1 //===-- SystemZTargetTransformInfo.cpp - SystemZ-specific TTI -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a TargetTransformInfo analysis pass specific to the
11 // SystemZ target machine. It uses the target's detailed information to provide
12 // more precise answers to certain TTI queries, while letting the target
13 // independent and default TTI implementations handle the rest.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "SystemZTargetTransformInfo.h"
18 #include "llvm/Analysis/TargetTransformInfo.h"
19 #include "llvm/CodeGen/BasicTTIImpl.h"
20 #include "llvm/IR/IntrinsicInst.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Target/CostTable.h"
23 #include "llvm/Target/TargetLowering.h"
24 using namespace llvm;
25 
26 #define DEBUG_TYPE "systemztti"
27 
28 //===----------------------------------------------------------------------===//
29 //
30 // SystemZ cost model.
31 //
32 //===----------------------------------------------------------------------===//
33 
34 int SystemZTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
35   assert(Ty->isIntegerTy());
36 
37   unsigned BitSize = Ty->getPrimitiveSizeInBits();
38   // There is no cost model for constants with a bit size of 0. Return TCC_Free
39   // here, so that constant hoisting will ignore this constant.
40   if (BitSize == 0)
41     return TTI::TCC_Free;
42   // No cost model for operations on integers larger than 64 bit implemented yet.
43   if (BitSize > 64)
44     return TTI::TCC_Free;
45 
46   if (Imm == 0)
47     return TTI::TCC_Free;
48 
49   if (Imm.getBitWidth() <= 64) {
50     // Constants loaded via lgfi.
51     if (isInt<32>(Imm.getSExtValue()))
52       return TTI::TCC_Basic;
53     // Constants loaded via llilf.
54     if (isUInt<32>(Imm.getZExtValue()))
55       return TTI::TCC_Basic;
56     // Constants loaded via llihf:
57     if ((Imm.getZExtValue() & 0xffffffff) == 0)
58       return TTI::TCC_Basic;
59 
60     return 2 * TTI::TCC_Basic;
61   }
62 
63   return 4 * TTI::TCC_Basic;
64 }
65 
66 int SystemZTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx,
67                                   const APInt &Imm, Type *Ty) {
68   assert(Ty->isIntegerTy());
69 
70   unsigned BitSize = Ty->getPrimitiveSizeInBits();
71   // There is no cost model for constants with a bit size of 0. Return TCC_Free
72   // here, so that constant hoisting will ignore this constant.
73   if (BitSize == 0)
74     return TTI::TCC_Free;
75   // No cost model for operations on integers larger than 64 bit implemented yet.
76   if (BitSize > 64)
77     return TTI::TCC_Free;
78 
79   switch (Opcode) {
80   default:
81     return TTI::TCC_Free;
82   case Instruction::GetElementPtr:
83     // Always hoist the base address of a GetElementPtr. This prevents the
84     // creation of new constants for every base constant that gets constant
85     // folded with the offset.
86     if (Idx == 0)
87       return 2 * TTI::TCC_Basic;
88     return TTI::TCC_Free;
89   case Instruction::Store:
90     if (Idx == 0 && Imm.getBitWidth() <= 64) {
91       // Any 8-bit immediate store can by implemented via mvi.
92       if (BitSize == 8)
93         return TTI::TCC_Free;
94       // 16-bit immediate values can be stored via mvhhi/mvhi/mvghi.
95       if (isInt<16>(Imm.getSExtValue()))
96         return TTI::TCC_Free;
97     }
98     break;
99   case Instruction::ICmp:
100     if (Idx == 1 && Imm.getBitWidth() <= 64) {
101       // Comparisons against signed 32-bit immediates implemented via cgfi.
102       if (isInt<32>(Imm.getSExtValue()))
103         return TTI::TCC_Free;
104       // Comparisons against unsigned 32-bit immediates implemented via clgfi.
105       if (isUInt<32>(Imm.getZExtValue()))
106         return TTI::TCC_Free;
107     }
108     break;
109   case Instruction::Add:
110   case Instruction::Sub:
111     if (Idx == 1 && Imm.getBitWidth() <= 64) {
112       // We use algfi/slgfi to add/subtract 32-bit unsigned immediates.
113       if (isUInt<32>(Imm.getZExtValue()))
114         return TTI::TCC_Free;
115       // Or their negation, by swapping addition vs. subtraction.
116       if (isUInt<32>(-Imm.getSExtValue()))
117         return TTI::TCC_Free;
118     }
119     break;
120   case Instruction::Mul:
121     if (Idx == 1 && Imm.getBitWidth() <= 64) {
122       // We use msgfi to multiply by 32-bit signed immediates.
