ((WideBits / 128U) + 1) : (WideBits / 128U));
348 }
349 
350 int SystemZTTIImpl::getArithmeticInstrCost(
351     unsigned Opcode, Type *Ty,
352     TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info,
353     TTI::OperandValueProperties Opd1PropInfo,
354     TTI::OperandValueProperties Opd2PropInfo,
355     ArrayRef<const Value *> Args) {
356 
357   // TODO: return a good value for BB-VECTORIZER that includes the
358   // immediate loads, which we do not want to count for the loop
359   // vectorizer, since they are hopefully hoisted out of the loop. This
360   // would require a new parameter 'InLoop', but not sure if constant
361   // args are common enough to motivate this.
362 
363   unsigned ScalarBits = Ty->getScalarSizeInBits();
364 
365   // There are thre cases of division and remainder: Dividing with a register
366   // needs a divide instruction. A divisor which is a power of two constant
367   // can be implemented with a sequence of shifts. Any other constant needs a
368   // multiply and shifts.
369   const unsigned DivInstrCost = 20;
370   const unsigned DivMulSeqCost = 10;
371   const unsigned SDivPow2Cost = 4;
372 
373   bool SignedDivRem =
374       Opcode == Instruction::SDiv || Opcode == Instruction::SRem;
375   bool UnsignedDivRem =
376       Opcode == Instruction::UDiv || Opcode == Instruction::URem;
377 
378   // Check for a constant divisor.
379   bool DivRemConst = false;
380   bool DivRemConstPow2 = false;
381   if ((SignedDivRem || UnsignedDivRem) && Args.size() == 2) {
382     if (const Constant *C = dyn_cast<Constant>(Args[1])) {
383       const ConstantInt *CVal =
384           (C->getType()->isVectorTy()
385                ? dyn_cast_or_null<const ConstantInt>(C->getSplatValue())
386                : dyn_cast<const ConstantInt>(C));
387       if (CVal != nullptr &&
388           (CVal->getValue().isPowerOf2() || (-CVal->getValue()).isPowerOf2()))
389         DivRemConstPow2 = true;
390       else
391         DivRemConst = true;
392     }
393   }
394 
395   if (Ty->isVectorTy()) {
396     assert(ST->hasVector() &&
397            "getArithmeticInstrCost() called with vector type.");
398     unsigned VF = Ty->getVectorNumElements();
399     unsigned NumVectors = getNumVectorRegs(Ty);
400 
401     // These vector operations are custom handled, but are still supported
402     // with one instruction per vector, regardless of element size.
403     if (Opcode == Instruction::Shl || Opcode == Instruction::LShr ||
404         Opcode == Instruction::AShr) {
405       return NumVectors;
406     }
407 
408     if (DivRemConstPow2)
409       return (NumVectors * (SignedDivRem ? SDivPow2Cost : 1));
410     if (DivRemConst)
411       return VF * DivMulSeqCost + getScalarizationOverhead(Ty, Args);
412     if ((SignedDivRem || UnsignedDivRem) && VF > 4)
413       // Temporary hack: disable high vectorization factors with integer
414       // division/remainder, which will get scalarized and handled with
415       // GR128 registers. The mischeduler is not clever enough to avoid
416       // spilling yet.
417       return 1000;
418 
419     // These FP operations are supported with a single vector instruction for
420     // double (base implementation assumes float generally costs 2). For
421     // FP128, the scalar cost is 1, and there is no overhead since the values
422     // are already in scalar registers.
423     if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub ||
424         Opcode == Instruction::FMul || Opcode == Instruction::FDiv) {
425       switch (ScalarBits) {
426       case 32: {
427         // The vector enhancements facility 1 provides v4f32 instructions.
428         if (ST->hasVectorEnhancements1())
429           return NumVectors;
430         // Return the cost of multiple scalar invocation plus the cost of
431         // inserting and extracting the values.
