1 //===-- SystemZTargetTransformInfo.cpp - SystemZ-specific TTI -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements a TargetTransformInfo analysis pass specific to the 11 // SystemZ target machine. It uses the target's detailed information to provide 12 // more precise answers to certain TTI queries, while letting the target 13 // independent and default TTI implementations handle the rest. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "SystemZTargetTransformInfo.h" 18 #include "llvm/Analysis/TargetTransformInfo.h" 19 #include "llvm/CodeGen/BasicTTIImpl.h" 20 #include "llvm/CodeGen/CostTable.h" 21 #include "llvm/CodeGen/TargetLowering.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/Support/Debug.h" 24 using namespace llvm; 25 26 #define DEBUG_TYPE "systemztti" 27 28 //===----------------------------------------------------------------------===// 29 // 30 // SystemZ cost model. 31 // 32 //===----------------------------------------------------------------------===// 33 34 int SystemZTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) { 35 assert(Ty->isIntegerTy()); 36 37 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 38 // There is no cost model for constants with a bit size of 0. Return TCC_Free 39 // here, so that constant hoisting will ignore this constant. 40 if (BitSize == 0) 41 return TTI::TCC_Free; 42 // No cost model for operations on integers larger than 64 bit implemented yet. 43 if (BitSize > 64) 44 return TTI::TCC_Free; 45 46 if (Imm == 0) 47 return TTI::TCC_Free; 48 49 if (Imm.getBitWidth() <= 64) { 50 // Constants loaded via lgfi. 51 if (isInt<32>(Imm.getSExtValue())) 52 return TTI::TCC_Basic; 53 // Constants loaded via llilf. 54 if (isUInt<32>(Imm.getZExtValue())) 55 return TTI::TCC_Basic; 56 // Constants loaded via llihf: 57 if ((Imm.getZExtValue() & 0xffffffff) == 0) 58 return TTI::TCC_Basic; 59 60 return 2 * TTI::TCC_Basic; 61 } 62 63 return 4 * TTI::TCC_Basic; 64 } 65 66 int SystemZTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, 67 const APInt &Imm, Type *Ty) { 68 assert(Ty->isIntegerTy()); 69 70 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 71 // There is no cost model for constants with a bit size of 0. Return TCC_Free 72 // here, so that constant hoisting will ignore this constant. 73 if (BitSize == 0) 74 return TTI::TCC_Free; 75 // No cost model for operations on integers larger than 64 bit implemented yet. 76 if (BitSize > 64) 77 return TTI::TCC_Free; 78 79 switch (Opcode) { 80 default: 81 return TTI::TCC_Free; 82 case Instruction::GetElementPtr: 83 // Always hoist the base address of a GetElementPtr. This prevents the 84 // creation of new constants for every base constant that gets constant 85 // folded with the offset. 86 if (Idx == 0) 87 return 2 * TTI::TCC_Basic; 88 return TTI::TCC_Free; 89 case Instruction::Store: 90 if (Idx == 0 && Imm.getBitWidth() <= 64) { 91 // Any 8-bit immediate store can by implemented via mvi. 92 if (BitSize == 8) 93 return TTI::TCC_Free; 94 // 16-bit immediate values can be stored via mvhhi/mvhi/mvghi. 95 if (isInt<16>(Imm.getSExtValue())) 96 return TTI::TCC_Free; 97 } 98 break; 99 case Instruction::ICmp: 100 if (Idx == 1 && Imm.getBitWidth() <= 64) { 101 // Comparisons against signed 32-bit immediates implemented via cgfi. 102 if (isInt<32>(Imm.getSExtValue())) 103 return TTI::TCC_Free; 104 // Comparisons against unsigned 32-bit immediates implemented via clgfi. 105 if (isUInt<32>(Imm.getZExtValue())) 106 return TTI::TCC_Free; 107 } 108 break; 109 case Instruction::Add: 110 case Instruction::Sub: 111 if (Idx == 1 && Imm.getBitWidth() <= 64) { 112 // We use algfi/slgfi to add/subtract 32-bit unsigned immediates. 113 if (isUInt<32>(Imm.getZExtValue())) 114 return TTI::TCC_Free; 115 // Or their negation, by swapping addition vs. subtraction. 116 if (isUInt<32>(-Imm.getSExtValue())) 117 return TTI::TCC_Free; 118 } 119 break; 120 case Instruction::Mul: 121 if (Idx == 1 && Imm.getBitWidth() <= 64) { 122 // We use msgfi to multiply by 32-bit signed immediates. 123 if (isInt<32>(Imm.getSExtValue())) 124 return TTI::TCC_Free; 125 } 126 break; 127 case Instruction::Or: 128 case Instruction::Xor: 129 if (Idx == 1 && Imm.getBitWidth() <= 64) { 130 // Masks supported by oilf/xilf. 131 if (isUInt<32>(Imm.getZExtValue())) 132 return TTI::TCC_Free; 133 // Masks supported by oihf/xihf. 134 if ((Imm.getZExtValue() & 0xffffffff) == 0) 135 return TTI::TCC_Free; 136 } 137 break; 138 case Instruction::And: 139 if (Idx == 1 && Imm.getBitWidth() <= 64) { 140 // Any 32-bit AND operation can by implemented via nilf. 141 if (BitSize <= 32) 142 return TTI::TCC_Free; 143 // 64-bit masks supported by nilf. 144 if (isUInt<32>(~Imm.getZExtValue())) 145 return TTI::TCC_Free; 146 // 64-bit masks supported by nilh. 147 if ((Imm.getZExtValue() & 0xffffffff) == 0xffffffff) 148 return TTI::TCC_Free; 149 // Some 64-bit AND operations can be implemented via risbg. 