1 //===-- SystemZLongBranch.cpp - Branch lengthening for SystemZ ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass makes sure that all branches are in range.  There are several ways
11 // in which this could be done.  One aggressive approach is to assume that all
12 // branches are in range and successively replace those that turn out not
13 // to be in range with a longer form (branch relaxation).  A simple
14 // implementation is to continually walk through the function relaxing
15 // branches until no more changes are needed and a fixed point is reached.
16 // However, in the pathological worst case, this implementation is
17 // quadratic in the number of blocks; relaxing branch N can make branch N-1
18 // go out of range, which in turn can make branch N-2 go out of range,
19 // and so on.
20 //
21 // An alternative approach is to assume that all branches must be
22 // converted to their long forms, then reinstate the short forms of
23 // branches that, even under this pessimistic assumption, turn out to be
24 // in range (branch shortening).  This too can be implemented as a function
25 // walk that is repeated until a fixed point is reached.  In general,
26 // the result of shortening is not as good as that of relaxation, and
27 // shortening is also quadratic in the worst case; shortening branch N
28 // can bring branch N-1 in range of the short form, which in turn can do
29 // the same for branch N-2, and so on.  The main advantage of shortening
30 // is that each walk through the function produces valid code, so it is
31 // possible to stop at any point after the first walk.  The quadraticness
32 // could therefore be handled with a maximum pass count, although the
33 // question then becomes: what maximum count should be used?
34 //
35 // On SystemZ, long branches are only needed for functions bigger than 64k,
36 // which are relatively rare to begin with, and the long branch sequences
37 // are actually relatively cheap.  It therefore doesn't seem worth spending
38 // much compilation time on the problem.  Instead, the approach we take is:
39 //
40 // (1) Work out the address that each block would have if no branches
41 //     need relaxing.  Exit the pass early if all branches are in range
42 //     according to this assumption.
43 //
44 // (2) Work out the address that each block would have if all branches
45 //     need relaxing.
46 //
47 // (3) Walk through the block calculating the final address of each instruction
48 //     and relaxing those that need to be relaxed.  For backward branches,
49 //     this check uses the final address of the target block, as calculated
50 //     earlier in the walk.  For forward branches, this check uses the
51 //     address of the target block that was calculated in (2).  Both checks
52 //     give a conservatively-correct range.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "SystemZTargetMachine.h"
57 #include "llvm/ADT/Statistic.h"
58 #include "llvm/CodeGen/MachineFunctionPass.h"
59 #include "llvm/CodeGen/MachineInstrBuilder.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/MathExtras.h"
63 #include "llvm/Target/TargetInstrInfo.h"
64 #include "llvm/Target/TargetMachine.h"
65 #include "llvm/Target/TargetRegisterInfo.h"
66 
67 using namespace llvm;
68 
69 #define DEBUG_TYPE "systemz-long-branch"
70 
71 STATISTIC(LongBranches, "Number of long branches.");
72 
73 namespace {
74 // Represents positional information about a basic block.
75 struct MBBInfo {
76   // The address that we currently assume the block has.
77   uint64_t Address;
78 
79   // The size of the block in bytes, excluding terminators.
80   // This value never changes.
81   uint64_t Size;
82 
83   // The minimum alignment of the block, as a log2 value.
84   // This value never changes.
85   unsigned Alignment;
86 
87   // The number of terminators in this block.  This value never changes.
88   unsigned NumTerminators;
89 
90   MBBInfo()
91     : Address(0), Size(0), Alignment(0), NumTerminators(0) {}
92 };
93 
94 // Represents the state of a block terminator.
95 struct TerminatorInfo {
96   // If this terminator is a relaxable branch, this points to the branch
97   // instruction, otherwise it is null.
98   MachineInstr *Branch;
99 
100   // The address that we currently assume the terminator has.
101   uint64_t Address;
102 
103   // The current size of the terminator in bytes.
104   uint64_t Size;
105 
106   // If Branch is nonnull, this is the number of the target block,
107   // otherwise it is unused.
108   unsigned TargetBlock;
109 
110   // If Branch is nonnull, this is the length of the longest relaxed form,
111   // otherwise it is zero.
112   unsigned ExtraRelaxSize;
113 
114   TerminatorInfo() : Branch(nullptr), Size(0), TargetBlock(0),
115                      ExtraRelaxSize(0) {}
116 };
117 
118 // Used to keep track of the current position while iterating over the blocks.
119 struct BlockPosition {
120   // The address that we assume this position has.
121   uint64_t Address;
122 
123   // The number of low bits in Address that are known to be the same
124   // as the runtime address.