123       if (isInt<32>(Imm.getSExtValue()))
124         return TTI::TCC_Free;
125     }
126     break;
127   case Instruction::Or:
128   case Instruction::Xor:
129     if (Idx == 1 && Imm.getBitWidth() <= 64) {
130       // Masks supported by oilf/xilf.
131       if (isUInt<32>(Imm.getZExtValue()))
132         return TTI::TCC_Free;
133       // Masks supported by oihf/xihf.
134       if ((Imm.getZExtValue() & 0xffffffff) == 0)
135         return TTI::TCC_Free;
136     }
137     break;
138   case Instruction::And:
139     if (Idx == 1 && Imm.getBitWidth() <= 64) {
140       // Any 32-bit AND operation can by implemented via nilf.
141       if (BitSize <= 32)
142         return TTI::TCC_Free;
143       // 64-bit masks supported by nilf.
144       if (isUInt<32>(~Imm.getZExtValue()))
145         return TTI::TCC_Free;
146       // 64-bit masks supported by nilh.
147       if ((Imm.getZExtValue() & 0xffffffff) == 0xffffffff)
148         return TTI::TCC_Free;
149       // Some 64-bit AND operations can be implemented via risbg.
150       const SystemZInstrInfo *TII = ST->getInstrInfo();
151       unsigned Start, End;
152       if (TII->isRxSBGMask(Imm.getZExtValue(), BitSize, Start, End))
153         return TTI::TCC_Free;
154     }
155     break;
156   case Instruction::Shl:
157   case Instruction::LShr:
158   case Instruction::AShr:
159     // Always return TCC_Free for the shift value of a shift instruction.
160     if (Idx == 1)
161       return TTI::TCC_Free;
162     break;
163   case Instruction::UDiv:
164   case Instruction::SDiv:
165   case Instruction::URem:
166   case Instruction::SRem:
167   case Instruction::Trunc:
168   case Instruction::ZExt:
169   case Instruction::SExt:
170   case Instruction::IntToPtr:
171   case Instruction::PtrToInt:
172   case Instruction::BitCast:
173   case Instruction::PHI:
174   case Instruction::Call:
175   case Instruction::Select:
176   case Instruction::Ret:
177   case Instruction::Load:
178     break;
179   }
180 
181   return SystemZTTIImpl::getIntImmCost(Imm, Ty);
182 }
183 
184 int SystemZTTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
185                                   const APInt &Imm, Type *Ty) {
186   assert(Ty->isIntegerTy());
187 
188   unsigned BitSize = Ty->getPrimitiveSizeInBits();
189   // There is no cost model for constants with a bit size of 0. Return TCC_Free
190   // here, so that constant hoisting will ignore this constant.
191   if (BitSize == 0)
192     return TTI::TCC_Free;
193   // No cost model for operations on integers larger than 64 bit implemented yet.
194   if (BitSize > 64)
195     return TTI::TCC_Free;
196 
197   switch (IID) {
198   default:
199     return TTI::TCC_Free;
200   case Intrinsic::sadd_with_overflow:
201   case Intrinsic::uadd_with_overflow:
202   case Intrinsic::ssub_with_overflow:
203   case Intrinsic::usub_with_overflow:
204     // These get expanded to include a normal addition/subtraction.
205     if (Idx == 1 && Imm.getBitWidth() <= 64) {
206       if (isUInt<32>(Imm.getZExtValue()))
207         return TTI::TCC_Free;
208       if (isUInt<32>(-Imm.getSExtValue()))
209         return TTI::TCC_Free;
210     }
211     break;
212   case Intrinsic::smul_with_overflow:
213   case Intrinsic::umul_with_overflow:
214     // These get expanded to include a normal multiplication.
215     if (Idx == 1 && Imm.getBitWidth() <= 64) {
216       if (isInt<32>(Imm.getSExtValue()))
217         return TTI::TCC_Free;
218     }
219     break;
220   case Intrinsic::experimental_stackmap:
221     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
222       return TTI::TCC_Free;
223     break;
224   case Intrinsic::experimental_patchpoint_void:
225   case Intrinsic::experimental_patchpoint_i64:
226     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
227       return TTI::TCC_Free;
228     break;
229   }
230   return SystemZTTIImpl::getIntImmCost(Imm, Ty);
231 }
232 
233 TargetTransformInfo::PopcntSupportKind
234 SystemZTTIImpl::getPopcntSupport(unsigned TyWidth) {
235   assert(isPowerOf2_32(TyWidth) && "Type width must be power of 2");
236   if (ST->hasPopulationCount() && TyWidth <= 64)
237     return TTI::PSK_FastHardware;
238   return TTI::PSK_Software;
239 }
240 
241 void SystemZTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
242                                              TTI::UnrollingPreferences &UP) {
243   // Find out if L contains a call, what the machine instruction count
244   // estimate is, and how many stores there are.