432         unsigned ScalarCost =
433             getArithmeticInstrCost(Opcode, Ty->getScalarType());
434         unsigned Cost = (VF * ScalarCost) + getScalarizationOverhead(Ty, Args);
435         // FIXME: VF 2 for these FP operations are currently just as
436         // expensive as for VF 4.
437         if (VF == 2)
438           Cost *= 2;
439         return Cost;
440       }
441       case 64:
442       case 128:
443         return NumVectors;
444       default:
445         break;
446       }
447     }
448 
449     // There is no native support for FRem.
450     if (Opcode == Instruction::FRem) {
451       unsigned Cost = (VF * LIBCALL_COST) + getScalarizationOverhead(Ty, Args);
452       // FIXME: VF 2 for float is currently just as expensive as for VF 4.
453       if (VF == 2 && ScalarBits == 32)
454         Cost *= 2;
455       return Cost;
456     }
457   }
458   else {  // Scalar:
459     // These FP operations are supported with a dedicated instruction for
460     // float, double and fp128 (base implementation assumes float generally
461     // costs 2).
462     if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub ||
463         Opcode == Instruction::FMul || Opcode == Instruction::FDiv)
464       return 1;
465 
466     // There is no native support for FRem.
467     if (Opcode == Instruction::FRem)
468       return LIBCALL_COST;
469 
470     if (Opcode == Instruction::LShr || Opcode == Instruction::AShr)
471       return (ScalarBits >= 32 ? 1 : 2 /*ext*/);
472 
473     // Or requires one instruction, although it has custom handling for i64.
474     if (Opcode == Instruction::Or)
475       return 1;
476 
477     if (Opcode == Instruction::Xor && ScalarBits == 1) {
478       if (ST->hasLoadStoreOnCond2())
479         return 5; // 2 * (li 0; loc 1); xor
480       return 7; // 2 * ipm sequences ; xor ; shift ; compare
481     }
482 
483     if (DivRemConstPow2)
484       return (SignedDivRem ? SDivPow2Cost : 1);
485     if (DivRemConst)
486       return DivMulSeqCost;
487     if (SignedDivRem)
488       // sext of op(s) for narrow types
489       return DivInstrCost + (ScalarBits < 32 ? 3 : (ScalarBits == 32 ? 1 : 0));
490     if (UnsignedDivRem)
491       // Clearing of low 64 bit reg + sext of op(s) for narrow types + dl[g]r
492       return DivInstrCost + (ScalarBits < 32 ? 3 : 1);
493   }
494 
495   // Fallback to the default implementation.
496   return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info,
497                                        Opd1PropInfo, Opd2PropInfo, Args);
498 }
499 
500 int SystemZTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
501                                    Type *SubTp) {
502   assert (Tp->isVectorTy());
503   assert (ST->hasVector() && "getShuffleCost() called.");
504   unsigned NumVectors = getNumVectorRegs(Tp);
505 
506   // TODO: Since fp32 is expanded, the shuffle cost should always be 0.
507 
508   // FP128 values are always in scalar registers, so there is no work
509   // involved with a shuffle, except for broadcast. In that case register
510   // moves are done with a single instruction per element.
511   if (Tp->getScalarType()->isFP128Ty())
512     return (Kind == TargetTransformInfo::SK_Broadcast ? NumVectors - 1 : 0);
513 
514   switch (Kind) {
515   case  TargetTransformInfo::SK_ExtractSubvector:
516     // ExtractSubvector Index indicates start offset.
517 
518     // Extracting a subvector from first index is a noop.
519     return (Index == 0 ? 0 : NumVectors);
520 
521   case TargetTransformInfo::SK_Broadcast:
522     // Loop vectorizer calls here to figure out the extra cost of
523     // broadcasting a loaded value to all elements of a vector. Since vlrep
524     // loads and replicates with a single instruction, adjust the returned
525     // value.