150 const SystemZInstrInfo *TII = ST->getInstrInfo(); 151 unsigned Start, End; 152 if (TII->isRxSBGMask(Imm.getZExtValue(), BitSize, Start, End)) 153 return TTI::TCC_Free; 154 } 155 break; 156 case Instruction::Shl: 157 case Instruction::LShr: 158 case Instruction::AShr: 159 // Always return TCC_Free for the shift value of a shift instruction. 160 if (Idx == 1) 161 return TTI::TCC_Free; 162 break; 163 case Instruction::UDiv: 164 case Instruction::SDiv: 165 case Instruction::URem: 166 case Instruction::SRem: 167 case Instruction::Trunc: 168 case Instruction::ZExt: 169 case Instruction::SExt: 170 case Instruction::IntToPtr: 171 case Instruction::PtrToInt: 172 case Instruction::BitCast: 173 case Instruction::PHI: 174 case Instruction::Call: 175 case Instruction::Select: 176 case Instruction::Ret: 177 case Instruction::Load: 178 break; 179 } 180 181 return SystemZTTIImpl::getIntImmCost(Imm, Ty); 182 } 183 184 int SystemZTTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, 185 const APInt &Imm, Type *Ty) { 186 assert(Ty->isIntegerTy()); 187 188 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 189 // There is no cost model for constants with a bit size of 0. Return TCC_Free 190 // here, so that constant hoisting will ignore this constant. 191 if (BitSize == 0) 192 return TTI::TCC_Free; 193 // No cost model for operations on integers larger than 64 bit implemented yet. 194 if (BitSize > 64) 195 return TTI::TCC_Free; 196 197 switch (IID) { 198 default: 199 return TTI::TCC_Free; 200 case Intrinsic::sadd_with_overflow: 201 case Intrinsic::uadd_with_overflow: 202 case Intrinsic::ssub_with_overflow: 203 case Intrinsic::usub_with_overflow: 204 // These get expanded to include a normal addition/subtraction. 205 if (Idx == 1 && Imm.getBitWidth() <= 64) { 206 if (isUInt<32>(Imm.getZExtValue())) 207 return TTI::TCC_Free; 208 if (isUInt<32>(-Imm.getSExtValue())) 209 return TTI::TCC_Free; 210 } 211 break; 212 case Intrinsic::smul_with_overflow: 213 case Intrinsic::umul_with_overflow: 214 // These get expanded to include a normal multiplication. 215 if (Idx == 1 && Imm.getBitWidth() <= 64) { 216 if (isInt<32>(Imm.getSExtValue())) 217 return TTI::TCC_Free; 218 } 219 break; 220 case Intrinsic::experimental_stackmap: 221 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 222 return TTI::TCC_Free; 223 break; 224 case Intrinsic::experimental_patchpoint_void: 225 case Intrinsic::experimental_patchpoint_i64: 226 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 227 return TTI::TCC_Free; 228 break; 229 } 230 return SystemZTTIImpl::getIntImmCost(Imm, Ty); 231 } 232 233 TargetTransformInfo::PopcntSupportKind 234 SystemZTTIImpl::getPopcntSupport(unsigned TyWidth) { 235 assert(isPowerOf2_32(TyWidth) && "Type width must be power of 2"); 236 if (ST->hasPopulationCount() && TyWidth <= 64) 237 return TTI::PSK_FastHardware; 238 return TTI::PSK_Software; 239 } 240 241 void SystemZTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 242 TTI::UnrollingPreferences &UP) { 243 // Find out if L contains a call, what the machine instruction count 244 // estimate is, and how many stores there are. 245 bool HasCall = false; 246 unsigned NumStores = 0; 247 for (auto &BB : L->blocks()) 248 for (auto &I : *BB) { 249 if (isa<CallInst>(&I) || isa<InvokeInst>(&I)) { 250 ImmutableCallSite CS(&I); 251 if (const Function *F = CS.getCalledFunction()) { 252 if (isLoweredToCall(F)) 253 HasCall = true; 254 if (F->getIntrinsicID() == Intrinsic::memcpy || 255 F->getIntrinsicID() == Intrinsic::memset) 256 NumStores++; 257 } else { // indirect call. 258 HasCall = true; 259 } 260 } 261 if (isa<StoreInst>(&I)) { 262 Type *MemAccessTy = I.getOperand(0)->getType(); 263 NumStores += getMemoryOpCost(Instruction::Store, MemAccessTy, 0, 0); 264 } 265 } 266 267 // The z13 processor will run out of store tags if too many stores 268 // are fed into it too quickly. Therefore make sure there are not 269 // too many stores in the resulting unrolled loop. 270 unsigned const Max = (NumStores ? (12 / NumStores) : UINT_MAX); 271 272 if (HasCall) { 273 // Only allow full unrolling if loop has any calls. 274 UP.FullUnrollMaxCount = Max; 275 UP.MaxCount = 1; 276 return; 277 } 278 279 UP.MaxCount = Max; 280 if (UP.MaxCount <= 1) 281 return; 282 283 // Allow partial and runtime trip count unrolling. 284 UP.Partial = UP.Runtime = true; 285 286 UP.PartialThreshold = 75; 287 UP.DefaultUnrollRuntimeCount = 4; 288 289 // Allow expensive instructions in the pre-header of the loop. 290 UP.AllowExpensiveTripCount = true; 291 292 UP.Force = true; 293 } 294 295 296 bool SystemZTTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1, 297 TargetTransformInfo::LSRCost &C2) { 298 // SystemZ specific: check instruction count (first), and don't care about 299 // ImmCost, since offsets are checked explicitly. 