1 //===-- SystemZTargetTransformInfo.cpp - SystemZ-specific TTI -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements a TargetTransformInfo analysis pass specific to the 11 // SystemZ target machine. It uses the target's detailed information to provide 12 // more precise answers to certain TTI queries, while letting the target 13 // independent and default TTI implementations handle the rest. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "SystemZTargetTransformInfo.h" 18 #include "llvm/Analysis/TargetTransformInfo.h" 19 #include "llvm/CodeGen/BasicTTIImpl.h" 20 #include "llvm/IR/IntrinsicInst.h" 21 #include "llvm/Support/Debug.h" 22 #include "llvm/Target/CostTable.h" 23 #include "llvm/Target/TargetLowering.h" 24 using namespace llvm; 25 26 #define DEBUG_TYPE "systemztti" 27 28 //===----------------------------------------------------------------------===// 29 // 30 // SystemZ cost model. 31 // 32 //===----------------------------------------------------------------------===// 33 34 int SystemZTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) { 35 assert(Ty->isIntegerTy()); 36 37 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 38 // There is no cost model for constants with a bit size of 0. Return TCC_Free 39 // here, so that constant hoisting will ignore this constant. 40 if (BitSize == 0) 41 return TTI::TCC_Free; 42 // No cost model for operations on integers larger than 64 bit implemented yet. 43 if (BitSize > 64) 44 return TTI::TCC_Free; 45 46 if (Imm == 0) 47 return TTI::TCC_Free; 48 49 if (Imm.getBitWidth() <= 64) { 50 // Constants loaded via lgfi. 51 if (isInt<32>(Imm.getSExtValue())) 52 return TTI::TCC_Basic; 53 // Constants loaded via llilf. 54 if (isUInt<32>(Imm.getZExtValue())) 55 return TTI::TCC_Basic; 56 // Constants loaded via llihf: 57 if ((Imm.getZExtValue() & 0xffffffff) == 0) 58 return TTI::TCC_Basic; 59 60 return 2 * TTI::TCC_Basic; 61 } 62 63 return 4 * TTI::TCC_Basic; 64 } 65 66 int SystemZTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, 67 const APInt &Imm, Type *Ty) { 68 assert(Ty->isIntegerTy()); 69 70 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 71 // There is no cost model for constants with a bit size of 0. Return TCC_Free 72 // here, so that constant hoisting will ignore this constant. 73 if (BitSize == 0) 74 return TTI::TCC_Free; 75 // No cost model for operations on integers larger than 64 bit implemented yet. 76 if (BitSize > 64) 77 return TTI::TCC_Free; 78 79 switch (Opcode) { 80 default: 81 return TTI::TCC_Free; 82 case Instruction::GetElementPtr: 83 // Always hoist the base address of a GetElementPtr. This prevents the 84 // creation of new constants for every base constant that gets constant 85 // folded with the offset. 86 if (Idx == 0) 87 return 2 * TTI::TCC_Basic; 88 return TTI::TCC_Free; 89 case Instruction::Store: 90 if (Idx == 0 && Imm.getBitWidth() <= 64) { 91 // Any 8-bit immediate store can by implemented via mvi. 92 if (BitSize == 8) 93 return TTI::TCC_Free; 94 // 16-bit immediate values can be stored via mvhhi/mvhi/mvghi. 95 if (isInt<16>(Imm.getSExtValue())) 96 return TTI::TCC_Free; 97 } 98 break; 99 case Instruction::ICmp: 100 if (Idx == 1 && Imm.getBitWidth() <= 64) { 101 // Comparisons against signed 32-bit immediates implemented via cgfi. 102 if (isInt<32>(Imm.getSExtValue())) 103 return TTI::TCC_Free; 104 // Comparisons against unsigned 32-bit immediates implemented via clgfi. 105 if (isUInt<32>(Imm.getZExtValue())) 106 return TTI::TCC_Free; 107 } 108 break; 109 case Instruction::Add: 110 case Instruction::Sub: 111 if (Idx == 1 && Imm.getBitWidth() <= 64) { 112 // We use algfi/slgfi to add/subtract 32-bit unsigned immediates. 113 if (isUInt<32>(Imm.getZExtValue())) 114 return TTI::TCC_Free; 115 // Or their negation, by swapping addition vs. subtraction. 116 if (isUInt<32>(-Imm.getSExtValue())) 117 return TTI::TCC_Free; 118 } 119 break; 120 case Instruction::Mul: 121 if (Idx == 1 && Imm.getBitWidth() <= 64) { 122 // We use msgfi to multiply by 32-bit signed immediates. 