1 //===-- SystemZLongBranch.cpp - Branch lengthening for SystemZ ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass makes sure that all branches are in range. There are several ways 11 // in which this could be done. One aggressive approach is to assume that all 12 // branches are in range and successively replace those that turn out not 13 // to be in range with a longer form (branch relaxation). A simple 14 // implementation is to continually walk through the function relaxing 15 // branches until no more changes are needed and a fixed point is reached. 16 // However, in the pathological worst case, this implementation is 17 // quadratic in the number of blocks; relaxing branch N can make branch N-1 18 // go out of range, which in turn can make branch N-2 go out of range, 19 // and so on. 20 // 21 // An alternative approach is to assume that all branches must be 22 // converted to their long forms, then reinstate the short forms of 23 // branches that, even under this pessimistic assumption, turn out to be 24 // in range (branch shortening). This too can be implemented as a function 25 // walk that is repeated until a fixed point is reached. In general, 26 // the result of shortening is not as good as that of relaxation, and 27 // shortening is also quadratic in the worst case; shortening branch N 28 // can bring branch N-1 in range of the short form, which in turn can do 29 // the same for branch N-2, and so on. The main advantage of shortening 30 // is that each walk through the function produces valid code, so it is 31 // possible to stop at any point after the first walk. The quadraticness 32 // could therefore be handled with a maximum pass count, although the 33 // question then becomes: what maximum count should be used? 34 // 35 // On SystemZ, long branches are only needed for functions bigger than 64k, 36 // which are relatively rare to begin with, and the long branch sequences 37 // are actually relatively cheap. It therefore doesn't seem worth spending 38 // much compilation time on the problem. Instead, the approach we take is: 39 // 40 // (1) Work out the address that each block would have if no branches 41 // need relaxing. Exit the pass early if all branches are in range 42 // according to this assumption. 43 // 44 // (2) Work out the address that each block would have if all branches 45 // need relaxing. 46 // 47 // (3) Walk through the block calculating the final address of each instruction 48 // and relaxing those that need to be relaxed. For backward branches, 49 // this check uses the final address of the target block, as calculated 50 // earlier in the walk. For forward branches, this check uses the 51 // address of the target block that was calculated in (2). Both checks 52 // give a conservatively-correct range. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "SystemZ.h" 57 #include "SystemZInstrInfo.h" 58 #include "SystemZTargetMachine.h" 59 #include "llvm/ADT/SmallVector.h" 60 #include "llvm/ADT/Statistic.h" 61 #include "llvm/ADT/StringRef.h" 62 #include "llvm/CodeGen/MachineBasicBlock.h" 63 #include "llvm/CodeGen/MachineFunction.h" 64 #include "llvm/CodeGen/MachineFunctionPass.h" 65 #include "llvm/CodeGen/MachineInstr.h" 66 #include "llvm/CodeGen/MachineInstrBuilder.h" 67 #include "llvm/IR/DebugLoc.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include <cassert> 70 #include <cstdint> 71 72 using namespace llvm; 73 74 #define DEBUG_TYPE "systemz-long-branch" 75 76 STATISTIC(LongBranches, "Number of long branches."); 77 78 namespace { 79 80 // Represents positional information about a basic block. 81 struct MBBInfo { 82 // The address that we currently assume the block has. 83 uint64_t Address = 0; 84 85 // The size of the block in bytes, excluding terminators. 86 // This value never changes. 87 uint64_t Size = 0; 88 89 // The minimum alignment of the block, as a log2 value. 90 // This value never changes. 91 unsigned Alignment = 0; 92 93 // The number of terminators in this block. This value never changes. 94 unsigned NumTerminators = 0; 95 96 MBBInfo() = default; 97 }; 98 99 // Represents the state of a block terminator. 