1//==- SystemZInstrVector.td - SystemZ Vector instructions ------*- tblgen-*-==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10//===----------------------------------------------------------------------===//
11// Move instructions
12//===----------------------------------------------------------------------===//
13
14let Predicates = [FeatureVector] in {
15  // Register move.
16  def VLR : UnaryVRRa<"vlr", 0xE756, null_frag, v128any, v128any>;
17  def VLR32 : UnaryAliasVRR<null_frag, v32eb, v32eb>;
18  def VLR64 : UnaryAliasVRR<null_frag, v64db, v64db>;
19
20  // Load GR from VR element.
21  def VLGV  : BinaryVRScGeneric<"vlgv", 0xE721>;
22  def VLGVB : BinaryVRSc<"vlgvb", 0xE721, null_frag, v128b, 0>;
23  def VLGVH : BinaryVRSc<"vlgvh", 0xE721, null_frag, v128h, 1>;
24  def VLGVF : BinaryVRSc<"vlgvf", 0xE721, null_frag, v128f, 2>;
25  def VLGVG : BinaryVRSc<"vlgvg", 0xE721, z_vector_extract, v128g, 3>;
26
27  // Load VR element from GR.
28  def VLVG  : TernaryVRSbGeneric<"vlvg", 0xE722>;
29  def VLVGB : TernaryVRSb<"vlvgb", 0xE722, z_vector_insert,
30                          v128b, v128b, GR32, 0>;
31  def VLVGH : TernaryVRSb<"vlvgh", 0xE722, z_vector_insert,
32                          v128h, v128h, GR32, 1>;
33  def VLVGF : TernaryVRSb<"vlvgf", 0xE722, z_vector_insert,
34                          v128f, v128f, GR32, 2>;
35  def VLVGG : TernaryVRSb<"vlvgg", 0xE722, z_vector_insert,
36                          v128g, v128g, GR64, 3>;
37
38  // Load VR from GRs disjoint.
39  def VLVGP : BinaryVRRf<"vlvgp", 0xE762, z_join_dwords, v128g>;
40  def VLVGP32 : BinaryAliasVRRf<GR32>;
41}
42
43// Extractions always assign to the full GR64, even if the element would
44// fit in the lower 32 bits.  Sub-i64 extracts therefore need to take a
45// subreg of the result.
46class VectorExtractSubreg<ValueType type, Instruction insn>
47  : Pat<(i32 (z_vector_extract (type VR128:$vec), shift12only:$index)),
48        (EXTRACT_SUBREG (insn VR128:$vec, shift12only:$index), subreg_l32)>;
49
50def : VectorExtractSubreg<v16i8, VLGVB>;
51def : VectorExtractSubreg<v8i16, VLGVH>;
52def : VectorExtractSubreg<v4i32, VLGVF>;
53
54//===----------------------------------------------------------------------===//
55// Immediate instructions
56//===----------------------------------------------------------------------===//
57
58let Predicates = [FeatureVector] in {
59  // Generate byte mask.
60  def VZERO : InherentVRIa<"vzero", 0xE744, 0>;
61  def VONE  : InherentVRIa<"vone", 0xE744, 0xffff>;
62  def VGBM  : UnaryVRIa<"vgbm", 0xE744, z_byte_mask, v128b, imm32zx16>;
63
64  // Generate mask.
65  def VGM  : BinaryVRIbGeneric<"vgm", 0xE746>;
66  def VGMB : BinaryVRIb<"vgmb", 0xE746, z_rotate_mask, v128b, 0>;
67  def VGMH : BinaryVRIb<"vgmh", 0xE746, z_rotate_mask, v128h, 1>;
68  def VGMF : BinaryVRIb<"vgmf", 0xE746, z_rotate_mask, v128f, 2>;
69  def VGMG : BinaryVRIb<"vgmg", 0xE746, z_rotate_mask, v128g, 3>;
70
71  // Load element immediate.