123 if (isInt<32>(Imm.getSExtValue())) 124 return TTI::TCC_Free; 125 } 126 break; 127 case Instruction::Or: 128 case Instruction::Xor: 129 if (Idx == 1 && Imm.getBitWidth() <= 64) { 130 // Masks supported by oilf/xilf. 131 if (isUInt<32>(Imm.getZExtValue())) 132 return TTI::TCC_Free; 133 // Masks supported by oihf/xihf. 134 if ((Imm.getZExtValue() & 0xffffffff) == 0) 135 return TTI::TCC_Free; 136 } 137 break; 138 case Instruction::And: 139 if (Idx == 1 && Imm.getBitWidth() <= 64) { 140 // Any 32-bit AND operation can by implemented via nilf. 141 if (BitSize <= 32) 142 return TTI::TCC_Free; 143 // 64-bit masks supported by nilf. 144 if (isUInt<32>(~Imm.getZExtValue())) 145 return TTI::TCC_Free; 146 // 64-bit masks supported by nilh. 147 if ((Imm.getZExtValue() & 0xffffffff) == 0xffffffff) 148 return TTI::TCC_Free; 149 // Some 64-bit AND operations can be implemented via risbg. 150 const SystemZInstrInfo *TII = ST->getInstrInfo(); 151 unsigned Start, End; 152 if (TII->isRxSBGMask(Imm.getZExtValue(), BitSize, Start, End)) 153 return TTI::TCC_Free; 154 } 155 break; 156 case Instruction::Shl: 157 case Instruction::LShr: 158 case Instruction::AShr: 159 // Always return TCC_Free for the shift value of a shift instruction. 160 if (Idx == 1) 161 return TTI::TCC_Free; 162 break; 163 case Instruction::UDiv: 164 case Instruction::SDiv: 165 case Instruction::URem: 166 case Instruction::SRem: 167 case Instruction::Trunc: 168 case Instruction::ZExt: 169 case Instruction::SExt: 170 case Instruction::IntToPtr: 171 case Instruction::PtrToInt: 172 case Instruction::BitCast: 173 case Instruction::PHI: 174 case Instruction::Call: 175 case Instruction::Select: 176 case Instruction::Ret: 177 case Instruction::Load: 178 break; 179 } 180 181 return SystemZTTIImpl::getIntImmCost(Imm, Ty); 182 } 183 184 int SystemZTTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, 185 const APInt &Imm, Type *Ty) { 186 assert(Ty->isIntegerTy()); 187 188 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 189 // There is no cost model for constants with a bit size of 0. Return TCC_Free 190 // here, so that constant hoisting will ignore this constant. 191 if (BitSize == 0) 192 return TTI::TCC_Free; 193 // No cost model for operations on integers larger than 64 bit implemented yet. 194 if (BitSize > 64) 195 return TTI::TCC_Free; 196 197 switch (IID) { 198 default: 199 return TTI::TCC_Free; 200 case Intrinsic::sadd_with_overflow: 201 case Intrinsic::uadd_with_overflow: 202 case Intrinsic::ssub_with_overflow: 203 case Intrinsic::usub_with_overflow: 204 // These get expanded to include a normal addition/subtraction. 205 if (Idx == 1 && Imm.getBitWidth() <= 64) { 206 if (isUInt<32>(Imm.getZExtValue())) 207 return TTI::TCC_Free; 208 if (isUInt<32>(-Imm.getSExtValue())) 209 return TTI::TCC_Free; 210 } 211 break; 212 case Intrinsic::smul_with_overflow: 213 case Intrinsic::umul_with_overflow: 214 // These get expanded to include a normal multiplication. 215 if (Idx == 1 && Imm.getBitWidth() <= 64) { 216 if (isInt<32>(Imm.getSExtValue())) 217 return TTI::TCC_Free; 218 } 219 break; 220 case Intrinsic::experimental_stackmap: 221 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 222 return TTI::TCC_Free; 223 break; 224 case Intrinsic::experimental_patchpoint_void: 225 case Intrinsic::experimental_patchpoint_i64: 226 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 227 return TTI::TCC_Free; 228 break; 229 } 230 return SystemZTTIImpl::getIntImmCost(Imm, Ty); 231 } 232 233 TargetTransformInfo::PopcntSupportKind 234 SystemZTTIImpl::getPopcntSupport(unsigned TyWidth) { 235 assert(isPowerOf2_32(TyWidth) && "Type width must be power of 2"); 236 if (ST->hasPopulationCount() && TyWidth <= 64) 237 return TTI::PSK_FastHardware; 238 return TTI::PSK_Software; 239 } 240 241 void SystemZTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 