1//===-- SystemZOperands.td - SystemZ instruction operands ----*- tblgen-*--===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10//===----------------------------------------------------------------------===//
11// Class definitions
12//===----------------------------------------------------------------------===//
13
14class ImmediateAsmOperand<string name>
15  : AsmOperandClass {
16  let Name = name;
17  let RenderMethod = "addImmOperands";
18}
19class ImmediateTLSAsmOperand<string name>
20  : AsmOperandClass {
21  let Name = name;
22  let RenderMethod = "addImmTLSOperands";
23}
24
25// Constructs both a DAG pattern and instruction operand for an immediate
26// of type VT.  PRED returns true if a node is acceptable and XFORM returns
27// the operand value associated with the node.  ASMOP is the name of the
28// associated asm operand, and also forms the basis of the asm print method.
29class Immediate<ValueType vt, code pred, SDNodeXForm xform, string asmop>
30  : PatLeaf<(vt imm), pred, xform>, Operand<vt> {
31  let PrintMethod = "print"##asmop##"Operand";
32  let DecoderMethod = "decode"##asmop##"Operand";
33  let ParserMatchClass = !cast<AsmOperandClass>(asmop);
34}
35
36// Constructs an asm operand for a PC-relative address.  SIZE says how
37// many bits there are.
38class PCRelAsmOperand<string size> : ImmediateAsmOperand<"PCRel"##size> {
39  let PredicateMethod = "isImm";
40  let ParserMethod = "parsePCRel"##size;
41}
42class PCRelTLSAsmOperand<string size>
43  : ImmediateTLSAsmOperand<"PCRelTLS"##size> {
44  let PredicateMethod = "isImmTLS";
45  let ParserMethod = "parsePCRelTLS"##size;
46}
47
48// Constructs an operand for a PC-relative address with address type VT.
49// ASMOP is the associated asm operand.
50class PCRelOperand<ValueType vt, AsmOperandClass asmop> : Operand<vt> {
51  let PrintMethod = "printPCRelOperand";
52  let ParserMatchClass = asmop;
53}
54class PCRelTLSOperand<ValueType vt, AsmOperandClass asmop> : Operand<vt> {
55  let PrintMethod = "printPCRelTLSOperand";
56  let ParserMatchClass = asmop;
57}
58
59// Constructs both a DAG pattern and instruction operand for a PC-relative
60// address with address size VT.  SELF is the name of the operand and
61// ASMOP is the associated asm operand.
62class PCRelAddress<ValueType vt, string self, AsmOperandClass asmop>
63  : ComplexPattern<vt, 1, "selectPCRelAddress",
64                   [z_pcrel_wrapper, z_pcrel_offset]>,
65    PCRelOperand<vt, asmop> {
66  let MIOperandInfo = (ops !cast<Operand>(self));
67}
68
69// Constructs an AsmOperandClass for addressing mode FORMAT, treating the
70// registers as having BITSIZE bits and displacements as having DISPSIZE bits.
71// LENGTH is "LenN" for addresses with an N-bit length field, otherwise it
72// is "".
73class AddressAsmOperand<string format, string bitsize, string dispsize,
74                        string length = "">
75  : AsmOperandClass {
76  let Name = format##bitsize##"Disp"##dispsize##length;
77  let ParserMethod = "parse"##format##bitsize;
78  let RenderMethod = "add"##format##"Operands";
79}
80
81// Constructs an instruction operand for an addressing mode.  FORMAT,
82// BITSIZE, DISPSIZE and LENGTH are the parameters to an associated
83// AddressAsmOperand.  OPERANDS is a list of individual operands
84// (base register, displacement, etc.).
85class AddressOperand<string bitsize, string dispsize, string length,
86                     string format, dag operands>
87  : Operand<!cast<ValueType>("i"##bitsize)> {
88  let PrintMethod = "print"##format##"Operand";
89  let EncoderMethod = "get"##format##dispsize##length##"Encoding";
90  let DecoderMethod =
91    "decode"##format##bitsize##"Disp"##dispsize##length##"Operand";
92  let MIOperandInfo = operands;
93  let ParserMatchClass =
94    !cast<AddressAsmOperand>(format##bitsize##"Disp"##dispsize##length);
95}
96
97// Constructs both a DAG pattern and instruction operand for an addressing mode.
