1 //===-- SystemZRegisterInfo.cpp - SystemZ register information ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "SystemZRegisterInfo.h" 11 #include "SystemZInstrInfo.h" 12 #include "SystemZSubtarget.h" 13 #include "llvm/CodeGen/LiveIntervals.h" 14 #include "llvm/ADT/SmallSet.h" 15 #include "llvm/CodeGen/MachineInstrBuilder.h" 16 #include "llvm/CodeGen/MachineRegisterInfo.h" 17 #include "llvm/CodeGen/TargetFrameLowering.h" 18 #include "llvm/CodeGen/VirtRegMap.h" 19 20 using namespace llvm; 21 22 #define GET_REGINFO_TARGET_DESC 23 #include "SystemZGenRegisterInfo.inc" 24 25 SystemZRegisterInfo::SystemZRegisterInfo() 26 : SystemZGenRegisterInfo(SystemZ::R14D) {} 27 28 // Given that MO is a GRX32 operand, return either GR32 or GRH32 if MO 29 // somehow belongs in it. Otherwise, return GRX32. 30 static const TargetRegisterClass *getRC32(MachineOperand &MO, 31 const VirtRegMap *VRM, 32 const MachineRegisterInfo *MRI) { 33 const TargetRegisterClass *RC = MRI->getRegClass(MO.getReg()); 34 35 if (SystemZ::GR32BitRegClass.hasSubClassEq(RC) || 36 MO.getSubReg() == SystemZ::subreg_l32 || 37 MO.getSubReg() == SystemZ::subreg_hl32) 38 return &SystemZ::GR32BitRegClass; 39 if (SystemZ::GRH32BitRegClass.hasSubClassEq(RC) || 40 MO.getSubReg() == SystemZ::subreg_h32 || 41 MO.getSubReg() == SystemZ::subreg_hh32) 42 return &SystemZ::GRH32BitRegClass; 43 44 if (VRM && VRM->hasPhys(MO.getReg())) { 45 unsigned PhysReg = VRM->getPhys(MO.getReg()); 46 if (SystemZ::GR32BitRegClass.contains(PhysReg)) 47 return &SystemZ::GR32BitRegClass; 48 assert (SystemZ::GRH32BitRegClass.contains(PhysReg) && 49 "Phys reg not in GR32 or GRH32?"); 50 return &SystemZ::GRH32BitRegClass; 51 } 52 53 assert (RC == &SystemZ::GRX32BitRegClass); 54 return RC; 55 } 56 57 bool 58 SystemZRegisterInfo::getRegAllocationHints(unsigned VirtReg, 59 ArrayRef<MCPhysReg> Order, 60 SmallVectorImpl<MCPhysReg> &Hints, 61 const MachineFunction &MF, 62 const VirtRegMap *VRM, 63 const LiveRegMatrix *Matrix) const { 64 const MachineRegisterInfo *MRI = &MF.getRegInfo(); 65 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 66 if (MRI->getRegClass(VirtReg) == &SystemZ::GRX32BitRegClass) { 67 SmallVector<unsigned, 8> Worklist; 68 SmallSet<unsigned, 4> DoneRegs; 69 Worklist.push_back(VirtReg); 70 while (Worklist.size()) { 71 unsigned Reg = Worklist.pop_back_val(); 72 if (!DoneRegs.insert(Reg).second) 73 continue; 74 75 for (auto &Use : MRI->use_instructions(Reg)) 76 // For LOCRMux, see if the other operand is already a high or low 77 // register, and in that case give the correpsonding hints for 78 // VirtReg. LOCR instructions need both operands in either high or 79 // low parts. 80 if (Use.getOpcode() == SystemZ::LOCRMux) { 81 MachineOperand &TrueMO = Use.getOperand(1); 82 MachineOperand &FalseMO = Use.getOperand(2); 83 const TargetRegisterClass *RC = 84 TRI->getCommonSubClass(getRC32(FalseMO, VRM, MRI), 85 getRC32(TrueMO, VRM, MRI)); 86 if (RC && RC != &SystemZ::GRX32BitRegClass) { 87 for (MCPhysReg Reg : Order) 88 if (RC->contains(Reg) && !MRI->isReserved(Reg)) 89 Hints.push_back(Reg); 90 // Return true to make these hints the only regs available to 91 // RA. This may mean extra spilling but since the alternative is 92 // a jump sequence expansion of the LOCRMux, it is preferred. 