242 TTI::UnrollingPreferences &UP) { 243 // Find out if L contains a call, what the machine instruction count 244 // estimate is, and how many stores there are. 245 bool HasCall = false; 246 unsigned NumStores = 0; 247 for (auto &BB : L->blocks()) 248 for (auto &I : *BB) { 249 if (isa<CallInst>(&I) || isa<InvokeInst>(&I)) { 250 ImmutableCallSite CS(&I); 251 if (const Function *F = CS.getCalledFunction()) { 252 if (isLoweredToCall(F)) 253 HasCall = true; 254 if (F->getIntrinsicID() == Intrinsic::memcpy || 255 F->getIntrinsicID() == Intrinsic::memset) 256 NumStores++; 257 } else { // indirect call. 258 HasCall = true; 259 } 260 } 261 if (isa<StoreInst>(&I)) { 262 Type *MemAccessTy = I.getOperand(0)->getType(); 263 NumStores += getMemoryOpCost(Instruction::Store, MemAccessTy, 0, 0); 264 } 265 } 266 267 // The z13 processor will run out of store tags if too many stores 268 // are fed into it too quickly. Therefore make sure there are not 269 // too many stores in the resulting unrolled loop. 270 unsigned const Max = (NumStores ? (12 / NumStores) : UINT_MAX); 271 272 if (HasCall) { 273 // Only allow full unrolling if loop has any calls. 274 UP.FullUnrollMaxCount = Max; 275 UP.MaxCount = 1; 276 return; 277 } 278 279 UP.MaxCount = Max; 280 if (UP.MaxCount <= 1) 281 return; 282 283 // Allow partial and runtime trip count unrolling. 284 UP.Partial = UP.Runtime = true; 285 286 UP.PartialThreshold = 75; 287 UP.DefaultUnrollRuntimeCount = 4; 288 289 // Allow expensive instructions in the pre-header of the loop. 290 UP.AllowExpensiveTripCount = true; 291 292 UP.Force = true; 293 } 294 295 296 bool SystemZTTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1, 297 TargetTransformInfo::LSRCost &C2) { 298 // SystemZ specific: check instruction count (first), and don't care about 299 // ImmCost, since offsets are checked explicitly. 300 return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost, 301 C1.NumIVMuls, C1.NumBaseAdds, 302 C1.ScaleCost, C1.SetupCost) < 303 std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost, 304 C2.NumIVMuls, C2.NumBaseAdds, 305 C2.ScaleCost, C2.SetupCost); 306 } 307 308 unsigned SystemZTTIImpl::getNumberOfRegisters(bool Vector) { 309 if (!Vector) 310 // Discount the stack pointer. Also leave out %r0, since it can't 311 // be used in an address. 312 return 14; 313 if (ST->hasVector()) 314 return 32; 315 return 0; 316 } 317 318 unsigned SystemZTTIImpl::getRegisterBitWidth(bool Vector) const { 319 if (!Vector) 320 return 64; 321 if (ST->hasVector()) 322 return 128; 323 return 0; 324 } 325 326 int SystemZTTIImpl::getArithmeticInstrCost( 327 unsigned Opcode, Type *Ty, 328 TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info, 329 TTI::OperandValueProperties Opd1PropInfo, 330 TTI::OperandValueProperties Opd2PropInfo, 331 ArrayRef<const Value *> Args) { 332 333 // TODO: return a good value for BB-VECTORIZER that includes the 334 // immediate loads, which we do not want to count for the loop 335 // vectorizer, since they are hopefully hoisted out of the loop. This 336 // would require a new parameter 'InLoop', but not sure if constant 337 // args are common enough to motivate this. 338 339 unsigned ScalarBits = Ty->getScalarSizeInBits(); 340 341 // Div with a constant which is a power of 2 will be converted by 342 // DAGCombiner to use shifts. With vector shift-element instructions, a 343 // vector sdiv costs about as much as a scalar one. 344 const unsigned SDivCostEstimate = 4; 345 bool SDivPow2 = false; 346 bool UDivPow2 = false; 347 if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv) && 348 Args.size() == 2) { 349 const ConstantInt *CI = nullptr; 350 if (const Constant *C = dyn_cast<Constant>(Args[1])) { 351 if (C->getType()->isVectorTy()) 352 CI = dyn_cast_or_null<const ConstantInt>(C->getSplatValue()); 353 else 354 CI = dyn_cast<const ConstantInt>(C); 355 } 356 if (CI != nullptr && 357 (CI->getValue().isPowerOf2() || (-CI->getValue()).isPowerOf2())) { 358 if (Opcode == Instruction::SDiv) 359 SDivPow2 = true; 360 else 361 UDivPow2 = true; 362 } 363 } 364 365 if (Ty->isVectorTy()) { 366 assert (ST->hasVector() && "getArithmeticInstrCost() called with vector type."); 367 unsigned VF = Ty->getVectorNumElements(); 368 unsigned NumVectors = getNumberOfParts(Ty); 369 370 // These vector operations are custom handled, but are still supported 371 // with one instruction per vector, regardless of element size. 372 if (Opcode == Instruction::Shl || Opcode == Instruction::LShr || 373 Opcode == Instruction::AShr || UDivPow2) { 374 return NumVectors; 375 } 376 377 if (SDivPow2) 378 return (NumVectors * SDivCostEstimate); 379 380 // These FP operations are supported with a single vector instruction for 381 // double (base implementation assumes float generally costs 2). For 382 // FP128, the scalar cost is 1, and there is no overhead since the values 383 // are already in scalar registers. 384 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub || 385 Opcode == Instruction::FMul || Opcode == Instruction::FDiv) { 386 switch (ScalarBits) { 387 case 32: { 388 // The vector enhancements facility 1 provides v4f32 instructions. 389 if (ST->hasVectorEnhancements1()) 390 return NumVectors; 391 // Return the cost of multiple scalar invocation plus the cost of 392 // inserting and extracting the values. 393 unsigned ScalarCost = getArithmeticInstrCost(Opcode, Ty->getScalarType()); 394 unsigned Cost = (VF * ScalarCost) + getScalarizationOverhead(Ty, Args); 395 // FIXME: VF 2 for these FP operations are currently just as 396 // expensive as for VF 4. 397 if (VF == 2) 398 Cost *= 2; 399 return Cost; 400 } 401 case 64: 402 case 128: 403 return NumVectors; 404 default: 405 break; 406 } 407 } 408 409 // There is no native support for FRem. 410 if (Opcode == Instruction::FRem) { 411 unsigned Cost = (VF * LIBCALL_COST) + getScalarizationOverhead(Ty, Args); 412 // FIXME: VF 2 for float is currently just as expensive as for VF 4. 413 if (VF == 2 && ScalarBits == 32) 414 Cost *= 2; 415 return Cost; 416 } 417 } 418 else { // Scalar: 419 // These FP operations are supported with a dedicated instruction for 420 // float, double and fp128 (base implementation assumes float generally 421 // costs 2). 422 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub || 423 Opcode == Instruction::FMul || Opcode == Instruction::FDiv) 424 return 1; 425 426 // There is no native support for FRem. 427 if (Opcode == Instruction::FRem) 428 return LIBCALL_COST; 429 430 if (Opcode == Instruction::LShr || Opcode == Instruction::AShr) 431 return (ScalarBits >= 32 ? 1 : 2 /*ext*/); 432 433 // Or requires one instruction, although it has custom handling for i64. 434 if (Opcode == Instruction::Or) 435 return 1; 436 437 if (Opcode == Instruction::Xor && ScalarBits == 1) 438 // 2 * ipm sequences ; xor ; shift ; compare 439 return 7; 440 441 if (UDivPow2) 442 return 1; 443 if (SDivPow2) 444 return SDivCostEstimate; 445 446 // An extra extension for narrow types is needed. 447 if ((Opcode == Instruction::SDiv || Opcode == Instruction::SRem)) 448 // sext of op(s) for narrow types 449 return (ScalarBits < 32 ? 4 : (ScalarBits == 32 ? 2 : 1)); 450 451 if (Opcode == Instruction::UDiv || Opcode == Instruction::URem) 452 // Clearing of low 64 bit reg + sext of op(s) for narrow types + dl[g]r 453 return (ScalarBits < 32 ? 4 : 2); 454 } 455 456 // Fallback to the default implementation. 457 return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info, 458 Opd1PropInfo, Opd2PropInfo, Args); 459 } 460 461 462 int SystemZTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, 463 Type *SubTp) { 464 assert (Tp->isVectorTy()); 465 assert (ST->hasVector() && "getShuffleCost() called."); 466 unsigned NumVectors = getNumberOfParts(Tp); 467 468 // TODO: Since fp32 is expanded, the shuffle cost should always be 0. 