300 return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost, 301 C1.NumIVMuls, C1.NumBaseAdds, 302 C1.ScaleCost, C1.SetupCost) < 303 std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost, 304 C2.NumIVMuls, C2.NumBaseAdds, 305 C2.ScaleCost, C2.SetupCost); 306 } 307 308 unsigned SystemZTTIImpl::getNumberOfRegisters(bool Vector) { 309 if (!Vector) 310 // Discount the stack pointer. Also leave out %r0, since it can't 311 // be used in an address. 312 return 14; 313 if (ST->hasVector()) 314 return 32; 315 return 0; 316 } 317 318 unsigned SystemZTTIImpl::getRegisterBitWidth(bool Vector) const { 319 if (!Vector) 320 return 64; 321 if (ST->hasVector()) 322 return 128; 323 return 0; 324 } 325 326 bool SystemZTTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) { 327 EVT VT = TLI->getValueType(DL, DataType); 328 return (VT.isScalarInteger() && TLI->isTypeLegal(VT)); 329 } 330 331 // Return the bit size for the scalar type or vector element 332 // type. getScalarSizeInBits() returns 0 for a pointer type. 333 static unsigned getScalarSizeInBits(Type *Ty) { 334 unsigned Size = 335 (Ty->isPtrOrPtrVectorTy() ? 64U : Ty->getScalarSizeInBits()); 336 assert(Size > 0 && "Element must have non-zero size."); 337 return Size; 338 } 339 340 // getNumberOfParts() calls getTypeLegalizationCost() which splits the vector 341 // type until it is legal. This would e.g. return 4 for <6 x i64>, instead of 342 // 3. 343 static unsigned getNumVectorRegs(Type *Ty) { 344 assert(Ty->isVectorTy() && "Expected vector type"); 345 unsigned WideBits = getScalarSizeInBits(Ty) * Ty->getVectorNumElements(); 346 assert(WideBits > 0 && "Could not compute size of vector"); 347 return ((WideBits % 128U) ? ((WideBits / 128U) + 1) : (WideBits / 128U)); 348 } 349 350 int SystemZTTIImpl::getArithmeticInstrCost( 351 unsigned Opcode, Type *Ty, 352 TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info, 353 TTI::OperandValueProperties Opd1PropInfo, 354 TTI::OperandValueProperties Opd2PropInfo, 355 ArrayRef<const Value *> Args) { 356 357 // TODO: return a good value for BB-VECTORIZER that includes the 358 // immediate loads, which we do not want to count for the loop 359 // vectorizer, since they are hopefully hoisted out of the loop. This 360 // would require a new parameter 'InLoop', but not sure if constant 361 // args are common enough to motivate this. 362 363 unsigned ScalarBits = Ty->getScalarSizeInBits(); 364 365 // There are thre cases of division and remainder: Dividing with a register 366 // needs a divide instruction. A divisor which is a power of two constant 367 // can be implemented with a sequence of shifts. Any other constant needs a 368 // multiply and shifts. 369 const unsigned DivInstrCost = 20; 370 const unsigned DivMulSeqCost = 10; 371 const unsigned SDivPow2Cost = 4; 372 373 bool SignedDivRem = 374 Opcode == Instruction::SDiv || Opcode == Instruction::SRem; 375 bool UnsignedDivRem = 376 Opcode == Instruction::UDiv || Opcode == Instruction::URem; 377 378 // Check for a constant divisor. 379 bool DivRemConst = false; 380 bool DivRemConstPow2 = false; 381 if ((SignedDivRem || UnsignedDivRem) && Args.size() == 2) { 382 if (const Constant *C = dyn_cast<Constant>(Args[1])) { 383 const ConstantInt *CVal = 384 (C->getType()->isVectorTy() 385 ? dyn_cast_or_null<const ConstantInt>(C->getSplatValue()) 386 : dyn_cast<const ConstantInt>(C)); 387 if (CVal != nullptr && 388 (CVal->getValue().isPowerOf2() || (-CVal->getValue()).isPowerOf2())) 389 DivRemConstPow2 = true; 390 else 391 DivRemConst = true; 392 } 393 } 394 395 if (Ty->isVectorTy()) { 396 assert(ST->hasVector() && 397 "getArithmeticInstrCost() called with vector type."); 398 unsigned VF = Ty->getVectorNumElements(); 399 unsigned NumVectors = getNumVectorRegs(Ty); 400 401 // These vector operations are custom handled, but are still supported 402 // with one instruction per vector, regardless of element size. 403 if (Opcode == Instruction::Shl || Opcode == Instruction::LShr || 404 Opcode == Instruction::AShr) { 405 return NumVectors; 406 } 407 408 if (DivRemConstPow2) 409 return (NumVectors * (SignedDivRem ? SDivPow2Cost : 1)); 410 if (DivRemConst) 411 return VF * DivMulSeqCost + getScalarizationOverhead(Ty, Args); 412 if ((SignedDivRem || UnsignedDivRem) && VF > 4) 413 // Temporary hack: disable high vectorization factors with integer 414 // division/remainder, which will get scalarized and handled with 415 // GR128 registers. The mischeduler is not clever enough to avoid 416 // spilling yet. 417 return 1000; 418 419 // These FP operations are supported with a single vector instruction for 420 // double (base implementation assumes float generally costs 2). For 421 // FP128, the scalar cost is 1, and there is no overhead since the values 422 // are already in scalar registers. 