245   bool HasCall = false;
246   unsigned NumStores = 0;
247   for (auto &BB : L->blocks())
248     for (auto &I : *BB) {
249       if (isa<CallInst>(&I) || isa<InvokeInst>(&I)) {
250         ImmutableCallSite CS(&I);
251         if (const Function *F = CS.getCalledFunction()) {
252           if (isLoweredToCall(F))
253             HasCall = true;
254           if (F->getIntrinsicID() == Intrinsic::memcpy ||
255               F->getIntrinsicID() == Intrinsic::memset)
256             NumStores++;
257         } else { // indirect call.
258           HasCall = true;
259         }
260       }
261       if (isa<StoreInst>(&I)) {
262         Type *MemAccessTy = I.getOperand(0)->getType();
263         NumStores += getMemoryOpCost(Instruction::Store, MemAccessTy, 0, 0);
264       }
265     }
266 
267   // The z13 processor will run out of store tags if too many stores
268   // are fed into it too quickly. Therefore make sure there are not
269   // too many stores in the resulting unrolled loop.
270   unsigned const Max = (NumStores ? (12 / NumStores) : UINT_MAX);
271 
272   if (HasCall) {
273     // Only allow full unrolling if loop has any calls.
274     UP.FullUnrollMaxCount = Max;
275     UP.MaxCount = 1;
276     return;
277   }
278 
279   UP.MaxCount = Max;
280   if (UP.MaxCount <= 1)
281     return;
282 
283   // Allow partial and runtime trip count unrolling.
284   UP.Partial = UP.Runtime = true;
285 
286   UP.PartialThreshold = 75;
287   UP.DefaultUnrollRuntimeCount = 4;
288 
289   // Allow expensive instructions in the pre-header of the loop.
290   UP.AllowExpensiveTripCount = true;
291 
292   UP.Force = true;
293 }
294 
295 
296 bool SystemZTTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1,
297                                    TargetTransformInfo::LSRCost &C2) {
298   // SystemZ specific: check instruction count (first), and don't care about
299   // ImmCost, since offsets are checked explicitly.
300   return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost,
301                   C1.NumIVMuls, C1.NumBaseAdds,
302                   C1.ScaleCost, C1.SetupCost) <
303     std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost,
304              C2.NumIVMuls, C2.NumBaseAdds,
305              C2.ScaleCost, C2.SetupCost);
306 }
307 
308 unsigned SystemZTTIImpl::getNumberOfRegisters(bool Vector) {
309   if (!Vector)
310     // Discount the stack pointer.  Also leave out %r0, since it can't
311     // be used in an address.
312     return 14;
313   if (ST->hasVector())
314     return 32;
315   return 0;
316 }
317 
318 unsigned SystemZTTIImpl::getRegisterBitWidth(bool Vector) const {
319   if (!Vector)
320     return 64;
321   if (ST->hasVector())
322     return 128;
323   return 0;
324 }
325 
326 int SystemZTTIImpl::getArithmeticInstrCost(
327     unsigned Opcode, Type *Ty,
328     TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info,
329     TTI::OperandValueProperties Opd1PropInfo,
330     TTI::OperandValueProperties Opd2PropInfo,
331     ArrayRef<const Value *> Args) {
332 
333   // TODO: return a good value for BB-VECTORIZER that includes the
334   // immediate loads, which we do not want to count for the loop
335   // vectorizer, since they are hopefully hoisted out of the loop. This
336   // would require a new parameter 'InLoop', but not sure if constant
337   // args are common enough to motivate this.
338 
339   unsigned ScalarBits = Ty->getScalarSizeInBits();
340 
341   // Div with a constant which is a power of 2 will be converted by
342   // DAGCombiner to use shifts. With vector shift-element instructions, a
343   // vector sdiv costs about as much as a scalar one.
