1 //===-- SystemZTargetMachine.cpp - Define TargetMachine for SystemZ -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "SystemZTargetMachine.h" 11 #include "llvm/CodeGen/Passes.h" 12 #include "llvm/Support/TargetRegistry.h" 13 #include "llvm/Transforms/Scalar.h" 14 15 using namespace llvm; 16 17 extern "C" void LLVMInitializeSystemZTarget() { 18 // Register the target. 19 RegisterTargetMachine<SystemZTargetMachine> X(TheSystemZTarget); 20 } 21 22 SystemZTargetMachine::SystemZTargetMachine(const Target &T, StringRef TT, 23 StringRef CPU, StringRef FS, 24 const TargetOptions &Options, 25 Reloc::Model RM, CodeModel::Model CM, 26 CodeGenOpt::Level OL) 27 : LLVMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL), 28 Subtarget(TT, CPU, FS, *this) { 29 initAsmInfo(); 30 } 31 32 namespace { 33 /// SystemZ Code Generator Pass Configuration Options. 34 class SystemZPassConfig : public TargetPassConfig { 35 public: 36 SystemZPassConfig(SystemZTargetMachine *TM, PassManagerBase &PM) 37 : TargetPassConfig(TM, PM) {} 38 39 SystemZTargetMachine &getSystemZTargetMachine() const { 40 return getTM<SystemZTargetMachine>(); 41 } 42 43 void addIRPasses() override; 44 bool addInstSelector() override; 45 bool addPreSched2() override; 46 bool addPreEmitPass() override; 47 }; 48 } // end anonymous namespace 49 50 void SystemZPassConfig::addIRPasses() { 51 TargetPassConfig::addIRPasses(); 52 } 53 54 bool SystemZPassConfig::addInstSelector() { 55 addPass(createSystemZISelDag(getSystemZTargetMachine(), getOptLevel())); 56 return false; 57 } 58 59 bool SystemZPassConfig::addPreSched2() { 60 if (getOptLevel() != CodeGenOpt::None && 61 getSystemZTargetMachine().getSubtargetImpl()->hasLoadStoreOnCond()) 62 addPass(&IfConverterID); 63 return true; 64 } 65 66 bool SystemZPassConfig::addPreEmitPass() { 67 // We eliminate comparisons here rather than earlier because some 68 // transformations can change the set of available CC values and we 69 // generally want those transformations to have priority. This is 70 // especially true in the commonest case where the result of the comparison 71 // is used by a single in-range branch instruction, since we will then 72 // be able to fuse the compare and the branch instead. 73 // 74 // For example, two-address NILF can sometimes be converted into 75 // three-address RISBLG. NILF produces a CC value that indicates whether 76 // the low word is zero, but RISBLG does not modify CC at all. On the 77 // other hand, 64-bit ANDs like NILL can sometimes be converted to RISBG. 78 // The CC value produced by NILL isn't useful for our purposes, but the 79 // value produced by RISBG can be used for any comparison with zero 80 // (not just equality). So there are some transformations that lose 81 // CC values (while still being worthwhile) and others that happen to make 82 // the CC result more useful than it was originally. 83 // 84 // Another reason is that we only want to use BRANCH ON COUNT in cases 85 // where we know that the count register is not going to be spilled. 86 // 87 // Doing it so late makes it more likely that a register will be reused 88 // between the comparison and the branch, but it isn't clear whether 89 // preventing that would be a win or not. 90 if (getOptLevel() != CodeGenOpt::None) 91 addPass(createSystemZElimComparePass(getSystemZTargetMachine())); 92 if (getOptLevel() != CodeGenOpt::None) 93 addPass(createSystemZShortenInstPass(getSystemZTargetMachine())); 94 addPass(createSystemZLongBranchPass(getSystemZTargetMachine())); 95 return true; 96 } 97 98 TargetPassConfig *SystemZTargetMachine::createPassConfig(PassManagerBase &PM) { 99 return new SystemZPassConfig(this, PM); 100 } 101