72  //
73  // We want these instructions to be used ahead of VLVG* where possible.
74  // However, VLVG* takes a variable BD-format index whereas VLEI takes
75  // a plain immediate index.  This means that VLVG* has an extra "base"
76  // register operand and is 3 units more complex.  Bumping the complexity
77  // of the VLEI* instructions by 4 means that they are strictly better
78  // than VLVG* in cases where both forms match.
79  let AddedComplexity = 4 in {
80    def VLEIB : TernaryVRIa<"vleib", 0xE740, z_vector_insert,
81                            v128b, v128b, imm32sx16trunc, imm32zx4>;
82    def VLEIH : TernaryVRIa<"vleih", 0xE741, z_vector_insert,
83                            v128h, v128h, imm32sx16trunc, imm32zx3>;
84    def VLEIF : TernaryVRIa<"vleif", 0xE743, z_vector_insert,
85                            v128f, v128f, imm32sx16, imm32zx2>;
86    def VLEIG : TernaryVRIa<"vleig", 0xE742, z_vector_insert,
87                            v128g, v128g, imm64sx16, imm32zx1>;
88  }
89
90  // Replicate immediate.
91  def VREPI  : UnaryVRIaGeneric<"vrepi", 0xE745, imm32sx16>;
92  def VREPIB : UnaryVRIa<"vrepib", 0xE745, z_replicate, v128b, imm32sx16, 0>;
93  def VREPIH : UnaryVRIa<"vrepih", 0xE745, z_replicate, v128h, imm32sx16, 1>;
94  def VREPIF : UnaryVRIa<"vrepif", 0xE745, z_replicate, v128f, imm32sx16, 2>;
95  def VREPIG : UnaryVRIa<"vrepig", 0xE745, z_replicate, v128g, imm32sx16, 3>;
96}
97
98//===----------------------------------------------------------------------===//
99// Loads
100//===----------------------------------------------------------------------===//
101
102let Predicates = [FeatureVector] in {
103  // Load.
104  def VL : UnaryVRX<"vl", 0xE706, null_frag, v128any, 16>;
105
106  // Load to block boundary.  The number of loaded bytes is only known
107  // at run time.  The instruction is really polymorphic, but v128b matches
108  // the return type of the associated intrinsic.
109  def VLBB : BinaryVRX<"vlbb", 0xE707, int_s390_vlbb, v128b, 0>;
110
111  // Load count to block boundary.
112  let Defs = [CC] in
113    def LCBB : InstRXE<0xE727, (outs GR32:$R1),
114                               (ins bdxaddr12only:$XBD2, imm32zx4:$M3),
115                       "lcbb\t$R1, $XBD2, $M3",
116                       [(set GR32:$R1, (int_s390_lcbb bdxaddr12only:$XBD2,
117                                                      imm32zx4:$M3))]>;
118
119  // Load with length.  The number of loaded bytes is only known at run time.
120  def VLL : BinaryVRSb<"vll", 0xE737, int_s390_vll, 0>;
121
122  // Load multiple.
123  def VLM : LoadMultipleVRSa<"vlm", 0xE736>;
124
125  // Load and replicate
126  def VLREP  : UnaryVRXGeneric<"vlrep", 0xE705>;
127  def VLREPB : UnaryVRX<"vlrepb", 0xE705, z_replicate_loadi8,  v128b, 1, 0>;
128  def VLREPH : UnaryVRX<"vlreph", 0xE705, z_replicate_loadi16, v128h, 2, 1>;
129  def VLREPF : UnaryVRX<"vlrepf", 0xE705, z_replicate_loadi32, v128f, 4, 2>;
130  def VLREPG : UnaryVRX<"vlrepg", 0xE705, z_replicate_loadi64, v128g, 8, 3>;
131  def : Pat<(v4f32 (z_replicate_loadf32 bdxaddr12only:$addr)),
132            (VLREPF bdxaddr12only:$addr)>;
133  def : Pat<(v2f64 (z_replicate_loadf64 bdxaddr12only:$addr)),
134            (VLREPG bdxaddr12only:$addr)>;
135
136  // Use VLREP to load subvectors.  These patterns use "12pair" because
137  // LEY and LDY offer full 20-bit displacement fields.  It's often better
138  // to use those instructions rather than force a 20-bit displacement
139  // into a GPR temporary.