469 470 // FP128 values are always in scalar registers, so there is no work 471 // involved with a shuffle, except for broadcast. In that case register 472 // moves are done with a single instruction per element. 473 if (Tp->getScalarType()->isFP128Ty()) 474 return (Kind == TargetTransformInfo::SK_Broadcast ? NumVectors - 1 : 0); 475 476 switch (Kind) { 477 case TargetTransformInfo::SK_ExtractSubvector: 478 // ExtractSubvector Index indicates start offset. 479 480 // Extracting a subvector from first index is a noop. 481 return (Index == 0 ? 0 : NumVectors); 482 483 case TargetTransformInfo::SK_Broadcast: 484 // Loop vectorizer calls here to figure out the extra cost of 485 // broadcasting a loaded value to all elements of a vector. Since vlrep 486 // loads and replicates with a single instruction, adjust the returned 487 // value. 488 return NumVectors - 1; 489 490 default: 491 492 // SystemZ supports single instruction permutation / replication. 493 return NumVectors; 494 } 495 496 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); 497 } 498 499 // Return the log2 difference of the element sizes of the two vector types. 500 static unsigned getElSizeLog2Diff(Type *Ty0, Type *Ty1) { 501 unsigned Bits0 = Ty0->getScalarSizeInBits(); 502 unsigned Bits1 = Ty1->getScalarSizeInBits(); 503 504 if (Bits1 > Bits0) 505 return (Log2_32(Bits1) - Log2_32(Bits0)); 506 507 return (Log2_32(Bits0) - Log2_32(Bits1)); 508 } 509 510 // Return the number of instructions needed to truncate SrcTy to DstTy. 511 unsigned SystemZTTIImpl:: 512 getVectorTruncCost(Type *SrcTy, Type *DstTy) { 513 assert (SrcTy->isVectorTy() && DstTy->isVectorTy()); 514 assert (SrcTy->getPrimitiveSizeInBits() > DstTy->getPrimitiveSizeInBits() && 515 "Packing must reduce size of vector type."); 516 assert (SrcTy->getVectorNumElements() == DstTy->getVectorNumElements() && 517 "Packing should not change number of elements."); 518 519 // TODO: Since fp32 is expanded, the extract cost should always be 0. 520 521 unsigned NumParts = getNumberOfParts(SrcTy); 522 if (NumParts <= 2) 523 // Up to 2 vector registers can be truncated efficiently with pack or 524 // permute. The latter requires an immediate mask to be loaded, which 525 // typically gets hoisted out of a loop. TODO: return a good value for 526 // BB-VECTORIZER that includes the immediate loads, which we do not want 527 // to count for the loop vectorizer. 528 return 1; 529 530 unsigned Cost = 0; 531 unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy); 532 unsigned VF = SrcTy->getVectorNumElements(); 533 for (unsigned P = 0; P < Log2Diff; ++P) { 534 if (NumParts > 1) 535 NumParts /= 2; 536 Cost += NumParts; 537 } 538 539 // Currently, a general mix of permutes and pack instructions is output by 540 // isel, which follow the cost computation above except for this case which 541 // is one instruction less: 542 if (VF == 8 && SrcTy->getScalarSizeInBits() == 64 && 543 DstTy->getScalarSizeInBits() == 8) 544 Cost--; 545 546 return Cost; 547 } 548 549 // Return the cost of converting a vector bitmask produced by a compare 550 // (SrcTy), to the type of the select or extend instruction (DstTy). 551 unsigned SystemZTTIImpl:: 552 getVectorBitmaskConversionCost(Type *SrcTy, Type *DstTy) { 553 assert (SrcTy->isVectorTy() && DstTy->isVectorTy() && 554 "Should only be called with vector types."); 555 556 unsigned PackCost = 0; 557 unsigned SrcScalarBits = SrcTy->getScalarSizeInBits(); 558 unsigned DstScalarBits = DstTy->getScalarSizeInBits(); 559 unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy); 560 if (SrcScalarBits > DstScalarBits) 561 // The bitmask will be truncated. 562 PackCost = getVectorTruncCost(SrcTy, DstTy); 563 else if (SrcScalarBits < DstScalarBits) { 564 unsigned DstNumParts = getNumberOfParts(DstTy); 565 // Each vector select needs its part of the bitmask unpacked. 566 PackCost = Log2Diff * DstNumParts; 567 // Extra cost for moving part of mask before unpacking. 