423 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub || 424 Opcode == Instruction::FMul || Opcode == Instruction::FDiv) { 425 switch (ScalarBits) { 426 case 32: { 427 // The vector enhancements facility 1 provides v4f32 instructions. 428 if (ST->hasVectorEnhancements1()) 429 return NumVectors; 430 // Return the cost of multiple scalar invocation plus the cost of 431 // inserting and extracting the values. 432 unsigned ScalarCost = 433 getArithmeticInstrCost(Opcode, Ty->getScalarType()); 434 unsigned Cost = (VF * ScalarCost) + getScalarizationOverhead(Ty, Args); 435 // FIXME: VF 2 for these FP operations are currently just as 436 // expensive as for VF 4. 437 if (VF == 2) 438 Cost *= 2; 439 return Cost; 440 } 441 case 64: 442 case 128: 443 return NumVectors; 444 default: 445 break; 446 } 447 } 448 449 // There is no native support for FRem. 450 if (Opcode == Instruction::FRem) { 451 unsigned Cost = (VF * LIBCALL_COST) + getScalarizationOverhead(Ty, Args); 452 // FIXME: VF 2 for float is currently just as expensive as for VF 4. 453 if (VF == 2 && ScalarBits == 32) 454 Cost *= 2; 455 return Cost; 456 } 457 } 458 else { // Scalar: 459 // These FP operations are supported with a dedicated instruction for 460 // float, double and fp128 (base implementation assumes float generally 461 // costs 2). 462 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub || 463 Opcode == Instruction::FMul || Opcode == Instruction::FDiv) 464 return 1; 465 466 // There is no native support for FRem. 467 if (Opcode == Instruction::FRem) 468 return LIBCALL_COST; 469 470 if (Opcode == Instruction::LShr || Opcode == Instruction::AShr) 471 return (ScalarBits >= 32 ? 1 : 2 /*ext*/); 472 473 // Or requires one instruction, although it has custom handling for i64. 474 if (Opcode == Instruction::Or) 475 return 1; 476 477 if (Opcode == Instruction::Xor && ScalarBits == 1) { 478 if (ST->hasLoadStoreOnCond2()) 479 return 5; // 2 * (li 0; loc 1); xor 480 return 7; // 2 * ipm sequences ; xor ; shift ; compare 481 } 482 483 if (DivRemConstPow2) 484 return (SignedDivRem ? SDivPow2Cost : 1); 485 if (DivRemConst) 486 return DivMulSeqCost; 487 if (SignedDivRem) 488 // sext of op(s) for narrow types 489 return DivInstrCost + (ScalarBits < 32 ? 3 : (ScalarBits == 32 ? 1 : 0)); 490 if (UnsignedDivRem) 491 // Clearing of low 64 bit reg + sext of op(s) for narrow types + dl[g]r 492 return DivInstrCost + (ScalarBits < 32 ? 3 : 1); 493 } 494 495 // Fallback to the default implementation. 496 return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info, 497 Opd1PropInfo, Opd2PropInfo, Args); 498 } 499 500 int SystemZTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, 501 Type *SubTp) { 502 assert (Tp->isVectorTy()); 503 assert (ST->hasVector() && "getShuffleCost() called."); 504 unsigned NumVectors = getNumVectorRegs(Tp); 505 506 // TODO: Since fp32 is expanded, the shuffle cost should always be 0. 507 508 // FP128 values are always in scalar registers, so there is no work 509 // involved with a shuffle, except for broadcast. In that case register 510 // moves are done with a single instruction per element. 511 if (Tp->getScalarType()->isFP128Ty()) 512 return (Kind == TargetTransformInfo::SK_Broadcast ? NumVectors - 1 : 0); 513 514 switch (Kind) { 515 case TargetTransformInfo::SK_ExtractSubvector: 516 // ExtractSubvector Index indicates start offset. 517 518 // Extracting a subvector from first index is a noop. 519 return (Index == 0 ? 0 : NumVectors); 520 521 case TargetTransformInfo::SK_Broadcast: 522 // Loop vectorizer calls here to figure out the extra cost of 523 // broadcasting a loaded value to all elements of a vector. Since vlrep 524 // loads and replicates with a single instruction, adjust the returned 525 // value. 526 return NumVectors - 1; 527 528 default: 529 530 // SystemZ supports single instruction permutation / replication. 531 return NumVectors; 532 } 533 534 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); 535 } 536 537 // Return the log2 difference of the element sizes of the two vector types. 538 static unsigned getElSizeLog2Diff(Type *Ty0, Type *Ty1) { 539 unsigned Bits0 = Ty0->getScalarSizeInBits(); 540 unsigned Bits1 = Ty1->getScalarSizeInBits(); 541 542 if (Bits1 > Bits0) 543 return (Log2_32(Bits1) - Log2_32(Bits0)); 544 545 return (Log2_32(Bits0) - Log2_32(Bits1)); 546 } 547 548 // Return the number of instructions needed to truncate SrcTy to DstTy. 