98// FORMAT, BITSIZE, DISPSIZE and LENGTH are the parameters to an associated
99// AddressAsmOperand.  OPERANDS is a list of NUMOPS individual operands
100// (base register, displacement, etc.).  SELTYPE is the type of the memory
101// operand for selection purposes; sometimes we want different selection
102// choices for the same underlying addressing mode.  SUFFIX is similarly
103// a suffix appended to the displacement for selection purposes;
104// e.g. we want to reject small 20-bit displacements if a 12-bit form
105// also exists, but we want to accept them otherwise.
106class AddressingMode<string seltype, string bitsize, string dispsize,
107                     string suffix, string length, int numops, string format,
108                     dag operands>
109  : ComplexPattern<!cast<ValueType>("i"##bitsize), numops,
110                   "select"##seltype##dispsize##suffix##length,
111                   [add, sub, or, frameindex, z_adjdynalloc]>,
112    AddressOperand<bitsize, dispsize, length, format, operands>;
113
114// An addressing mode with a base and displacement but no index.
115class BDMode<string type, string bitsize, string dispsize, string suffix>
116  : AddressingMode<type, bitsize, dispsize, suffix, "", 2, "BDAddr",
117                   (ops !cast<RegisterOperand>("ADDR"##bitsize),
118                        !cast<Operand>("disp"##dispsize##"imm"##bitsize))>;
119
120// An addressing mode with a base, displacement and index.
121class BDXMode<string type, string bitsize, string dispsize, string suffix>
122  : AddressingMode<type, bitsize, dispsize, suffix, "", 3, "BDXAddr",
123                   (ops !cast<RegisterOperand>("ADDR"##bitsize),
124                        !cast<Operand>("disp"##dispsize##"imm"##bitsize),
125                        !cast<RegisterOperand>("ADDR"##bitsize))>;
126
127// A BDMode paired with an immediate length operand of LENSIZE bits.
128class BDLMode<string type, string bitsize, string dispsize, string suffix,
129              string lensize>
130  : AddressingMode<type, bitsize, dispsize, suffix, "Len"##lensize, 3,
131                   "BDLAddr",
132                   (ops !cast<RegisterOperand>("ADDR"##bitsize),
133                        !cast<Operand>("disp"##dispsize##"imm"##bitsize),
134                        !cast<Operand>("imm"##bitsize))>;
135
136// A BDMode paired with a register length operand.
137class BDRMode<string type, string bitsize, string dispsize, string suffix>
138  : AddressingMode<type, bitsize, dispsize, suffix, "", 3, "BDRAddr",
139                   (ops !cast<RegisterOperand>("ADDR"##bitsize),
140                        !cast<Operand>("disp"##dispsize##"imm"##bitsize),
141                        !cast<RegisterOperand>("GR"##bitsize))>;
142
143// An addressing mode with a base, displacement and a vector index.
144class BDVMode<string bitsize, string dispsize>
145  : AddressOperand<bitsize, dispsize, "", "BDVAddr",
146                   (ops !cast<RegisterOperand>("ADDR"##bitsize),
147                        !cast<Operand>("disp"##dispsize##"imm"##bitsize),
148                        !cast<RegisterOperand>("VR128"))>;
149
150//===----------------------------------------------------------------------===//
151// Extracting immediate operands from nodes
152// These all create MVT::i64 nodes to ensure the value is not sign-extended
153// when converted from an SDNode to a MachineOperand later on.
154//===----------------------------------------------------------------------===//
155
156// Bits 0-15 (counting from the lsb).
157def LL16 : SDNodeXForm<imm, [{
158  uint64_t Value = N->getZExtValue() & 0x000000000000FFFFULL;
159  return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
160}]>;
161
162// Bits 16-31 (counting from the lsb).
163def LH16 : SDNodeXForm<imm, [{
164  uint64_t Value = (N->getZExtValue() & 0x00000000FFFF0000ULL) >> 16;
165  return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
166}]>;
167
168// Bits 32-47 (counting from the lsb).