93 return true; 94 } 95 96 // Add the other operand of the LOCRMux to the worklist. 97 unsigned OtherReg = 98 (TrueMO.getReg() == Reg ? FalseMO.getReg() : TrueMO.getReg()); 99 if (MRI->getRegClass(OtherReg) == &SystemZ::GRX32BitRegClass) 100 Worklist.push_back(OtherReg); 101 } 102 } 103 } 104 105 return TargetRegisterInfo::getRegAllocationHints(VirtReg, Order, Hints, MF, 106 VRM, Matrix); 107 } 108 109 const MCPhysReg * 110 SystemZRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const { 111 const SystemZSubtarget &Subtarget = MF->getSubtarget<SystemZSubtarget>(); 112 if (MF->getFunction().getCallingConv() == CallingConv::AnyReg) 113 return Subtarget.hasVector()? CSR_SystemZ_AllRegs_Vector_SaveList 114 : CSR_SystemZ_AllRegs_SaveList; 115 if (MF->getSubtarget().getTargetLowering()->supportSwiftError() && 116 MF->getFunction().getAttributes().hasAttrSomewhere( 117 Attribute::SwiftError)) 118 return CSR_SystemZ_SwiftError_SaveList; 119 return CSR_SystemZ_SaveList; 120 } 121 122 const uint32_t * 123 SystemZRegisterInfo::getCallPreservedMask(const MachineFunction &MF, 124 CallingConv::ID CC) const { 125 const SystemZSubtarget &Subtarget = MF.getSubtarget<SystemZSubtarget>(); 126 if (CC == CallingConv::AnyReg) 127 return Subtarget.hasVector()? CSR_SystemZ_AllRegs_Vector_RegMask 128 : CSR_SystemZ_AllRegs_RegMask; 129 if (MF.getSubtarget().getTargetLowering()->supportSwiftError() && 130 MF.getFunction().getAttributes().hasAttrSomewhere( 131 Attribute::SwiftError)) 132 return CSR_SystemZ_SwiftError_RegMask; 133 return CSR_SystemZ_RegMask; 134 } 135 136 BitVector 137 SystemZRegisterInfo::getReservedRegs(const MachineFunction &MF) const { 138 BitVector Reserved(getNumRegs()); 139 const SystemZFrameLowering *TFI = getFrameLowering(MF); 140 141 if (TFI->hasFP(MF)) { 142 // R11D is the frame pointer. Reserve all aliases. 143 Reserved.set(SystemZ::R11D); 144 Reserved.set(SystemZ::R11L); 145 Reserved.set(SystemZ::R11H); 146 Reserved.set(SystemZ::R10Q); 147 } 148 149 // R15D is the stack pointer. Reserve all aliases. 150 Reserved.set(SystemZ::R15D); 151 Reserved.set(SystemZ::R15L); 152 Reserved.set(SystemZ::R15H); 153 Reserved.set(SystemZ::R14Q); 154 155 // A0 and A1 hold the thread pointer. 156 Reserved.set(SystemZ::A0); 157 Reserved.set(SystemZ::A1); 158 159 return Reserved; 160 } 161 162 void 163 SystemZRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator MI, 164 int SPAdj, unsigned FIOperandNum, 165 RegScavenger *RS) const { 166 assert(SPAdj == 0 && "Outgoing arguments should be part of the frame"); 167 168 MachineBasicBlock &MBB = *MI->getParent(); 169 MachineFunction &MF = *MBB.getParent(); 170 auto *TII = 171 static_cast<const SystemZInstrInfo *>(MF.getSubtarget().getInstrInfo()); 172 const SystemZFrameLowering *TFI = getFrameLowering(MF); 173 DebugLoc DL = MI->getDebugLoc(); 174 175 // Decompose the frame index into a base and offset. 