1 //===-- SystemZTDC.cpp - Utilize Test Data Class instruction --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass looks for instructions that can be replaced by a Test Data Class 10 // instruction, and replaces them when profitable. 11 // 12 // Roughly, the following rules are recognized: 13 // 14 // 1: fcmp pred X, 0 -> tdc X, mask 15 // 2: fcmp pred X, +-inf -> tdc X, mask 16 // 3: fcmp pred X, +-minnorm -> tdc X, mask 17 // 4: tdc (fabs X), mask -> tdc X, newmask 18 // 5: icmp slt (bitcast float X to int), 0 -> tdc X, mask [ie. signbit] 19 // 6: icmp sgt (bitcast float X to int), -1 -> tdc X, mask 20 // 7: icmp ne/eq (call @llvm.s390.tdc.*(X, mask)) -> tdc X, mask/~mask 21 // 8: and i1 (tdc X, M1), (tdc X, M2) -> tdc X, (M1 & M2) 22 // 9: or i1 (tdc X, M1), (tdc X, M2) -> tdc X, (M1 | M2) 23 // 10: xor i1 (tdc X, M1), (tdc X, M2) -> tdc X, (M1 ^ M2) 24 // 25 // The pass works in 4 steps: 26 // 27 // 1. All fcmp and icmp instructions in a function are checked for a match 28 // with rules 1-3 and 5-7. Their TDC equivalents are stored in 29 // the ConvertedInsts mapping. If the operand of a fcmp instruction is 30 // a fabs, it's also folded according to rule 4. 31 // 2. All and/or/xor i1 instructions whose both operands have been already 32 // mapped are mapped according to rules 8-10. LogicOpsWorklist is used 33 // as a queue of instructions to check. 34 // 3. All mapped instructions that are considered worthy of conversion (ie. 35 // replacing them will actually simplify the final code) are replaced 36 // with a call to the s390.tdc intrinsic. 37 // 4. All intermediate results of replaced instructions are removed if unused. 38 // 39 // Instructions that match rules 1-3 are considered unworthy of conversion 40 // on their own (since a comparison instruction is superior), but are mapped 41 // in the hopes of folding the result using rules 4 and 8-10 (likely removing 42 // the original comparison in the process). 43 // 44 //===----------------------------------------------------------------------===// 45 46 #include "SystemZ.h" 47 #include "SystemZSubtarget.h" 48 #include "llvm/ADT/MapVector.h" 49 #include "llvm/CodeGen/TargetPassConfig.h" 50 #include "llvm/IR/Constants.h" 51 #include "llvm/IR/IRBuilder.h" 52 #include "llvm/IR/InstIterator.h" 53 #include "llvm/IR/Instructions.h" 54 #include "llvm/IR/IntrinsicInst.h" 55 #include "llvm/IR/IntrinsicsS390.h" 56 #include "llvm/IR/LegacyPassManager.h" 57 #include "llvm/IR/Module.h" 58 #include <deque> 59 #include <set> 60 61 using namespace llvm; 62 63 namespace llvm { 64 void initializeSystemZTDCPassPass(PassRegistry&); 65 } 66 67 namespace { 68 69 class SystemZTDCPass : public FunctionPass { 70 public: 71 static char ID; 72 SystemZTDCPass() : FunctionPass(ID) { 73 initializeSystemZTDCPassPass(*PassRegistry::getPassRegistry()); 74 } 75 76 bool runOnFunction(Function &F) override; 77 78 void getAnalysisUsage(AnalysisUsage &AU) const override { 79 AU.addRequired<TargetPassConfig>(); 80 } 81 82 private: 83 // Maps seen instructions that can be mapped to a TDC, values are 84 // (TDC operand, TDC mask, worthy flag) triples. 85 MapVector<Instruction *, std::tuple<Value *, int, bool>> ConvertedInsts; 86 // The queue of and/or/xor i1 instructions to be potentially folded. 87 std::vector<BinaryOperator *> LogicOpsWorklist; 88 // Instructions matched while folding, to be removed at the end if unused. 