1 //===-- SystemZLongBranch.cpp - Branch lengthening for SystemZ ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass makes sure that all branches are in range. There are several ways 11 // in which this could be done. One aggressive approach is to assume that all 12 // branches are in range and successively replace those that turn out not 13 // to be in range with a longer form (branch relaxation). A simple 14 // implementation is to continually walk through the function relaxing 15 // branches until no more changes are needed and a fixed point is reached. 16 // However, in the pathological worst case, this implementation is 17 // quadratic in the number of blocks; relaxing branch N can make branch N-1 18 // go out of range, which in turn can make branch N-2 go out of range, 19 // and so on. 20 // 21 // An alternative approach is to assume that all branches must be 22 // converted to their long forms, then reinstate the short forms of 23 // branches that, even under this pessimistic assumption, turn out to be 24 // in range (branch shortening). This too can be implemented as a function 25 // walk that is repeated until a fixed point is reached. In general, 26 // the result of shortening is not as good as that of relaxation, and 27 // shortening is also quadratic in the worst case; shortening branch N 28 // can bring branch N-1 in range of the short form, which in turn can do 29 // the same for branch N-2, and so on. The main advantage of shortening 30 // is that each walk through the function produces valid code, so it is 31 // possible to stop at any point after the first walk. The quadraticness 32 // could therefore be handled with a maximum pass count, although the 33 // question then becomes: what maximum count should be used? 34 // 35 // On SystemZ, long branches are only needed for functions bigger than 64k, 36 // which are relatively rare to begin with, and the long branch sequences 37 // are actually relatively cheap. It therefore doesn't seem worth spending 38 // much compilation time on the problem. Instead, the approach we take is: 39 // 40 // (1) Work out the address that each block would have if no branches 41 // need relaxing. Exit the pass early if all branches are in range 42 // according to this assumption. 43 // 44 // (2) Work out the address that each block would have if all branches 45 // need relaxing. 46 // 47 // (3) Walk through the block calculating the final address of each instruction 48 // and relaxing those that need to be relaxed. For backward branches, 49 // this check uses the final address of the target block, as calculated 50 // earlier in the walk. For forward branches, this check uses the 51 // address of the target block that was calculated in (2). Both checks 52 // give a conservatively-correct range. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #define DEBUG_TYPE "systemz-long-branch" 57 58 #include "SystemZTargetMachine.h" 59 #include "llvm/ADT/Statistic.h" 60 #include "llvm/CodeGen/MachineFunctionPass.h" 61 #include "llvm/CodeGen/MachineInstrBuilder.h" 62 #include "llvm/IR/Function.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/MathExtras.h" 65 #include "llvm/Target/TargetInstrInfo.h" 66 #include "llvm/Target/TargetMachine.h" 67 #include "llvm/Target/TargetRegisterInfo.h" 68 69 using namespace llvm; 70 71 STATISTIC(LongBranches, "Number of long branches."); 72 73 namespace { 74 typedef MachineBasicBlock::iterator Iter; 75 76 // Represents positional information about a basic block. 77 struct MBBInfo { 78 // The address that we currently assume the block has. 79 uint64_t Address; 80 81 // The size of the block in bytes, excluding terminators. 