1 //===-- SystemZLongBranch.cpp - Branch lengthening for SystemZ ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass makes sure that all branches are in range.  There are several ways
11 // in which this could be done.  One aggressive approach is to assume that all
12 // branches are in range and successively replace those that turn out not
13 // to be in range with a longer form (branch relaxation).  A simple
14 // implementation is to continually walk through the function relaxing
15 // branches until no more changes are needed and a fixed point is reached.
16 // However, in the pathological worst case, this implementation is
17 // quadratic in the number of blocks; relaxing branch N can make branch N-1
18 // go out of range, which in turn can make branch N-2 go out of range,
19 // and so on.
20 //
21 // An alternative approach is to assume that all branches must be
22 // converted to their long forms, then reinstate the short forms of
23 // branches that, even under this pessimistic assumption, turn out to be
24 // in range (branch shortening).  This too can be implemented as a function
25 // walk that is repeated until a fixed point is reached.  In general,
26 // the result of shortening is not as good as that of relaxation, and
27 // shortening is also quadratic in the worst case; shortening branch N
28 // can bring branch N-1 in range of the short form, which in turn can do
29 // the same for branch N-2, and so on.  The main advantage of shortening
30 // is that each walk through the function produces valid code, so it is
31 // possible to stop at any point after the first walk.  The quadraticness
32 // could therefore be handled with a maximum pass count, although the
33 // question then becomes: what maximum count should be used?
34 //
35 // On SystemZ, long branches are only needed for functions bigger than 64k,
36 // which are relatively rare to begin with, and the long branch sequences
37 // are actually relatively cheap.  It therefore doesn't seem worth spending
38 // much compilation time on the problem.  Instead, the approach we take is:
39 //
40 // (1) Work out the address that each block would have if no branches
41 //     need relaxing.  Exit the pass early if all branches are in range
42 //     according to this assumption.
43 //
44 // (2) Work out the address that each block would have if all branches
45 //     need relaxing.
46 //
47 // (3) Walk through the block calculating the final address of each instruction
48 //     and relaxing those that need to be relaxed.  For backward branches,
49 //     this check uses the final address of the target block, as calculated
50 //     earlier in the walk.  For forward branches, this check uses the
51 //     address of the target block that was calculated in (2).  Both checks
52 //     give a conservatively-correct range.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #define DEBUG_TYPE "systemz-long-branch"
57 
58 #include "SystemZTargetMachine.h"
59 #include "llvm/ADT/Statistic.h"
60 #include "llvm/CodeGen/MachineFunctionPass.h"
61 #include "llvm/CodeGen/MachineInstrBuilder.h"
62 #include "llvm/IR/Function.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/MathExtras.h"
65 #include "llvm/Target/TargetInstrInfo.h"
66 #include "llvm/Target/TargetMachine.h"
67 #include "llvm/Target/TargetRegisterInfo.h"
68 
69 using namespace llvm;
70 
71 STATISTIC(LongBranches, "Number of long branches.");
72 
73 namespace {
74   // Represents positional information about a basic block.
75   struct MBBInfo {
76     // The address that we currently assume the block has.
77     uint64_t Address;
78 
79     // The size of the block in bytes, excluding terminators.
80     // This value never changes.
81     uint64_t Size;
82 
83     // The minimum alignment of the block, as a log2 value.
84     // This value never changes.
85     unsigned Alignment;
86 
87     // The number of terminators in this block.  This value never changes.
88     unsigned NumTerminators;
89 
90     MBBInfo()
91       : Address(0), Size(0), Alignment(0), NumTerminators(0) {}
92   };
93 
94   // Represents the state of a block terminator.
95   struct TerminatorInfo {
96     // If this terminator is a relaxable branch, this points to the branch
97     // instruction, otherwise it is null.
98     MachineInstr *Branch;
99 
100     // The address that we currently assume the terminator has.
101     uint64_t Address;
102 
103     // The current size of the terminator in bytes.
104     uint64_t Size;
105 
106     // If Branch is nonnull, this is the number of the target block,
107     // otherwise it is unused.
108     unsigned TargetBlock;
109 
110     // If Branch is nonnull, this is the length of the longest relaxed form,
111     // otherwise it is zero.
112     unsigned ExtraRelaxSize;
113 
114     TerminatorInfo() : Branch(0), Size(0), TargetBlock(0), ExtraRelaxSize(0) {}
115   };
116 
117   // Used to keep track of the current position while iterating over the blocks.
118   struct BlockPosition {
119     // The address that we assume this position has.