549 unsigned SystemZTTIImpl:: 550 getVectorTruncCost(Type *SrcTy, Type *DstTy) { 551 assert (SrcTy->isVectorTy() && DstTy->isVectorTy()); 552 assert (SrcTy->getPrimitiveSizeInBits() > DstTy->getPrimitiveSizeInBits() && 553 "Packing must reduce size of vector type."); 554 assert (SrcTy->getVectorNumElements() == DstTy->getVectorNumElements() && 555 "Packing should not change number of elements."); 556 557 // TODO: Since fp32 is expanded, the extract cost should always be 0. 558 559 unsigned NumParts = getNumVectorRegs(SrcTy); 560 if (NumParts <= 2) 561 // Up to 2 vector registers can be truncated efficiently with pack or 562 // permute. The latter requires an immediate mask to be loaded, which 563 // typically gets hoisted out of a loop. TODO: return a good value for 564 // BB-VECTORIZER that includes the immediate loads, which we do not want 565 // to count for the loop vectorizer. 566 return 1; 567 568 unsigned Cost = 0; 569 unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy); 570 unsigned VF = SrcTy->getVectorNumElements(); 571 for (unsigned P = 0; P < Log2Diff; ++P) { 572 if (NumParts > 1) 573 NumParts /= 2; 574 Cost += NumParts; 575 } 576 577 // Currently, a general mix of permutes and pack instructions is output by 578 // isel, which follow the cost computation above except for this case which 579 // is one instruction less: 580 if (VF == 8 && SrcTy->getScalarSizeInBits() == 64 && 581 DstTy->getScalarSizeInBits() == 8) 582 Cost--; 583 584 return Cost; 585 } 586 587 // Return the cost of converting a vector bitmask produced by a compare 588 // (SrcTy), to the type of the select or extend instruction (DstTy). 589 unsigned SystemZTTIImpl:: 590 getVectorBitmaskConversionCost(Type *SrcTy, Type *DstTy) { 591 assert (SrcTy->isVectorTy() && DstTy->isVectorTy() && 592 "Should only be called with vector types."); 593 594 unsigned PackCost = 0; 595 unsigned SrcScalarBits = SrcTy->getScalarSizeInBits(); 596 unsigned DstScalarBits = DstTy->getScalarSizeInBits(); 597 unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy); 598 if (SrcScalarBits > DstScalarBits) 599 // The bitmask will be truncated. 600 PackCost = getVectorTruncCost(SrcTy, DstTy); 601 else if (SrcScalarBits < DstScalarBits) { 602 unsigned DstNumParts = getNumVectorRegs(DstTy); 603 // Each vector select needs its part of the bitmask unpacked. 604 PackCost = Log2Diff * DstNumParts; 605 // Extra cost for moving part of mask before unpacking. 606 PackCost += DstNumParts - 1; 607 } 608 609 return PackCost; 610 } 611 612 // Return the type of the compared operands. This is needed to compute the 613 // cost for a Select / ZExt or SExt instruction. 614 static Type *getCmpOpsType(const Instruction *I, unsigned VF = 1) { 615 Type *OpTy = nullptr; 616 if (CmpInst *CI = dyn_cast<CmpInst>(I->getOperand(0))) 617 OpTy = CI->getOperand(0)->getType(); 618 else if (Instruction *LogicI = dyn_cast<Instruction>(I->getOperand(0))) 619 if (LogicI->getNumOperands() == 2) 620 if (CmpInst *CI0 = dyn_cast<CmpInst>(LogicI->getOperand(0))) 621 if (isa<CmpInst>(LogicI->getOperand(1))) 622 OpTy = CI0->getOperand(0)->getType(); 623 624 if (OpTy != nullptr) { 625 if (VF == 1) { 626 assert (!OpTy->isVectorTy() && "Expected scalar type"); 627 return OpTy; 628 } 629 // Return the potentially vectorized type based on 'I' and 'VF'. 'I' may 630 // be either scalar or already vectorized with a same or lesser VF. 631 Type *ElTy = OpTy->getScalarType(); 632 return VectorType::get(ElTy, VF); 633 } 634 635 return nullptr; 636 } 637 638 // Get the cost of converting a boolean vector to a vector with same width 639 // and element size as Dst, plus the cost of zero extending if needed. 640 unsigned SystemZTTIImpl:: 641 getBoolVecToIntConversionCost(unsigned Opcode, Type *Dst, 642 const Instruction *I) { 643 assert (Dst->isVectorTy()); 644 unsigned VF = Dst->getVectorNumElements(); 645 unsigned Cost = 0; 646 // If we know what the widths of the compared operands, get any cost of 647 // converting it to match Dst. Otherwise assume same widths. 648 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr); 649 if (CmpOpTy != nullptr) 650 Cost = getVectorBitmaskConversionCost(CmpOpTy, Dst); 651 if (Opcode == Instruction::ZExt || Opcode == Instruction::UIToFP) 652 // One 'vn' per dst vector with an immediate mask. 653 Cost += getNumVectorRegs(Dst); 654 return Cost; 655 } 656 657 int SystemZTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, 658 const Instruction *I) { 659 unsigned DstScalarBits = Dst->getScalarSizeInBits(); 660 unsigned SrcScalarBits = Src->getScalarSizeInBits(); 661 662 if (Src->isVectorTy()) { 663 assert (ST->hasVector() && "getCastInstrCost() called with vector type."); 664 assert (Dst->isVectorTy()); 665 unsigned VF = Src->getVectorNumElements(); 666 unsigned NumDstVectors = getNumVectorRegs(Dst); 667 unsigned NumSrcVectors = getNumVectorRegs(Src); 668 669 if (Opcode == Instruction::Trunc) { 670 if (Src->getScalarSizeInBits() == Dst->getScalarSizeInBits()) 671 return 0; // Check for NOOP conversions. 