100 struct TerminatorInfo { 101 // If this terminator is a relaxable branch, this points to the branch 102 // instruction, otherwise it is null. 103 MachineInstr *Branch = nullptr; 104 105 // The address that we currently assume the terminator has. 106 uint64_t Address = 0; 107 108 // The current size of the terminator in bytes. 109 uint64_t Size = 0; 110 111 // If Branch is nonnull, this is the number of the target block, 112 // otherwise it is unused. 113 unsigned TargetBlock = 0; 114 115 // If Branch is nonnull, this is the length of the longest relaxed form, 116 // otherwise it is zero. 117 unsigned ExtraRelaxSize = 0; 118 119 TerminatorInfo() = default; 120 }; 121 122 // Used to keep track of the current position while iterating over the blocks. 123 struct BlockPosition { 124 // The address that we assume this position has. 125 uint64_t Address = 0; 126 127 // The number of low bits in Address that are known to be the same 128 // as the runtime address. 129 unsigned KnownBits; 130 131 BlockPosition(unsigned InitialAlignment) : KnownBits(InitialAlignment) {} 132 }; 133 134 class SystemZLongBranch : public MachineFunctionPass { 135 public: 136 static char ID; 137 138 SystemZLongBranch(const SystemZTargetMachine &tm) 139 : MachineFunctionPass(ID) {} 140 141 StringRef getPassName() const override { return "SystemZ Long Branch"; } 142 143 bool runOnMachineFunction(MachineFunction &F) override; 144 145 MachineFunctionProperties getRequiredProperties() const override { 146 return MachineFunctionProperties().set( 147 MachineFunctionProperties::Property::NoVRegs); 148 } 149 150 private: 151 void skipNonTerminators(BlockPosition &Position, MBBInfo &Block); 152 void skipTerminator(BlockPosition &Position, TerminatorInfo &Terminator, 153 bool AssumeRelaxed); 154 TerminatorInfo describeTerminator(MachineInstr &MI); 155 uint64_t initMBBInfo(); 156 bool mustRelaxBranch(const TerminatorInfo &Terminator, uint64_t Address); 157 bool mustRelaxABranch(); 158 void setWorstCaseAddresses(); 159 void splitBranchOnCount(MachineInstr *MI, unsigned AddOpcode); 160 void splitCompareBranch(MachineInstr *MI, unsigned CompareOpcode); 161 void relaxBranch(TerminatorInfo &Terminator); 162 void relaxBranches(); 163 164 const SystemZInstrInfo *TII = nullptr; 165 MachineFunction *MF; 166 SmallVector<MBBInfo, 16> MBBs; 167 SmallVector<TerminatorInfo, 16> Terminators; 168 }; 169 170 char SystemZLongBranch::ID = 0; 171 172 const uint64_t MaxBackwardRange = 0x10000; 173 const uint64_t MaxForwardRange = 0xfffe; 174 175 } // end anonymous namespace 176 177 // Position describes the state immediately before Block. Update Block 178 // accordingly and move Position to the end of the block's non-terminator 179 // instructions. 180 void SystemZLongBranch::skipNonTerminators(BlockPosition &Position, 181 MBBInfo &Block) { 182 if (Block.Alignment > Position.KnownBits) { 183 // When calculating the address of Block, we need to conservatively 184 // assume that Block had the worst possible misalignment. 185 Position.Address += ((uint64_t(1) << Block.Alignment) - 186 (uint64_t(1) << Position.KnownBits)); 187 Position.KnownBits = Block.Alignment; 188 } 189 190 // Align the addresses. 191 uint64_t AlignMask = (uint64_t(1) << Block.Alignment) - 1; 192 Position.Address = (Position.Address + AlignMask) & ~AlignMask; 193 194 // Record the block's position. 195 Block.Address = Position.Address; 196 197 // Move past the non-terminators in the block. 198 Position.Address += Block.Size; 199 } 200 201 // Position describes the state immediately before Terminator. 202 // Update Terminator accordingly and move Position past it. 203 // Assume that Terminator will be relaxed if AssumeRelaxed. 204 void SystemZLongBranch::skipTerminator(BlockPosition &Position, 205 TerminatorInfo &Terminator, 206 bool AssumeRelaxed) { 207 Terminator.Address = Position.Address; 208 Position.Address += Terminator.Size; 209 if (AssumeRelaxed) 210 Position.Address += Terminator.ExtraRelaxSize; 211 } 212 213 // Return a description of terminator instruction MI. 214 TerminatorInfo SystemZLongBranch::describeTerminator(MachineInstr &MI) { 215 TerminatorInfo Terminator; 216 Terminator.Size = TII->getInstSizeInBytes(MI); 217 if (MI.isConditionalBranch() || MI.isUnconditionalBranch()) { 218 switch (MI.getOpcode()) { 219 case SystemZ::J: 220 // Relaxes to JG, which is 2 bytes longer. 