82 // This value never changes. 83 uint64_t Size; 84 85 // The minimum alignment of the block, as a log2 value. 86 // This value never changes. 87 unsigned Alignment; 88 89 // The number of terminators in this block. This value never changes. 90 unsigned NumTerminators; 91 92 MBBInfo() 93 : Address(0), Size(0), Alignment(0), NumTerminators(0) {} 94 }; 95 96 // Represents the state of a block terminator. 97 struct TerminatorInfo { 98 // If this terminator is a relaxable branch, this points to the branch 99 // instruction, otherwise it is null. 100 MachineInstr *Branch; 101 102 // The address that we currently assume the terminator has. 103 uint64_t Address; 104 105 // The current size of the terminator in bytes. 106 uint64_t Size; 107 108 // If Branch is nonnull, this is the number of the target block, 109 // otherwise it is unused. 110 unsigned TargetBlock; 111 112 // If Branch is nonnull, this is the length of the longest relaxed form, 113 // otherwise it is zero. 114 unsigned ExtraRelaxSize; 115 116 TerminatorInfo() : Branch(0), Size(0), TargetBlock(0), ExtraRelaxSize(0) {} 117 }; 118 119 // Used to keep track of the current position while iterating over the blocks. 120 struct BlockPosition { 121 // The address that we assume this position has. 122 uint64_t Address; 123 124 // The number of low bits in Address that are known to be the same 125 // as the runtime address. 126 unsigned KnownBits; 127 128 BlockPosition(unsigned InitialAlignment) 129 : Address(0), KnownBits(InitialAlignment) {} 130 }; 131 132 class SystemZLongBranch : public MachineFunctionPass { 133 public: 134 static char ID; 135 SystemZLongBranch(const SystemZTargetMachine &tm) 136 : MachineFunctionPass(ID), TII(0) {} 137 138 virtual const char *getPassName() const { 139 return "SystemZ Long Branch"; 140 } 141 142 bool runOnMachineFunction(MachineFunction &F); 143 144 private: 145 void skipNonTerminators(BlockPosition &Position, MBBInfo &Block); 146 void skipTerminator(BlockPosition &Position, TerminatorInfo &Terminator, 147 bool AssumeRelaxed); 148 TerminatorInfo describeTerminator(MachineInstr *MI); 149 uint64_t initMBBInfo(); 150 bool mustRelaxBranch(const TerminatorInfo &Terminator, uint64_t Address); 151 bool mustRelaxABranch(); 152 void setWorstCaseAddresses(); 153 void splitCompareBranch(MachineInstr *MI, unsigned CompareOpcode); 154 void relaxBranch(TerminatorInfo &Terminator); 155 void relaxBranches(); 156 157 const SystemZInstrInfo *TII; 158 MachineFunction *MF; 159 SmallVector<MBBInfo, 16> MBBs; 160 SmallVector<TerminatorInfo, 16> Terminators; 161 }; 162 163 char SystemZLongBranch::ID = 0; 164 165 const uint64_t MaxBackwardRange = 0x10000; 166 const uint64_t MaxForwardRange = 0xfffe; 167 } // end of anonymous namespace 168 169 FunctionPass *llvm::createSystemZLongBranchPass(SystemZTargetMachine &TM) { 170 return new SystemZLongBranch(TM); 171 } 172 173 // Position describes the state immediately before Block. Update Block 174 // accordingly and move Position to the end of the block's non-terminator 175 // instructions. 176 void SystemZLongBranch::skipNonTerminators(BlockPosition &Position, 177 MBBInfo &Block) { 178 if (Block.Alignment > Position.KnownBits) { 179 // When calculating the address of Block, we need to conservatively 180 // assume that Block had the worst possible misalignment. 181 Position.Address += ((uint64_t(1) << Block.Alignment) - 182 (uint64_t(1) << Position.KnownBits)); 183 Position.KnownBits = Block.Alignment; 184 } 185 186 // Align the addresses. 187 uint64_t AlignMask = (uint64_t(1) << Block.Alignment) - 1; 188 Position.Address = (Position.Address + AlignMask) & ~AlignMask; 189 190 // Record the block's position. 