344   const unsigned SDivCostEstimate = 4;
345   bool SDivPow2 = false;
346   bool UDivPow2 = false;
347   if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv) &&
348       Args.size() == 2) {
349     const ConstantInt *CI = nullptr;
350     if (const Constant *C = dyn_cast<Constant>(Args[1])) {
351       if (C->getType()->isVectorTy())
352         CI = dyn_cast_or_null<const ConstantInt>(C->getSplatValue());
353       else
354         CI = dyn_cast<const ConstantInt>(C);
355     }
356     if (CI != nullptr &&
357         (CI->getValue().isPowerOf2() || (-CI->getValue()).isPowerOf2())) {
358       if (Opcode == Instruction::SDiv)
359         SDivPow2 = true;
360       else
361         UDivPow2 = true;
362     }
363   }
364 
365   if (Ty->isVectorTy()) {
366     assert (ST->hasVector() && "getArithmeticInstrCost() called with vector type.");
367     unsigned VF = Ty->getVectorNumElements();
368     unsigned NumVectors = getNumberOfParts(Ty);
369 
370     // These vector operations are custom handled, but are still supported
371     // with one instruction per vector, regardless of element size.
372     if (Opcode == Instruction::Shl || Opcode == Instruction::LShr ||
373         Opcode == Instruction::AShr || UDivPow2) {
374       return NumVectors;
375     }
376 
377     if (SDivPow2)
378       return (NumVectors * SDivCostEstimate);
379 
380     // These FP operations are supported with a single vector instruction for
381     // double (base implementation assumes float generally costs 2). For
382     // FP128, the scalar cost is 1, and there is no overhead since the values
383     // are already in scalar registers.
384     if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub ||
385         Opcode == Instruction::FMul || Opcode == Instruction::FDiv) {
386       switch (ScalarBits) {
387       case 32: {
388         // The vector enhancements facility 1 provides v4f32 instructions.
389         if (ST->hasVectorEnhancements1())
390           return NumVectors;
391         // Return the cost of multiple scalar invocation plus the cost of
392         // inserting and extracting the values.
393         unsigned ScalarCost = getArithmeticInstrCost(Opcode, Ty->getScalarType());
394         unsigned Cost = (VF * ScalarCost) + getScalarizationOverhead(Ty, Args);
395         // FIXME: VF 2 for these FP operations are currently just as
396         // expensive as for VF 4.
397         if (VF == 2)
398           Cost *= 2;
399         return Cost;
400       }
401       case 64:
402       case 128:
403         return NumVectors;
404       default:
405         break;
406       }
407     }
408 
409     // There is no native support for FRem.
410     if (Opcode == Instruction::FRem) {
411       unsigned Cost = (VF * LIBCALL_COST) + getScalarizationOverhead(Ty, Args);
412       // FIXME: VF 2 for float is currently just as expensive as for VF 4.
413       if (VF == 2 && ScalarBits == 32)
414         Cost *= 2;
415       return Cost;
416     }
417   }
418   else {  // Scalar:
419     // These FP operations are supported with a dedicated instruction for
420     // float, double and fp128 (base implementation assumes float generally
421     // costs 2).
422     if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub ||
423         Opcode == Instruction::FMul || Opcode == Instruction::FDiv)
424       return 1;
425 
426     // There is no native support for FRem.
427     if (Opcode == Instruction::FRem)
428       return LIBCALL_COST;
429 
430     if (Opcode == Instruction::LShr || Opcode == Instruction::AShr)
431       return (ScalarBits >= 32 ? 1 : 2 /*ext*/);
432 
433     // Or requires one instruction, although it has custom handling for i64.
434     if (Opcode == Instruction::Or)
435       return 1;
436 
437     if (Opcode == Instruction::Xor && ScalarBits == 1)
438       // 2 * ipm sequences ; xor ; shift ; compare
439       return 7;
440 
441     if (UDivPow2)
442       return 1;
443     if (SDivPow2)
444       return SDivCostEstimate;
445 
446     // An extra extension for narrow types is needed.
447     if ((Opcode == Instruction::SDiv || Opcode == Instruction::SRem))
448       // sext of op(s) for narrow types
449       return (ScalarBits < 32 ? 4 : (ScalarBits == 32 ? 2 : 1));
450 
451     if (Opcode == Instruction::UDiv || Opcode == Instruction::URem)
452       // Clearing of low 64 bit reg + sext of op(s) for narrow types + dl[g]r
453       return (ScalarBits < 32 ? 4 : 2);
454   }
455 
456   // Fallback to the default implementation.
457   return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info,
458                                        Opd1PropInfo, Opd2PropInfo, Args);
459 }
460 
461 
462 int SystemZTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
463                                    Type *SubTp) {
464   assert (Tp->isVectorTy());
465   assert (ST->hasVector() && "getShuffleCost() called.");
466   unsigned NumVectors = getNumberOfParts(Tp);
467 
468   // TODO: Since fp32 is expanded, the shuffle cost should always be 0.