120     uint64_t Address;
121 
122     // The number of low bits in Address that are known to be the same
123     // as the runtime address.
124     unsigned KnownBits;
125 
126     BlockPosition(unsigned InitialAlignment)
127       : Address(0), KnownBits(InitialAlignment) {}
128   };
129 
130   class SystemZLongBranch : public MachineFunctionPass {
131   public:
132     static char ID;
133     SystemZLongBranch(const SystemZTargetMachine &tm)
134       : MachineFunctionPass(ID), TII(0) {}
135 
136     virtual const char *getPassName() const {
137       return "SystemZ Long Branch";
138     }
139 
140     bool runOnMachineFunction(MachineFunction &F);
141 
142   private:
143     void skipNonTerminators(BlockPosition &Position, MBBInfo &Block);
144     void skipTerminator(BlockPosition &Position, TerminatorInfo &Terminator,
145                         bool AssumeRelaxed);
146     TerminatorInfo describeTerminator(MachineInstr *MI);
147     uint64_t initMBBInfo();
148     bool mustRelaxBranch(const TerminatorInfo &Terminator, uint64_t Address);
149     bool mustRelaxABranch();
150     void setWorstCaseAddresses();
151     void splitBranchOnCount(MachineInstr *MI, unsigned AddOpcode);
152     void splitCompareBranch(MachineInstr *MI, unsigned CompareOpcode);
153     void relaxBranch(TerminatorInfo &Terminator);
154     void relaxBranches();
155 
156     const SystemZInstrInfo *TII;
157     MachineFunction *MF;
158     SmallVector<MBBInfo, 16> MBBs;
159     SmallVector<TerminatorInfo, 16> Terminators;
160   };
161 
162   char SystemZLongBranch::ID = 0;
163 
164   const uint64_t MaxBackwardRange = 0x10000;
165   const uint64_t MaxForwardRange = 0xfffe;
166 } // end of anonymous namespace
167 
168 FunctionPass *llvm::createSystemZLongBranchPass(SystemZTargetMachine &TM) {
169   return new SystemZLongBranch(TM);
170 }
171 
172 // Position describes the state immediately before Block.  Update Block
173 // accordingly and move Position to the end of the block's non-terminator
174 // instructions.
175 void SystemZLongBranch::skipNonTerminators(BlockPosition &Position,
176                                            MBBInfo &Block) {
177   if (Block.Alignment > Position.KnownBits) {
178     // When calculating the address of Block, we need to conservatively
179     // assume that Block had the worst possible misalignment.
180     Position.Address += ((uint64_t(1) << Block.Alignment) -
181                          (uint64_t(1) << Position.KnownBits));
182     Position.KnownBits = Block.Alignment;
183   }
184 
185   // Align the addresses.
186   uint64_t AlignMask = (uint64_t(1) << Block.Alignment) - 1;
187   Position.Address = (Position.Address + AlignMask) & ~AlignMask;
188 
189   // Record the block's position.
190   Block.Address = Position.Address;
191 
192   // Move past the non-terminators in the block.
193   Position.Address += Block.Size;
194 }
195 
196 // Position describes the state immediately before Terminator.
197 // Update Terminator accordingly and move Position past it.
198 // Assume that Terminator will be relaxed if AssumeRelaxed.
199 void SystemZLongBranch::skipTerminator(BlockPosition &Position,
200                                        TerminatorInfo &Terminator,
201                                        bool AssumeRelaxed) {
202   Terminator.Address = Position.Address;
203   Position.Address += Terminator.Size;
204   if (AssumeRelaxed)
205     Position.Address += Terminator.ExtraRelaxSize;
206 }
207 
208 // Return a description of terminator instruction MI.
209 TerminatorInfo SystemZLongBranch::describeTerminator(MachineInstr *MI) {
210   TerminatorInfo Terminator;
211   Terminator.Size = TII->getInstSizeInBytes(MI);
212   if (MI->isConditionalBranch() || MI->isUnconditionalBranch()) {
213     switch (MI->getOpcode()) {
214     case SystemZ::J:
215       // Relaxes to JG, which is 2 bytes longer.
216       Terminator.ExtraRelaxSize = 2;
217       break;
218     case SystemZ::BRC:
219       // Relaxes to BRCL, which is 2 bytes longer.
220       Terminator.ExtraRelaxSize = 2;
221       break;
222     case SystemZ::BRCT:
223     case SystemZ::BRCTG:
224       // Relaxes to A(G)HI and BRCL, which is 6 bytes longer.
225       Terminator.ExtraRelaxSize = 6;
226       break;
227     case SystemZ::CRJ:
228       // Relaxes to a CR/BRCL sequence, which is 2 bytes longer.