125   unsigned KnownBits;
126 
127   BlockPosition(unsigned InitialAlignment)
128     : Address(0), KnownBits(InitialAlignment) {}
129 };
130 
131 class SystemZLongBranch : public MachineFunctionPass {
132 public:
133   static char ID;
134   SystemZLongBranch(const SystemZTargetMachine &tm)
135     : MachineFunctionPass(ID), TII(nullptr) {}
136 
137   const char *getPassName() const override {
138     return "SystemZ Long Branch";
139   }
140 
141   bool runOnMachineFunction(MachineFunction &F) override;
142   MachineFunctionProperties getRequiredProperties() const override {
143     return MachineFunctionProperties().set(
144         MachineFunctionProperties::Property::AllVRegsAllocated);
145   }
146 
147 private:
148   void skipNonTerminators(BlockPosition &Position, MBBInfo &Block);
149   void skipTerminator(BlockPosition &Position, TerminatorInfo &Terminator,
150                       bool AssumeRelaxed);
151   TerminatorInfo describeTerminator(MachineInstr *MI);
152   uint64_t initMBBInfo();
153   bool mustRelaxBranch(const TerminatorInfo &Terminator, uint64_t Address);
154   bool mustRelaxABranch();
155   void setWorstCaseAddresses();
156   void splitBranchOnCount(MachineInstr *MI, unsigned AddOpcode);
157   void splitCompareBranch(MachineInstr *MI, unsigned CompareOpcode);
158   void relaxBranch(TerminatorInfo &Terminator);
159   void relaxBranches();
160 
161   const SystemZInstrInfo *TII;
162   MachineFunction *MF;
163   SmallVector<MBBInfo, 16> MBBs;
164   SmallVector<TerminatorInfo, 16> Terminators;
165 };
166 
167 char SystemZLongBranch::ID = 0;
168 
169 const uint64_t MaxBackwardRange = 0x10000;
170 const uint64_t MaxForwardRange = 0xfffe;
171 } // end anonymous namespace
172 
173 FunctionPass *llvm::createSystemZLongBranchPass(SystemZTargetMachine &TM) {
174   return new SystemZLongBranch(TM);
175 }
176 
177 // Position describes the state immediately before Block.  Update Block
178 // accordingly and move Position to the end of the block's non-terminator
179 // instructions.
180 void SystemZLongBranch::skipNonTerminators(BlockPosition &Position,
181                                            MBBInfo &Block) {
182   if (Block.Alignment > Position.KnownBits) {
183     // When calculating the address of Block, we need to conservatively
184     // assume that Block had the worst possible misalignment.
185     Position.Address += ((uint64_t(1) << Block.Alignment) -
186                          (uint64_t(1) << Position.KnownBits));
187     Position.KnownBits = Block.Alignment;
188   }
189 
190   // Align the addresses.
191   uint64_t AlignMask = (uint64_t(1) << Block.Alignment) - 1;
192   Position.Address = (Position.Address + AlignMask) & ~AlignMask;
193 
194   // Record the block's position.
195   Block.Address = Position.Address;
196 
197   // Move past the non-terminators in the block.
198   Position.Address += Block.Size;
199 }
200 
201 // Position describes the state immediately before Terminator.
202 // Update Terminator accordingly and move Position past it.
203 // Assume that Terminator will be relaxed if AssumeRelaxed.
204 void SystemZLongBranch::skipTerminator(BlockPosition &Position,
205                                        TerminatorInfo &Terminator,
206                                        bool AssumeRelaxed) {
207   Terminator.Address = Position.Address;
208   Position.Address += Terminator.Size;
209   if (AssumeRelaxed)
210     Position.Address += Terminator.ExtraRelaxSize;
211 }
212 
213 // Return a description of terminator instruction MI.
214 TerminatorInfo SystemZLongBranch::describeTerminator(MachineInstr *MI) {
215   TerminatorInfo Terminator;
216   Terminator.Size = TII->getInstSizeInBytes(MI);
217   if (MI->isConditionalBranch() || MI->isUnconditionalBranch()) {
218     switch (MI->getOpcode()) {
219     case SystemZ::J:
220       // Relaxes to JG, which is 2 bytes longer.
221       Terminator.ExtraRelaxSize = 2;
222       break;
223     case SystemZ::BRC:
224       // Relaxes to BRCL, which is 2 bytes longer.
225       Terminator.ExtraRelaxSize = 2;
226       break;
227     case SystemZ::BRCT:
228     case SystemZ::BRCTG:
229       // Relaxes to A(G)HI and BRCL, which is 6 bytes longer.
230       Terminator.ExtraRelaxSize = 6;
231       break;
232     case SystemZ::CRJ:
233     case SystemZ::CLRJ:
234       // Relaxes to a C(L)R/BRCL sequence, which is 2 bytes longer.