526     return NumVectors - 1;
527 
528   default:
529 
530     // SystemZ supports single instruction permutation / replication.
531     return NumVectors;
532   }
533 
534   return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
535 }
536 
537 // Return the log2 difference of the element sizes of the two vector types.
538 static unsigned getElSizeLog2Diff(Type *Ty0, Type *Ty1) {
539   unsigned Bits0 = Ty0->getScalarSizeInBits();
540   unsigned Bits1 = Ty1->getScalarSizeInBits();
541 
542   if (Bits1 >  Bits0)
543     return (Log2_32(Bits1) - Log2_32(Bits0));
544 
545   return (Log2_32(Bits0) - Log2_32(Bits1));
546 }
547 
548 // Return the number of instructions needed to truncate SrcTy to DstTy.
549 unsigned SystemZTTIImpl::
550 getVectorTruncCost(Type *SrcTy, Type *DstTy) {
551   assert (SrcTy->isVectorTy() && DstTy->isVectorTy());
552   assert (SrcTy->getPrimitiveSizeInBits() > DstTy->getPrimitiveSizeInBits() &&
553           "Packing must reduce size of vector type.");
554   assert (SrcTy->getVectorNumElements() == DstTy->getVectorNumElements() &&
555           "Packing should not change number of elements.");
556 
557   // TODO: Since fp32 is expanded, the extract cost should always be 0.
558 
559   unsigned NumParts = getNumVectorRegs(SrcTy);
560   if (NumParts <= 2)
561     // Up to 2 vector registers can be truncated efficiently with pack or
562     // permute. The latter requires an immediate mask to be loaded, which
563     // typically gets hoisted out of a loop.  TODO: return a good value for
564     // BB-VECTORIZER that includes the immediate loads, which we do not want
565     // to count for the loop vectorizer.
566     return 1;
567 
568   unsigned Cost = 0;
569   unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy);
570   unsigned VF = SrcTy->getVectorNumElements();
571   for (unsigned P = 0; P < Log2Diff; ++P) {
572     if (NumParts > 1)
573       NumParts /= 2;
574     Cost += NumParts;
575   }
576 
577   // Currently, a general mix of permutes and pack instructions is output by
578   // isel, which follow the cost computation above except for this case which
579   // is one instruction less:
580   if (VF == 8 && SrcTy->getScalarSizeInBits() == 64 &&
581       DstTy->getScalarSizeInBits() == 8)
582     Cost--;
583 
584   return Cost;
585 }
586 
587 // Return the cost of converting a vector bitmask produced by a compare
588 // (SrcTy), to the type of the select or extend instruction (DstTy).
589 unsigned SystemZTTIImpl::
590 getVectorBitmaskConversionCost(Type *SrcTy, Type *DstTy) {
591   assert (SrcTy->isVectorTy() && DstTy->isVectorTy() &&
592           "Should only be called with vector types.");
593 
594   unsigned PackCost = 0;
595   unsigned SrcScalarBits = SrcTy->getScalarSizeInBits();
596   unsigned DstScalarBits = DstTy->getScalarSizeInBits();
597   unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy);
598   if (SrcScalarBits > DstScalarBits)
599     // The bitmask will be truncated.
600     PackCost = getVectorTruncCost(SrcTy, DstTy);
601   else if (SrcScalarBits < DstScalarBits) {
602     unsigned DstNumParts = getNumVectorRegs(DstTy);
603     // Each vector select needs its part of the bitmask unpacked.
604     PackCost = Log2Diff * DstNumParts;
605     // Extra cost for moving part of mask before unpacking.
606     PackCost += DstNumParts - 1;
607   }
608 
609   return PackCost;
610 }
611 
612 // Return the type of the compared operands. This is needed to compute the
613 // cost for a Select / ZExt or SExt instruction.
