1 //===-- SystemZTargetMachine.cpp - Define TargetMachine for SystemZ -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "SystemZTargetMachine.h" 11 #include "SystemZTargetTransformInfo.h" 12 #include "llvm/CodeGen/Passes.h" 13 #include "llvm/Support/TargetRegistry.h" 14 #include "llvm/Transforms/Scalar.h" 15 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 16 17 using namespace llvm; 18 19 extern "C" void LLVMInitializeSystemZTarget() { 20 // Register the target. 21 RegisterTargetMachine<SystemZTargetMachine> X(TheSystemZTarget); 22 } 23 24 // Determine whether we use the vector ABI. 25 static bool UsesVectorABI(StringRef CPU, StringRef FS) { 26 // We use the vector ABI whenever the vector facility is avaiable. 27 // This is the case by default if CPU is z13 or later, and can be 28 // overridden via "[+-]vector" feature string elements. 29 bool VectorABI = true; 30 if (CPU.empty() || CPU == "generic" || 31 CPU == "z10" || CPU == "z196" || CPU == "zEC12") 32 VectorABI = false; 33 34 SmallVector<StringRef, 3> Features; 35 FS.split(Features, ",", -1, false /* KeepEmpty */); 36 for (auto &Feature : Features) { 37 if (Feature == "vector" || Feature == "+vector") 38 VectorABI = true; 39 if (Feature == "-vector") 40 VectorABI = false; 41 } 42 43 return VectorABI; 44 } 45 46 static std::string computeDataLayout(StringRef TT, StringRef CPU, 47 StringRef FS) { 48 const Triple Triple(TT); 49 bool VectorABI = UsesVectorABI(CPU, FS); 50 std::string Ret = ""; 51 52 // Big endian. 53 Ret += "E"; 54 55 // Data mangling. 56 Ret += DataLayout::getManglingComponent(Triple); 57 58 // Make sure that global data has at least 16 bits of alignment by 59 // default, so that we can refer to it using LARL. We don't have any 60 // special requirements for stack variables though. 61 Ret += "-i1:8:16-i8:8:16"; 62 63 // 64-bit integers are naturally aligned. 64 Ret += "-i64:64"; 65 66 // 128-bit floats are aligned only to 64 bits. 67 Ret += "-f128:64"; 68 69 // When using the vector ABI, 128-bit vectors are also aligned to 64 bits. 70 if (VectorABI) 71 Ret += "-v128:64"; 72 73 // We prefer 16 bits of aligned for all globals; see above. 74 Ret += "-a:8:16"; 75 76 // Integer registers are 32 or 64 bits. 77 Ret += "-n32:64"; 78 79 return Ret; 80 } 81 82 SystemZTargetMachine::SystemZTargetMachine(const Target &T, StringRef TT, 83 StringRef CPU, StringRef FS, 84 const TargetOptions &Options, 85 Reloc::Model RM, CodeModel::Model CM, 86 CodeGenOpt::Level OL) 87 : LLVMTargetMachine(T, computeDataLayout(TT, CPU, FS), 88 TT, CPU, FS, Options, RM, CM, OL), 89 TLOF(make_unique<TargetLoweringObjectFileELF>()), 90 Subtarget(TT, CPU, FS, *this) { 91 initAsmInfo(); 92 } 93 94 SystemZTargetMachine::~SystemZTargetMachine() {} 95 96 namespace { 97 /// SystemZ Code Generator Pass Configuration Options. 98 class SystemZPassConfig : public TargetPassConfig { 99 public: 100 SystemZPassConfig(SystemZTargetMachine *TM, PassManagerBase &PM) 101 : TargetPassConfig(TM, PM) {} 102 103 SystemZTargetMachine &getSystemZTargetMachine() const { 104 return getTM<SystemZTargetMachine>(); 105 } 106 107 void addIRPasses() override; 108 bool addInstSelector() override; 109 void addPreSched2() override; 110 void addPreEmitPass() override; 111 }; 112 } // end anonymous namespace 113 114 void SystemZPassConfig::addIRPasses() { 115 TargetPassConfig::addIRPasses(); 116 } 117 118 bool SystemZPassConfig::addInstSelector() { 119 addPass(createSystemZISelDag(getSystemZTargetMachine(), getOptLevel())); 120 121 if (getOptLevel() != CodeGenOpt::None) 122 addPass(createSystemZLDCleanupPass(getSystemZTargetMachine())); 123 124 return false; 125 } 126 127 void SystemZPassConfig::addPreSched2() { 128 if (getOptLevel() != CodeGenOpt::None && 129 getSystemZTargetMachine().getSubtargetImpl()->hasLoadStoreOnCond()) 130 addPass(&IfConverterID); 131 } 132 133 void SystemZPassConfig::addPreEmitPass() { 134 // We eliminate comparisons here rather than earlier because some 135 // transformations can change the set of available CC values and we 136 // generally want those transformations to have priority. This is 137 // especially true in the commonest case where the result of the comparison 138 // is used by a single in-range branch instruction, since we will then 139 // be able to fuse the compare and the branch instead. 140 // 141 // For example, two-address NILF can sometimes be converted into 142 // three-address RISBLG. NILF produces a CC value that indicates whether 143 // the low word is zero, but RISBLG does not modify CC at all. On the 144 // other hand, 64-bit ANDs like NILL can sometimes be converted to RISBG. 145 // The CC value produced by NILL isn't useful for our purposes, but the 146 // value produced by RISBG can be used for any comparison with zero 147 // (not just equality). So there are some transformations that lose 148 // CC values (while still being worthwhile) and others that happen to make 149 // the CC result more useful than it was originally. 150 // 151 // Another reason is that we only want to use BRANCH ON COUNT in cases 152 // where we know that the count register is not going to be spilled. 153 // 154 // Doing it so late makes it more likely that a register will be reused 155 // between the comparison and the branch, but it isn't clear whether 156 // preventing that would be a win or not. 157 if (getOptLevel() != CodeGenOpt::None) 158 addPass(createSystemZElimComparePass(getSystemZTargetMachine()), false); 159 if (getOptLevel() != CodeGenOpt::None) 160 addPass(createSystemZShortenInstPass(getSystemZTargetMachine()), false); 161 addPass(createSystemZLongBranchPass(getSystemZTargetMachine())); 162 } 163 164 TargetPassConfig *SystemZTargetMachine::createPassConfig(PassManagerBase &PM) { 165 return new SystemZPassConfig(this, PM); 166 } 167 168 TargetIRAnalysis SystemZTargetMachine::getTargetIRAnalysis() { 169 return TargetIRAnalysis([this](Function &F) { 170 return TargetTransformInfo(SystemZTTIImpl(this, F)); 171 }); 172 } 173