235       Terminator.ExtraRelaxSize = 2;
236       break;
237     case SystemZ::CGRJ:
238     case SystemZ::CLGRJ:
239       // Relaxes to a C(L)GR/BRCL sequence, which is 4 bytes longer.
240       Terminator.ExtraRelaxSize = 4;
241       break;
242     case SystemZ::CIJ:
243     case SystemZ::CGIJ:
244       // Relaxes to a C(G)HI/BRCL sequence, which is 4 bytes longer.
245       Terminator.ExtraRelaxSize = 4;
246       break;
247     case SystemZ::CLIJ:
248     case SystemZ::CLGIJ:
249       // Relaxes to a CL(G)FI/BRCL sequence, which is 6 bytes longer.
250       Terminator.ExtraRelaxSize = 6;
251       break;
252     default:
253       llvm_unreachable("Unrecognized branch instruction");
254     }
255     Terminator.Branch = MI;
256     Terminator.TargetBlock =
257       TII->getBranchInfo(MI).Target->getMBB()->getNumber();
258   }
259   return Terminator;
260 }
261 
262 // Fill MBBs and Terminators, setting the addresses on the assumption
263 // that no branches need relaxation.  Return the size of the function under
264 // this assumption.
265 uint64_t SystemZLongBranch::initMBBInfo() {
266   MF->RenumberBlocks();
267   unsigned NumBlocks = MF->size();
268 
269   MBBs.clear();
270   MBBs.resize(NumBlocks);
271 
272   Terminators.clear();
273   Terminators.reserve(NumBlocks);
274 
275   BlockPosition Position(MF->getAlignment());
276   for (unsigned I = 0; I < NumBlocks; ++I) {
277     MachineBasicBlock *MBB = MF->getBlockNumbered(I);
278     MBBInfo &Block = MBBs[I];
279 
280     // Record the alignment, for quick access.
281     Block.Alignment = MBB->getAlignment();
282 
283     // Calculate the size of the fixed part of the block.
284     MachineBasicBlock::iterator MI = MBB->begin();
285     MachineBasicBlock::iterator End = MBB->end();
286     while (MI != End && !MI->isTerminator()) {
287       Block.Size += TII->getInstSizeInBytes(MI);
288       ++MI;
289     }
290     skipNonTerminators(Position, Block);
291 
292     // Add the terminators.
293     while (MI != End) {
294       if (!MI->isDebugValue()) {
295         assert(MI->isTerminator() && "Terminator followed by non-terminator");
296         Terminators.push_back(describeTerminator(MI));
297         skipTerminator(Position, Terminators.back(), false);
298         ++Block.NumTerminators;
299       }
300       ++MI;
301     }
302   }
303 
304   return Position.Address;
305 }
306 
307 // Return true if, under current assumptions, Terminator would need to be
308 // relaxed if it were placed at address Address.
309 bool SystemZLongBranch::mustRelaxBranch(const TerminatorInfo &Terminator,
310                                         uint64_t Address) {
311   if (!Terminator.Branch)
312     return false;
313 
314   const MBBInfo &Target = MBBs[Terminator.TargetBlock];
315   if (Address >= Target.Address) {
316     if (Address - Target.Address <= MaxBackwardRange)
317       return false;
318   } else {
319     if (Target.Address - Address <= MaxForwardRange)
320       return false;
321   }
322 
323   return true;
324 }
325 
326 // Return true if, under current assumptions, any terminator needs
327 // to be relaxed.
328 bool SystemZLongBranch::mustRelaxABranch() {
329   for (auto &Terminator : Terminators)
330     if (mustRelaxBranch(Terminator, Terminator.Address))
331       return true;
332   return false;
333 }
334 
335 // Set the address of each block on the assumption that all branches
336 // must be long.
337 void SystemZLongBranch::setWorstCaseAddresses() {
338   SmallVector<TerminatorInfo, 16>::iterator TI = Terminators.begin();
339   BlockPosition Position(MF->getAlignment());
340   for (auto &Block : MBBs) {
341     skipNonTerminators(Position, Block);
342     for (unsigned BTI = 0, BTE = Block.NumTerminators; BTI != BTE; ++BTI) {
343       skipTerminator(Position, *TI, true);
344       ++TI;
345     }
346   }
347 }
348 
349 // Split BRANCH ON COUNT MI into the addition given by AddOpcode followed
350 // by a BRCL on the result.