89 std::set<Instruction *> PossibleJunk; 90 91 // Tries to convert a fcmp instruction. 92 void convertFCmp(CmpInst &I); 93 94 // Tries to convert an icmp instruction. 95 void convertICmp(CmpInst &I); 96 97 // Tries to convert an i1 and/or/xor instruction, whose both operands 98 // have been already converted. 99 void convertLogicOp(BinaryOperator &I); 100 101 // Marks an instruction as converted - adds it to ConvertedInsts and adds 102 // any and/or/xor i1 users to the queue. 103 void converted(Instruction *I, Value *V, int Mask, bool Worthy) { 104 ConvertedInsts[I] = std::make_tuple(V, Mask, Worthy); 105 auto &M = *I->getFunction()->getParent(); 106 auto &Ctx = M.getContext(); 107 for (auto *U : I->users()) { 108 auto *LI = dyn_cast<BinaryOperator>(U); 109 if (LI && LI->getType() == Type::getInt1Ty(Ctx) && 110 (LI->getOpcode() == Instruction::And || 111 LI->getOpcode() == Instruction::Or || 112 LI->getOpcode() == Instruction::Xor)) { 113 LogicOpsWorklist.push_back(LI); 114 } 115 } 116 } 117 }; 118 119 } // end anonymous namespace 120 121 char SystemZTDCPass::ID = 0; 122 INITIALIZE_PASS(SystemZTDCPass, "systemz-tdc", 123 "SystemZ Test Data Class optimization", false, false) 124 125 FunctionPass *llvm::createSystemZTDCPass() { 126 return new SystemZTDCPass(); 127 } 128 129 void SystemZTDCPass::convertFCmp(CmpInst &I) { 130 Value *Op0 = I.getOperand(0); 131 auto *Const = dyn_cast<ConstantFP>(I.getOperand(1)); 132 auto Pred = I.getPredicate(); 133 // Only comparisons with consts are interesting. 134 if (!Const) 135 return; 136 // Compute the smallest normal number (and its negation). 137 auto &Sem = Op0->getType()->getFltSemantics(); 138 APFloat Smallest = APFloat::getSmallestNormalized(Sem); 139 APFloat NegSmallest = Smallest; 140 NegSmallest.changeSign(); 141 // Check if Const is one of our recognized consts. 142 int WhichConst; 143 if (Const->isZero()) { 144 // All comparisons with 0 can be converted. 145 WhichConst = 0; 146 } else if (Const->isInfinity()) { 147 // Likewise for infinities. 148 WhichConst = Const->isNegative() ? 2 : 1; 149 } else if (Const->isExactlyValue(Smallest)) { 150 // For Smallest, we cannot do EQ separately from GT. 151 if ((Pred & CmpInst::FCMP_OGE) != CmpInst::FCMP_OGE && 152 (Pred & CmpInst::FCMP_OGE) != 0) 153 return; 154 WhichConst = 3; 155 } else if (Const->isExactlyValue(NegSmallest)) { 156 // Likewise for NegSmallest, we cannot do EQ separately from LT. 157 if ((Pred & CmpInst::FCMP_OLE) != CmpInst::FCMP_OLE && 158 (Pred & CmpInst::FCMP_OLE) != 0) 159 return; 160 WhichConst = 4; 161 } else { 162 // Not one of our special constants. 163 return; 164 } 165 // Partial masks to use for EQ, GT, LT, UN comparisons, respectively. 166 static const int Masks[][4] = { 167 { // 0 168 SystemZ::TDCMASK_ZERO, // eq 169 SystemZ::TDCMASK_POSITIVE, // gt 170 SystemZ::TDCMASK_NEGATIVE, // lt 171 SystemZ::TDCMASK_NAN, // un 172 }, 173 { // inf 174 SystemZ::TDCMASK_INFINITY_PLUS, // eq 175 0, // gt 176 (SystemZ::TDCMASK_ZERO | 177 SystemZ::TDCMASK_NEGATIVE | 178 SystemZ::TDCMASK_NORMAL_PLUS | 179 SystemZ::TDCMASK_SUBNORMAL_PLUS), // lt 180 SystemZ::TDCMASK_NAN, // un 181 }, 182 { // -inf 183 SystemZ::TDCMASK_INFINITY_MINUS, // eq 184 (SystemZ::TDCMASK_ZERO | 185 SystemZ::TDCMASK_POSITIVE | 186 SystemZ::TDCMASK_NORMAL_MINUS | 187 SystemZ::TDCMASK_SUBNORMAL_MINUS), // gt 188 