614 static Type *getCmpOpsType(const Instruction *I, unsigned VF = 1) {
615   Type *OpTy = nullptr;
616   if (CmpInst *CI = dyn_cast<CmpInst>(I->getOperand(0)))
617     OpTy = CI->getOperand(0)->getType();
618   else if (Instruction *LogicI = dyn_cast<Instruction>(I->getOperand(0)))
619     if (LogicI->getNumOperands() == 2)
620       if (CmpInst *CI0 = dyn_cast<CmpInst>(LogicI->getOperand(0)))
621         if (isa<CmpInst>(LogicI->getOperand(1)))
622           OpTy = CI0->getOperand(0)->getType();
623 
624   if (OpTy != nullptr) {
625     if (VF == 1) {
626       assert (!OpTy->isVectorTy() && "Expected scalar type");
627       return OpTy;
628     }
629     // Return the potentially vectorized type based on 'I' and 'VF'.  'I' may
630     // be either scalar or already vectorized with a same or lesser VF.
631     Type *ElTy = OpTy->getScalarType();
632     return VectorType::get(ElTy, VF);
633   }
634 
635   return nullptr;
636 }
637 
638 // Get the cost of converting a boolean vector to a vector with same width
639 // and element size as Dst, plus the cost of zero extending if needed.
640 unsigned SystemZTTIImpl::
641 getBoolVecToIntConversionCost(unsigned Opcode, Type *Dst,
642                               const Instruction *I) {
643   assert (Dst->isVectorTy());
644   unsigned VF = Dst->getVectorNumElements();
645   unsigned Cost = 0;
646   // If we know what the widths of the compared operands, get any cost of
647   // converting it to match Dst. Otherwise assume same widths.
648   Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr);
649   if (CmpOpTy != nullptr)
650     Cost = getVectorBitmaskConversionCost(CmpOpTy, Dst);
651   if (Opcode == Instruction::ZExt || Opcode == Instruction::UIToFP)
652     // One 'vn' per dst vector with an immediate mask.
653     Cost += getNumVectorRegs(Dst);
654   return Cost;
655 }
656 
657 int SystemZTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
658                                      const Instruction *I) {
659   unsigned DstScalarBits = Dst->getScalarSizeInBits();
660   unsigned SrcScalarBits = Src->getScalarSizeInBits();
661 
662   if (Src->isVectorTy()) {
663     assert (ST->hasVector() && "getCastInstrCost() called with vector type.");
664     assert (Dst->isVectorTy());
665     unsigned VF = Src->getVectorNumElements();
666     unsigned NumDstVectors = getNumVectorRegs(Dst);
667     unsigned NumSrcVectors = getNumVectorRegs(Src);
668 
669     if (Opcode == Instruction::Trunc) {
670       if (Src->getScalarSizeInBits() == Dst->getScalarSizeInBits())
671         return 0; // Check for NOOP conversions.
672       return getVectorTruncCost(Src, Dst);
673     }
674 
675     if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
676       if (SrcScalarBits >= 8) {
677         // ZExt/SExt will be handled with one unpack per doubling of width.
678         unsigned NumUnpacks = getElSizeLog2Diff(Src, Dst);
679 
680         // For types that spans multiple vector registers, some additional
681         // instructions are used to setup the unpacking.
682         unsigned NumSrcVectorOps =
683           (NumUnpacks > 1 ? (NumDstVectors - NumSrcVectors)
684                           : (NumDstVectors / 2));
685 
686         return (NumUnpacks * NumDstVectors) + NumSrcVectorOps;
687       }
688       else if (SrcScalarBits == 1)
689         return getBoolVecToIntConversionCost(Opcode, Dst, I);
690     }
691 
692     if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP ||
693         Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI) {
694       // TODO: Fix base implementation which could simplify things a bit here
695       // (seems to miss on differentiating on scalar/vector types).
696 
697       // Only 64 bit vector conversions are natively supported.
