1 //-- SystemZMachineScheduler.cpp - SystemZ Scheduler Interface -*- C++ -*---==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // -------------------------- Post RA scheduling ---------------------------- //
11 // SystemZPostRASchedStrategy is a scheduling strategy which is plugged into
12 // the MachineScheduler. It has a sorted Available set of SUs and a pickNode()
13 // implementation that looks to optimize decoder grouping and balance the
14 // usage of processor resources. Scheduler states are saved for the end
15 // region of each MBB, so that a successor block can learn from it.
16 //===----------------------------------------------------------------------===//
17 
18 #include "SystemZMachineScheduler.h"
19 
20 using namespace llvm;
21 
22 #define DEBUG_TYPE "machine-scheduler"
23 
24 #ifndef NDEBUG
25 // Print the set of SUs
26 void SystemZPostRASchedStrategy::SUSet::
27 dump(SystemZHazardRecognizer &HazardRec) const {
28   dbgs() << "{";
29   for (auto &SU : *this) {
30     HazardRec.dumpSU(SU, dbgs());
31     if (SU != *rbegin())
32       dbgs() << ",  ";
33   }
34   dbgs() << "}\n";
35 }
36 #endif
37 
38 // Try to find a single predecessor that would be interesting for the
39 // scheduler in the top-most region of MBB.
40 static MachineBasicBlock *getSingleSchedPred(MachineBasicBlock *MBB,
41                                              const MachineLoop *Loop) {
42   MachineBasicBlock *PredMBB = nullptr;
43   if (MBB->pred_size() == 1)
44     PredMBB = *MBB->pred_begin();
45 
46   // The loop header has two predecessors, return the latch, but not for a
47   // single block loop.
48   if (MBB->pred_size() == 2 && Loop != nullptr && Loop->getHeader() == MBB) {
49     for (auto I = MBB->pred_begin(); I != MBB->pred_end(); ++I)
50       if (Loop->contains(*I))
51         PredMBB = (*I == MBB ? nullptr : *I);
52   }
53 
54   assert ((PredMBB == nullptr || !Loop || Loop->contains(PredMBB))
55           && "Loop MBB should not consider predecessor outside of loop.");
56 
57   return PredMBB;
58 }
59 
60 void SystemZPostRASchedStrategy::
61 advanceTo(MachineBasicBlock::iterator NextBegin) {
62   MachineBasicBlock::iterator LastEmittedMI = HazardRec->getLastEmittedMI();
63   MachineBasicBlock::iterator I =
64     ((LastEmittedMI != nullptr && LastEmittedMI->getParent() == MBB) ?
65      std::next(LastEmittedMI) : MBB->begin());
66 
67   for (; I != NextBegin; ++I) {
68     if (I->isPosition() || I->isDebugInstr())
69       continue;
70     HazardRec->emitInstruction(&*I);
71   }
72 }
73 
74 void SystemZPostRASchedStrategy::initialize(ScheduleDAGMI *dag) {
75   DEBUG(HazardRec->dumpState(););
76 }
77 
78 void SystemZPostRASchedStrategy::enterMBB(MachineBasicBlock *NextMBB) {
79   assert ((SchedStates.find(NextMBB) == SchedStates.end()) &&
80           "Entering MBB twice?");
81   DEBUG(dbgs() << "** Entering " << printMBBReference(*NextMBB));
82 
83   MBB = NextMBB;
84 
85   /// Create a HazardRec for MBB, save it in SchedStates and set HazardRec to
86   /// point to it.
87   HazardRec = SchedStates[MBB] = new SystemZHazardRecognizer(TII, &SchedModel);
88   DEBUG(const MachineLoop *Loop = MLI->getLoopFor(MBB);
89         if(Loop && Loop->getHeader() == MBB)
90           dbgs() << " (Loop header)";
91         dbgs() << ":\n";);
92 
93   // Try to take over the state from a single predecessor, if it has been
94   // scheduled. If this is not possible, we are done.
95   MachineBasicBlock *SinglePredMBB =
96     getSingleSchedPred(MBB, MLI->getLoopFor(MBB));
97   if (SinglePredMBB == nullptr ||
98       SchedStates.find(SinglePredMBB) == SchedStates.end())
99     return;
100 
101   DEBUG(dbgs() << "** Continued scheduling from "
102         << printMBBReference(*SinglePredMBB) << "\n";);
103 
104   HazardRec->copyState(SchedStates[SinglePredMBB]);
105   DEBUG(HazardRec->dumpState(););
106 
107   // Emit incoming terminator(s). Be optimistic and assume that branch
108   // prediction will generally do "the right thing".
109   for (MachineBasicBlock::iterator I = SinglePredMBB->getFirstTerminator();
110        I != SinglePredMBB->end(); I++) {
111     DEBUG(dbgs() << "** Emitting incoming branch: "; I->dump(););
112     bool TakenBranch = (I->isBranch() &&
113       (TII->getBranchInfo(*I).Target->isReg() || // Relative branch
114        TII->getBranchInfo(*I).Target->getMBB() == MBB));
115     HazardRec->emitInstruction(&*I, TakenBranch);
116     if (TakenBranch)
117       break;
118   }
119 }
120 
121 void SystemZPostRASchedStrategy::leaveMBB() {
122   DEBUG(dbgs() << "** Leaving " << printMBBReference(*MBB) << "\n";);
123 
124   // Advance to first terminator. The successor block will handle terminators
125   // dependent on CFG layout (T/NT branch etc).