176 int FrameIndex = MI->getOperand(FIOperandNum).getIndex(); 177 unsigned BasePtr; 178 int64_t Offset = (TFI->getFrameIndexReference(MF, FrameIndex, BasePtr) + 179 MI->getOperand(FIOperandNum + 1).getImm()); 180 181 // Special handling of dbg_value instructions. 182 if (MI->isDebugValue()) { 183 MI->getOperand(FIOperandNum).ChangeToRegister(BasePtr, /*isDef*/ false); 184 MI->getOperand(FIOperandNum + 1).ChangeToImmediate(Offset); 185 return; 186 } 187 188 // See if the offset is in range, or if an equivalent instruction that 189 // accepts the offset exists. 190 unsigned Opcode = MI->getOpcode(); 191 unsigned OpcodeForOffset = TII->getOpcodeForOffset(Opcode, Offset); 192 if (OpcodeForOffset) { 193 if (OpcodeForOffset == SystemZ::LE && 194 MF.getSubtarget<SystemZSubtarget>().hasVector()) { 195 // If LE is ok for offset, use LDE instead on z13. 196 OpcodeForOffset = SystemZ::LDE32; 197 } 198 MI->getOperand(FIOperandNum).ChangeToRegister(BasePtr, false); 199 } 200 else { 201 // Create an anchor point that is in range. Start at 0xffff so that 202 // can use LLILH to load the immediate. 203 int64_t OldOffset = Offset; 204 int64_t Mask = 0xffff; 205 do { 206 Offset = OldOffset & Mask; 207 OpcodeForOffset = TII->getOpcodeForOffset(Opcode, Offset); 208 Mask >>= 1; 209 assert(Mask && "One offset must be OK"); 210 } while (!OpcodeForOffset); 211 212 unsigned ScratchReg = 213 MF.getRegInfo().createVirtualRegister(&SystemZ::ADDR64BitRegClass); 214 int64_t HighOffset = OldOffset - Offset; 215 216 if (MI->getDesc().TSFlags & SystemZII::HasIndex 217 && MI->getOperand(FIOperandNum + 2).getReg() == 0) { 218 // Load the offset into the scratch register and use it as an index. 219 // The scratch register then dies here. 220 TII->loadImmediate(MBB, MI, ScratchReg, HighOffset); 221 MI->getOperand(FIOperandNum).ChangeToRegister(BasePtr, false); 222 MI->getOperand(FIOperandNum + 2).ChangeToRegister(ScratchReg, 223 false, false, true); 224 } else { 225 // Load the anchor address into a scratch register. 226 unsigned LAOpcode = TII->getOpcodeForOffset(SystemZ::LA, HighOffset); 227 if (LAOpcode) 228 BuildMI(MBB, MI, DL, TII->get(LAOpcode),ScratchReg) 229 .addReg(BasePtr).addImm(HighOffset).addReg(0); 230 else { 231 // Load the high offset into the scratch register and use it as 232 // an index. 233 TII->loadImmediate(MBB, MI, ScratchReg, HighOffset); 234 BuildMI(MBB, MI, DL, TII->get(SystemZ::AGR),ScratchReg) 235 .addReg(ScratchReg, RegState::Kill).addReg(BasePtr); 236 } 237 238 // Use the scratch register as the base. It then dies here. 239 MI->getOperand(FIOperandNum).ChangeToRegister(ScratchReg, 240 false, false, true); 241 } 242 } 243 MI->setDesc(TII->get(OpcodeForOffset)); 244 MI->getOperand(FIOperandNum + 1).ChangeToImmediate(Offset); 245 } 246 247 bool SystemZRegisterInfo::shouldCoalesce(MachineInstr *MI, 248 const TargetRegisterClass *SrcRC, 249 unsigned SubReg, 250 const TargetRegisterClass *DstRC, 251 unsigned DstSubReg, 252 const TargetRegisterClass *NewRC, 253 LiveIntervals &LIS) const { 254 assert (MI->isCopy() && "Only expecting COPY instructions"); 255 256 // Coalesce anything which is not a COPY involving a subreg to/from GR128. 