698       if (DstScalarBits == 64) {
699         if (SrcScalarBits == 64)
700           return NumDstVectors;
701 
702         if (SrcScalarBits == 1)
703           return getBoolVecToIntConversionCost(Opcode, Dst, I) + NumDstVectors;
704       }
705 
706       // Return the cost of multiple scalar invocation plus the cost of
707       // inserting and extracting the values. Base implementation does not
708       // realize float->int gets scalarized.
709       unsigned ScalarCost = getCastInstrCost(Opcode, Dst->getScalarType(),
710                                              Src->getScalarType());
711       unsigned TotCost = VF * ScalarCost;
712       bool NeedsInserts = true, NeedsExtracts = true;
713       // FP128 registers do not get inserted or extracted.
714       if (DstScalarBits == 128 &&
715           (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP))
716         NeedsInserts = false;
717       if (SrcScalarBits == 128 &&
718           (Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI))
719         NeedsExtracts = false;
720 
721       TotCost += getScalarizationOverhead(Src, false, NeedsExtracts);
722       TotCost += getScalarizationOverhead(Dst, NeedsInserts, false);
723 
724       // FIXME: VF 2 for float<->i32 is currently just as expensive as for VF 4.
725       if (VF == 2 && SrcScalarBits == 32 && DstScalarBits == 32)
726         TotCost *= 2;
727 
728       return TotCost;
729     }
730 
731     if (Opcode == Instruction::FPTrunc) {
732       if (SrcScalarBits == 128)  // fp128 -> double/float + inserts of elements.
733         return VF /*ldxbr/lexbr*/ + getScalarizationOverhead(Dst, true, false);
734       else // double -> float
735         return VF / 2 /*vledb*/ + std::max(1U, VF / 4 /*vperm*/);
736     }
737 
738     if (Opcode == Instruction::FPExt) {
739       if (SrcScalarBits == 32 && DstScalarBits == 64) {
740         // float -> double is very rare and currently unoptimized. Instead of
741         // using vldeb, which can do two at a time, all conversions are
742         // scalarized.
743         return VF * 2;
744       }
745       // -> fp128.  VF * lxdb/lxeb + extraction of elements.
746       return VF + getScalarizationOverhead(Src, false, true);
747     }
748   }
749   else { // Scalar
750     assert (!Dst->isVectorTy());
751 
752     if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP) {
753       if (SrcScalarBits >= 32 ||
754           (I != nullptr && isa<LoadInst>(I->getOperand(0))))
755         return 1;
756       return SrcScalarBits > 1 ? 2 /*i8/i16 extend*/ : 5 /*branch seq.*/;
757     }
758 
759     if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
760         Src->isIntegerTy(1)) {
761       if (ST->hasLoadStoreOnCond2())
762         return 2; // li 0; loc 1
763 
764       // This should be extension of a compare i1 result, which is done with
765       // ipm and a varying sequence of instructions.
766       unsigned Cost = 0;
767       if (Opcode == Instruction::SExt)
768         Cost = (DstScalarBits < 64 ? 3 : 4);
769       if (Opcode == Instruction::ZExt)
770         Cost = 3;
771       Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I) : nullptr);
772       if (CmpOpTy != nullptr && CmpOpTy->isFloatingPointTy())
773         // If operands of an fp-type was compared, this costs +1.
774         Cost++;
775       return Cost;
776     }
777   }
778 
779   return BaseT::getCastInstrCost(Opcode, Dst, Src, I);
780 }
781 
782 int SystemZTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
783                                        Type *CondTy, const Instruction *I) {
784   if (ValTy->isVectorTy()) {
785     assert (ST->hasVector() && "getCmpSelInstrCost() called with vector type.");
786     unsigned VF = ValTy->getVectorNumElements();
787 
788     // Called with a compare instruction.
789     if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) {
790       unsigned PredicateExtraCost = 0;
791       if (I != nullptr) {
792         // Some predicates cost one or two extra instructions.