568 PackCost += DstNumParts - 1; 569 } 570 571 return PackCost; 572 } 573 574 // Return the type of the compared operands. This is needed to compute the 575 // cost for a Select / ZExt or SExt instruction. 576 static Type *getCmpOpsType(const Instruction *I, unsigned VF = 1) { 577 Type *OpTy = nullptr; 578 if (CmpInst *CI = dyn_cast<CmpInst>(I->getOperand(0))) 579 OpTy = CI->getOperand(0)->getType(); 580 else if (Instruction *LogicI = dyn_cast<Instruction>(I->getOperand(0))) 581 if (LogicI->getNumOperands() == 2) 582 if (CmpInst *CI0 = dyn_cast<CmpInst>(LogicI->getOperand(0))) 583 if (isa<CmpInst>(LogicI->getOperand(1))) 584 OpTy = CI0->getOperand(0)->getType(); 585 586 if (OpTy != nullptr) { 587 if (VF == 1) { 588 assert (!OpTy->isVectorTy() && "Expected scalar type"); 589 return OpTy; 590 } 591 // Return the potentially vectorized type based on 'I' and 'VF'. 'I' may 592 // be either scalar or already vectorized with a same or lesser VF. 593 Type *ElTy = OpTy->getScalarType(); 594 return VectorType::get(ElTy, VF); 595 } 596 597 return nullptr; 598 } 599 600 int SystemZTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, 601 const Instruction *I) { 602 unsigned DstScalarBits = Dst->getScalarSizeInBits(); 603 unsigned SrcScalarBits = Src->getScalarSizeInBits(); 604 605 if (Src->isVectorTy()) { 606 assert (ST->hasVector() && "getCastInstrCost() called with vector type."); 607 assert (Dst->isVectorTy()); 608 unsigned VF = Src->getVectorNumElements(); 609 unsigned NumDstVectors = getNumberOfParts(Dst); 610 unsigned NumSrcVectors = getNumberOfParts(Src); 611 612 if (Opcode == Instruction::Trunc) { 613 if (Src->getScalarSizeInBits() == Dst->getScalarSizeInBits()) 614 return 0; // Check for NOOP conversions. 615 return getVectorTruncCost(Src, Dst); 616 } 617 618 if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 619 if (SrcScalarBits >= 8) { 620 // ZExt/SExt will be handled with one unpack per doubling of width. 621 unsigned NumUnpacks = getElSizeLog2Diff(Src, Dst); 622 623 // For types that spans multiple vector registers, some additional 624 // instructions are used to setup the unpacking. 625 unsigned NumSrcVectorOps = 626 (NumUnpacks > 1 ? (NumDstVectors - NumSrcVectors) 627 : (NumDstVectors / 2)); 628 629 return (NumUnpacks * NumDstVectors) + NumSrcVectorOps; 630 } 631 else if (SrcScalarBits == 1) { 632 // This should be extension of a compare i1 result. 633 // If we know what the widths of the compared operands, get the 634 // cost of converting it to Dst. Otherwise assume same widths. 635 unsigned Cost = 0; 636 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr); 637 if (CmpOpTy != nullptr) 638 Cost = getVectorBitmaskConversionCost(CmpOpTy, Dst); 639 if (Opcode == Instruction::ZExt) 640 // One 'vn' per dst vector with an immediate mask. 641 Cost += NumDstVectors; 642 return Cost; 643 } 644 } 645 646 if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP || 647 Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI) { 648 // TODO: Fix base implementation which could simplify things a bit here 649 // (seems to miss on differentiating on scalar/vector types). 650 651 // Only 64 bit vector conversions are natively supported. 652 if (SrcScalarBits == 64 && DstScalarBits == 64) 653 return NumDstVectors; 654 655 // Return the cost of multiple scalar invocation plus the cost of 656 // inserting and extracting the values. Base implementation does not 657 // realize float->int gets scalarized. 658 unsigned ScalarCost = getCastInstrCost(Opcode, Dst->getScalarType(), 659 Src->getScalarType()); 660 unsigned TotCost = VF * ScalarCost; 661 bool NeedsInserts = true, NeedsExtracts = true; 662 // FP128 registers do not get inserted or extracted. 663 if (DstScalarBits == 128 && 664 (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP)) 665 NeedsInserts = false; 666 if (SrcScalarBits == 128 && 667 (Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI)) 668 NeedsExtracts = false; 669 670 TotCost += getScalarizationOverhead(Dst, NeedsInserts, NeedsExtracts); 671 672 // FIXME: VF 2 for float<->i32 is currently just as expensive as for VF 4. 