0, // lt 189 SystemZ::TDCMASK_NAN, // un 190 }, 191 { // minnorm 192 0, // eq (unsupported) 193 (SystemZ::TDCMASK_NORMAL_PLUS | 194 SystemZ::TDCMASK_INFINITY_PLUS), // gt (actually ge) 195 (SystemZ::TDCMASK_ZERO | 196 SystemZ::TDCMASK_NEGATIVE | 197 SystemZ::TDCMASK_SUBNORMAL_PLUS), // lt 198 SystemZ::TDCMASK_NAN, // un 199 }, 200 { // -minnorm 201 0, // eq (unsupported) 202 (SystemZ::TDCMASK_ZERO | 203 SystemZ::TDCMASK_POSITIVE | 204 SystemZ::TDCMASK_SUBNORMAL_MINUS), // gt 205 (SystemZ::TDCMASK_NORMAL_MINUS | 206 SystemZ::TDCMASK_INFINITY_MINUS), // lt (actually le) 207 SystemZ::TDCMASK_NAN, // un 208 } 209 }; 210 // Construct the mask as a combination of the partial masks. 211 int Mask = 0; 212 if (Pred & CmpInst::FCMP_OEQ) 213 Mask |= Masks[WhichConst][0]; 214 if (Pred & CmpInst::FCMP_OGT) 215 Mask |= Masks[WhichConst][1]; 216 if (Pred & CmpInst::FCMP_OLT) 217 Mask |= Masks[WhichConst][2]; 218 if (Pred & CmpInst::FCMP_UNO) 219 Mask |= Masks[WhichConst][3]; 220 // A lone fcmp is unworthy of tdc conversion on its own, but may become 221 // worthy if combined with fabs. 222 bool Worthy = false; 223 if (CallInst *CI = dyn_cast<CallInst>(Op0)) { 224 Function *F = CI->getCalledFunction(); 225 if (F && F->getIntrinsicID() == Intrinsic::fabs) { 226 // Fold with fabs - adjust the mask appropriately. 227 Mask &= SystemZ::TDCMASK_PLUS; 228 Mask |= Mask >> 1; 229 Op0 = CI->getArgOperand(0); 230 // A combination of fcmp with fabs is a win, unless the constant 231 // involved is 0 (which is handled by later passes). 232 Worthy = WhichConst != 0; 233 PossibleJunk.insert(CI); 234 } 235 } 236 converted(&I, Op0, Mask, Worthy); 237 } 238 239 void SystemZTDCPass::convertICmp(CmpInst &I) { 240 Value *Op0 = I.getOperand(0); 241 auto *Const = dyn_cast<ConstantInt>(I.getOperand(1)); 242 auto Pred = I.getPredicate(); 243 // All our icmp rules involve comparisons with consts. 244 if (!Const) 245 return; 246 if (auto *Cast = dyn_cast<BitCastInst>(Op0)) { 247 // Check for icmp+bitcast used for signbit. 248 if (!Cast->getSrcTy()->isFloatTy() && 249 !Cast->getSrcTy()->isDoubleTy() && 250 !Cast->getSrcTy()->isFP128Ty()) 251 return; 252 Value *V = Cast->getOperand(0); 253 int Mask; 254 if (Pred == CmpInst::ICMP_SLT && Const->isZero()) { 255 // icmp slt (bitcast X), 0 - set if sign bit true 256 Mask = SystemZ::TDCMASK_MINUS; 257 } else if (Pred == CmpInst::ICMP_SGT && Const->isMinusOne()) { 258 // icmp sgt (bitcast X), -1 - set if sign bit false 259 Mask = SystemZ::TDCMASK_PLUS; 260 } else { 261 // Not a sign bit check. 262 return; 263 } 264 PossibleJunk.insert(Cast); 265 converted(&I, V, Mask, true); 266 } else if (auto *CI = dyn_cast<CallInst>(Op0)) { 267 // Check if this is a pre-existing call of our tdc intrinsic. 268 Function *F = CI->getCalledFunction(); 269 if (!F || F->getIntrinsicID() != Intrinsic::s390_tdc) 270 return; 271 if (!Const->isZero()) 272 return; 273 Value *V = CI->getArgOperand(0); 274 auto *MaskC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 275 // Bail if the mask is not a constant. 276 if (!MaskC) 277 return; 278 int Mask = MaskC->getZExtValue(); 279 Mask &= SystemZ::TDCMASK_ALL; 280 if (Pred == CmpInst::ICMP_NE) { 281 // icmp ne (call llvm.s390.tdc(...)), 0 -> simple TDC 282 } else if (Pred == CmpInst::ICMP_EQ) { 283 // icmp eq (call llvm.s390.tdc(...)), 0 -> TDC with inverted mask 284 Mask ^= SystemZ::TDCMASK_ALL; 285 } else { 286 // An unknown comparison - ignore. 