793         switch (cast<CmpInst>(I)->getPredicate()) {
794         case CmpInst::Predicate::ICMP_NE:
795         case CmpInst::Predicate::ICMP_UGE:
796         case CmpInst::Predicate::ICMP_ULE:
797         case CmpInst::Predicate::ICMP_SGE:
798         case CmpInst::Predicate::ICMP_SLE:
799           PredicateExtraCost = 1;
800           break;
801         case CmpInst::Predicate::FCMP_ONE:
802         case CmpInst::Predicate::FCMP_ORD:
803         case CmpInst::Predicate::FCMP_UEQ:
804         case CmpInst::Predicate::FCMP_UNO:
805           PredicateExtraCost = 2;
806           break;
807         default:
808           break;
809         }
810       }
811 
812       // Float is handled with 2*vmr[lh]f + 2*vldeb + vfchdb for each pair of
813       // floats.  FIXME: <2 x float> generates same code as <4 x float>.
814       unsigned CmpCostPerVector = (ValTy->getScalarType()->isFloatTy() ? 10 : 1);
815       unsigned NumVecs_cmp = getNumVectorRegs(ValTy);
816 
817       unsigned Cost = (NumVecs_cmp * (CmpCostPerVector + PredicateExtraCost));
818       return Cost;
819     }
820     else { // Called with a select instruction.
821       assert (Opcode == Instruction::Select);
822 
823       // We can figure out the extra cost of packing / unpacking if the
824       // instruction was passed and the compare instruction is found.
825       unsigned PackCost = 0;
826       Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr);
827       if (CmpOpTy != nullptr)
828         PackCost =
829           getVectorBitmaskConversionCost(CmpOpTy, ValTy);
830 
831       return getNumVectorRegs(ValTy) /*vsel*/ + PackCost;
832     }
833   }
834   else { // Scalar
835     switch (Opcode) {
836     case Instruction::ICmp: {
837       unsigned Cost = 1;
838       if (ValTy->isIntegerTy() && ValTy->getScalarSizeInBits() <= 16)
839         Cost += 2; // extend both operands
840       return Cost;
841     }
842     case Instruction::Select:
843       if (ValTy->isFloatingPointTy())
844         return 4; // No load on condition for FP - costs a conditional jump.
845       return 1; // Load On Condition.
846     }
847   }
848 
849   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, nullptr);
850 }
851 
852 int SystemZTTIImpl::
853 getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
854   // vlvgp will insert two grs into a vector register, so only count half the
855   // number of instructions.
856   if (Opcode == Instruction::InsertElement && Val->isIntOrIntVectorTy(64))
857     return ((Index % 2 == 0) ? 1 : 0);
858 
859   if (Opcode == Instruction::ExtractElement) {
860     int Cost = ((getScalarSizeInBits(Val) == 1) ? 2 /*+test-under-mask*/ : 1);
861 
862     // Give a slight penalty for moving out of vector pipeline to FXU unit.
863     if (Index == 0 && Val->isIntOrIntVectorTy())
864       Cost += 1;
865 
866     return Cost;
867   }
868 
869   return BaseT::getVectorInstrCost(Opcode, Val, Index);
870 }
871 
872 // Check if a load may be folded as a memory operand in its user.
