1 //===-- SystemZTargetMachine.cpp - Define TargetMachine for SystemZ -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "SystemZTargetMachine.h"
10 #include "MCTargetDesc/SystemZMCTargetDesc.h"
11 #include "SystemZ.h"
12 #include "SystemZMachineScheduler.h"
13 #include "SystemZTargetTransformInfo.h"
14 #include "llvm/ADT/Optional.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/Analysis/TargetTransformInfo.h"
19 #include "llvm/CodeGen/Passes.h"
20 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
21 #include "llvm/CodeGen/TargetPassConfig.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/Support/CodeGen.h"
24 #include "llvm/Support/TargetRegistry.h"
25 #include "llvm/Target/TargetLoweringObjectFile.h"
26 #include "llvm/Transforms/Scalar.h"
27 #include <string>
28 
29 using namespace llvm;
30 
31 extern "C" void LLVMInitializeSystemZTarget() {
32   // Register the target.
33   RegisterTargetMachine<SystemZTargetMachine> X(getTheSystemZTarget());
34 }
35 
36 // Determine whether we use the vector ABI.
37 static bool UsesVectorABI(StringRef CPU, StringRef FS) {
38   // We use the vector ABI whenever the vector facility is avaiable.
39   // This is the case by default if CPU is z13 or later, and can be
40   // overridden via "[+-]vector" feature string elements.
41   bool VectorABI = true;
42   if (CPU.empty() || CPU == "generic" ||
43       CPU == "z10" || CPU == "z196" || CPU == "zEC12")
44     VectorABI = false;
45 
46   SmallVector<StringRef, 3> Features;
47   FS.split(Features, ',', -1, false /* KeepEmpty */);
48   for (auto &Feature : Features) {
49     if (Feature == "vector" || Feature == "+vector")
50       VectorABI = true;
51     if (Feature == "-vector")
52       VectorABI = false;
53   }
54 
55   return VectorABI;
56 }
57 
58 static std::string computeDataLayout(const Triple &TT, StringRef CPU,
59                                      StringRef FS) {
60   bool VectorABI = UsesVectorABI(CPU, FS);
61   std::string Ret;
62 
63   // Big endian.
64   Ret += "E";
65 
66   // Data mangling.
67   Ret += DataLayout::getManglingComponent(TT);
68 
69   // Make sure that global data has at least 16 bits of alignment by
70   // default, so that we can refer to it using LARL.  We don't have any
71   // special requirements for stack variables though.
72   Ret += "-i1:8:16-i8:8:16";
73 
74   // 64-bit integers are naturally aligned.
75   Ret += "-i64:64";
76 
77   // 128-bit floats are aligned only to 64 bits.
78   Ret += "-f128:64";
79 
80   // When using the vector ABI, 128-bit vectors are also aligned to 64 bits.
81   if (VectorABI)
82     Ret += "-v128:64";
83 
84   // We prefer 16 bits of aligned for all globals; see above.
85   Ret += "-a:8:16";
86 
87   // Integer registers are 32 or 64 bits.
88   Ret += "-n32:64";
89 
90   return Ret;
91 }
92 
93 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) {
94   // Static code is suitable for use in a dynamic executable; there is no
95   // separate DynamicNoPIC model.
96   if (!RM.hasValue() || *RM == Reloc::DynamicNoPIC)
97     return Reloc::Static;
98   return *RM;
99 }
100 
101 // For SystemZ we define the models as follows:
102 //
103 // Small:  BRASL can call any function and will use a stub if necessary.
104 //         Locally-binding symbols will always be in range of LARL.
105 //
106 // Medium: BRASL can call any function and will use a stub if necessary.
107 //         GOT slots and locally-defined text will always be in range
108 //         of LARL, but other symbols might not be.
109 //
110 // Large:  Equivalent to Medium for now.
111 //
112 // Kernel: Equivalent to Medium for now.
113 //
114 // This means that any PIC module smaller than 4GB meets the
115 // requirements of Small, so Small seems like the best default there.
116 //
117 // All symbols bind locally in a non-PIC module, so the choice is less
118 // obvious.  There are two cases:
119 //
120 // - When creating an executable, PLTs and copy relocations allow
121 //   us to treat external symbols as part of the executable.
122 //   Any executable smaller than 4GB meets the requirements of Small,
123 //   so that seems like the best default.
124 //
125 // - When creating JIT code, stubs will be in range of BRASL if the
126 //   image is less than 4GB in size.  GOT entries will likewise be
127 //   in range of LARL.  However, the JIT environment has no equivalent
128 //   of copy relocs, so locally-binding data symbols might not be in
129 //   the range of LARL.  We need the Medium model in that case.