469 
470   // FP128 values are always in scalar registers, so there is no work
471   // involved with a shuffle, except for broadcast. In that case register
472   // moves are done with a single instruction per element.
473   if (Tp->getScalarType()->isFP128Ty())
474     return (Kind == TargetTransformInfo::SK_Broadcast ? NumVectors - 1 : 0);
475 
476   switch (Kind) {
477   case  TargetTransformInfo::SK_ExtractSubvector:
478     // ExtractSubvector Index indicates start offset.
479 
480     // Extracting a subvector from first index is a noop.
481     return (Index == 0 ? 0 : NumVectors);
482 
483   case TargetTransformInfo::SK_Broadcast:
484     // Loop vectorizer calls here to figure out the extra cost of
485     // broadcasting a loaded value to all elements of a vector. Since vlrep
486     // loads and replicates with a single instruction, adjust the returned
487     // value.
488     return NumVectors - 1;
489 
490   default:
491 
492     // SystemZ supports single instruction permutation / replication.
493     return NumVectors;
494   }
495 
496   return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
497 }
498 
499 // Return the log2 difference of the element sizes of the two vector types.
500 static unsigned getElSizeLog2Diff(Type *Ty0, Type *Ty1) {
501   unsigned Bits0 = Ty0->getScalarSizeInBits();
502   unsigned Bits1 = Ty1->getScalarSizeInBits();
503 
504   if (Bits1 >  Bits0)
505     return (Log2_32(Bits1) - Log2_32(Bits0));
506 
507   return (Log2_32(Bits0) - Log2_32(Bits1));
508 }
509 
510 // Return the number of instructions needed to truncate SrcTy to DstTy.
511 unsigned SystemZTTIImpl::
512 getVectorTruncCost(Type *SrcTy, Type *DstTy) {
513   assert (SrcTy->isVectorTy() && DstTy->isVectorTy());
514   assert (SrcTy->getPrimitiveSizeInBits() > DstTy->getPrimitiveSizeInBits() &&
515           "Packing must reduce size of vector type.");
516   assert (SrcTy->getVectorNumElements() == DstTy->getVectorNumElements() &&
517           "Packing should not change number of elements.");
518 
519   // TODO: Since fp32 is expanded, the extract cost should always be 0.
520 
521   unsigned NumParts = getNumberOfParts(SrcTy);
522   if (NumParts <= 2)
523     // Up to 2 vector registers can be truncated efficiently with pack or
524     // permute. The latter requires an immediate mask to be loaded, which
525     // typically gets hoisted out of a loop.  TODO: return a good value for
526     // BB-VECTORIZER that includes the immediate loads, which we do not want
527     // to count for the loop vectorizer.
528     return 1;
529 
530   unsigned Cost = 0;
531   unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy);
532   unsigned VF = SrcTy->getVectorNumElements();
533   for (unsigned P = 0; P < Log2Diff; ++P) {
534     if (NumParts > 1)
535       NumParts /= 2;
536     Cost += NumParts;
537   }
538 
539   // Currently, a general mix of permutes and pack instructions is output by
540   // isel, which follow the cost computation above except for this case which
541   // is one instruction less:
542   if (VF == 8 && SrcTy->getScalarSizeInBits() == 64 &&
543       DstTy->getScalarSizeInBits() == 8)
544     Cost--;
545 
546   return Cost;
547 }
548 
549 // Return the cost of converting a vector bitmask produced by a compare
550 // (SrcTy), to the type of the select or extend instruction (DstTy).
551 unsigned SystemZTTIImpl::
552 getVectorBitmaskConversionCost(Type *SrcTy, Type *DstTy) {
553   assert (SrcTy->isVectorTy() && DstTy->isVectorTy() &&
554           "Should only be called with vector types.");
555 
556   unsigned PackCost = 0;
557   unsigned SrcScalarBits = SrcTy->getScalarSizeInBits();
558   unsigned DstScalarBits = DstTy->getScalarSizeInBits();
559   unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy);
560   if (SrcScalarBits > DstScalarBits)
561     // The bitmask will be truncated.
562     PackCost = getVectorTruncCost(SrcTy, DstTy);
563   else if (SrcScalarBits < DstScalarBits) {
564     unsigned DstNumParts = getNumberOfParts(DstTy);
565     // Each vector select needs its part of the bitmask unpacked.
566     PackCost = Log2Diff * DstNumParts;
567     // Extra cost for moving part of mask before unpacking.