873 bool SystemZTTIImpl::
874 isFoldableLoad(const LoadInst *Ld, const Instruction *&FoldedValue) {
875   if (!Ld->hasOneUse())
876     return false;
877   FoldedValue = Ld;
878   const Instruction *UserI = cast<Instruction>(*Ld->user_begin());
879   unsigned LoadedBits = getScalarSizeInBits(Ld->getType());
880   unsigned TruncBits = 0;
881   unsigned SExtBits = 0;
882   unsigned ZExtBits = 0;
883   if (UserI->hasOneUse()) {
884     unsigned UserBits = UserI->getType()->getScalarSizeInBits();
885     if (isa<TruncInst>(UserI))
886       TruncBits = UserBits;
887     else if (isa<SExtInst>(UserI))
888       SExtBits = UserBits;
889     else if (isa<ZExtInst>(UserI))
890       ZExtBits = UserBits;
891   }
892   if (TruncBits || SExtBits || ZExtBits) {
893     FoldedValue = UserI;
894     UserI = cast<Instruction>(*UserI->user_begin());
895     // Load (single use) -> trunc/extend (single use) -> UserI
896   }
897   if ((UserI->getOpcode() == Instruction::Sub ||
898        UserI->getOpcode() == Instruction::SDiv ||
899        UserI->getOpcode() == Instruction::UDiv) &&
900       UserI->getOperand(1) != FoldedValue)
901     return false; // Not commutative, only RHS foldable.
902   switch (UserI->getOpcode()) {
903   case Instruction::Add: // SE: 16->32, 16/32->64, z14:16->64. ZE: 32->64
904   case Instruction::Sub:
905     if (LoadedBits == 32 && ZExtBits == 64)
906       return true;
907     LLVM_FALLTHROUGH;
908   case Instruction::Mul: // SE: 16->32, 32->64, z14:16->64
909     if (LoadedBits == 16 &&
910         (SExtBits == 32 ||
911          (SExtBits == 64 && ST->hasMiscellaneousExtensions2())))
912       return true;
913     LLVM_FALLTHROUGH;
914   case Instruction::SDiv:// SE: 32->64
915     if (LoadedBits == 32 && SExtBits == 64)
916       return true;
917     LLVM_FALLTHROUGH;
918   case Instruction::UDiv:
919   case Instruction::And:
920   case Instruction::Or:
921   case Instruction::Xor:
922   case Instruction::ICmp:
923     // This also makes sense for float operations, but disabled for now due
924     // to regressions.
925     // case Instruction::FCmp:
926     // case Instruction::FAdd:
927     // case Instruction::FSub:
928     // case Instruction::FMul:
929     // case Instruction::FDiv:
930 
931     // All possible extensions of memory checked above.
932     if (SExtBits || ZExtBits)
933       return false;
934 
935     unsigned LoadOrTruncBits = (TruncBits ? TruncBits : LoadedBits);
936     return (LoadOrTruncBits == 32 || LoadOrTruncBits == 64);
937     break;
938   }
939   return false;
940 }
941 
942 int SystemZTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
943                                     unsigned Alignment, unsigned AddressSpace,
944                                     const Instruction *I) {
945   assert(!Src->isVoidTy() && "Invalid type");
946 
947   if (!Src->isVectorTy() && Opcode == Instruction::Load && I != nullptr) {
948     // Store the load or its truncated or extended value in FoldedValue.
949     const Instruction *FoldedValue = nullptr;
950     if (isFoldableLoad(cast<LoadInst>(I), FoldedValue)) {
951       const Instruction *UserI = cast<Instruction>(*FoldedValue->user_begin());
952       assert (UserI->getNumOperands() == 2 && "Expected a binop.");
953 
954       // UserI can't fold two loads, so in that case return 0 cost only
955       // half of the time.
956       for (unsigned i = 0; i < 2; ++i) {
957         if (UserI->getOperand(i) == FoldedValue)
958           continue;
959 
960         if (Instruction *OtherOp = dyn_cast<Instruction>(UserI->getOperand(i))){
961           LoadInst *OtherLoad = dyn_cast<LoadInst>(OtherOp);
962           if (!OtherLoad &&
963               (isa<TruncInst>(OtherOp) || isa<SExtInst>(OtherOp) ||
964                isa<ZExtInst>(OtherOp)))
965             OtherLoad = dyn_cast<LoadInst>(OtherOp->getOperand(0));
966           if (OtherLoad && isFoldableLoad(OtherLoad, FoldedValue/*dummy*/))
967             return i == 0; // Both operands foldable.
968         }
969       }
970 
971       return 0; // Only I is foldable in user.