673 if (VF == 2 && SrcScalarBits == 32 && DstScalarBits == 32) 674 TotCost *= 2; 675 676 return TotCost; 677 } 678 679 if (Opcode == Instruction::FPTrunc) { 680 if (SrcScalarBits == 128) // fp128 -> double/float + inserts of elements. 681 return VF /*ldxbr/lexbr*/ + getScalarizationOverhead(Dst, true, false); 682 else // double -> float 683 return VF / 2 /*vledb*/ + std::max(1U, VF / 4 /*vperm*/); 684 } 685 686 if (Opcode == Instruction::FPExt) { 687 if (SrcScalarBits == 32 && DstScalarBits == 64) { 688 // float -> double is very rare and currently unoptimized. Instead of 689 // using vldeb, which can do two at a time, all conversions are 690 // scalarized. 691 return VF * 2; 692 } 693 // -> fp128. VF * lxdb/lxeb + extraction of elements. 694 return VF + getScalarizationOverhead(Src, false, true); 695 } 696 } 697 else { // Scalar 698 assert (!Dst->isVectorTy()); 699 700 if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP) 701 return (SrcScalarBits >= 32 ? 1 : 2 /*i8/i16 extend*/); 702 703 if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) && 704 Src->isIntegerTy(1)) { 705 // This should be extension of a compare i1 result, which is done with 706 // ipm and a varying sequence of instructions. 707 unsigned Cost = 0; 708 if (Opcode == Instruction::SExt) 709 Cost = (DstScalarBits < 64 ? 3 : 4); 710 if (Opcode == Instruction::ZExt) 711 Cost = 3; 712 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I) : nullptr); 713 if (CmpOpTy != nullptr && CmpOpTy->isFloatingPointTy()) 714 // If operands of an fp-type was compared, this costs +1. 715 Cost++; 716 717 return Cost; 718 } 719 } 720 721 return BaseT::getCastInstrCost(Opcode, Dst, Src, I); 722 } 723 724 int SystemZTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, 725 const Instruction *I) { 726 if (ValTy->isVectorTy()) { 727 assert (ST->hasVector() && "getCmpSelInstrCost() called with vector type."); 728 unsigned VF = ValTy->getVectorNumElements(); 729 730 // Called with a compare instruction. 731 if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) { 732 unsigned PredicateExtraCost = 0; 733 if (I != nullptr) { 734 // Some predicates cost one or two extra instructions. 735 switch (dyn_cast<CmpInst>(I)->getPredicate()) { 736 case CmpInst::Predicate::ICMP_NE: 737 case CmpInst::Predicate::ICMP_UGE: 738 case CmpInst::Predicate::ICMP_ULE: 739 case CmpInst::Predicate::ICMP_SGE: 740 case CmpInst::Predicate::ICMP_SLE: 741 PredicateExtraCost = 1; 742 break; 743 case CmpInst::Predicate::FCMP_ONE: 744 case CmpInst::Predicate::FCMP_ORD: 745 case CmpInst::Predicate::FCMP_UEQ: 746 case CmpInst::Predicate::FCMP_UNO: 747 PredicateExtraCost = 2; 748 break; 749 default: 750 break; 751 } 752 } 753 754 // Float is handled with 2*vmr[lh]f + 2*vldeb + vfchdb for each pair of 755 // floats. FIXME: <2 x float> generates same code as <4 x float>. 756 unsigned CmpCostPerVector = (ValTy->getScalarType()->isFloatTy() ? 10 : 1); 757 unsigned NumVecs_cmp = getNumberOfParts(ValTy); 758 759 unsigned Cost = (NumVecs_cmp * (CmpCostPerVector + PredicateExtraCost)); 760 return Cost; 761 } 762 else { // Called with a select instruction. 763 assert (Opcode == Instruction::Select); 764 765 // We can figure out the extra cost of packing / unpacking if the 766 // instruction was passed and the compare instruction is found. 767 unsigned PackCost = 0; 768 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr); 769 if (CmpOpTy != nullptr) 770 PackCost = 771 getVectorBitmaskConversionCost(CmpOpTy, ValTy); 772 773 return getNumberOfParts(ValTy) /*vsel*/ + PackCost; 774 } 775 } 776 else { // Scalar 777 switch (Opcode) { 778 case Instruction::ICmp: { 779 unsigned Cost = 1; 780 if (ValTy->isIntegerTy() && ValTy->getScalarSizeInBits() <= 16) 781 Cost += 2; // extend both operands 782 return Cost; 783 } 784 case Instruction::Select: 785 if (ValTy->isFloatingPointTy()) 786 return 4; // No load on condition for FP, so this costs a conditional jump. 787 return 1; // Load On Condition. 