568     PackCost += DstNumParts - 1;
569   }
570 
571   return PackCost;
572 }
573 
574 // Return the type of the compared operands. This is needed to compute the
575 // cost for a Select / ZExt or SExt instruction.
576 static Type *getCmpOpsType(const Instruction *I, unsigned VF = 1) {
577   Type *OpTy = nullptr;
578   if (CmpInst *CI = dyn_cast<CmpInst>(I->getOperand(0)))
579     OpTy = CI->getOperand(0)->getType();
580   else if (Instruction *LogicI = dyn_cast<Instruction>(I->getOperand(0)))
581     if (LogicI->getNumOperands() == 2)
582       if (CmpInst *CI0 = dyn_cast<CmpInst>(LogicI->getOperand(0)))
583         if (isa<CmpInst>(LogicI->getOperand(1)))
584           OpTy = CI0->getOperand(0)->getType();
585 
586   if (OpTy != nullptr) {
587     if (VF == 1) {
588       assert (!OpTy->isVectorTy() && "Expected scalar type");
589       return OpTy;
590     }
591     // Return the potentially vectorized type based on 'I' and 'VF'.  'I' may
592     // be either scalar or already vectorized with a same or lesser VF.
593     Type *ElTy = OpTy->getScalarType();
594     return VectorType::get(ElTy, VF);
595   }
596 
597   return nullptr;
598 }
599 
600 int SystemZTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
601                                      const Instruction *I) {
602   unsigned DstScalarBits = Dst->getScalarSizeInBits();
603   unsigned SrcScalarBits = Src->getScalarSizeInBits();
604 
605   if (Src->isVectorTy()) {
606     assert (ST->hasVector() && "getCastInstrCost() called with vector type.");
607     assert (Dst->isVectorTy());
608     unsigned VF = Src->getVectorNumElements();
609     unsigned NumDstVectors = getNumberOfParts(Dst);
610     unsigned NumSrcVectors = getNumberOfParts(Src);
611 
612     if (Opcode == Instruction::Trunc) {
613       if (Src->getScalarSizeInBits() == Dst->getScalarSizeInBits())
614         return 0; // Check for NOOP conversions.
615       return getVectorTruncCost(Src, Dst);
616     }
617 
618     if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
619       if (SrcScalarBits >= 8) {
620         // ZExt/SExt will be handled with one unpack per doubling of width.
621         unsigned NumUnpacks = getElSizeLog2Diff(Src, Dst);
622 
623         // For types that spans multiple vector registers, some additional
624         // instructions are used to setup the unpacking.
625         unsigned NumSrcVectorOps =
626           (NumUnpacks > 1 ? (NumDstVectors - NumSrcVectors)
627                           : (NumDstVectors / 2));
628 
629         return (NumUnpacks * NumDstVectors) + NumSrcVectorOps;
630       }
631       else if (SrcScalarBits == 1) {
632         // This should be extension of a compare i1 result.
633         // If we know what the widths of the compared operands, get the
634         // cost of converting it to Dst. Otherwise assume same widths.
635         unsigned Cost = 0;
636         Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr);
637         if (CmpOpTy != nullptr)
638           Cost = getVectorBitmaskConversionCost(CmpOpTy, Dst);
639         if (Opcode == Instruction::ZExt)
640           // One 'vn' per dst vector with an immediate mask.
641           Cost += NumDstVectors;
642         return Cost;
643       }
644     }
645 
646     if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP ||
647         Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI) {
648       // TODO: Fix base implementation which could simplify things a bit here
649       // (seems to miss on differentiating on scalar/vector types).
650 
651       // Only 64 bit vector conversions are natively supported.
652       if (SrcScalarBits == 64 && DstScalarBits == 64)
653         return NumDstVectors;
654 
655       // Return the cost of multiple scalar invocation plus the cost of
656       // inserting and extracting the values. Base implementation does not
657       // realize float->int gets scalarized.
658       unsigned ScalarCost = getCastInstrCost(Opcode, Dst->getScalarType(),
659                                              Src->getScalarType());
660       unsigned TotCost = VF * ScalarCost;
661       bool NeedsInserts = true, NeedsExtracts = true;
662       // FP128 registers do not get inserted or extracted.
663       if (DstScalarBits == 128 &&
664           (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP))
665         NeedsInserts = false;
666       if (SrcScalarBits == 128 &&
667           (Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI))
668         NeedsExtracts = false;
669 
670       TotCost += getScalarizationOverhead(Dst, NeedsInserts, NeedsExtracts);
671 
672       // FIXME: VF 2 for float<->i32 is currently just as expensive as for VF 4.