169def HL16 : SDNodeXForm<imm, [{
170  uint64_t Value = (N->getZExtValue() & 0x0000FFFF00000000ULL) >> 32;
171  return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
172}]>;
173
174// Bits 48-63 (counting from the lsb).
175def HH16 : SDNodeXForm<imm, [{
176  uint64_t Value = (N->getZExtValue() & 0xFFFF000000000000ULL) >> 48;
177  return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
178}]>;
179
180// Low 32 bits.
181def LF32 : SDNodeXForm<imm, [{
182  uint64_t Value = N->getZExtValue() & 0x00000000FFFFFFFFULL;
183  return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
184}]>;
185
186// High 32 bits.
187def HF32 : SDNodeXForm<imm, [{
188  uint64_t Value = N->getZExtValue() >> 32;
189  return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
190}]>;
191
192// Truncate an immediate to a 8-bit signed quantity.
193def SIMM8 : SDNodeXForm<imm, [{
194  return CurDAG->getTargetConstant(int8_t(N->getZExtValue()), SDLoc(N),
195                                   MVT::i64);
196}]>;
197
198// Truncate an immediate to a 8-bit unsigned quantity.
199def UIMM8 : SDNodeXForm<imm, [{
200  return CurDAG->getTargetConstant(uint8_t(N->getZExtValue()), SDLoc(N),
201                                   MVT::i64);
202}]>;
203
204// Truncate an immediate to a 8-bit unsigned quantity and mask off low bit.
205def UIMM8EVEN : SDNodeXForm<imm, [{
206  return CurDAG->getTargetConstant(N->getZExtValue() & 0xfe, SDLoc(N),
207                                   MVT::i64);
208}]>;
209
210// Truncate an immediate to a 12-bit unsigned quantity.
211def UIMM12 : SDNodeXForm<imm, [{
212  return CurDAG->getTargetConstant(N->getZExtValue() & 0xfff, SDLoc(N),
213                                   MVT::i64);
214}]>;
215
216// Truncate an immediate to a 16-bit signed quantity.
217def SIMM16 : SDNodeXForm<imm, [{
218  return CurDAG->getTargetConstant(int16_t(N->getZExtValue()), SDLoc(N),
219                                   MVT::i64);
220}]>;
221
222// Truncate an immediate to a 16-bit unsigned quantity.
223def UIMM16 : SDNodeXForm<imm, [{
224  return CurDAG->getTargetConstant(uint16_t(N->getZExtValue()), SDLoc(N),
225                                   MVT::i64);
226}]>;
227
228// Truncate an immediate to a 32-bit signed quantity.
229def SIMM32 : SDNodeXForm<imm, [{
230  return CurDAG->getTargetConstant(int32_t(N->getZExtValue()), SDLoc(N),
231                                   MVT::i64);
232}]>;
233
234// Truncate an immediate to a 32-bit unsigned quantity.
235def UIMM32 : SDNodeXForm<imm, [{
236  return CurDAG->getTargetConstant(uint32_t(N->getZExtValue()), SDLoc(N),
237                                   MVT::i64);
238}]>;
239
240// Truncate an immediate to a 48-bit unsigned quantity.
241def UIMM48 : SDNodeXForm<imm, [{
242  return CurDAG->getTargetConstant(uint64_t(N->getZExtValue()) & 0xffffffffffff,
243                                   SDLoc(N), MVT::i64);
244}]>;
245
246// Negate and then truncate an immediate to a 32-bit unsigned quantity.
247def NEGIMM32 : SDNodeXForm<imm, [{
248  return CurDAG->getTargetConstant(uint32_t(-N->getZExtValue()), SDLoc(N),
249                                   MVT::i64);
250}]>;
251
252//===----------------------------------------------------------------------===//
253// Immediate asm operands.