229       Terminator.ExtraRelaxSize = 2;
230       break;
231     case SystemZ::CGRJ:
232       // Relaxes to a CGR/BRCL sequence, which is 4 bytes longer.
233       Terminator.ExtraRelaxSize = 4;
234       break;
235     case SystemZ::CIJ:
236     case SystemZ::CGIJ:
237       // Relaxes to a C(G)HI/BRCL sequence, which is 4 bytes longer.
238       Terminator.ExtraRelaxSize = 4;
239       break;
240     default:
241       llvm_unreachable("Unrecognized branch instruction");
242     }
243     Terminator.Branch = MI;
244     Terminator.TargetBlock =
245       TII->getBranchInfo(MI).Target->getMBB()->getNumber();
246   }
247   return Terminator;
248 }
249 
250 // Fill MBBs and Terminators, setting the addresses on the assumption
251 // that no branches need relaxation.  Return the size of the function under
252 // this assumption.
253 uint64_t SystemZLongBranch::initMBBInfo() {
254   MF->RenumberBlocks();
255   unsigned NumBlocks = MF->size();
256 
257   MBBs.clear();
258   MBBs.resize(NumBlocks);
259 
260   Terminators.clear();
261   Terminators.reserve(NumBlocks);
262 
263   BlockPosition Position(MF->getAlignment());
264   for (unsigned I = 0; I < NumBlocks; ++I) {
265     MachineBasicBlock *MBB = MF->getBlockNumbered(I);
266     MBBInfo &Block = MBBs[I];
267 
268     // Record the alignment, for quick access.
269     Block.Alignment = MBB->getAlignment();
270 
271     // Calculate the size of the fixed part of the block.
272     MachineBasicBlock::iterator MI = MBB->begin();
273     MachineBasicBlock::iterator End = MBB->end();
274     while (MI != End && !MI->isTerminator()) {
275       Block.Size += TII->getInstSizeInBytes(MI);
276       ++MI;
277     }
278     skipNonTerminators(Position, Block);
279 
280     // Add the terminators.
281     while (MI != End) {
282       if (!MI->isDebugValue()) {
283         assert(MI->isTerminator() && "Terminator followed by non-terminator");
284         Terminators.push_back(describeTerminator(MI));
285         skipTerminator(Position, Terminators.back(), false);
286         ++Block.NumTerminators;
287       }
288       ++MI;
289     }
290   }
291 
292   return Position.Address;
293 }
294 
295 // Return true if, under current assumptions, Terminator would need to be
296 // relaxed if it were placed at address Address.
297 bool SystemZLongBranch::mustRelaxBranch(const TerminatorInfo &Terminator,
298                                         uint64_t Address) {
299   if (!Terminator.Branch)
300     return false;
301 
302   const MBBInfo &Target = MBBs[Terminator.TargetBlock];
303   if (Address >= Target.Address) {
304     if (Address - Target.Address <= MaxBackwardRange)
305       return false;
306   } else {
307     if (Target.Address - Address <= MaxForwardRange)
308       return false;
309   }
310 
311   return true;
312 }
313 
314 // Return true if, under current assumptions, any terminator needs
315 // to be relaxed.
316 bool SystemZLongBranch::mustRelaxABranch() {
317   for (SmallVectorImpl<TerminatorInfo>::iterator TI = Terminators.begin(),
318          TE = Terminators.end(); TI != TE; ++TI)
319     if (mustRelaxBranch(*TI, TI->Address))
320       return true;
321   return false;
322 }
323 
324 // Set the address of each block on the assumption that all branches
325 // must be long.
326 void SystemZLongBranch::setWorstCaseAddresses() {
327   SmallVector<TerminatorInfo, 16>::iterator TI = Terminators.begin();
328   BlockPosition Position(MF->getAlignment());
329   for (SmallVectorImpl<MBBInfo>::iterator BI = MBBs.begin(), BE = MBBs.end();
330        BI != BE; ++BI) {
331     skipNonTerminators(Position, *BI);
332     for (unsigned BTI = 0, BTE = BI->NumTerminators; BTI != BTE; ++BTI) {
333       skipTerminator(Position, *TI, true);
334       ++TI;
335     }
336   }
337 }
338 
339 // Split BRANCH ON COUNT MI into the addition given by AddOpcode followed
340 // by a BRCL on the result.