673       if (VF == 2 && SrcScalarBits == 32 && DstScalarBits == 32)
674         TotCost *= 2;
675 
676       return TotCost;
677     }
678 
679     if (Opcode == Instruction::FPTrunc) {
680       if (SrcScalarBits == 128)  // fp128 -> double/float + inserts of elements.
681         return VF /*ldxbr/lexbr*/ + getScalarizationOverhead(Dst, true, false);
682       else // double -> float
683         return VF / 2 /*vledb*/ + std::max(1U, VF / 4 /*vperm*/);
684     }
685 
686     if (Opcode == Instruction::FPExt) {
687       if (SrcScalarBits == 32 && DstScalarBits == 64) {
688         // float -> double is very rare and currently unoptimized. Instead of
689         // using vldeb, which can do two at a time, all conversions are
690         // scalarized.
691         return VF * 2;
692       }
693       // -> fp128.  VF * lxdb/lxeb + extraction of elements.
694       return VF + getScalarizationOverhead(Src, false, true);
695     }
696   }
697   else { // Scalar
698     assert (!Dst->isVectorTy());
699 
700     if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP)
701       return (SrcScalarBits >= 32 ? 1 : 2 /*i8/i16 extend*/);
702 
703     if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
704         Src->isIntegerTy(1)) {
705       // This should be extension of a compare i1 result, which is done with
706       // ipm and a varying sequence of instructions.
707       unsigned Cost = 0;
708       if (Opcode == Instruction::SExt)
709         Cost = (DstScalarBits < 64 ? 3 : 4);
710       if (Opcode == Instruction::ZExt)
711         Cost = 3;
712       Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I) : nullptr);
713       if (CmpOpTy != nullptr && CmpOpTy->isFloatingPointTy())
714         // If operands of an fp-type was compared, this costs +1.
715         Cost++;
716 
717       return Cost;
718     }
719   }
720 
721   return BaseT::getCastInstrCost(Opcode, Dst, Src, I);
722 }
723 
724 int SystemZTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
725                                        const Instruction *I) {
726   if (ValTy->isVectorTy()) {
727     assert (ST->hasVector() && "getCmpSelInstrCost() called with vector type.");
728     unsigned VF = ValTy->getVectorNumElements();
729 
730     // Called with a compare instruction.
731     if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) {
732       unsigned PredicateExtraCost = 0;
733       if (I != nullptr) {
734         // Some predicates cost one or two extra instructions.
735         switch (dyn_cast<CmpInst>(I)->getPredicate()) {
736         case CmpInst::Predicate::ICMP_NE:
737         case CmpInst::Predicate::ICMP_UGE:
738         case CmpInst::Predicate::ICMP_ULE:
739         case CmpInst::Predicate::ICMP_SGE:
740         case CmpInst::Predicate::ICMP_SLE:
741           PredicateExtraCost = 1;
742           break;
743         case CmpInst::Predicate::FCMP_ONE:
744         case CmpInst::Predicate::FCMP_ORD:
745         case CmpInst::Predicate::FCMP_UEQ:
746         case CmpInst::Predicate::FCMP_UNO:
747           PredicateExtraCost = 2;
748           break;
749         default:
750           break;
751         }
752       }
753 
754       // Float is handled with 2*vmr[lh]f + 2*vldeb + vfchdb for each pair of
755       // floats.  FIXME: <2 x float> generates same code as <4 x float>.
756       unsigned CmpCostPerVector = (ValTy->getScalarType()->isFloatTy() ? 10 : 1);
757       unsigned NumVecs_cmp = getNumberOfParts(ValTy);
758 
759       unsigned Cost = (NumVecs_cmp * (CmpCostPerVector + PredicateExtraCost));
760       return Cost;
761     }
762     else { // Called with a select instruction.
763       assert (Opcode == Instruction::Select);
764 
765       // We can figure out the extra cost of packing / unpacking if the
766       // instruction was passed and the compare instruction is found.
767       unsigned PackCost = 0;
768       Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr);
769       if (CmpOpTy != nullptr)
770         PackCost =
771           getVectorBitmaskConversionCost(CmpOpTy, ValTy);
772 
773       return getNumberOfParts(ValTy) /*vsel*/ + PackCost;
774     }
775   }
776   else { // Scalar
777     switch (Opcode) {
778     case Instruction::ICmp: {
779       unsigned Cost = 1;
780       if (ValTy->isIntegerTy() && ValTy->getScalarSizeInBits() <= 16)
781         Cost += 2; // extend both operands
782       return Cost;
783     }
784     case Instruction::Select:
785       if (ValTy->isFloatingPointTy())
786         return 4; // No load on condition for FP, so this costs a conditional jump.