788 } 789 } 790 791 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, nullptr); 792 } 793 794 int SystemZTTIImpl:: 795 getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) { 796 // vlvgp will insert two grs into a vector register, so only count half the 797 // number of instructions. 798 if (Opcode == Instruction::InsertElement && Val->isIntOrIntVectorTy(64)) 799 return ((Index % 2 == 0) ? 1 : 0); 800 801 if (Opcode == Instruction::ExtractElement) { 802 int Cost = ((Val->getScalarSizeInBits() == 1) ? 2 /*+test-under-mask*/ : 1); 803 804 // Give a slight penalty for moving out of vector pipeline to FXU unit. 805 if (Index == 0 && Val->isIntOrIntVectorTy()) 806 Cost += 1; 807 808 return Cost; 809 } 810 811 return BaseT::getVectorInstrCost(Opcode, Val, Index); 812 } 813 814 int SystemZTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, 815 unsigned Alignment, unsigned AddressSpace, 816 const Instruction *I) { 817 assert(!Src->isVoidTy() && "Invalid type"); 818 819 if (!Src->isVectorTy() && Opcode == Instruction::Load && 820 I != nullptr && I->hasOneUse()) { 821 const Instruction *UserI = cast<Instruction>(*I->user_begin()); 822 unsigned Bits = Src->getScalarSizeInBits(); 823 bool FoldsLoad = false; 824 switch (UserI->getOpcode()) { 825 case Instruction::ICmp: 826 case Instruction::Add: 827 case Instruction::Sub: 828 case Instruction::Mul: 829 case Instruction::SDiv: 830 case Instruction::UDiv: 831 case Instruction::And: 832 case Instruction::Or: 833 case Instruction::Xor: 834 // This also makes sense for float operations, but disabled for now due 835 // to regressions. 836 // case Instruction::FCmp: 837 // case Instruction::FAdd: 838 // case Instruction::FSub: 839 // case Instruction::FMul: 840 // case Instruction::FDiv: 841 FoldsLoad = (Bits == 32 || Bits == 64); 842 break; 843 } 844 845 if (FoldsLoad) { 846 assert (UserI->getNumOperands() == 2 && 847 "Expected to only handle binops."); 848 849 // UserI can't fold two loads, so in that case return 0 cost only 850 // half of the time. 851 for (unsigned i = 0; i < 2; ++i) { 852 if (UserI->getOperand(i) == I) 853 continue; 854 if (LoadInst *LI = dyn_cast<LoadInst>(UserI->getOperand(i))) { 855 if (LI->hasOneUse()) 856 return i == 0; 857 } 858 } 859 860 return 0; 861 } 862 } 863 864 unsigned NumOps = getNumberOfParts(Src); 865 866 if (Src->getScalarSizeInBits() == 128) 867 // 128 bit scalars are held in a pair of two 64 bit registers. 868 NumOps *= 2; 869 870 return NumOps; 871 } 872 873 int SystemZTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, 874 unsigned Factor, 875 ArrayRef<unsigned> Indices, 876 unsigned Alignment, 877 unsigned AddressSpace) { 878 assert(isa<VectorType>(VecTy) && 879 "Expect a vector type for interleaved memory op"); 880 881 unsigned WideBits = (VecTy->isPtrOrPtrVectorTy() ? 882 (64U * VecTy->getVectorNumElements()) : VecTy->getPrimitiveSizeInBits()); 883 assert (WideBits > 0 && "Could not compute size of vector"); 884 int NumWideParts = 885 ((WideBits % 128U) ? ((WideBits / 128U) + 1) : (WideBits / 128U)); 886 887 // How many source vectors are handled to produce a vectorized operand? 888 int NumElsPerVector = (VecTy->getVectorNumElements() / NumWideParts); 889 int NumSrcParts = 890 ((NumWideParts > NumElsPerVector) ? NumElsPerVector : NumWideParts); 891 892 // A Load group may have gaps. 893 unsigned NumOperands = 894 ((Opcode == Instruction::Load) ? Indices.size() : Factor); 895 896 // Each needed permute takes two vectors as input. 897 if (NumSrcParts > 1) 898 NumSrcParts--; 899 int NumPermutes = NumSrcParts * NumOperands; 900 901 // Cost of load/store operations and the permutations needed. 902 return NumWideParts + NumPermutes; 903 } 904