351 void SystemZLongBranch::splitBranchOnCount(MachineInstr *MI,
352                                            unsigned AddOpcode) {
353   MachineBasicBlock *MBB = MI->getParent();
354   DebugLoc DL = MI->getDebugLoc();
355   BuildMI(*MBB, MI, DL, TII->get(AddOpcode))
356     .addOperand(MI->getOperand(0))
357     .addOperand(MI->getOperand(1))
358     .addImm(-1);
359   MachineInstr *BRCL = BuildMI(*MBB, MI, DL, TII->get(SystemZ::BRCL))
360     .addImm(SystemZ::CCMASK_ICMP)
361     .addImm(SystemZ::CCMASK_CMP_NE)
362     .addOperand(MI->getOperand(2));
363   // The implicit use of CC is a killing use.
364   BRCL->addRegisterKilled(SystemZ::CC, &TII->getRegisterInfo());
365   MI->eraseFromParent();
366 }
367 
368 // Split MI into the comparison given by CompareOpcode followed
369 // a BRCL on the result.
370 void SystemZLongBranch::splitCompareBranch(MachineInstr *MI,
371                                            unsigned CompareOpcode) {
372   MachineBasicBlock *MBB = MI->getParent();
373   DebugLoc DL = MI->getDebugLoc();
374   BuildMI(*MBB, MI, DL, TII->get(CompareOpcode))
375     .addOperand(MI->getOperand(0))
376     .addOperand(MI->getOperand(1));
377   MachineInstr *BRCL = BuildMI(*MBB, MI, DL, TII->get(SystemZ::BRCL))
378     .addImm(SystemZ::CCMASK_ICMP)
379     .addOperand(MI->getOperand(2))
380     .addOperand(MI->getOperand(3));
381   // The implicit use of CC is a killing use.
382   BRCL->addRegisterKilled(SystemZ::CC, &TII->getRegisterInfo());
383   MI->eraseFromParent();
384 }
385 
386 // Relax the branch described by Terminator.
387 void SystemZLongBranch::relaxBranch(TerminatorInfo &Terminator) {
388   MachineInstr *Branch = Terminator.Branch;
389   switch (Branch->getOpcode()) {
390   case SystemZ::J:
391     Branch->setDesc(TII->get(SystemZ::JG));
392     break;
393   case SystemZ::BRC:
394     Branch->setDesc(TII->get(SystemZ::BRCL));
395     break;
396   case SystemZ::BRCT:
397     splitBranchOnCount(Branch, SystemZ::AHI);
398     break;
399   case SystemZ::BRCTG:
400     splitBranchOnCount(Branch, SystemZ::AGHI);
401     break;
402   case SystemZ::CRJ:
403     splitCompareBranch(Branch, SystemZ::CR);
404     break;
405   case SystemZ::CGRJ:
406     splitCompareBranch(Branch, SystemZ::CGR);
407     break;
408   case SystemZ::CIJ:
409     splitCompareBranch(Branch, SystemZ::CHI);
410     break;
411   case SystemZ::CGIJ:
412     splitCompareBranch(Branch, SystemZ::CGHI);
413     break;
414   case SystemZ::CLRJ:
415     splitCompareBranch(Branch, SystemZ::CLR);
416     break;
417   case SystemZ::CLGRJ:
418     splitCompareBranch(Branch, SystemZ::CLGR);
419     break;
420   case SystemZ::CLIJ:
421     splitCompareBranch(Branch, SystemZ::CLFI);
422     break;
423   case SystemZ::CLGIJ:
424     splitCompareBranch(Branch, SystemZ::CLGFI);
425     break;
426   default:
427     llvm_unreachable("Unrecognized branch");
428   }
429 
430   Terminator.Size += Terminator.ExtraRelaxSize;
431   Terminator.ExtraRelaxSize = 0;
432   Terminator.Branch = nullptr;
433 
434   ++LongBranches;
435 }
436 
437 // Run a shortening pass and relax any branches that need to be relaxed.
438 void SystemZLongBranch::relaxBranches() {
439   SmallVector<TerminatorInfo, 16>::iterator TI = Terminators.begin();
440   BlockPosition Position(MF->getAlignment());
441   for (auto &Block : MBBs) {
442     skipNonTerminators(Position, Block);
443     for (unsigned BTI = 0, BTE = Block.NumTerminators; BTI != BTE; ++BTI) {
444       assert(Position.Address <= TI->Address &&
445              "Addresses shouldn't go forwards");
446       if (mustRelaxBranch(*TI, Position.Address))
447         relaxBranch(*TI);
448       skipTerminator(Position, *TI, false);
449       ++TI;
450     }
451   }
452 }
453 
454 bool SystemZLongBranch::runOnMachineFunction(MachineFunction &F) {
455   TII = static_cast<const SystemZInstrInfo *>(F.getSubtarget().getInstrInfo());
456   MF = &F;
457   uint64_t Size = initMBBInfo();
458   if (Size <= MaxForwardRange || !mustRelaxABranch())
459     return false;
460 
461   setWorstCaseAddresses();
462   relaxBranches();
463   return true;
464 }
465