1 //===-- SystemZSelectionDAGInfo.cpp - SystemZ SelectionDAG Info -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SystemZSelectionDAGInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SystemZTargetMachine.h" 15 #include "llvm/CodeGen/SelectionDAG.h" 16 17 using namespace llvm; 18 19 #define DEBUG_TYPE "systemz-selectiondag-info" 20 21 // Decide whether it is best to use a loop or straight-line code for 22 // a block operation of Size bytes with source address Src and destination 23 // address Dest. Sequence is the opcode to use for straight-line code 24 // (such as MVC) and Loop is the opcode to use for loops (such as MVC_LOOP). 25 // Return the chain for the completed operation. 26 static SDValue emitMemMem(SelectionDAG &DAG, const SDLoc &DL, unsigned Sequence, 27 unsigned Loop, SDValue Chain, SDValue Dst, 28 SDValue Src, uint64_t Size) { 29 EVT PtrVT = Src.getValueType(); 30 // The heuristic we use is to prefer loops for anything that would 31 // require 7 or more MVCs. With these kinds of sizes there isn't 32 // much to choose between straight-line code and looping code, 33 // since the time will be dominated by the MVCs themselves. 34 // However, the loop has 4 or 5 instructions (depending on whether 35 // the base addresses can be proved equal), so there doesn't seem 36 // much point using a loop for 5 * 256 bytes or fewer. Anything in 37 // the range (5 * 256, 6 * 256) will need another instruction after 38 // the loop, so it doesn't seem worth using a loop then either. 39 // The next value up, 6 * 256, can be implemented in the same 40 // number of straight-line MVCs as 6 * 256 - 1. 41 if (Size > 6 * 256) 42 return DAG.getNode(Loop, DL, MVT::Other, Chain, Dst, Src, 43 DAG.getConstant(Size, DL, PtrVT), 44 DAG.getConstant(Size / 256, DL, PtrVT)); 45 return DAG.getNode(Sequence, DL, MVT::Other, Chain, Dst, Src, 46 DAG.getConstant(Size, DL, PtrVT)); 47 } 48 49 SDValue SystemZSelectionDAGInfo::EmitTargetCodeForMemcpy( 50 SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Dst, SDValue Src, 51 SDValue Size, unsigned Align, bool IsVolatile, bool AlwaysInline, 52 MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) const { 53 if (IsVolatile) 54 return SDValue(); 55 56 if (auto *CSize = dyn_cast<ConstantSDNode>(Size)) 57 return emitMemMem(DAG, DL, SystemZISD::MVC, SystemZISD::MVC_LOOP, 58 Chain, Dst, Src, CSize->getZExtValue()); 59 return SDValue(); 60 } 61 62 // Handle a memset of 1, 2, 4 or 8 bytes with the operands given by 63 // Chain, Dst, ByteVal and Size. These cases are expected to use 64 // MVI, MVHHI, MVHI and MVGHI respectively. 65 static SDValue memsetStore(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, 66 SDValue Dst, uint64_t ByteVal, uint64_t Size, 67 unsigned Align, MachinePointerInfo DstPtrInfo) { 68 uint64_t StoreVal = ByteVal; 69 for (unsigned I = 1; I < Size; ++I) 70 StoreVal |= ByteVal << (I * 8); 71 return DAG.getStore( 72 Chain, DL, DAG.getConstant(StoreVal, DL, MVT::getIntegerVT(Size * 8)), 73 Dst, DstPtrInfo, Align); 74 } 75 76 SDValue SystemZSelectionDAGInfo::EmitTargetCodeForMemset( 77 SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Dst, 78 SDValue Byte, SDValue Size, unsigned Align, bool IsVolatile, 79 MachinePointerInfo DstPtrInfo) const { 80 EVT PtrVT = Dst.getValueType(); 81 82 if (IsVolatile) 83 return SDValue(); 84 85 if (auto *CSize = dyn_cast<ConstantSDNode>(Size)) { 86 uint64_t Bytes = CSize->getZExtValue(); 87 if (Bytes == 0) 88 return SDValue(); 89 if (auto *CByte = dyn_cast<ConstantSDNode>(Byte)) { 90 // Handle cases that can be done using at most two of 91 // MVI, MVHI, MVHHI and MVGHI. The latter two can only be 92 // used if ByteVal is all zeros or all ones; in other casees, 93 // we can move at most 2 halfwords. 94 uint64_t ByteVal = CByte->getZExtValue(); 95 if (ByteVal == 0 || ByteVal == 255 ? 96 Bytes <= 16 && countPopulation(Bytes) <= 2 : 97 Bytes <= 4) { 98 unsigned Size1 = Bytes == 16 ? 