672 return getVectorTruncCost(Src, Dst); 673 } 674 675 if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 676 if (SrcScalarBits >= 8) { 677 // ZExt/SExt will be handled with one unpack per doubling of width. 678 unsigned NumUnpacks = getElSizeLog2Diff(Src, Dst); 679 680 // For types that spans multiple vector registers, some additional 681 // instructions are used to setup the unpacking. 682 unsigned NumSrcVectorOps = 683 (NumUnpacks > 1 ? (NumDstVectors - NumSrcVectors) 684 : (NumDstVectors / 2)); 685 686 return (NumUnpacks * NumDstVectors) + NumSrcVectorOps; 687 } 688 else if (SrcScalarBits == 1) 689 return getBoolVecToIntConversionCost(Opcode, Dst, I); 690 } 691 692 if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP || 693 Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI) { 694 // TODO: Fix base implementation which could simplify things a bit here 695 // (seems to miss on differentiating on scalar/vector types). 696 697 // Only 64 bit vector conversions are natively supported. 698 if (DstScalarBits == 64) { 699 if (SrcScalarBits == 64) 700 return NumDstVectors; 701 702 if (SrcScalarBits == 1) 703 return getBoolVecToIntConversionCost(Opcode, Dst, I) + NumDstVectors; 704 } 705 706 // Return the cost of multiple scalar invocation plus the cost of 707 // inserting and extracting the values. Base implementation does not 708 // realize float->int gets scalarized. 709 unsigned ScalarCost = getCastInstrCost(Opcode, Dst->getScalarType(), 710 Src->getScalarType()); 711 unsigned TotCost = VF * ScalarCost; 712 bool NeedsInserts = true, NeedsExtracts = true; 713 // FP128 registers do not get inserted or extracted. 714 if (DstScalarBits == 128 && 715 (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP)) 716 NeedsInserts = false; 717 if (SrcScalarBits == 128 && 718 (Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI)) 719 NeedsExtracts = false; 720 721 TotCost += getScalarizationOverhead(Src, false, NeedsExtracts); 722 TotCost += getScalarizationOverhead(Dst, NeedsInserts, false); 723 724 // FIXME: VF 2 for float<->i32 is currently just as expensive as for VF 4. 725 if (VF == 2 && SrcScalarBits == 32 && DstScalarBits == 32) 726 TotCost *= 2; 727 728 return TotCost; 729 } 730 731 if (Opcode == Instruction::FPTrunc) { 732 if (SrcScalarBits == 128) // fp128 -> double/float + inserts of elements. 733 return VF /*ldxbr/lexbr*/ + getScalarizationOverhead(Dst, true, false); 734 else // double -> float 735 return VF / 2 /*vledb*/ + std::max(1U, VF / 4 /*vperm*/); 736 } 737 738 if (Opcode == Instruction::FPExt) { 739 if (SrcScalarBits == 32 && DstScalarBits == 64) { 740 // float -> double is very rare and currently unoptimized. Instead of 741 // using vldeb, which can do two at a time, all conversions are 742 // scalarized. 743 return VF * 2; 744 } 745 // -> fp128. VF * lxdb/lxeb + extraction of elements. 746 return VF + getScalarizationOverhead(Src, false, true); 747 } 748 } 749 else { // Scalar 750 assert (!Dst->isVectorTy()); 751 752 if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP) { 753 if (SrcScalarBits >= 32 || 754 (I != nullptr && isa<LoadInst>(I->getOperand(0)))) 755 return 1; 756 return SrcScalarBits > 1 ? 2 /*i8/i16 extend*/ : 5 /*branch seq.*/; 757 } 758 759 if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) && 760 Src->isIntegerTy(1)) { 761 if (ST->hasLoadStoreOnCond2()) 762 return 2; // li 0; loc 1 763 764 // This should be extension of a compare i1 result, which is done with 765 // ipm and a varying sequence of instructions. 766 unsigned Cost = 0; 767 if (Opcode == Instruction::SExt) 768 Cost = (DstScalarBits < 64 ? 3 : 4); 769 if (Opcode == Instruction::ZExt) 770 Cost = 3; 771 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I) : nullptr); 772 if (CmpOpTy != nullptr && CmpOpTy->isFloatingPointTy()) 773 // If operands of an fp-type was compared, this costs +1. 774 Cost++; 775 return Cost; 776 } 777 } 778 779 return BaseT::getCastInstrCost(Opcode, Dst, Src, I); 780 } 781 782 int SystemZTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 783 Type *CondTy, const Instruction *I) { 784 if (ValTy->isVectorTy()) { 785 assert (ST->hasVector() && "getCmpSelInstrCost() called with vector type."); 786 unsigned VF = ValTy->getVectorNumElements(); 787 788 // Called with a compare instruction. 789 if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) { 790 unsigned PredicateExtraCost = 0; 791 if (I != nullptr) { 792 // Some predicates cost one or two extra instructions. 