126   advanceTo(MBB->getFirstTerminator());
127 }
128 
129 SystemZPostRASchedStrategy::
130 SystemZPostRASchedStrategy(const MachineSchedContext *C)
131   : MLI(C->MLI),
132     TII(static_cast<const SystemZInstrInfo *>
133         (C->MF->getSubtarget().getInstrInfo())),
134     MBB(nullptr), HazardRec(nullptr) {
135   const TargetSubtargetInfo *ST = &C->MF->getSubtarget();
136   SchedModel.init(ST);
137 }
138 
139 SystemZPostRASchedStrategy::~SystemZPostRASchedStrategy() {
140   // Delete hazard recognizers kept around for each MBB.
141   for (auto I : SchedStates) {
142     SystemZHazardRecognizer *hazrec = I.second;
143     delete hazrec;
144   }
145 }
146 
147 void SystemZPostRASchedStrategy::initPolicy(MachineBasicBlock::iterator Begin,
148                                             MachineBasicBlock::iterator End,
149                                             unsigned NumRegionInstrs) {
150   // Don't emit the terminators.
151   if (Begin->isTerminator())
152     return;
153 
154   // Emit any instructions before start of region.
155   advanceTo(Begin);
156 }
157 
158 // Pick the next node to schedule.
159 SUnit *SystemZPostRASchedStrategy::pickNode(bool &IsTopNode) {
160   // Only scheduling top-down.
161   IsTopNode = true;
162 
163   if (Available.empty())
164     return nullptr;
165 
166   // If only one choice, return it.
167   if (Available.size() == 1) {
168     DEBUG(dbgs() << "** Only one: ";
169           HazardRec->dumpSU(*Available.begin(), dbgs()); dbgs() << "\n";);
170     return *Available.begin();
171   }
172 
173   // All nodes that are possible to schedule are stored by in the
174   // Available set.
175   DEBUG(dbgs() << "** Available: "; Available.dump(*HazardRec););
176 
177   Candidate Best;
178   for (auto *SU : Available) {
179 
180     // SU is the next candidate to be compared against current Best.
181     Candidate c(SU, *HazardRec);
182 
183     // Remeber which SU is the best candidate.
184     if (Best.SU == nullptr || c < Best) {
185       Best = c;
186       DEBUG(dbgs() << "** Best so far: ";);
187     } else
188       DEBUG(dbgs() << "** Tried      : ";);
189     DEBUG(HazardRec->dumpSU(c.SU, dbgs());
190           c.dumpCosts();
191           dbgs() << " Height:" << c.SU->getHeight();
192           dbgs() << "\n";);
193 
194     // Once we know we have seen all SUs that affect grouping or use unbuffered
195     // resources, we can stop iterating if Best looks good.
196     if (!SU->isScheduleHigh && Best.noCost())
197       break;
198   }
199 
200   assert (Best.SU != nullptr);
201   return Best.SU;
202 }
203 
204 SystemZPostRASchedStrategy::Candidate::
205 Candidate(SUnit *SU_, SystemZHazardRecognizer &HazardRec) : Candidate() {
206   SU = SU_;
207 
208   // Check the grouping cost. For a node that must begin / end a
209   // group, it is positive if it would do so prematurely, or negative
210   // if it would fit naturally into the schedule.
211   GroupingCost = HazardRec.groupingCost(SU);
212 
213   // Check the resources cost for this SU.
214   ResourcesCost = HazardRec.resourcesCost(SU);
215 }
216 
217 bool SystemZPostRASchedStrategy::Candidate::
218 operator<(const Candidate &other) {
219 
220   // Check decoder grouping.
221   if (GroupingCost < other.GroupingCost)
222     return true;
223   if (GroupingCost > other.GroupingCost)
224     return false;
225 
226   // Compare the use of resources.
227   if (ResourcesCost < other.ResourcesCost)
228     return true;
229   if (ResourcesCost > other.ResourcesCost)
230     return false;
231 
232   // Higher SU is otherwise generally better.
233   if (SU->getHeight() > other.SU->getHeight())
234     return true;
235   if (SU->getHeight() < other.SU->getHeight())
236     return false;
237 
238   // If all same, fall back to original order.
239   if (SU->NodeNum < other.SU->NodeNum)
240     return true;
241 
242   return false;
243 }
244 
245 void SystemZPostRASchedStrategy::schedNode(SUnit *SU, bool IsTopNode) {
246   DEBUG(dbgs() << "** Scheduling SU(" << SU->NodeNum << ") ";
247         if (Available.size() == 1)
248           dbgs() << "(only one) ";
249         Candidate c(SU, *HazardRec);
250         c.dumpCosts();
251         dbgs() << "\n";);
252 
253   // Remove SU from Available set and update HazardRec.
254   Available.erase(SU);
255   HazardRec->EmitInstruction(SU);
256 }
257 
258 void SystemZPostRASchedStrategy::releaseTopNode(SUnit *SU) {
259   // Set isScheduleHigh flag on all SUs that we want to consider first in
260   // pickNode().
261   const MCSchedClassDesc *SC = HazardRec->getSchedClass(SU);
262   bool AffectsGrouping = (SC->isValid() && (SC->BeginGroup || SC->EndGroup));
263   SU->isScheduleHigh = (AffectsGrouping || SU->isUnbuffered);
264 
265   // Put all released SUs in the Available set.
266   Available.insert(SU);
267 }
268