191 Block.Address = Position.Address; 192 193 // Move past the non-terminators in the block. 194 Position.Address += Block.Size; 195 } 196 197 // Position describes the state immediately before Terminator. 198 // Update Terminator accordingly and move Position past it. 199 // Assume that Terminator will be relaxed if AssumeRelaxed. 200 void SystemZLongBranch::skipTerminator(BlockPosition &Position, 201 TerminatorInfo &Terminator, 202 bool AssumeRelaxed) { 203 Terminator.Address = Position.Address; 204 Position.Address += Terminator.Size; 205 if (AssumeRelaxed) 206 Position.Address += Terminator.ExtraRelaxSize; 207 } 208 209 // Return a description of terminator instruction MI. 210 TerminatorInfo SystemZLongBranch::describeTerminator(MachineInstr *MI) { 211 TerminatorInfo Terminator; 212 Terminator.Size = TII->getInstSizeInBytes(MI); 213 if (MI->isConditionalBranch() || MI->isUnconditionalBranch()) { 214 switch (MI->getOpcode()) { 215 case SystemZ::J: 216 // Relaxes to JG, which is 2 bytes longer. 217 Terminator.ExtraRelaxSize = 2; 218 break; 219 case SystemZ::BRC: 220 // Relaxes to BRCL, which is 2 bytes longer. 221 Terminator.ExtraRelaxSize = 2; 222 break; 223 case SystemZ::CRJ: 224 // Relaxes to a CR/BRCL sequence, which is 2 bytes longer. 225 Terminator.ExtraRelaxSize = 2; 226 break; 227 case SystemZ::CGRJ: 228 // Relaxes to a CGR/BRCL sequence, which is 4 bytes longer. 229 Terminator.ExtraRelaxSize = 4; 230 break; 231 case SystemZ::CIJ: 232 case SystemZ::CGIJ: 233 // Relaxes to a C(G)HI/BRCL sequence, which is 4 bytes longer. 234 Terminator.ExtraRelaxSize = 4; 235 break; 236 default: 237 llvm_unreachable("Unrecognized branch instruction"); 238 } 239 Terminator.Branch = MI; 240 Terminator.TargetBlock = 241 TII->getBranchInfo(MI).Target->getMBB()->getNumber(); 242 } 243 return Terminator; 244 } 245 246 // Fill MBBs and Terminators, setting the addresses on the assumption 247 // that no branches need relaxation. Return the size of the function under 248 // this assumption. 249 uint64_t SystemZLongBranch::initMBBInfo() { 250 MF->RenumberBlocks(); 251 unsigned NumBlocks = MF->size(); 252 253 MBBs.clear(); 254 MBBs.resize(NumBlocks); 255 256 Terminators.clear(); 257 Terminators.reserve(NumBlocks); 258 259 BlockPosition Position(MF->getAlignment()); 260 for (unsigned I = 0; I < NumBlocks; ++I) { 261 MachineBasicBlock *MBB = MF->getBlockNumbered(I); 262 MBBInfo &Block = MBBs[I]; 263 264 // Record the alignment, for quick access. 265 Block.Alignment = MBB->getAlignment(); 266 267 // Calculate the size of the fixed part of the block. 268 MachineBasicBlock::iterator MI = MBB->begin(); 269 MachineBasicBlock::iterator End = MBB->end(); 270 while (MI != End && !MI->isTerminator()) { 271 Block.Size += TII->getInstSizeInBytes(MI); 272 ++MI; 273 } 274 skipNonTerminators(Position, Block); 275 276 // Add the terminators. 277 while (MI != End) { 278 if (!MI->isDebugValue()) { 279 assert(MI->isTerminator() && "Terminator followed by non-terminator"); 280 Terminators.push_back(describeTerminator(MI)); 281 skipTerminator(Position, Terminators.back(), false); 282 ++Block.NumTerminators; 283 } 284 ++MI; 285 } 286 } 287 288 return Position.Address; 289 } 290 291 // Return true if, under current assumptions, Terminator would need to be 292 // relaxed if it were placed at address Address. 293 bool SystemZLongBranch::mustRelaxBranch(const TerminatorInfo &Terminator, 294 uint64_t Address) { 295 if (!Terminator.Branch) 296 return false; 297 298 const MBBInfo &Target = MBBs[Terminator.TargetBlock]; 299 if (Address >= Target.Address) { 300 if (Address - Target.Address <= MaxBackwardRange) 301 return false; 302 } else { 303 if (Target.Address - Address <= MaxForwardRange) 304 return false; 305 } 306 307 return true; 308 } 309 310 // Return true if, under current assumptions, any terminator needs 311 // to be relaxed. 