793 switch (cast<CmpInst>(I)->getPredicate()) { 794 case CmpInst::Predicate::ICMP_NE: 795 case CmpInst::Predicate::ICMP_UGE: 796 case CmpInst::Predicate::ICMP_ULE: 797 case CmpInst::Predicate::ICMP_SGE: 798 case CmpInst::Predicate::ICMP_SLE: 799 PredicateExtraCost = 1; 800 break; 801 case CmpInst::Predicate::FCMP_ONE: 802 case CmpInst::Predicate::FCMP_ORD: 803 case CmpInst::Predicate::FCMP_UEQ: 804 case CmpInst::Predicate::FCMP_UNO: 805 PredicateExtraCost = 2; 806 break; 807 default: 808 break; 809 } 810 } 811 812 // Float is handled with 2*vmr[lh]f + 2*vldeb + vfchdb for each pair of 813 // floats. FIXME: <2 x float> generates same code as <4 x float>. 814 unsigned CmpCostPerVector = (ValTy->getScalarType()->isFloatTy() ? 10 : 1); 815 unsigned NumVecs_cmp = getNumVectorRegs(ValTy); 816 817 unsigned Cost = (NumVecs_cmp * (CmpCostPerVector + PredicateExtraCost)); 818 return Cost; 819 } 820 else { // Called with a select instruction. 821 assert (Opcode == Instruction::Select); 822 823 // We can figure out the extra cost of packing / unpacking if the 824 // instruction was passed and the compare instruction is found. 825 unsigned PackCost = 0; 826 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr); 827 if (CmpOpTy != nullptr) 828 PackCost = 829 getVectorBitmaskConversionCost(CmpOpTy, ValTy); 830 831 return getNumVectorRegs(ValTy) /*vsel*/ + PackCost; 832 } 833 } 834 else { // Scalar 835 switch (Opcode) { 836 case Instruction::ICmp: { 837 unsigned Cost = 1; 838 if (ValTy->isIntegerTy() && ValTy->getScalarSizeInBits() <= 16) 839 Cost += 2; // extend both operands 840 return Cost; 841 } 842 case Instruction::Select: 843 if (ValTy->isFloatingPointTy()) 844 return 4; // No load on condition for FP - costs a conditional jump. 845 return 1; // Load On Condition. 846 } 847 } 848 849 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, nullptr); 850 } 851 852 int SystemZTTIImpl:: 853 getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) { 854 // vlvgp will insert two grs into a vector register, so only count half the 855 // number of instructions. 856 if (Opcode == Instruction::InsertElement && Val->isIntOrIntVectorTy(64)) 857 return ((Index % 2 == 0) ? 1 : 0); 858 859 if (Opcode == Instruction::ExtractElement) { 860 int Cost = ((getScalarSizeInBits(Val) == 1) ? 2 /*+test-under-mask*/ : 1); 861 862 // Give a slight penalty for moving out of vector pipeline to FXU unit. 863 if (Index == 0 && Val->isIntOrIntVectorTy()) 864 Cost += 1; 865 866 return Cost; 867 } 868 869 return BaseT::getVectorInstrCost(Opcode, Val, Index); 870 } 871 872 // Check if a load may be folded as a memory operand in its user. 873 bool SystemZTTIImpl:: 874 isFoldableLoad(const LoadInst *Ld, const Instruction *&FoldedValue) { 875 if (!Ld->hasOneUse()) 876 return false; 877 FoldedValue = Ld; 878 const Instruction *UserI = cast<Instruction>(*Ld->user_begin()); 879 unsigned LoadedBits = getScalarSizeInBits(Ld->getType()); 880 unsigned TruncBits = 0; 881 unsigned SExtBits = 0; 882 unsigned ZExtBits = 0; 883 if (UserI->hasOneUse()) { 884 unsigned UserBits = UserI->getType()->getScalarSizeInBits(); 885 if (isa<TruncInst>(UserI)) 886 TruncBits = UserBits; 887 else if (isa<SExtInst>(UserI)) 888 SExtBits = UserBits; 889 else if (isa<ZExtInst>(UserI)) 890 ZExtBits = UserBits; 891 } 892 if (TruncBits || SExtBits || ZExtBits) { 893 FoldedValue = UserI; 894 UserI = cast<Instruction>(*UserI->user_begin()); 895 // Load (single use) -> trunc/extend (single use) -> UserI 896 } 897 if ((UserI->getOpcode() == Instruction::Sub || 898 UserI->getOpcode() == Instruction::SDiv || 899 UserI->getOpcode() == Instruction::UDiv) && 900 UserI->getOperand(1) != FoldedValue) 901 return false; // Not commutative, only RHS foldable. 902 switch (UserI->getOpcode()) { 903 case Instruction::Add: // SE: 16->32, 16/32->64, z14:16->64. ZE: 32->64 904 case Instruction::Sub: 905 if (LoadedBits == 32 && ZExtBits == 64) 906 return true; 907 LLVM_FALLTHROUGH; 908 case Instruction::Mul: // SE: 16->32, 32->64, z14:16->64 909 if (LoadedBits == 16 && 910 (SExtBits == 32 || 911 (SExtBits == 64 && ST->hasMiscellaneousExtensions2()))) 912 return true; 913 LLVM_FALLTHROUGH; 914 case Instruction::SDiv:// SE: 32->64 915 if (LoadedBits == 32 && SExtBits == 64) 916 return true; 917 LLVM_FALLTHROUGH; 918 case Instruction::UDiv: 919 case Instruction::And: 920 case Instruction::Or: 921 case Instruction::Xor: 922 case Instruction::ICmp: 923 // This also makes sense for float operations, but disabled for now due 924 // to regressions. 925 // case Instruction::FCmp: 926 // case Instruction::FAdd: 927 // case Instruction::FSub: 928 // case Instruction::FMul: 929 // case Instruction::FDiv: 930 931 // All possible extensions of memory checked above. 