972     }
973   }
974 
975   unsigned NumOps =
976     (Src->isVectorTy() ? getNumVectorRegs(Src) : getNumberOfParts(Src));
977 
978   if (Src->getScalarSizeInBits() == 128)
979     // 128 bit scalars are held in a pair of two 64 bit registers.
980     NumOps *= 2;
981 
982   return  NumOps;
983 }
984 
985 // The generic implementation of getInterleavedMemoryOpCost() is based on
986 // adding costs of the memory operations plus all the extracts and inserts
987 // needed for using / defining the vector operands. The SystemZ version does
988 // roughly the same but bases the computations on vector permutations
989 // instead.
990 int SystemZTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
991                                                unsigned Factor,
992                                                ArrayRef<unsigned> Indices,
993                                                unsigned Alignment,
994                                                unsigned AddressSpace,
995                                                bool UseMaskForCond,
996                                                bool UseMaskForGaps) {
997   if (UseMaskForCond || UseMaskForGaps)
998     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
999                                              Alignment, AddressSpace,
1000                                              UseMaskForCond, UseMaskForGaps);
1001   assert(isa<VectorType>(VecTy) &&
1002          "Expect a vector type for interleaved memory op");
1003 
1004   // Return the ceiling of dividing A by B.
1005   auto ceil = [](unsigned A, unsigned B) { return (A + B - 1) / B; };
1006 
1007   unsigned NumElts = VecTy->getVectorNumElements();
1008   assert(Factor > 1 && NumElts % Factor == 0 && "Invalid interleave factor");
1009   unsigned VF = NumElts / Factor;
1010   unsigned NumEltsPerVecReg = (128U / getScalarSizeInBits(VecTy));
1011   unsigned NumVectorMemOps = getNumVectorRegs(VecTy);
1012   unsigned NumPermutes = 0;
1013 
1014   if (Opcode == Instruction::Load) {
1015     // Loading interleave groups may have gaps, which may mean fewer
1016     // loads. Find out how many vectors will be loaded in total, and in how
1017     // many of them each value will be in.
1018     BitVector UsedInsts(NumVectorMemOps, false);
1019     std::vector<BitVector> ValueVecs(Factor, BitVector(NumVectorMemOps, false));
1020     for (unsigned Index : Indices)
1021       for (unsigned Elt = 0; Elt < VF; ++Elt) {
1022         unsigned Vec = (Index + Elt * Factor) / NumEltsPerVecReg;
1023         UsedInsts.set(Vec);
1024         ValueVecs[Index].set(Vec);
1025       }
1026     NumVectorMemOps = UsedInsts.count();
1027 
1028     for (unsigned Index : Indices) {
1029       // Estimate that each loaded source vector containing this Index
1030       // requires one operation, except that vperm can handle two input
1031       // registers first time for each dst vector.
1032       unsigned NumSrcVecs = ValueVecs[Index].count();
1033       unsigned NumDstVecs = ceil(VF * getScalarSizeInBits(VecTy), 128U);
1034       assert (NumSrcVecs >= NumDstVecs && "Expected at least as many sources");
1035       NumPermutes += std::max(1U, NumSrcVecs - NumDstVecs);
1036     }
1037   } else {
1038     // Estimate the permutes for each stored vector as the smaller of the
1039     // number of elements and the number of source vectors. Subtract one per
1040     // dst vector for vperm (S.A.).
1041     unsigned NumSrcVecs = std::min(NumEltsPerVecReg, Factor);
1042     unsigned NumDstVecs = NumVectorMemOps;
1043     assert (NumSrcVecs > 1 && "Expected at least two source vectors.");
1044     NumPermutes += (NumDstVecs * NumSrcVecs) - NumDstVecs;
1045   }
1046 
1047   // Cost of load/store operations and the permutations needed.
1048   return NumVectorMemOps + NumPermutes;
1049 }
1050