254//===----------------------------------------------------------------------===//
255
256def U1Imm  : ImmediateAsmOperand<"U1Imm">;
257def U2Imm  : ImmediateAsmOperand<"U2Imm">;
258def U3Imm  : ImmediateAsmOperand<"U3Imm">;
259def U4Imm  : ImmediateAsmOperand<"U4Imm">;
260def U6Imm  : ImmediateAsmOperand<"U6Imm">;
261def S8Imm  : ImmediateAsmOperand<"S8Imm">;
262def U8Imm  : ImmediateAsmOperand<"U8Imm">;
263def U12Imm : ImmediateAsmOperand<"U12Imm">;
264def S16Imm : ImmediateAsmOperand<"S16Imm">;
265def U16Imm : ImmediateAsmOperand<"U16Imm">;
266def S32Imm : ImmediateAsmOperand<"S32Imm">;
267def U32Imm : ImmediateAsmOperand<"U32Imm">;
268def U48Imm : ImmediateAsmOperand<"U48Imm">;
269
270//===----------------------------------------------------------------------===//
271// i32 immediates
272//===----------------------------------------------------------------------===//
273
274// Immediates for the lower and upper 16 bits of an i32, with the other
275// bits of the i32 being zero.
276def imm32ll16 : Immediate<i32, [{
277  return SystemZ::isImmLL(N->getZExtValue());
278}], LL16, "U16Imm">;
279
280def imm32lh16 : Immediate<i32, [{
281  return SystemZ::isImmLH(N->getZExtValue());
282}], LH16, "U16Imm">;
283
284// Immediates for the lower and upper 16 bits of an i32, with the other
285// bits of the i32 being one.
286def imm32ll16c : Immediate<i32, [{
287  return SystemZ::isImmLL(uint32_t(~N->getZExtValue()));
288}], LL16, "U16Imm">;
289
290def imm32lh16c : Immediate<i32, [{
291  return SystemZ::isImmLH(uint32_t(~N->getZExtValue()));
292}], LH16, "U16Imm">;
293
294// Short immediates
295def imm32zx1 : Immediate<i32, [{
296  return isUInt<1>(N->getZExtValue());
297}], NOOP_SDNodeXForm, "U1Imm">;
298
299def imm32zx2 : Immediate<i32, [{
300  return isUInt<2>(N->getZExtValue());
301}], NOOP_SDNodeXForm, "U2Imm">;
302
303def imm32zx3 : Immediate<i32, [{
304  return isUInt<3>(N->getZExtValue());
305}], NOOP_SDNodeXForm, "U3Imm">;
306
307def imm32zx4 : Immediate<i32, [{
308  return isUInt<4>(N->getZExtValue());
309}], NOOP_SDNodeXForm, "U4Imm">;
310
311// Note: this enforces an even value during code generation only.
312// When used from the assembler, any 4-bit value is allowed.
313def imm32zx4even : Immediate<i32, [{
314  return isUInt<4>(N->getZExtValue());
315}], UIMM8EVEN, "U4Imm">;
316
317def imm32zx6 : Immediate<i32, [{
318  return isUInt<6>(N->getZExtValue());
319}], NOOP_SDNodeXForm, "U6Imm">;
320
321def imm32sx8 : Immediate<i32, [{
322  return isInt<8>(N->getSExtValue());
323}], SIMM8, "S8Imm">;
324
325def imm32zx8 : Immediate<i32, [{
326  return isUInt<8>(N->getZExtValue());
327}], UIMM8, "U8Imm">;
328
329def imm32zx8trunc : Immediate<i32, [{}], UIMM8, "U8Imm">;
330
331def imm32zx12 : Immediate<i32, [{
332  return isUInt<12>(N->getZExtValue());
333}], UIMM12, "U12Imm">;
334
335def imm32sx16 : Immediate<i32, [{
336  return isInt<16>(N->getSExtValue());
337}], SIMM16, "S16Imm">;
338
339def imm32zx16 : Immediate<i32, [{
340  return isUInt<16>(N->getZExtValue());
341}], UIMM16, "U16Imm">;
342
343def imm32sx16trunc : Immediate<i32, [{}], SIMM16, "S16Imm">;
344
345// Full 32-bit immediates.  we need both signed and unsigned versions
346// because the assembler is picky.  E.g. AFI requires signed operands
347// while NILF requires unsigned ones.