932 if (SExtBits || ZExtBits) 933 return false; 934 935 unsigned LoadOrTruncBits = (TruncBits ? TruncBits : LoadedBits); 936 return (LoadOrTruncBits == 32 || LoadOrTruncBits == 64); 937 break; 938 } 939 return false; 940 } 941 942 int SystemZTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, 943 unsigned Alignment, unsigned AddressSpace, 944 const Instruction *I) { 945 assert(!Src->isVoidTy() && "Invalid type"); 946 947 if (!Src->isVectorTy() && Opcode == Instruction::Load && I != nullptr) { 948 // Store the load or its truncated or extended value in FoldedValue. 949 const Instruction *FoldedValue = nullptr; 950 if (isFoldableLoad(cast<LoadInst>(I), FoldedValue)) { 951 const Instruction *UserI = cast<Instruction>(*FoldedValue->user_begin()); 952 assert (UserI->getNumOperands() == 2 && "Expected a binop."); 953 954 // UserI can't fold two loads, so in that case return 0 cost only 955 // half of the time. 956 for (unsigned i = 0; i < 2; ++i) { 957 if (UserI->getOperand(i) == FoldedValue) 958 continue; 959 960 if (Instruction *OtherOp = dyn_cast<Instruction>(UserI->getOperand(i))){ 961 LoadInst *OtherLoad = dyn_cast<LoadInst>(OtherOp); 962 if (!OtherLoad && 963 (isa<TruncInst>(OtherOp) || isa<SExtInst>(OtherOp) || 964 isa<ZExtInst>(OtherOp))) 965 OtherLoad = dyn_cast<LoadInst>(OtherOp->getOperand(0)); 966 if (OtherLoad && isFoldableLoad(OtherLoad, FoldedValue/*dummy*/)) 967 return i == 0; // Both operands foldable. 968 } 969 } 970 971 return 0; // Only I is foldable in user. 972 } 973 } 974 975 unsigned NumOps = 976 (Src->isVectorTy() ? getNumVectorRegs(Src) : getNumberOfParts(Src)); 977 978 if (Src->getScalarSizeInBits() == 128) 979 // 128 bit scalars are held in a pair of two 64 bit registers. 980 NumOps *= 2; 981 982 return NumOps; 983 } 984 985 // The generic implementation of getInterleavedMemoryOpCost() is based on 986 // adding costs of the memory operations plus all the extracts and inserts 987 // needed for using / defining the vector operands. The SystemZ version does 988 // roughly the same but bases the computations on vector permutations 989 // instead. 990 int SystemZTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, 991 unsigned Factor, 992 ArrayRef<unsigned> Indices, 993 unsigned Alignment, 994 unsigned AddressSpace, 995 bool UseMaskForCond, 996 bool UseMaskForGaps) { 997 if (UseMaskForCond || UseMaskForGaps) 998 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 999 Alignment, AddressSpace, 1000 UseMaskForCond, UseMaskForGaps); 1001 assert(isa<VectorType>(VecTy) && 1002 "Expect a vector type for interleaved memory op"); 1003 1004 // Return the ceiling of dividing A by B. 1005 auto ceil = [](unsigned A, unsigned B) { return (A + B - 1) / B; }; 1006 1007 unsigned NumElts = VecTy->getVectorNumElements(); 1008 assert(Factor > 1 && NumElts % Factor == 0 && "Invalid interleave factor"); 1009 unsigned VF = NumElts / Factor; 1010 unsigned NumEltsPerVecReg = (128U / getScalarSizeInBits(VecTy)); 1011 unsigned NumVectorMemOps = getNumVectorRegs(VecTy); 1012 unsigned NumPermutes = 0; 1013 1014 if (Opcode == Instruction::Load) { 1015 // Loading interleave groups may have gaps, which may mean fewer 1016 // loads. Find out how many vectors will be loaded in total, and in how 1017 // many of them each value will be in. 1018 BitVector UsedInsts(NumVectorMemOps, false); 1019 std::vector<BitVector> ValueVecs(Factor, BitVector(NumVectorMemOps, false)); 1020 for (unsigned Index : Indices) 1021 for (unsigned Elt = 0; Elt < VF; ++Elt) { 1022 unsigned Vec = (Index + Elt * Factor) / NumEltsPerVecReg; 1023 UsedInsts.set(Vec); 1024 ValueVecs[Index].set(Vec); 1025 } 1026 NumVectorMemOps = UsedInsts.count(); 1027 1028 for (unsigned Index : Indices) { 1029 // Estimate that each loaded source vector containing this Index 1030 // requires one operation, except that vperm can handle two input 1031 // registers first time for each dst vector. 1032 unsigned NumSrcVecs = ValueVecs[Index].count(); 1033 unsigned NumDstVecs = ceil(VF * getScalarSizeInBits(VecTy), 128U); 1034 assert (NumSrcVecs >= NumDstVecs && "Expected at least as many sources"); 1035 NumPermutes += std::max(1U, NumSrcVecs - NumDstVecs); 1036 } 1037 } else { 1038 // Estimate the permutes for each stored vector as the smaller of the 1039 // number of elements and the number of source vectors. Subtract one per 1040 // dst vector for vperm (S.A.). 1041 unsigned NumSrcVecs = std::min(NumEltsPerVecReg, Factor); 1042 unsigned NumDstVecs = NumVectorMemOps; 1043 assert (NumSrcVecs > 1 && "Expected at least two source vectors."); 1044 NumPermutes += (NumDstVecs * NumSrcVecs) - NumDstVecs; 1045 } 1046 1047 // Cost of load/store operations and the permutations needed. 1048 return NumVectorMemOps + NumPermutes; 1049 } 1050