140  def VL32 : UnaryAliasVRX<load, v32eb, bdxaddr12pair>;
141  def VL64 : UnaryAliasVRX<load, v64db, bdxaddr12pair>;
142
143  // Load logical element and zero.
144  def VLLEZ  : UnaryVRXGeneric<"vllez", 0xE704>;
145  def VLLEZB : UnaryVRX<"vllezb", 0xE704, z_vllezi8,  v128b, 1, 0>;
146  def VLLEZH : UnaryVRX<"vllezh", 0xE704, z_vllezi16, v128h, 2, 1>;
147  def VLLEZF : UnaryVRX<"vllezf", 0xE704, z_vllezi32, v128f, 4, 2>;
148  def VLLEZG : UnaryVRX<"vllezg", 0xE704, z_vllezi64, v128g, 8, 3>;
149  def : Pat<(v4f32 (z_vllezf32 bdxaddr12only:$addr)),
150            (VLLEZF bdxaddr12only:$addr)>;
151  def : Pat<(v2f64 (z_vllezf64 bdxaddr12only:$addr)),
152            (VLLEZG bdxaddr12only:$addr)>;
153
154  // Load element.
155  def VLEB : TernaryVRX<"vleb", 0xE700, z_vlei8,  v128b, v128b, 1, imm32zx4>;
156  def VLEH : TernaryVRX<"vleh", 0xE701, z_vlei16, v128h, v128h, 2, imm32zx3>;
157  def VLEF : TernaryVRX<"vlef", 0xE703, z_vlei32, v128f, v128f, 4, imm32zx2>;
158  def VLEG : TernaryVRX<"vleg", 0xE702, z_vlei64, v128g, v128g, 8, imm32zx1>;
159  def : Pat<(z_vlef32 (v4f32 VR128:$val), bdxaddr12only:$addr, imm32zx2:$index),
160            (VLEF VR128:$val, bdxaddr12only:$addr, imm32zx2:$index)>;
161  def : Pat<(z_vlef64 (v2f64 VR128:$val), bdxaddr12only:$addr, imm32zx1:$index),
162            (VLEG VR128:$val, bdxaddr12only:$addr, imm32zx1:$index)>;
163
164  // Gather element.
165  def VGEF : TernaryVRV<"vgef", 0xE713, 4, imm32zx2>;
166  def VGEG : TernaryVRV<"vgeg", 0xE712, 8, imm32zx1>;
167}
168
169// Use replicating loads if we're inserting a single element into an
170// undefined vector.  This avoids a false dependency on the previous
171// register contents.
172multiclass ReplicatePeephole<Instruction vlrep, ValueType vectype,
173                             SDPatternOperator load, ValueType scalartype> {
174  def : Pat<(vectype (z_vector_insert
175                      (undef), (scalartype (load bdxaddr12only:$addr)), 0)),
176            (vlrep bdxaddr12only:$addr)>;
177  def : Pat<(vectype (scalar_to_vector
178                      (scalartype (load bdxaddr12only:$addr)))),
179            (vlrep bdxaddr12only:$addr)>;
180}
181defm : ReplicatePeephole<VLREPB, v16i8, anyextloadi8, i32>;
182defm : ReplicatePeephole<VLREPH, v8i16, anyextloadi16, i32>;
183defm : ReplicatePeephole<VLREPF, v4i32, load, i32>;
184defm : ReplicatePeephole<VLREPG, v2i64, load, i64>;
185defm : ReplicatePeephole<VLREPF, v4f32, load, f32>;
186defm : ReplicatePeephole<VLREPG, v2f64, load, f64>;
187
188//===----------------------------------------------------------------------===//
189// Stores
190//===----------------------------------------------------------------------===//
191
192let Predicates = [FeatureVector] in {
193  // Store.
