1 //===-- SystemZSelectionDAGInfo.cpp - SystemZ SelectionDAG Info -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SystemZSelectionDAGInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SystemZTargetMachine.h" 14 #include "llvm/CodeGen/SelectionDAG.h" 15 16 using namespace llvm; 17 18 #define DEBUG_TYPE "systemz-selectiondag-info" 19 20 // Decide whether it is best to use a loop or straight-line code for 21 // a block operation of Size bytes with source address Src and destination 22 // address Dest. Sequence is the opcode to use for straight-line code 23 // (such as MVC) and Loop is the opcode to use for loops (such as MVC_LOOP). 24 // Return the chain for the completed operation. 25 static SDValue emitMemMem(SelectionDAG &DAG, const SDLoc &DL, unsigned Sequence, 26 unsigned Loop, SDValue Chain, SDValue Dst, 27 SDValue Src, uint64_t Size) { 28 EVT PtrVT = Src.getValueType(); 29 // The heuristic we use is to prefer loops for anything that would 30 // require 7 or more MVCs. With these kinds of sizes there isn't 31 // much to choose between straight-line code and looping code, 32 // since the time will be dominated by the MVCs themselves. 33 // However, the loop has 4 or 5 instructions (depending on whether 34 // the base addresses can be proved equal), so there doesn't seem 35 // much point using a loop for 5 * 256 bytes or fewer. Anything in 36 // the range (5 * 256, 6 * 256) will need another instruction after 37 // the loop, so it doesn't seem worth using a loop then either. 38 // The next value up, 6 * 256, can be implemented in the same 39 // number of straight-line MVCs as 6 * 256 - 1. 40 if (Size > 6 * 256) 41 return DAG.getNode(Loop, DL, MVT::Other, Chain, Dst, Src, 42 DAG.getConstant(Size, DL, PtrVT), 43 DAG.getConstant(Size / 256, DL, PtrVT)); 44 return DAG.getNode(Sequence, DL, MVT::Other, Chain, Dst, Src, 45 DAG.getConstant(Size, DL, PtrVT)); 46 } 47 48 static SDValue emitMemMemVarLen(SelectionDAG &DAG, const SDLoc &DL, 49 unsigned Loop, SDValue Chain, SDValue Dst, 50 SDValue Src, SDValue Size) { 51 SDValue LenMinus1 = DAG.getNode(ISD::ADD, DL, MVT::i64, 52 DAG.getZExtOrTrunc(Size, DL, MVT::i64), 53 DAG.getConstant(-1, DL, MVT::i64)); 54 SDValue TripC = DAG.getNode(ISD::SRL, DL, MVT::i64, LenMinus1, 55 DAG.getConstant(8, DL, MVT::i64)); 56 SDVTList VTs = Loop == SystemZISD::CLC_LOOP 57 ? DAG.getVTList(MVT::i32, MVT::Other) 58 : DAG.getVTList(MVT::Other); 59 return DAG.getNode(Loop, DL, VTs, Chain, Dst, Src, LenMinus1, TripC); 60 } 61 62 SDValue SystemZSelectionDAGInfo::EmitTargetCodeForMemcpy( 63 SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Dst, SDValue Src, 64 SDValue Size, Align Alignment, bool IsVolatile, bool AlwaysInline, 65 MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) const { 66 if (IsVolatile) 67 return SDValue(); 68 69 if (auto *CSize = dyn_cast<ConstantSDNode>(Size)) 70 return emitMemMem(DAG, DL, SystemZISD::MVC, SystemZISD::MVC_LOOP, 71 Chain, Dst, Src, CSize->getZExtValue()); 72 73 return emitMemMemVarLen(DAG, DL, SystemZISD::MVC_LOOP, Chain, Dst, Src, Size); 74 } 75 76 // Handle a memset of 1, 2, 4 or 8 bytes with the operands given by 77 // Chain, Dst, ByteVal and Size. These cases are expected to use 78 // MVI, MVHHI, MVHI and MVGHI respectively. 