130 static CodeModel::Model
131 getEffectiveSystemZCodeModel(Optional<CodeModel::Model> CM, Reloc::Model RM,
132                              bool JIT) {
133   if (CM) {
134     if (*CM == CodeModel::Tiny)
135       report_fatal_error("Target does not support the tiny CodeModel");
136     if (*CM == CodeModel::Kernel)
137       report_fatal_error("Target does not support the kernel CodeModel");
138     return *CM;
139   }
140   if (JIT)
141     return RM == Reloc::PIC_ ? CodeModel::Small : CodeModel::Medium;
142   return CodeModel::Small;
143 }
144 
145 SystemZTargetMachine::SystemZTargetMachine(const Target &T, const Triple &TT,
146                                            StringRef CPU, StringRef FS,
147                                            const TargetOptions &Options,
148                                            Optional<Reloc::Model> RM,
149                                            Optional<CodeModel::Model> CM,
150                                            CodeGenOpt::Level OL, bool JIT)
151     : LLVMTargetMachine(
152           T, computeDataLayout(TT, CPU, FS), TT, CPU, FS, Options,
153           getEffectiveRelocModel(RM),
154           getEffectiveSystemZCodeModel(CM, getEffectiveRelocModel(RM), JIT),
155           OL),
156       TLOF(llvm::make_unique<TargetLoweringObjectFileELF>()),
157       Subtarget(TT, CPU, FS, *this) {
158   initAsmInfo();
159 }
160 
161 SystemZTargetMachine::~SystemZTargetMachine() = default;
162 
163 namespace {
164 
165 /// SystemZ Code Generator Pass Configuration Options.
166 class SystemZPassConfig : public TargetPassConfig {
167 public:
168   SystemZPassConfig(SystemZTargetMachine &TM, PassManagerBase &PM)
169     : TargetPassConfig(TM, PM) {}
170 
171   SystemZTargetMachine &getSystemZTargetMachine() const {
172     return getTM<SystemZTargetMachine>();
173   }
174 
175   ScheduleDAGInstrs *
176   createPostMachineScheduler(MachineSchedContext *C) const override {
177     return new ScheduleDAGMI(C,
178                              llvm::make_unique<SystemZPostRASchedStrategy>(C),
179                              /*RemoveKillFlags=*/true);
180   }
181 
182   void addIRPasses() override;
183   bool addInstSelector() override;
184   bool addILPOpts() override;
185   void addPreSched2() override;
186   void addPreEmitPass() override;
187 };
188 
189 } // end anonymous namespace
190 
191 void SystemZPassConfig::addIRPasses() {
192   if (getOptLevel() != CodeGenOpt::None) {
193     addPass(createSystemZTDCPass());
194     addPass(createLoopDataPrefetchPass());
195   }
196 
197   TargetPassConfig::addIRPasses();
198 }
199 
200 bool SystemZPassConfig::addInstSelector() {
201   addPass(createSystemZISelDag(getSystemZTargetMachine(), getOptLevel()));
202 
203  if (getOptLevel() != CodeGenOpt::None)
204     addPass(createSystemZLDCleanupPass(getSystemZTargetMachine()));
205 
206   return false;
207 }
208 
209 bool SystemZPassConfig::addILPOpts() {
210   addPass(&EarlyIfConverterID);
211   return true;
212 }
213 
214 void SystemZPassConfig::addPreSched2() {
215   addPass(createSystemZExpandPseudoPass(getSystemZTargetMachine()));
216 
217   if (getOptLevel() != CodeGenOpt::None)
218     addPass(&IfConverterID);
219 }
220 
221 void SystemZPassConfig::addPreEmitPass() {
222   // Do instruction shortening before compare elimination because some
223   // vector instructions will be shortened into opcodes that compare
224   // elimination recognizes.
225   if (getOptLevel() != CodeGenOpt::None)
226     addPass(createSystemZShortenInstPass(getSystemZTargetMachine()), false);
227 
228   // We eliminate comparisons here rather than earlier because some
229   // transformations can change the set of available CC values and we
230   // generally want those transformations to have priority.  This is
231   // especially true in the commonest case where the result of the comparison
232   // is used by a single in-range branch instruction, since we will then
233   // be able to fuse the compare and the branch instead.
234   //
235   // For example, two-address NILF can sometimes be converted into
236   // three-address RISBLG.  NILF produces a CC value that indicates whether
237   // the low word is zero, but RISBLG does not modify CC at all.  On the
238   // other hand, 64-bit ANDs like NILL can sometimes be converted to RISBG.
239   // The CC value produced by NILL isn't useful for our purposes, but the
240   // value produced by RISBG can be used for any comparison with zero
241   // (not just equality).  So there are some transformations that lose
242   // CC values (while still being worthwhile) and others that happen to make
243   // the CC result more useful than it was originally.
244   //
245   // Another reason is that we only want to use BRANCH ON COUNT in cases
246   // where we know that the count register is not going to be spilled.
247   //
248   // Doing it so late makes it more likely that a register will be reused
249   // between the comparison and the branch, but it isn't clear whether
250   // preventing that would be a win or not.
251   if (getOptLevel() != CodeGenOpt::None)
252     addPass(createSystemZElimComparePass(getSystemZTargetMachine()), false);
253   addPass(createSystemZLongBranchPass(getSystemZTargetMachine()));
254 
255   // Do final scheduling after all other optimizations, to get an
256   // optimal input for the decoder (branch relaxation must happen
257   // after block placement).
258   if (getOptLevel() != CodeGenOpt::None)
259     addPass(&PostMachineSchedulerID);
260 }
261 
262 TargetPassConfig *SystemZTargetMachine::createPassConfig(PassManagerBase &PM) {
263   return new SystemZPassConfig(*this, PM);
264 }
265 
266 TargetTransformInfo
267 SystemZTargetMachine::getTargetTransformInfo(const Function &F) {
268   return TargetTransformInfo(SystemZTTIImpl(this, F));
269 }
270