787       return 1; // Load On Condition.
788     }
789   }
790 
791   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, nullptr);
792 }
793 
794 int SystemZTTIImpl::
795 getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
796   // vlvgp will insert two grs into a vector register, so only count half the
797   // number of instructions.
798   if (Opcode == Instruction::InsertElement && Val->isIntOrIntVectorTy(64))
799     return ((Index % 2 == 0) ? 1 : 0);
800 
801   if (Opcode == Instruction::ExtractElement) {
802     int Cost = ((Val->getScalarSizeInBits() == 1) ? 2 /*+test-under-mask*/ : 1);
803 
804     // Give a slight penalty for moving out of vector pipeline to FXU unit.
805     if (Index == 0 && Val->isIntOrIntVectorTy())
806       Cost += 1;
807 
808     return Cost;
809   }
810 
811   return BaseT::getVectorInstrCost(Opcode, Val, Index);
812 }
813 
814 int SystemZTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
815                                     unsigned Alignment, unsigned AddressSpace,
816                                     const Instruction *I) {
817   assert(!Src->isVoidTy() && "Invalid type");
818 
819   if (!Src->isVectorTy() && Opcode == Instruction::Load &&
820       I != nullptr && I->hasOneUse()) {
821       const Instruction *UserI = cast<Instruction>(*I->user_begin());
822       unsigned Bits = Src->getScalarSizeInBits();
823       bool FoldsLoad = false;
824       switch (UserI->getOpcode()) {
825       case Instruction::ICmp:
826       case Instruction::Add:
827       case Instruction::Sub:
828       case Instruction::Mul:
829       case Instruction::SDiv:
830       case Instruction::UDiv:
831       case Instruction::And:
832       case Instruction::Or:
833       case Instruction::Xor:
834       // This also makes sense for float operations, but disabled for now due
835       // to regressions.
836       // case Instruction::FCmp:
837       // case Instruction::FAdd:
838       // case Instruction::FSub:
839       // case Instruction::FMul:
840       // case Instruction::FDiv:
841         FoldsLoad = (Bits == 32 || Bits == 64);
842         break;
843       }
844 
845       if (FoldsLoad) {
846         assert (UserI->getNumOperands() == 2 &&
847                 "Expected to only handle binops.");
848 
849         // UserI can't fold two loads, so in that case return 0 cost only
850         // half of the time.
851         for (unsigned i = 0; i < 2; ++i) {
852           if (UserI->getOperand(i) == I)
853             continue;
854           if (LoadInst *LI = dyn_cast<LoadInst>(UserI->getOperand(i))) {
855             if (LI->hasOneUse())
856               return i == 0;
857           }
858         }
859 
860         return 0;
861       }
862   }
863 
864   unsigned NumOps = getNumberOfParts(Src);
865 
866   if (Src->getScalarSizeInBits() == 128)
867     // 128 bit scalars are held in a pair of two 64 bit registers.
868     NumOps *= 2;
869 
870   return  NumOps;
871 }
872 
873 int SystemZTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
874                                                unsigned Factor,
875                                                ArrayRef<unsigned> Indices,
876                                                unsigned Alignment,
877                                                unsigned AddressSpace) {
878   assert(isa<VectorType>(VecTy) &&
879          "Expect a vector type for interleaved memory op");
880 
881   unsigned WideBits = (VecTy->isPtrOrPtrVectorTy() ?
882      (64U * VecTy->getVectorNumElements()) : VecTy->getPrimitiveSizeInBits());
883   assert (WideBits > 0 && "Could not compute size of vector");
884   int NumWideParts =
885     ((WideBits % 128U) ? ((WideBits / 128U) + 1) : (WideBits / 128U));
886 
887   // How many source vectors are handled to produce a vectorized operand?
888   int NumElsPerVector = (VecTy->getVectorNumElements() / NumWideParts);
889   int NumSrcParts =
890     ((NumWideParts > NumElsPerVector) ? NumElsPerVector : NumWideParts);
891 
892   // A Load group may have gaps.
893   unsigned NumOperands =
894     ((Opcode == Instruction::Load) ? Indices.size() : Factor);
895 
896   // Each needed permute takes two vectors as input.
897   if (NumSrcParts > 1)
898     NumSrcParts--;
899   int NumPermutes = NumSrcParts * NumOperands;
900 
901   // Cost of load/store operations and the permutations needed.
902   return NumWideParts + NumPermutes;
903 }
904