341 void SystemZLongBranch::splitBranchOnCount(MachineInstr *MI,
342                                            unsigned AddOpcode) {
343   MachineBasicBlock *MBB = MI->getParent();
344   DebugLoc DL = MI->getDebugLoc();
345   BuildMI(*MBB, MI, DL, TII->get(AddOpcode))
346     .addOperand(MI->getOperand(0))
347     .addOperand(MI->getOperand(1))
348     .addImm(-1);
349   MachineInstr *BRCL = BuildMI(*MBB, MI, DL, TII->get(SystemZ::BRCL))
350     .addImm(SystemZ::CCMASK_ICMP)
351     .addImm(SystemZ::CCMASK_CMP_NE)
352     .addOperand(MI->getOperand(2));
353   // The implicit use of CC is a killing use.
354   BRCL->addRegisterKilled(SystemZ::CC, &TII->getRegisterInfo());
355   MI->eraseFromParent();
356 }
357 
358 // Split MI into the comparison given by CompareOpcode followed
359 // a BRCL on the result.
360 void SystemZLongBranch::splitCompareBranch(MachineInstr *MI,
361                                            unsigned CompareOpcode) {
362   MachineBasicBlock *MBB = MI->getParent();
363   DebugLoc DL = MI->getDebugLoc();
364   BuildMI(*MBB, MI, DL, TII->get(CompareOpcode))
365     .addOperand(MI->getOperand(0))
366     .addOperand(MI->getOperand(1));
367   MachineInstr *BRCL = BuildMI(*MBB, MI, DL, TII->get(SystemZ::BRCL))
368     .addImm(SystemZ::CCMASK_ICMP)
369     .addOperand(MI->getOperand(2))
370     .addOperand(MI->getOperand(3));
371   // The implicit use of CC is a killing use.
372   BRCL->addRegisterKilled(SystemZ::CC, &TII->getRegisterInfo());
373   MI->eraseFromParent();
374 }
375 
376 // Relax the branch described by Terminator.
377 void SystemZLongBranch::relaxBranch(TerminatorInfo &Terminator) {
378   MachineInstr *Branch = Terminator.Branch;
379   switch (Branch->getOpcode()) {
380   case SystemZ::J:
381     Branch->setDesc(TII->get(SystemZ::JG));
382     break;
383   case SystemZ::BRC:
384     Branch->setDesc(TII->get(SystemZ::BRCL));
385     break;
386   case SystemZ::BRCT:
387     splitBranchOnCount(Branch, SystemZ::AHI);
388     break;
389   case SystemZ::BRCTG:
390     splitBranchOnCount(Branch, SystemZ::AGHI);
391     break;
392   case SystemZ::CRJ:
393     splitCompareBranch(Branch, SystemZ::CR);
394     break;
395   case SystemZ::CGRJ:
396     splitCompareBranch(Branch, SystemZ::CGR);
397     break;
398   case SystemZ::CIJ:
399     splitCompareBranch(Branch, SystemZ::CHI);
400     break;
401   case SystemZ::CGIJ:
402     splitCompareBranch(Branch, SystemZ::CGHI);
403     break;
404   default:
405     llvm_unreachable("Unrecognized branch");
406   }
407 
408   Terminator.Size += Terminator.ExtraRelaxSize;
409   Terminator.ExtraRelaxSize = 0;
410   Terminator.Branch = 0;
411 
412   ++LongBranches;
413 }
414 
415 // Run a shortening pass and relax any branches that need to be relaxed.
416 void SystemZLongBranch::relaxBranches() {
417   SmallVector<TerminatorInfo, 16>::iterator TI = Terminators.begin();
418   BlockPosition Position(MF->getAlignment());
419   for (SmallVectorImpl<MBBInfo>::iterator BI = MBBs.begin(), BE = MBBs.end();
420        BI != BE; ++BI) {
421     skipNonTerminators(Position, *BI);
422     for (unsigned BTI = 0, BTE = BI->NumTerminators; BTI != BTE; ++BTI) {
423       assert(Position.Address <= TI->Address &&
424              "Addresses shouldn't go forwards");
425       if (mustRelaxBranch(*TI, Position.Address))
426         relaxBranch(*TI);
427       skipTerminator(Position, *TI, false);
428       ++TI;
429     }
430   }
431 }
432 
433 bool SystemZLongBranch::runOnMachineFunction(MachineFunction &F) {
434   TII = static_cast<const SystemZInstrInfo *>(F.getTarget().getInstrInfo());
435   MF = &F;
436   uint64_t Size = initMBBInfo();
437   if (Size <= MaxForwardRange || !mustRelaxABranch())
438     return false;
439 
440   setWorstCaseAddresses();
441   relaxBranches();
442   return true;
443 }
444