287 return; 288 } 289 PossibleJunk.insert(CI); 290 converted(&I, V, Mask, false); 291 } 292 } 293 294 void SystemZTDCPass::convertLogicOp(BinaryOperator &I) { 295 Value *Op0, *Op1; 296 int Mask0, Mask1; 297 bool Worthy0, Worthy1; 298 std::tie(Op0, Mask0, Worthy0) = ConvertedInsts[cast<Instruction>(I.getOperand(0))]; 299 std::tie(Op1, Mask1, Worthy1) = ConvertedInsts[cast<Instruction>(I.getOperand(1))]; 300 if (Op0 != Op1) 301 return; 302 int Mask; 303 switch (I.getOpcode()) { 304 case Instruction::And: 305 Mask = Mask0 & Mask1; 306 break; 307 case Instruction::Or: 308 Mask = Mask0 | Mask1; 309 break; 310 case Instruction::Xor: 311 Mask = Mask0 ^ Mask1; 312 break; 313 default: 314 llvm_unreachable("Unknown op in convertLogicOp"); 315 } 316 converted(&I, Op0, Mask, true); 317 } 318 319 bool SystemZTDCPass::runOnFunction(Function &F) { 320 auto &TPC = getAnalysis<TargetPassConfig>(); 321 if (TPC.getTM<TargetMachine>() 322 .getSubtarget<SystemZSubtarget>(F) 323 .hasSoftFloat()) 324 return false; 325 326 ConvertedInsts.clear(); 327 LogicOpsWorklist.clear(); 328 PossibleJunk.clear(); 329 330 // Look for icmp+fcmp instructions. 331 for (auto &I : instructions(F)) { 332 if (I.getOpcode() == Instruction::FCmp) 333 convertFCmp(cast<CmpInst>(I)); 334 else if (I.getOpcode() == Instruction::ICmp) 335 convertICmp(cast<CmpInst>(I)); 336 } 337 338 // If none found, bail already. 339 if (ConvertedInsts.empty()) 340 return false; 341 342 // Process the queue of logic instructions. 343 while (!LogicOpsWorklist.empty()) { 344 BinaryOperator *Op = LogicOpsWorklist.back(); 345 LogicOpsWorklist.pop_back(); 346 // If both operands mapped, and the instruction itself not yet mapped, 347 // convert it. 348 if (ConvertedInsts.count(dyn_cast<Instruction>(Op->getOperand(0))) && 349 ConvertedInsts.count(dyn_cast<Instruction>(Op->getOperand(1))) && 350 !ConvertedInsts.count(Op)) 351 convertLogicOp(*Op); 352 } 353 354 // Time to actually replace the instructions. Do it in the reverse order 355 // of finding them, since there's a good chance the earlier ones will be 356 // unused (due to being folded into later ones). 357 Module &M = *F.getParent(); 358 auto &Ctx = M.getContext(); 359 Value *Zero32 = ConstantInt::get(Type::getInt32Ty(Ctx), 0); 360 bool MadeChange = false; 361 for (auto &It : reverse(ConvertedInsts)) { 362 Instruction *I = It.first; 363 Value *V; 364 int Mask; 365 bool Worthy; 366 std::tie(V, Mask, Worthy) = It.second; 367 if (!I->user_empty()) { 368 // If used and unworthy of conversion, skip it. 369 if (!Worthy) 370 continue; 371 // Call the intrinsic, compare result with 0. 372 Function *TDCFunc = 373 Intrinsic::getDeclaration(&M, Intrinsic::s390_tdc, V->getType()); 374 IRBuilder<> IRB(I); 375 Value *MaskVal = ConstantInt::get(Type::getInt64Ty(Ctx), Mask); 376 Instruction *TDC = IRB.CreateCall(TDCFunc, {V, MaskVal}); 377 Value *ICmp = IRB.CreateICmp(CmpInst::ICMP_NE, TDC, Zero32); 378 I->replaceAllUsesWith(ICmp); 379 } 380 // If unused, or used and converted, remove it. 381 I->eraseFromParent(); 382 MadeChange = true; 383 } 384 385 if (!MadeChange) 386 return false; 387 388 // We've actually done something - now clear misc accumulated junk (fabs, 389 // bitcast). 390 for (auto *I : PossibleJunk) 391 if (I->user_empty()) 392 I->eraseFromParent(); 393 394 return true; 395 } 396