79 static SDValue memsetStore(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, 80 SDValue Dst, uint64_t ByteVal, uint64_t Size, 81 unsigned Align, MachinePointerInfo DstPtrInfo) { 82 uint64_t StoreVal = ByteVal; 83 for (unsigned I = 1; I < Size; ++I) 84 StoreVal |= ByteVal << (I * 8); 85 return DAG.getStore( 86 Chain, DL, DAG.getConstant(StoreVal, DL, MVT::getIntegerVT(Size * 8)), 87 Dst, DstPtrInfo, Align); 88 } 89 90 SDValue SystemZSelectionDAGInfo::EmitTargetCodeForMemset( 91 SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Dst, 92 SDValue Byte, SDValue Size, Align Alignment, bool IsVolatile, 93 MachinePointerInfo DstPtrInfo) const { 94 EVT PtrVT = Dst.getValueType(); 95 96 if (IsVolatile) 97 return SDValue(); 98 99 auto *CByte = dyn_cast<ConstantSDNode>(Byte); 100 if (auto *CSize = dyn_cast<ConstantSDNode>(Size)) { 101 uint64_t Bytes = CSize->getZExtValue(); 102 if (Bytes == 0) 103 return SDValue(); 104 if (CByte) { 105 // Handle cases that can be done using at most two of 106 // MVI, MVHI, MVHHI and MVGHI. The latter two can only be 107 // used if ByteVal is all zeros or all ones; in other casees, 108 // we can move at most 2 halfwords. 109 uint64_t ByteVal = CByte->getZExtValue(); 110 if (ByteVal == 0 || ByteVal == 255 ? 111 Bytes <= 16 && countPopulation(Bytes) <= 2 : 112 Bytes <= 4) { 113 unsigned Size1 = Bytes == 16 ? 8 : 1 << findLastSet(Bytes); 114 unsigned Size2 = Bytes - Size1; 115 SDValue Chain1 = memsetStore(DAG, DL, Chain, Dst, ByteVal, Size1, 116 Alignment.value(), DstPtrInfo); 117 if (Size2 == 0) 118 return Chain1; 119 Dst = DAG.getNode(ISD::ADD, DL, PtrVT, Dst, 120 DAG.getConstant(Size1, DL, PtrVT)); 121 DstPtrInfo = DstPtrInfo.getWithOffset(Size1); 122 SDValue Chain2 = memsetStore( 123 DAG, DL, Chain, Dst, ByteVal, Size2, 124 std::min((unsigned)Alignment.value(), Size1), DstPtrInfo); 125 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chain1, Chain2); 126 } 127 } else { 128 // Handle one and two bytes using STC. 129 if (Bytes <= 2) { 130 SDValue Chain1 = 131 DAG.getStore(Chain, DL, Byte, Dst, DstPtrInfo, Alignment); 132 if (Bytes == 1) 133 return Chain1; 134 SDValue Dst2 = DAG.getNode(ISD::ADD, DL, PtrVT, Dst, 135 DAG.getConstant(1, DL, PtrVT)); 136 SDValue Chain2 = DAG.getStore(Chain, DL, Byte, Dst2, 137 DstPtrInfo.getWithOffset(1), Align(1)); 138 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chain1, Chain2); 139 } 140 } 141 assert(Bytes >= 2 && "Should have dealt with 0- and 1-byte cases already"); 142 143 // Handle the special case of a memset of 0, which can use XC. 144 if (CByte && CByte->getZExtValue() == 0) 145 return emitMemMem(DAG, DL, SystemZISD::XC, SystemZISD::XC_LOOP, 146 Chain, Dst, Dst, Bytes); 147 148 // Copy the byte to the first location and then use MVC to copy 149 // it to the rest. 150 Chain = DAG.getStore(Chain, DL, Byte, Dst, DstPtrInfo, Alignment); 151 SDValue DstPlus1 = DAG.getNode(ISD::ADD, DL, PtrVT, Dst, 152 DAG.getConstant(1, DL, PtrVT)); 153 return emitMemMem(DAG, DL, SystemZISD::MVC, SystemZISD::MVC_LOOP, 154 Chain, DstPlus1, Dst, Bytes - 1); 155 } 156 157 // Variable length 158 if (CByte && CByte->getZExtValue() == 0) 159 // Handle the special case of a variable length memset of 0 with XC. 160 return emitMemMemVarLen(DAG, DL, SystemZISD::XC_LOOP, Chain, Dst, Dst, Size); 161 162 return SDValue(); 163 } 164 165 // Use