194  def VST : StoreVRX<"vst", 0xE70E, null_frag, v128any, 16>;
195
196  // Store with length.  The number of stored bytes is only known at run time.
197  def VSTL : StoreLengthVRSb<"vstl", 0xE73F, int_s390_vstl, 0>;
198
199  // Store multiple.
200  def VSTM : StoreMultipleVRSa<"vstm", 0xE73E>;
201
202  // Store element.
203  def VSTEB : StoreBinaryVRX<"vsteb", 0xE708, z_vstei8,  v128b, 1, imm32zx4>;
204  def VSTEH : StoreBinaryVRX<"vsteh", 0xE709, z_vstei16, v128h, 2, imm32zx3>;
205  def VSTEF : StoreBinaryVRX<"vstef", 0xE70B, z_vstei32, v128f, 4, imm32zx2>;
206  def VSTEG : StoreBinaryVRX<"vsteg", 0xE70A, z_vstei64, v128g, 8, imm32zx1>;
207  def : Pat<(z_vstef32 (v4f32 VR128:$val), bdxaddr12only:$addr,
208                       imm32zx2:$index),
209            (VSTEF VR128:$val, bdxaddr12only:$addr, imm32zx2:$index)>;
210  def : Pat<(z_vstef64 (v2f64 VR128:$val), bdxaddr12only:$addr,
211                       imm32zx1:$index),
212            (VSTEG VR128:$val, bdxaddr12only:$addr, imm32zx1:$index)>;
213
214  // Use VSTE to store subvectors.  These patterns use "12pair" because
215  // STEY and STDY offer full 20-bit displacement fields.  It's often better
216  // to use those instructions rather than force a 20-bit displacement
217  // into a GPR temporary.
218  def VST32 : StoreAliasVRX<store, v32eb, bdxaddr12pair>;
219  def VST64 : StoreAliasVRX<store, v64db, bdxaddr12pair>;
220
221  // Scatter element.
222  def VSCEF : StoreBinaryVRV<"vscef", 0xE71B, 4, imm32zx2>;
223  def VSCEG : StoreBinaryVRV<"vsceg", 0xE71A, 8, imm32zx1>;
224}
225
226//===----------------------------------------------------------------------===//
227// Selects and permutes
228//===----------------------------------------------------------------------===//
229
230let Predicates = [FeatureVector] in {
231  // Merge high.
232  def VMRH:   BinaryVRRcGeneric<"vmrh", 0xE761>;
233  def VMRHB : BinaryVRRc<"vmrhb", 0xE761, z_merge_high, v128b, v128b, 0>;
234  def VMRHH : BinaryVRRc<"vmrhh", 0xE761, z_merge_high, v128h, v128h, 1>;
235  def VMRHF : BinaryVRRc<"vmrhf", 0xE761, z_merge_high, v128f, v128f, 2>;
236  def VMRHG : BinaryVRRc<"vmrhg", 0xE761, z_merge_high, v128g, v128g, 3>;
237  def : BinaryRRWithType<VMRHF, VR128, z_merge_high, v4f32>;
238  def : BinaryRRWithType<VMRHG, VR128, z_merge_high, v2f64>;
239
240  // Merge low.
241  def VMRL:   BinaryVRRcGeneric<"vmrl", 0xE760>;
242  def VMRLB : BinaryVRRc<"vmrlb", 0xE760, z_merge_low, v128b, v128b, 0>;
243  def VMRLH : BinaryVRRc<"vmrlh", 0xE760, z_merge_low, v128h, v128h, 1>;
244  def VMRLF : BinaryVRRc<"vmrlf", 0xE760, z_merge_low, v128f, v128f, 2>;
245  def VMRLG : BinaryVRRc<"vmrlg", 0xE760, z_merge_low, v128g, v128g, 3>;
246  def : BinaryRRWithType<VMRLF, VR128, z_merge_low, v4f32>;
247  def : BinaryRRWithType<VMRLG, VR128, z_merge_low, v2f64>;
248
249  // Permute.