8 : 1 << findLastSet(Bytes); 99 unsigned Size2 = Bytes - Size1; 100 SDValue Chain1 = memsetStore(DAG, DL, Chain, Dst, ByteVal, Size1, 101 Align, DstPtrInfo); 102 if (Size2 == 0) 103 return Chain1; 104 Dst = DAG.getNode(ISD::ADD, DL, PtrVT, Dst, 105 DAG.getConstant(Size1, DL, PtrVT)); 106 DstPtrInfo = DstPtrInfo.getWithOffset(Size1); 107 SDValue Chain2 = memsetStore(DAG, DL, Chain, Dst, ByteVal, Size2, 108 std::min(Align, Size1), DstPtrInfo); 109 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chain1, Chain2); 110 } 111 } else { 112 // Handle one and two bytes using STC. 113 if (Bytes <= 2) { 114 SDValue Chain1 = DAG.getStore(Chain, DL, Byte, Dst, DstPtrInfo, Align); 115 if (Bytes == 1) 116 return Chain1; 117 SDValue Dst2 = DAG.getNode(ISD::ADD, DL, PtrVT, Dst, 118 DAG.getConstant(1, DL, PtrVT)); 119 SDValue Chain2 = 120 DAG.getStore(Chain, DL, Byte, Dst2, DstPtrInfo.getWithOffset(1), 121 /* Alignment = */ 1); 122 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chain1, Chain2); 123 } 124 } 125 assert(Bytes >= 2 && "Should have dealt with 0- and 1-byte cases already"); 126 127 // Handle the special case of a memset of 0, which can use XC. 128 auto *CByte = dyn_cast<ConstantSDNode>(Byte); 129 if (CByte && CByte->getZExtValue() == 0) 130 return emitMemMem(DAG, DL, SystemZISD::XC, SystemZISD::XC_LOOP, 131 Chain, Dst, Dst, Bytes); 132 133 // Copy the byte to the first location and then use MVC to copy 134 // it to the rest. 135 Chain = DAG.getStore(Chain, DL, Byte, Dst, DstPtrInfo, Align); 136 SDValue DstPlus1 = DAG.getNode(ISD::ADD, DL, PtrVT, Dst, 137 DAG.getConstant(1, DL, PtrVT)); 138 return emitMemMem(DAG, DL, SystemZISD::MVC, SystemZISD::MVC_LOOP, 139 Chain, DstPlus1, Dst, Bytes - 1); 140 } 141 return SDValue(); 142 } 143 144 // Use CLC to compare [Src1, Src1 + Size) with [Src2, Src2 + Size), 145 // deciding whether to use a loop or straight-line code. 146 static SDValue emitCLC(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, 147 SDValue Src1, SDValue Src2, uint64_t Size) { 148 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 149 EVT PtrVT = Src1.getValueType(); 150 // A two-CLC sequence is a clear win over a loop, not least because it 151 // needs only one branch. A three-CLC sequence needs the same number 152 // of branches as a loop (i.e. 2), but is shorter. That brings us to 153 // lengths greater than 768 bytes. It seems relatively likely that 154 // a difference will be found within the first 768 bytes, so we just 155 // optimize for the smallest number of branch instructions, in order 156 // to avoid polluting the prediction buffer too much. A loop only ever 157 // needs 2 branches, whereas a straight-line sequence would need 3 or more. 158 if (Size > 3 * 256) 159 return DAG.getNode(SystemZISD::CLC_LOOP, DL, VTs, Chain, Src1, Src2, 160 DAG.getConstant(Size, DL, PtrVT), 161 DAG.getConstant(Size / 256, DL, PtrVT)); 162 return DAG.getNode(SystemZISD::CLC, DL, VTs, Chain, Src1, Src2, 163 DAG.getConstant(Size, DL, PtrVT)); 164 } 165 166 // Convert the current CC value into an integer that is 0 if CC == 0, 167 // less than zero if CC == 1 and greater than zero if CC >= 2. 168 // The sequence starts with IPM, which puts CC into bits 29 and 28 169 // of an integer and clears bits 30 and 31. 170 static SDValue addIPMSequence(const SDLoc &DL, SDValue Glue, 171 SelectionDAG &DAG) { 172 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue); 173 SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i32, IPM, 174 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32)); 175 SDValue ROTL = DAG.getNode(ISD::ROTL, DL, MVT::i32, SRL, 176 DAG.getConstant(31, DL, MVT::i32)); 177 return ROTL; 178 } 179 180 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::EmitTargetCodeForMemcmp( 181 SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Src1, 182 SDValue Src2, SDValue Size, MachinePointerInfo Op1PtrInfo, 183 MachinePointerInfo Op2PtrInfo) const { 184 if (auto *CSize = dyn_cast<ConstantSDNode>(Size)) { 185 uint64_t Bytes = CSize->getZExtValue(); 186 assert(Bytes > 0 && "Caller should have handled 0-size case"); 187 Chain = emitCLC(DAG, DL, Chain, Src1, Src2, Bytes); 188 SDValue Glue = Chain.getValue(1); 189 return std::make_pair(addIPMSequence(DL, Glue, DAG), Chain); 190 } 191 return std::make_pair(SDValue(), SDValue()); 192 } 193 194 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::EmitTargetCodeForMemchr( 195 SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Src, 196 SDValue Char, SDValue Length, MachinePointerInfo SrcPtrInfo) const { 197 // Use SRST to find the character. End is its address on success. 