CLC to compare [Src1, Src1 + Size) with [Src2, Src2 + Size), 166 // deciding whether to use a loop or straight-line code. 167 static SDValue emitCLC(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, 168 SDValue Src1, SDValue Src2, uint64_t Size) { 169 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other); 170 EVT PtrVT = Src1.getValueType(); 171 // A two-CLC sequence is a clear win over a loop, not least because it 172 // needs only one branch. A three-CLC sequence needs the same number 173 // of branches as a loop (i.e. 2), but is shorter. That brings us to 174 // lengths greater than 768 bytes. It seems relatively likely that 175 // a difference will be found within the first 768 bytes, so we just 176 // optimize for the smallest number of branch instructions, in order 177 // to avoid polluting the prediction buffer too much. A loop only ever 178 // needs 2 branches, whereas a straight-line sequence would need 3 or more. 179 if (Size > 3 * 256) 180 return DAG.getNode(SystemZISD::CLC_LOOP, DL, VTs, Chain, Src1, Src2, 181 DAG.getConstant(Size, DL, PtrVT), 182 DAG.getConstant(Size / 256, DL, PtrVT)); 183 return DAG.getNode(SystemZISD::CLC, DL, VTs, Chain, Src1, Src2, 184 DAG.getConstant(Size, DL, PtrVT)); 185 } 186 187 // Convert the current CC value into an integer that is 0 if CC == 0, 188 // greater than zero if CC == 1 and less than zero if CC >= 2. 189 // The sequence starts with IPM, which puts CC into bits 29 and 28 190 // of an integer and clears bits 30 and 31. 191 static SDValue addIPMSequence(const SDLoc &DL, SDValue CCReg, 192 SelectionDAG &DAG) { 193 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg); 194 SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, IPM, 195 DAG.getConstant(30 - SystemZ::IPM_CC, DL, MVT::i32)); 196 SDValue SRA = DAG.getNode(ISD::SRA, DL, MVT::i32, SHL, 197 DAG.getConstant(30, DL, MVT::i32)); 198 return SRA; 199 } 200 201 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::EmitTargetCodeForMemcmp( 202 SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Src1, 203 SDValue Src2, SDValue Size, MachinePointerInfo Op1PtrInfo, 204 MachinePointerInfo Op2PtrInfo) const { 205 SDValue CCReg; 206 // Swap operands to invert CC == 1 vs. CC == 2 cases. 207 if (auto *CSize = dyn_cast<ConstantSDNode>(Size)) { 208 uint64_t Bytes = CSize->getZExtValue(); 209 assert(Bytes > 0 && "Caller should have handled 0-size case"); 210 CCReg = emitCLC(DAG, DL, Chain, Src2, Src1, Bytes); 211 } else 212 CCReg = emitMemMemVarLen(DAG, DL, SystemZISD::CLC_LOOP, Chain, Src2, Src1, 213 Size); 214 Chain = CCReg.getValue(1); 215 return std::make_pair(addIPMSequence(DL, CCReg, DAG), Chain); 216 } 217 218 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::EmitTargetCodeForMemchr( 219 SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Src, 220 SDValue Char, SDValue Length, MachinePointerInfo SrcPtrInfo) const { 221 // Use SRST to find the character. End is its address on success. 222 EVT PtrVT = Src.getValueType(); 223 SDVTList VTs = DAG.getVTList(PtrVT, MVT::i32, MVT::Other); 224 Length = DAG.getZExtOrTrunc(Length, DL, PtrVT); 225 Char = DAG.getZExtOrTrunc(Char, DL, MVT::i32); 226 Char = DAG.getNode(ISD::AND, DL, MVT::i32, Char, 227 DAG.getConstant(255, DL, MVT::i32)); 228 SDValue Limit = DAG.getNode(ISD::ADD, DL, PtrVT, Src, Length); 229 SDValue End = DAG.getNode(SystemZISD::SEARCH_STRING, DL, VTs, Chain, 230 Limit, Src, Char); 231 SDValue CCReg = End.getValue(1); 232 Chain = End.getValue(2); 233 234 // Now select between End and null, depending on whether the character 235 // was found. 