250  def VPERM : TernaryVRRe<"vperm", 0xE78C, z_permute, v128b, v128b>;
251
252  // Permute doubleword immediate.
253  def VPDI : TernaryVRRc<"vpdi", 0xE784, z_permute_dwords, v128g, v128g>;
254
255  // Replicate.
256  def VREP:   BinaryVRIcGeneric<"vrep", 0xE74D>;
257  def VREPB : BinaryVRIc<"vrepb", 0xE74D, z_splat, v128b, v128b, 0>;
258  def VREPH : BinaryVRIc<"vreph", 0xE74D, z_splat, v128h, v128h, 1>;
259  def VREPF : BinaryVRIc<"vrepf", 0xE74D, z_splat, v128f, v128f, 2>;
260  def VREPG : BinaryVRIc<"vrepg", 0xE74D, z_splat, v128g, v128g, 3>;
261  def : Pat<(v4f32 (z_splat VR128:$vec, imm32zx16:$index)),
262            (VREPF VR128:$vec, imm32zx16:$index)>;
263  def : Pat<(v2f64 (z_splat VR128:$vec, imm32zx16:$index)),
264            (VREPG VR128:$vec, imm32zx16:$index)>;
265
266  // Select.
267  def VSEL : TernaryVRRe<"vsel", 0xE78D, null_frag, v128any, v128any>;
268}
269
270//===----------------------------------------------------------------------===//
271// Widening and narrowing
272//===----------------------------------------------------------------------===//
273
274let Predicates = [FeatureVector] in {
275  // Pack
276  def VPK  : BinaryVRRcGeneric<"vpk", 0xE794>;
277  def VPKH : BinaryVRRc<"vpkh", 0xE794, z_pack, v128b, v128h, 1>;
278  def VPKF : BinaryVRRc<"vpkf", 0xE794, z_pack, v128h, v128f, 2>;
279  def VPKG : BinaryVRRc<"vpkg", 0xE794, z_pack, v128f, v128g, 3>;
280
281  // Pack saturate.
282  def  VPKS  : BinaryVRRbSPairGeneric<"vpks", 0xE797>;
283  defm VPKSH : BinaryVRRbSPair<"vpksh", 0xE797, int_s390_vpksh, z_packs_cc,
284                               v128b, v128h, 1>;
285  defm VPKSF : BinaryVRRbSPair<"vpksf", 0xE797, int_s390_vpksf, z_packs_cc,
286                               v128h, v128f, 2>;
287  defm VPKSG : BinaryVRRbSPair<"vpksg", 0xE797, int_s390_vpksg, z_packs_cc,
288                               v128f, v128g, 3>;
289
290  // Pack saturate logical.
291  def  VPKLS  : BinaryVRRbSPairGeneric<"vpkls", 0xE795>;
292  defm VPKLSH : BinaryVRRbSPair<"vpklsh", 0xE795, int_s390_vpklsh, z_packls_cc,
293                                v128b, v128h, 1>;
294  defm VPKLSF : BinaryVRRbSPair<"vpklsf", 0xE795, int_s390_vpklsf, z_packls_cc,
295                                v128h, v128f, 2>;
296  defm VPKLSG : BinaryVRRbSPair<"vpklsg", 0xE795, int_s390_vpklsg, z_packls_cc,
297                                v128f, v128g, 3>;
298
299  // Sign-extend to doubleword.