221 Terminator.ExtraRelaxSize = 2; 222 break; 223 case SystemZ::BRC: 224 // Relaxes to BRCL, which is 2 bytes longer. 225 Terminator.ExtraRelaxSize = 2; 226 break; 227 case SystemZ::BRCT: 228 case SystemZ::BRCTG: 229 // Relaxes to A(G)HI and BRCL, which is 6 bytes longer. 230 Terminator.ExtraRelaxSize = 6; 231 break; 232 case SystemZ::BRCTH: 233 // Never needs to be relaxed. 234 Terminator.ExtraRelaxSize = 0; 235 break; 236 case SystemZ::CRJ: 237 case SystemZ::CLRJ: 238 // Relaxes to a C(L)R/BRCL sequence, which is 2 bytes longer. 239 Terminator.ExtraRelaxSize = 2; 240 break; 241 case SystemZ::CGRJ: 242 case SystemZ::CLGRJ: 243 // Relaxes to a C(L)GR/BRCL sequence, which is 4 bytes longer. 244 Terminator.ExtraRelaxSize = 4; 245 break; 246 case SystemZ::CIJ: 247 case SystemZ::CGIJ: 248 // Relaxes to a C(G)HI/BRCL sequence, which is 4 bytes longer. 249 Terminator.ExtraRelaxSize = 4; 250 break; 251 case SystemZ::CLIJ: 252 case SystemZ::CLGIJ: 253 // Relaxes to a CL(G)FI/BRCL sequence, which is 6 bytes longer. 254 Terminator.ExtraRelaxSize = 6; 255 break; 256 default: 257 llvm_unreachable("Unrecognized branch instruction"); 258 } 259 Terminator.Branch = &MI; 260 Terminator.TargetBlock = 261 TII->getBranchInfo(MI).Target->getMBB()->getNumber(); 262 } 263 return Terminator; 264 } 265 266 // Fill MBBs and Terminators, setting the addresses on the assumption 267 // that no branches need relaxation. Return the size of the function under 268 // this assumption. 269 uint64_t SystemZLongBranch::initMBBInfo() { 270 MF->RenumberBlocks(); 271 unsigned NumBlocks = MF->size(); 272 273 MBBs.clear(); 274 MBBs.resize(NumBlocks); 275 276 Terminators.clear(); 277 Terminators.reserve(NumBlocks); 278 279 BlockPosition Position(MF->getAlignment()); 280 for (unsigned I = 0; I < NumBlocks; ++I) { 281 MachineBasicBlock *MBB = MF->getBlockNumbered(I); 282 MBBInfo &Block = MBBs[I]; 283 284 // Record the alignment, for quick access. 285 Block.Alignment = MBB->getAlignment(); 286 287 // Calculate the size of the fixed part of the block. 288 MachineBasicBlock::iterator MI = MBB->begin(); 289 MachineBasicBlock::iterator End = MBB->end(); 290 while (MI != End && !MI->isTerminator()) { 291 Block.Size += TII->getInstSizeInBytes(*MI); 292 ++MI; 293 } 294 skipNonTerminators(Position, Block); 295 296 // Add the terminators. 297 while (MI != End) { 298 if (!MI->isDebugValue()) { 299 assert(MI->isTerminator() && "Terminator followed by non-terminator"); 300 Terminators.push_back(describeTerminator(*MI)); 301 skipTerminator(Position, Terminators.back(), false); 302 ++Block.NumTerminators; 303 } 304 ++MI; 305 } 306 } 307 308 return Position.Address; 309 } 310 311 // Return true if, under current assumptions, Terminator would need to be 312 // relaxed if it were placed at address Address. 313 bool SystemZLongBranch::mustRelaxBranch(const TerminatorInfo &Terminator, 314 uint64_t Address) { 315 if (!Terminator.Branch || Terminator.ExtraRelaxSize == 0) 316 return false; 317 318 const MBBInfo &Target = MBBs[Terminator.TargetBlock]; 319 if (Address >= Target.Address) { 320 if (Address - Target.Address <= MaxBackwardRange) 321 return false; 322 } else { 323 if (Target.Address - Address <= MaxForwardRange) 324 return false; 325 } 326 327 return true; 328 } 329 330 // Return true if, under current assumptions, any terminator needs 331 // to be relaxed. 332 bool SystemZLongBranch::mustRelaxABranch() { 333 for (auto &Terminator : Terminators) 334 if (mustRelaxBranch(Terminator, Terminator.Address)) 335 return true; 336 return false; 337 } 338 339 // Set the address of each block on the assumption that all branches 340 // must be long. 341 void SystemZLongBranch::setWorstCaseAddresses() { 342 SmallVector<TerminatorInfo, 16>::iterator TI = Terminators.begin(); 343 BlockPosition Position(MF->getAlignment()); 344 for (auto &Block : MBBs) { 345 skipNonTerminators(Position, Block); 346 for (unsigned BTI = 0, BTE = Block.NumTerminators; BTI != BTE; ++BTI) { 347 skipTerminator(Position, *TI, true); 348 ++TI; 349 } 350 } 351 } 352 353 // Split BRANCH ON COUNT MI into the addition given by AddOpcode followed 354 // by a BRCL on the result. 