236 SDValue Ops[] = { 237 End, DAG.getConstant(0, DL, PtrVT), 238 DAG.getTargetConstant(SystemZ::CCMASK_SRST, DL, MVT::i32), 239 DAG.getTargetConstant(SystemZ::CCMASK_SRST_FOUND, DL, MVT::i32), CCReg}; 240 End = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, PtrVT, Ops); 241 return std::make_pair(End, Chain); 242 } 243 244 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::EmitTargetCodeForStrcpy( 245 SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Dest, 246 SDValue Src, MachinePointerInfo DestPtrInfo, MachinePointerInfo SrcPtrInfo, 247 bool isStpcpy) const { 248 SDVTList VTs = DAG.getVTList(Dest.getValueType(), MVT::Other); 249 SDValue EndDest = DAG.getNode(SystemZISD::STPCPY, DL, VTs, Chain, Dest, Src, 250 DAG.getConstant(0, DL, MVT::i32)); 251 return std::make_pair(isStpcpy ? EndDest : Dest, EndDest.getValue(1)); 252 } 253 254 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::EmitTargetCodeForStrcmp( 255 SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Src1, 256 SDValue Src2, MachinePointerInfo Op1PtrInfo, 257 MachinePointerInfo Op2PtrInfo) const { 258 SDVTList VTs = DAG.getVTList(Src1.getValueType(), MVT::i32, MVT::Other); 259 // Swap operands to invert CC == 1 vs. CC == 2 cases. 260 SDValue Unused = DAG.getNode(SystemZISD::STRCMP, DL, VTs, Chain, Src2, Src1, 261 DAG.getConstant(0, DL, MVT::i32)); 262 SDValue CCReg = Unused.getValue(1); 263 Chain = Unused.getValue(2); 264 return std::make_pair(addIPMSequence(DL, CCReg, DAG), Chain); 265 } 266 267 // Search from Src for a null character, stopping once Src reaches Limit. 268 // Return a pair of values, the first being the number of nonnull characters 269 // and the second being the out chain. 270 // 271 // This can be used for strlen by setting Limit to 0. 272 static std::pair<SDValue, SDValue> getBoundedStrlen(SelectionDAG &DAG, 273 const SDLoc &DL, 274 SDValue Chain, SDValue Src, 275 SDValue Limit) { 276 EVT PtrVT = Src.getValueType(); 277 SDVTList VTs = DAG.getVTList(PtrVT, MVT::i32, MVT::Other); 278 SDValue End = DAG.getNode(SystemZISD::SEARCH_STRING, DL, VTs, Chain, 279 Limit, Src, DAG.getConstant(0, DL, MVT::i32)); 280 Chain = End.getValue(2); 281 SDValue Len = DAG.getNode(ISD::SUB, DL, PtrVT, End, Src); 282 return std::make_pair(Len, Chain); 283 } 284 285 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::EmitTargetCodeForStrlen( 286 SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Src, 287 MachinePointerInfo SrcPtrInfo) const { 288 EVT PtrVT = Src.getValueType(); 289 return getBoundedStrlen(DAG, DL, Chain, Src, DAG.getConstant(0, DL, PtrVT)); 290 } 291 292 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::EmitTargetCodeForStrnlen( 293 SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Src, 294 SDValue MaxLength, MachinePointerInfo SrcPtrInfo) const { 295 EVT PtrVT = Src.getValueType(); 296 MaxLength = DAG.getZExtOrTrunc(MaxLength, DL, PtrVT); 297 SDValue Limit = DAG.getNode(ISD::ADD, DL, PtrVT, Src, MaxLength); 298 return getBoundedStrlen(DAG, DL, Chain, Src, Limit); 299 } 300