300  def VSEG  : UnaryVRRaGeneric<"vseg", 0xE75F>;
301  def VSEGB : UnaryVRRa<"vsegb", 0xE75F, z_vsei8,  v128g, v128g, 0>;
302  def VSEGH : UnaryVRRa<"vsegh", 0xE75F, z_vsei16, v128g, v128g, 1>;
303  def VSEGF : UnaryVRRa<"vsegf", 0xE75F, z_vsei32, v128g, v128g, 2>;
304  def : Pat<(z_vsei8_by_parts  (v16i8 VR128:$src)), (VSEGB VR128:$src)>;
305  def : Pat<(z_vsei16_by_parts (v8i16 VR128:$src)), (VSEGH VR128:$src)>;
306  def : Pat<(z_vsei32_by_parts (v4i32 VR128:$src)), (VSEGF VR128:$src)>;
307
308  // Unpack high.
309  def VUPH  : UnaryVRRaGeneric<"vuph", 0xE7D7>;
310  def VUPHB : UnaryVRRa<"vuphb", 0xE7D7, z_unpack_high, v128h, v128b, 0>;
311  def VUPHH : UnaryVRRa<"vuphh", 0xE7D7, z_unpack_high, v128f, v128h, 1>;
312  def VUPHF : UnaryVRRa<"vuphf", 0xE7D7, z_unpack_high, v128g, v128f, 2>;
313
314  // Unpack logical high.
315  def VUPLH  : UnaryVRRaGeneric<"vuplh", 0xE7D5>;
316  def VUPLHB : UnaryVRRa<"vuplhb", 0xE7D5, z_unpackl_high, v128h, v128b, 0>;
317  def VUPLHH : UnaryVRRa<"vuplhh", 0xE7D5, z_unpackl_high, v128f, v128h, 1>;
318  def VUPLHF : UnaryVRRa<"vuplhf", 0xE7D5, z_unpackl_high, v128g, v128f, 2>;
319
320  // Unpack low.
321  def VUPL   : UnaryVRRaGeneric<"vupl", 0xE7D6>;
322  def VUPLB  : UnaryVRRa<"vuplb",  0xE7D6, z_unpack_low, v128h, v128b, 0>;
323  def VUPLHW : UnaryVRRa<"vuplhw", 0xE7D6, z_unpack_low, v128f, v128h, 1>;
324  def VUPLF  : UnaryVRRa<"vuplf",  0xE7D6, z_unpack_low, v128g, v128f, 2>;
325
326  // Unpack logical low.
327  def VUPLL  : UnaryVRRaGeneric<"vupll", 0xE7D4>;
328  def VUPLLB : UnaryVRRa<"vupllb", 0xE7D4, z_unpackl_low, v128h, v128b, 0>;
329  def VUPLLH : UnaryVRRa<"vupllh", 0xE7D4, z_unpackl_low, v128f, v128h, 1>;
330  def VUPLLF : UnaryVRRa<"vupllf", 0xE7D4, z_unpackl_low, v128g, v128f, 2>;
331}
332
333//===----------------------------------------------------------------------===//
334// Instantiating generic operations for specific types.
335//===----------------------------------------------------------------------===//
336
337multiclass GenericVectorOps<ValueType type, ValueType inttype> {
338  let Predicates = [FeatureVector] in {
339    def : Pat<(type (load bdxaddr12only:$addr)),
340              (VL bdxaddr12only:$addr)>;
341    def : Pat<(store (type VR128:$src), bdxaddr12only:$addr),
342              (VST VR128:$src, bdxaddr12only:$addr)>;
343    def : Pat<(type (vselect (inttype VR128:$x), VR128:$y, VR128:$z)),
344              (VSEL VR128:$y, VR128:$z, VR128:$x)>;
345    def : Pat<(type (vselect (inttype (z_vnot VR128:$x)), VR128:$y, VR128:$z)),
346              (VSEL VR128:$z, VR128:$y, VR128:$x)>;
347  }
348}
349
350defm : GenericVectorOps<v16i8, v16i8>;
351defm : GenericVectorOps<v8i16, v8i16>;
352defm : GenericVectorOps<v4i32, v4i32>;
353defm : GenericVectorOps<v2i64, v2i64>;
354defm : GenericVectorOps<v4f32, v4i32>;
355defm : GenericVectorOps<v2f64, v2i64>;
356
357//===----------------------------------------------------------------------===//
358// Integer arithmetic
359//===----------------------------------------------------------------------===//
360
361let Predicates = [FeatureVector] in {
362  // Add.