355 void SystemZLongBranch::splitBranchOnCount(MachineInstr *MI, 356 unsigned AddOpcode) { 357 MachineBasicBlock *MBB = MI->getParent(); 358 DebugLoc DL = MI->getDebugLoc(); 359 BuildMI(*MBB, MI, DL, TII->get(AddOpcode)) 360 .add(MI->getOperand(0)) 361 .add(MI->getOperand(1)) 362 .addImm(-1); 363 MachineInstr *BRCL = BuildMI(*MBB, MI, DL, TII->get(SystemZ::BRCL)) 364 .addImm(SystemZ::CCMASK_ICMP) 365 .addImm(SystemZ::CCMASK_CMP_NE) 366 .add(MI->getOperand(2)); 367 // The implicit use of CC is a killing use. 368 BRCL->addRegisterKilled(SystemZ::CC, &TII->getRegisterInfo()); 369 MI->eraseFromParent(); 370 } 371 372 // Split MI into the comparison given by CompareOpcode followed 373 // a BRCL on the result. 374 void SystemZLongBranch::splitCompareBranch(MachineInstr *MI, 375 unsigned CompareOpcode) { 376 MachineBasicBlock *MBB = MI->getParent(); 377 DebugLoc DL = MI->getDebugLoc(); 378 BuildMI(*MBB, MI, DL, TII->get(CompareOpcode)) 379 .add(MI->getOperand(0)) 380 .add(MI->getOperand(1)); 381 MachineInstr *BRCL = BuildMI(*MBB, MI, DL, TII->get(SystemZ::BRCL)) 382 .addImm(SystemZ::CCMASK_ICMP) 383 .add(MI->getOperand(2)) 384 .add(MI->getOperand(3)); 385 // The implicit use of CC is a killing use. 386 BRCL->addRegisterKilled(SystemZ::CC, &TII->getRegisterInfo()); 387 MI->eraseFromParent(); 388 } 389 390 // Relax the branch described by Terminator. 391 void SystemZLongBranch::relaxBranch(TerminatorInfo &Terminator) { 392 MachineInstr *Branch = Terminator.Branch; 393 switch (Branch->getOpcode()) { 394 case SystemZ::J: 395 Branch->setDesc(TII->get(SystemZ::JG)); 396 break; 397 case SystemZ::BRC: 398 Branch->setDesc(TII->get(SystemZ::BRCL)); 399 break; 400 case SystemZ::BRCT: 401 splitBranchOnCount(Branch, SystemZ::AHI); 402 break; 403 case SystemZ::BRCTG: 404 splitBranchOnCount(Branch, SystemZ::AGHI); 405 break; 406 case SystemZ::CRJ: 407 splitCompareBranch(Branch, SystemZ::CR); 408 break; 409 case SystemZ::CGRJ: 410 splitCompareBranch(Branch, SystemZ::CGR); 411 break; 412 case SystemZ::CIJ: 413 splitCompareBranch(Branch, SystemZ::CHI); 414 break; 415 case SystemZ::CGIJ: 416 splitCompareBranch(Branch, SystemZ::CGHI); 417 break; 418 case SystemZ::CLRJ: 419 splitCompareBranch(Branch, SystemZ::CLR); 420 break; 421 case SystemZ::CLGRJ: 422 splitCompareBranch(Branch, SystemZ::CLGR); 423 break; 424 case SystemZ::CLIJ: 425 splitCompareBranch(Branch, SystemZ::CLFI); 426 break; 427 case SystemZ::CLGIJ: 428 splitCompareBranch(Branch, SystemZ::CLGFI); 429 break; 430 default: 431 llvm_unreachable("Unrecognized branch"); 432 } 433 434 Terminator.Size += Terminator.ExtraRelaxSize; 435 Terminator.ExtraRelaxSize = 0; 436 Terminator.Branch = nullptr; 437 438 ++LongBranches; 439 } 440 441 // Run a shortening pass and relax any branches that need to be relaxed. 442 void SystemZLongBranch::relaxBranches() { 443 SmallVector<TerminatorInfo, 16>::iterator TI = Terminators.begin(); 444 BlockPosition Position(MF->getAlignment()); 445 for (auto &Block : MBBs) { 446 skipNonTerminators(Position, Block); 447 for (unsigned BTI = 0, BTE = Block.NumTerminators; BTI != BTE; ++BTI) { 448 assert(Position.Address <= TI->Address && 449 "Addresses shouldn't go forwards"); 450 if (mustRelaxBranch(*TI, Position.Address)) 451 relaxBranch(*TI); 452 skipTerminator(Position, *TI, false); 453 ++TI; 454 } 455 } 456 } 457 458 bool SystemZLongBranch::runOnMachineFunction(MachineFunction &F) { 459 TII = static_cast<const SystemZInstrInfo *>(F.getSubtarget().getInstrInfo()); 460 MF = &F; 461 uint64_t Size = initMBBInfo(); 462 if (Size <= MaxForwardRange || !mustRelaxABranch()) 463 return false; 464 465 setWorstCaseAddresses(); 466 relaxBranches(); 467 return true; 468 } 469 470 FunctionPass *llvm::createSystemZLongBranchPass(SystemZTargetMachine &TM) { 471 return new SystemZLongBranch(TM); 472 } 473