348def simm32 : Immediate<i32, [{}], SIMM32, "S32Imm">;
349def uimm32 : Immediate<i32, [{}], UIMM32, "U32Imm">;
350
351def imm32 : ImmLeaf<i32, [{}]>;
352
353//===----------------------------------------------------------------------===//
354// 64-bit immediates
355//===----------------------------------------------------------------------===//
356
357// Immediates for 16-bit chunks of an i64, with the other bits of the
358// i32 being zero.
359def imm64ll16 : Immediate<i64, [{
360  return SystemZ::isImmLL(N->getZExtValue());
361}], LL16, "U16Imm">;
362
363def imm64lh16 : Immediate<i64, [{
364  return SystemZ::isImmLH(N->getZExtValue());
365}], LH16, "U16Imm">;
366
367def imm64hl16 : Immediate<i64, [{
368  return SystemZ::isImmHL(N->getZExtValue());
369}], HL16, "U16Imm">;
370
371def imm64hh16 : Immediate<i64, [{
372  return SystemZ::isImmHH(N->getZExtValue());
373}], HH16, "U16Imm">;
374
375// Immediates for 16-bit chunks of an i64, with the other bits of the
376// i32 being one.
377def imm64ll16c : Immediate<i64, [{
378  return SystemZ::isImmLL(uint64_t(~N->getZExtValue()));
379}], LL16, "U16Imm">;
380
381def imm64lh16c : Immediate<i64, [{
382  return SystemZ::isImmLH(uint64_t(~N->getZExtValue()));
383}], LH16, "U16Imm">;
384
385def imm64hl16c : Immediate<i64, [{
386  return SystemZ::isImmHL(uint64_t(~N->getZExtValue()));
387}], HL16, "U16Imm">;
388
389def imm64hh16c : Immediate<i64, [{
390  return SystemZ::isImmHH(uint64_t(~N->getZExtValue()));
391}], HH16, "U16Imm">;
392
393// Immediates for the lower and upper 32 bits of an i64, with the other
394// bits of the i32 being zero.
395def imm64lf32 : Immediate<i64, [{
396  return SystemZ::isImmLF(N->getZExtValue());
397}], LF32, "U32Imm">;
398
399def imm64hf32 : Immediate<i64, [{
400  return SystemZ::isImmHF(N->getZExtValue());
401}], HF32, "U32Imm">;
402
403// Immediates for the lower and upper 32 bits of an i64, with the other
404// bits of the i32 being one.
405def imm64lf32c : Immediate<i64, [{
406  return SystemZ::isImmLF(uint64_t(~N->getZExtValue()));
407}], LF32, "U32Imm">;
408
409def imm64hf32c : Immediate<i64, [{
410  return SystemZ::isImmHF(uint64_t(~N->getZExtValue()));
411}], HF32, "U32Imm">;
412
413// Short immediates.
414def imm64sx8 : Immediate<i64, [{
415  return isInt<8>(N->getSExtValue());
416}], SIMM8, "S8Imm">;
417
418def imm64zx8 : Immediate<i64, [{
419  return isUInt<8>(N->getSExtValue());
420}], UIMM8, "U8Imm">;
421
422def imm64sx16 : Immediate<i64, [{
423  return isInt<16>(N->getSExtValue());
424}], SIMM16, "S16Imm">;
425
426def imm64zx16 : Immediate<i64, [{
427  return isUInt<16>(N->getZExtValue());
428}], UIMM16, "U16Imm">;
429
430def imm64sx32 : Immediate<i64, [{
431  return isInt<32>(N->getSExtValue());
432}], SIMM32, "S32Imm">;
433
434def imm64zx32 : Immediate<i64, [{
435  return isUInt<32>(N->getZExtValue());
436}], UIMM32, "U32Imm">;
437
438def imm64zx32n : Immediate<i64, [{
439  return isUInt<32>(-N->getSExtValue());
440}], NEGIMM32, "U32Imm">;
441
442def imm64zx48 : Immediate<i64, [{
443  return isUInt<64>(N->getZExtValue());
444}], UIMM48, "U48Imm">;
445
446def imm64 : ImmLeaf<i64, [{}]>, Operand<i64>;
447
448//===----------------------------------------------------------------------===//
449// Floating-point immediates
450//===----------------------------------------------------------------------===//
451
452// Floating-point zero.