363  def VA  : BinaryVRRcGeneric<"va", 0xE7F3>;
364  def VAB : BinaryVRRc<"vab", 0xE7F3, add, v128b, v128b, 0>;
365  def VAH : BinaryVRRc<"vah", 0xE7F3, add, v128h, v128h, 1>;
366  def VAF : BinaryVRRc<"vaf", 0xE7F3, add, v128f, v128f, 2>;
367  def VAG : BinaryVRRc<"vag", 0xE7F3, add, v128g, v128g, 3>;
368  def VAQ : BinaryVRRc<"vaq", 0xE7F3, int_s390_vaq, v128q, v128q, 4>;
369
370  // Add compute carry.
371  def VACC  : BinaryVRRcGeneric<"vacc", 0xE7F1>;
372  def VACCB : BinaryVRRc<"vaccb", 0xE7F1, int_s390_vaccb, v128b, v128b, 0>;
373  def VACCH : BinaryVRRc<"vacch", 0xE7F1, int_s390_vacch, v128h, v128h, 1>;
374  def VACCF : BinaryVRRc<"vaccf", 0xE7F1, int_s390_vaccf, v128f, v128f, 2>;
375  def VACCG : BinaryVRRc<"vaccg", 0xE7F1, int_s390_vaccg, v128g, v128g, 3>;
376  def VACCQ : BinaryVRRc<"vaccq", 0xE7F1, int_s390_vaccq, v128q, v128q, 4>;
377
378  // Add with carry.
379  def VAC  : TernaryVRRdGeneric<"vac", 0xE7BB>;
380  def VACQ : TernaryVRRd<"vacq", 0xE7BB, int_s390_vacq, v128q, v128q, 4>;
381
382  // Add with carry compute carry.
383  def VACCC  : TernaryVRRdGeneric<"vaccc", 0xE7B9>;
384  def VACCCQ : TernaryVRRd<"vacccq", 0xE7B9, int_s390_vacccq, v128q, v128q, 4>;
385
386  // And.
387  def VN : BinaryVRRc<"vn", 0xE768, null_frag, v128any, v128any>;
388
389  // And with complement.
390  def VNC : BinaryVRRc<"vnc", 0xE769, null_frag, v128any, v128any>;
391
392  // Average.
393  def VAVG  : BinaryVRRcGeneric<"vavg", 0xE7F2>;
394  def VAVGB : BinaryVRRc<"vavgb", 0xE7F2, int_s390_vavgb, v128b, v128b, 0>;
395  def VAVGH : BinaryVRRc<"vavgh", 0xE7F2, int_s390_vavgh, v128h, v128h, 1>;
396  def VAVGF : BinaryVRRc<"vavgf", 0xE7F2, int_s390_vavgf, v128f, v128f, 2>;
397  def VAVGG : BinaryVRRc<"vavgg", 0xE7F2, int_s390_vavgg, v128g, v128g, 3>;
398
399  // Average logical.
400  def VAVGL  : BinaryVRRcGeneric<"vavgl", 0xE7F0>;
401  def VAVGLB : BinaryVRRc<"vavglb", 0xE7F0, int_s390_vavglb, v128b, v128b, 0>;
402  def VAVGLH : BinaryVRRc<"vavglh", 0xE7F0, int_s390_vavglh, v128h, v128h, 1>;
403  def VAVGLF : BinaryVRRc<"vavglf", 0xE7F0, int_s390_vavglf, v128f, v128f, 2>;
404  def VAVGLG : BinaryVRRc<"vavglg", 0xE7F0, int_s390_vavglg, v128g, v128g, 3>;
405
406  // Checksum.