257 if (!(NewRC->hasSuperClassEq(&SystemZ::GR128BitRegClass) && 258 (getRegSizeInBits(*SrcRC) <= 64 || getRegSizeInBits(*DstRC) <= 64))) 259 return true; 260 261 // Allow coalescing of a GR128 subreg COPY only if the live ranges are small 262 // and local to one MBB with not too much interferring registers. Otherwise 263 // regalloc may run out of registers. 264 265 unsigned WideOpNo = (getRegSizeInBits(*SrcRC) == 128 ? 1 : 0); 266 unsigned GR128Reg = MI->getOperand(WideOpNo).getReg(); 267 unsigned GRNarReg = MI->getOperand((WideOpNo == 1) ? 0 : 1).getReg(); 268 LiveInterval &IntGR128 = LIS.getInterval(GR128Reg); 269 LiveInterval &IntGRNar = LIS.getInterval(GRNarReg); 270 271 // Check that the two virtual registers are local to MBB. 272 MachineBasicBlock *MBB = MI->getParent(); 273 if (LIS.isLiveInToMBB(IntGR128, MBB) || LIS.isLiveOutOfMBB(IntGR128, MBB) || 274 LIS.isLiveInToMBB(IntGRNar, MBB) || LIS.isLiveOutOfMBB(IntGRNar, MBB)) 275 return false; 276 277 // Find the first and last MIs of the registers. 278 MachineInstr *FirstMI = nullptr, *LastMI = nullptr; 279 if (WideOpNo == 1) { 280 FirstMI = LIS.getInstructionFromIndex(IntGR128.beginIndex()); 281 LastMI = LIS.getInstructionFromIndex(IntGRNar.endIndex()); 282 } else { 283 FirstMI = LIS.getInstructionFromIndex(IntGRNar.beginIndex()); 284 LastMI = LIS.getInstructionFromIndex(IntGR128.endIndex()); 285 } 286 assert (FirstMI && LastMI && "No instruction from index?"); 287 288 // Check if coalescing seems safe by finding the set of clobbered physreg 289 // pairs in the region. 290 BitVector PhysClobbered(getNumRegs()); 291 MachineBasicBlock::iterator MII = FirstMI, MEE = LastMI; 292 MEE++; 293 for (; MII != MEE; ++MII) { 294 for (const MachineOperand &MO : MII->operands()) 295 if (MO.isReg() && isPhysicalRegister(MO.getReg())) { 296 for (MCSuperRegIterator SI(MO.getReg(), this, true/*IncludeSelf*/); 297 SI.isValid(); ++SI) 298 if (NewRC->contains(*SI)) { 299 PhysClobbered.set(*SI); 300 break; 301 } 302 } 303 } 304 305 // Demand an arbitrary margin of free regs. 306 unsigned const DemandedFreeGR128 = 3; 307 if (PhysClobbered.count() > (NewRC->getNumRegs() - DemandedFreeGR128)) 308 return false; 309 310 return true; 311 } 312 313 unsigned 314 SystemZRegisterInfo::getFrameRegister(const MachineFunction &MF) const { 315 const SystemZFrameLowering *TFI = getFrameLowering(MF); 316 return TFI->hasFP(MF) ? SystemZ::R11D : SystemZ::R15D; 317 } 318 319 const TargetRegisterClass * 320 SystemZRegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const { 321 if (RC == &SystemZ::CCRRegClass) 322 return &SystemZ::GR32BitRegClass; 323 return RC; 324 } 325 326