453def fpimm0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(+0.0); }]>;
454
455// Floating point negative zero.
456def fpimmneg0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(-0.0); }]>;
457
458//===----------------------------------------------------------------------===//
459// Symbolic address operands
460//===----------------------------------------------------------------------===//
461
462// PC-relative asm operands.
463def PCRel12 : PCRelAsmOperand<"12">;
464def PCRel16 : PCRelAsmOperand<"16">;
465def PCRel24 : PCRelAsmOperand<"24">;
466def PCRel32 : PCRelAsmOperand<"32">;
467def PCRelTLS16 : PCRelTLSAsmOperand<"16">;
468def PCRelTLS32 : PCRelTLSAsmOperand<"32">;
469
470// PC-relative offsets of a basic block.  The offset is sign-extended
471// and multiplied by 2.
472def brtarget16 : PCRelOperand<OtherVT, PCRel16> {
473  let EncoderMethod = "getPC16DBLEncoding";
474  let DecoderMethod = "decodePC16DBLBranchOperand";
475}
476def brtarget32 : PCRelOperand<OtherVT, PCRel32> {
477  let EncoderMethod = "getPC32DBLEncoding";
478  let DecoderMethod = "decodePC32DBLBranchOperand";
479}
480
481// Variants of brtarget for use with branch prediction preload.
482def brtarget12bpp : PCRelOperand<OtherVT, PCRel12> {
483  let EncoderMethod = "getPC12DBLBPPEncoding";
484  let DecoderMethod = "decodePC12DBLBranchOperand";
485}
486def brtarget16bpp : PCRelOperand<OtherVT, PCRel16> {
487  let EncoderMethod = "getPC16DBLBPPEncoding";
488  let DecoderMethod = "decodePC16DBLBranchOperand";
489}
490def brtarget24bpp : PCRelOperand<OtherVT, PCRel24> {
491  let EncoderMethod = "getPC24DBLBPPEncoding";
492  let DecoderMethod = "decodePC24DBLBranchOperand";
493}
494
495// Variants of brtarget16/32 with an optional additional TLS symbol.
496// These are used to annotate calls to __tls_get_offset.
497def tlssym : Operand<i64> { }
498def brtarget16tls : PCRelTLSOperand<OtherVT, PCRelTLS16> {
499  let MIOperandInfo = (ops brtarget16:$func, tlssym:$sym);
500  let EncoderMethod = "getPC16DBLTLSEncoding";
501  let DecoderMethod = "decodePC16DBLBranchOperand";
502}
503def brtarget32tls : PCRelTLSOperand<OtherVT, PCRelTLS32> {
504  let MIOperandInfo = (ops brtarget32:$func, tlssym:$sym);
505  let EncoderMethod = "getPC32DBLTLSEncoding";
506  let DecoderMethod = "decodePC32DBLBranchOperand";
507}
508
509// A PC-relative offset of a global value.  The offset is sign-extended
510// and multiplied by 2.
511def pcrel32 : PCRelAddress<i64, "pcrel32", PCRel32> {
512  let EncoderMethod = "getPC32DBLEncoding";
513  let DecoderMethod = "decodePC32DBLOperand";
514}
515
516//===----------------------------------------------------------------------===//
517// Addressing modes
518//===----------------------------------------------------------------------===//
519
520// 12-bit displacement operands.
521def disp12imm32 : Operand<i32>;
522def disp12imm64 : Operand<i64>;
523
524// 20-bit displacement operands.