198 EVT PtrVT = Src.getValueType(); 199 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other, MVT::Glue); 200 Length = DAG.getZExtOrTrunc(Length, DL, PtrVT); 201 Char = DAG.getZExtOrTrunc(Char, DL, MVT::i32); 202 Char = DAG.getNode(ISD::AND, DL, MVT::i32, Char, 203 DAG.getConstant(255, DL, MVT::i32)); 204 SDValue Limit = DAG.getNode(ISD::ADD, DL, PtrVT, Src, Length); 205 SDValue End = DAG.getNode(SystemZISD::SEARCH_STRING, DL, VTs, Chain, 206 Limit, Src, Char); 207 Chain = End.getValue(1); 208 SDValue Glue = End.getValue(2); 209 210 // Now select between End and null, depending on whether the character 211 // was found. 212 SDValue Ops[] = {End, DAG.getConstant(0, DL, PtrVT), 213 DAG.getConstant(SystemZ::CCMASK_SRST, DL, MVT::i32), 214 DAG.getConstant(SystemZ::CCMASK_SRST_FOUND, DL, MVT::i32), 215 Glue}; 216 VTs = DAG.getVTList(PtrVT, MVT::Glue); 217 End = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, Ops); 218 return std::make_pair(End, Chain); 219 } 220 221 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::EmitTargetCodeForStrcpy( 222 SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Dest, 223 SDValue Src, MachinePointerInfo DestPtrInfo, MachinePointerInfo SrcPtrInfo, 224 bool isStpcpy) const { 225 SDVTList VTs = DAG.getVTList(Dest.getValueType(), MVT::Other); 226 SDValue EndDest = DAG.getNode(SystemZISD::STPCPY, DL, VTs, Chain, Dest, Src, 227 DAG.getConstant(0, DL, MVT::i32)); 228 return std::make_pair(isStpcpy ? EndDest : Dest, EndDest.getValue(1)); 229 } 230 231 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::EmitTargetCodeForStrcmp( 232 SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Src1, 233 SDValue Src2, MachinePointerInfo Op1PtrInfo, 234 MachinePointerInfo Op2PtrInfo) const { 235 SDVTList VTs = DAG.getVTList(Src1.getValueType(), MVT::Other, MVT::Glue); 236 SDValue Unused = DAG.getNode(SystemZISD::STRCMP, DL, VTs, Chain, Src1, Src2, 237 DAG.getConstant(0, DL, MVT::i32)); 238 Chain = Unused.getValue(1); 239 SDValue Glue = Chain.getValue(2); 240 return std::make_pair(addIPMSequence(DL, Glue, DAG), Chain); 241 } 242 243 // Search from Src for a null character, stopping once Src reaches Limit. 244 // Return a pair of values, the first being the number of nonnull characters 245 // and the second being the out chain. 246 // 247 // This can be used for strlen by setting Limit to 0. 248 static std::pair<SDValue, SDValue> getBoundedStrlen(SelectionDAG &DAG, 249 const SDLoc &DL, 250 SDValue Chain, SDValue Src, 251 SDValue Limit) { 252 EVT PtrVT = Src.getValueType(); 253 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other, MVT::Glue); 254 SDValue End = DAG.getNode(SystemZISD::SEARCH_STRING, DL, VTs, Chain, 255 Limit, Src, DAG.getConstant(0, DL, MVT::i32)); 256 Chain = End.getValue(1); 257 SDValue Len = DAG.getNode(ISD::SUB, DL, PtrVT, End, Src); 258 return std::make_pair(Len, Chain); 259 } 260 261 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::EmitTargetCodeForStrlen( 262 SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Src, 263 MachinePointerInfo SrcPtrInfo) const { 264 EVT PtrVT = Src.getValueType(); 265 return getBoundedStrlen(DAG, DL, Chain, Src, DAG.getConstant(0, DL, PtrVT)); 266 } 267 268 std::pair<SDValue, SDValue> SystemZSelectionDAGInfo::EmitTargetCodeForStrnlen( 269 SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Src, 270 SDValue MaxLength, MachinePointerInfo SrcPtrInfo) const { 271 EVT PtrVT = Src.getValueType(); 272 MaxLength = DAG.getZExtOrTrunc(MaxLength, DL, PtrVT); 273 SDValue Limit = DAG.getNode(ISD::ADD, DL, PtrVT, Src, MaxLength); 274 return getBoundedStrlen(DAG, DL, Chain, Src, Limit); 275 } 276