312 bool SystemZLongBranch::mustRelaxABranch() { 313 for (SmallVector<TerminatorInfo, 16>::iterator TI = Terminators.begin(), 314 TE = Terminators.end(); TI != TE; ++TI) 315 if (mustRelaxBranch(*TI, TI->Address)) 316 return true; 317 return false; 318 } 319 320 // Set the address of each block on the assumption that all branches 321 // must be long. 322 void SystemZLongBranch::setWorstCaseAddresses() { 323 SmallVector<TerminatorInfo, 16>::iterator TI = Terminators.begin(); 324 BlockPosition Position(MF->getAlignment()); 325 for (SmallVector<MBBInfo, 16>::iterator BI = MBBs.begin(), BE = MBBs.end(); 326 BI != BE; ++BI) { 327 skipNonTerminators(Position, *BI); 328 for (unsigned BTI = 0, BTE = BI->NumTerminators; BTI != BTE; ++BTI) { 329 skipTerminator(Position, *TI, true); 330 ++TI; 331 } 332 } 333 } 334 335 // Split MI into the comparison given by CompareOpcode followed 336 // a BRCL on the result. 337 void SystemZLongBranch::splitCompareBranch(MachineInstr *MI, 338 unsigned CompareOpcode) { 339 MachineBasicBlock *MBB = MI->getParent(); 340 DebugLoc DL = MI->getDebugLoc(); 341 BuildMI(*MBB, MI, DL, TII->get(CompareOpcode)) 342 .addOperand(MI->getOperand(0)) 343 .addOperand(MI->getOperand(1)); 344 MachineInstr *BRCL = BuildMI(*MBB, MI, DL, TII->get(SystemZ::BRCL)) 345 .addOperand(MI->getOperand(2)) 346 .addOperand(MI->getOperand(3)); 347 // The implicit use of CC is a killing use. 348 BRCL->getOperand(2).setIsKill(); 349 MI->eraseFromParent(); 350 } 351 352 // Relax the branch described by Terminator. 353 void SystemZLongBranch::relaxBranch(TerminatorInfo &Terminator) { 354 MachineInstr *Branch = Terminator.Branch; 355 switch (Branch->getOpcode()) { 356 case SystemZ::J: 357 Branch->setDesc(TII->get(SystemZ::JG)); 358 break; 359 case SystemZ::BRC: 360 Branch->setDesc(TII->get(SystemZ::BRCL)); 361 break; 362 case SystemZ::CRJ: 363 splitCompareBranch(Branch, SystemZ::CR); 364 break; 365 case SystemZ::CGRJ: 366 splitCompareBranch(Branch, SystemZ::CGR); 367 break; 368 case SystemZ::CIJ: 369 splitCompareBranch(Branch, SystemZ::CHI); 370 break; 371 case SystemZ::CGIJ: 372 splitCompareBranch(Branch, SystemZ::CGHI); 373 break; 374 default: 375 llvm_unreachable("Unrecognized branch"); 376 } 377 378 Terminator.Size += Terminator.ExtraRelaxSize; 379 Terminator.ExtraRelaxSize = 0; 380 Terminator.Branch = 0; 381 382 ++LongBranches; 383 } 384 385 // Run a shortening pass and relax any branches that need to be relaxed. 386 void SystemZLongBranch::relaxBranches() { 387 SmallVector<TerminatorInfo, 16>::iterator TI = Terminators.begin(); 388 BlockPosition Position(MF->getAlignment()); 389 for (SmallVector<MBBInfo, 16>::iterator BI = MBBs.begin(), BE = MBBs.end(); 390 BI != BE; ++BI) { 391 skipNonTerminators(Position, *BI); 392 for (unsigned BTI = 0, BTE = BI->NumTerminators; BTI != BTE; ++BTI) { 393 assert(Position.Address <= TI->Address && 394 "Addresses shouldn't go forwards"); 395 if (mustRelaxBranch(*TI, Position.Address)) 396 relaxBranch(*TI); 397 skipTerminator(Position, *TI, false); 398 ++TI; 399 } 400 } 401 } 402 403 bool SystemZLongBranch::runOnMachineFunction(MachineFunction &F) { 404 TII = static_cast<const SystemZInstrInfo *>(F.getTarget().getInstrInfo()); 405 MF = &F; 406 uint64_t Size = initMBBInfo(); 407 if (Size <= MaxForwardRange || !mustRelaxABranch()) 408 return false; 409 410 setWorstCaseAddresses(); 411 relaxBranches(); 412 return true; 413 } 414