525def disp20imm32 : Operand<i32>;
526def disp20imm64 : Operand<i64>;
527
528def BDAddr32Disp12      : AddressAsmOperand<"BDAddr",   "32", "12">;
529def BDAddr32Disp20      : AddressAsmOperand<"BDAddr",   "32", "20">;
530def BDAddr64Disp12      : AddressAsmOperand<"BDAddr",   "64", "12">;
531def BDAddr64Disp20      : AddressAsmOperand<"BDAddr",   "64", "20">;
532def BDXAddr64Disp12     : AddressAsmOperand<"BDXAddr",  "64", "12">;
533def BDXAddr64Disp20     : AddressAsmOperand<"BDXAddr",  "64", "20">;
534def BDLAddr64Disp12Len4 : AddressAsmOperand<"BDLAddr",  "64", "12", "Len4">;
535def BDLAddr64Disp12Len8 : AddressAsmOperand<"BDLAddr",  "64", "12", "Len8">;
536def BDRAddr64Disp12     : AddressAsmOperand<"BDRAddr",  "64", "12">;
537def BDVAddr64Disp12     : AddressAsmOperand<"BDVAddr",  "64", "12">;
538
539// DAG patterns and operands for addressing modes.  Each mode has
540// the form <type><range><group>[<len>] where:
541//
542// <type> is one of:
543//   shift    : base + displacement (32-bit)
544//   bdaddr   : base + displacement
545//   mviaddr  : like bdaddr, but reject cases with a natural index
546//   bdxaddr  : base + displacement + index
547//   laaddr   : like bdxaddr, but used for Load Address operations
548//   dynalloc : base + displacement + index + ADJDYNALLOC
549//   bdladdr  : base + displacement with a length field
550//   bdvaddr  : base + displacement with a vector index
551//
552// <range> is one of:
553//   12       : the displacement is an unsigned 12-bit value
554//   20       : the displacement is a signed 20-bit value
555//
556// <group> is one of:
557//   pair     : used when there is an equivalent instruction with the opposite
558//              range value (12 or 20)
559//   only     : used when there is no equivalent instruction with the opposite
560//              range value
561//
562// <len> is one of:
563//
564//   <empty>  : there is no length field
565//   len8     : the length field is 8 bits, with a range of [1, 0x100].
566def shift12only       : BDMode <"BDAddr",   "32", "12", "Only">;
567def shift20only       : BDMode <"BDAddr",   "32", "20", "Only">;
568def bdaddr12only      : BDMode <"BDAddr",   "64", "12", "Only">;
569def bdaddr12pair      : BDMode <"BDAddr",   "64", "12", "Pair">;
570def bdaddr20only      : BDMode <"BDAddr",   "64", "20", "Only">;
571def bdaddr20pair      : BDMode <"BDAddr",   "64", "20", "Pair">;
572def mviaddr12pair     : BDMode <"MVIAddr",  "64", "12", "Pair">;
573def mviaddr20pair     : BDMode <"MVIAddr",  "64", "20", "Pair">;
574def bdxaddr12only     : BDXMode<"BDXAddr",  "64", "12", "Only">;
575def bdxaddr12pair     : BDXMode<"BDXAddr",  "64", "12", "Pair">;
576def bdxaddr20only     : BDXMode<"BDXAddr",  "64", "20", "Only">;
577def bdxaddr20only128  : BDXMode<"BDXAddr",  "64", "20", "Only128">;
578def bdxaddr20pair     : BDXMode<"BDXAddr",  "64", "20", "Pair">;
579def dynalloc12only    : BDXMode<"DynAlloc", "64", "12", "Only">;
580def laaddr12pair      : BDXMode<"LAAddr",   "64", "12", "Pair">;
581def laaddr20pair      : BDXMode<"LAAddr",   "64", "20", "Pair">;
582def bdladdr12onlylen4 : BDLMode<"BDLAddr",  "64", "12", "Only", "4">;
583def bdladdr12onlylen8 : BDLMode<"BDLAddr",  "64", "12", "Only", "8">;
584def bdraddr12only     : BDRMode<"BDRAddr",  "64", "12", "Only">;
585def bdvaddr12only     : BDVMode<            "64", "12">;
586
587//===----------------------------------------------------------------------===//
588// Miscellaneous
589//===----------------------------------------------------------------------===//
590
591// A 4-bit condition-code mask.
592def cond4 : PatLeaf<(i32 imm), [{ return (N->getZExtValue() < 16); }]>,
593            Operand<i32> {
594  let PrintMethod = "printCond4Operand";
595}
596