407  def VCKSM : BinaryVRRc<"vcksm", 0xE766, int_s390_vcksm, v128f, v128f>;
408
409  // Count leading zeros.
410  def VCLZ  : UnaryVRRaGeneric<"vclz", 0xE753>;
411  def VCLZB : UnaryVRRa<"vclzb", 0xE753, ctlz, v128b, v128b, 0>;
412  def VCLZH : UnaryVRRa<"vclzh", 0xE753, ctlz, v128h, v128h, 1>;
413  def VCLZF : UnaryVRRa<"vclzf", 0xE753, ctlz, v128f, v128f, 2>;
414  def VCLZG : UnaryVRRa<"vclzg", 0xE753, ctlz, v128g, v128g, 3>;
415
416  // Count trailing zeros.
417  def VCTZ  : UnaryVRRaGeneric<"vctz", 0xE752>;
418  def VCTZB : UnaryVRRa<"vctzb", 0xE752, cttz, v128b, v128b, 0>;
419  def VCTZH : UnaryVRRa<"vctzh", 0xE752, cttz, v128h, v128h, 1>;
420  def VCTZF : UnaryVRRa<"vctzf", 0xE752, cttz, v128f, v128f, 2>;
421  def VCTZG : UnaryVRRa<"vctzg", 0xE752, cttz, v128g, v128g, 3>;
422
423  // Exclusive or.
424  def VX : BinaryVRRc<"vx", 0xE76D, null_frag, v128any, v128any>;
425
426  // Galois field multiply sum.
427  def VGFM  : BinaryVRRcGeneric<"vgfm", 0xE7B4>;
428  def VGFMB : BinaryVRRc<"vgfmb", 0xE7B4, int_s390_vgfmb, v128h, v128b, 0>;
429  def VGFMH : BinaryVRRc<"vgfmh", 0xE7B4, int_s390_vgfmh, v128f, v128h, 1>;
430  def VGFMF : BinaryVRRc<"vgfmf", 0xE7B4, int_s390_vgfmf, v128g, v128f, 2>;
431  def VGFMG : BinaryVRRc<"vgfmg", 0xE7B4, int_s390_vgfmg, v128q, v128g, 3>;
432
433  // Galois field multiply sum and accumulate.
434  def VGFMA  : TernaryVRRdGeneric<"vgfma", 0xE7BC>;
435  def VGFMAB : TernaryVRRd<"vgfmab", 0xE7BC, int_s390_vgfmab, v128h, v128b, 0>;
436  def VGFMAH : TernaryVRRd<"vgfmah", 0xE7BC, int_s390_vgfmah, v128f, v128h, 1>;
437  def VGFMAF : TernaryVRRd<"vgfmaf", 0xE7BC, int_s390_vgfmaf, v128g, v128f, 2>;
438  def VGFMAG : TernaryVRRd<"vgfmag", 0xE7BC, int_s390_vgfmag, v128q, v128g, 3>;
439
440  // Load complement.
441  def VLC  : UnaryVRRaGeneric<"vlc", 0xE7DE>;
442  def VLCB : UnaryVRRa<"vlcb", 0xE7DE, z_vneg, v128b, v128b, 0>;
443  def VLCH : UnaryVRRa<"vlch", 0xE7DE, z_vneg, v128h, v128h, 1>;
444  def VLCF : UnaryVRRa<"vlcf", 0xE7DE, z_vneg, v128f, v128f, 2>;
445  def VLCG : UnaryVRRa<"vlcg", 0xE7DE, z_vneg, v128g, v128g, 3>;
446
447  // Load positive.
448  def VLP  : UnaryVRRaGeneric<"vlp", 0xE7DF>;
449  def VLPB : UnaryVRRa<"vlpb", 0xE7DF, z_viabs8,  v128b, v128b, 0>;
450  def VLPH : UnaryVRRa<"vlph", 0xE7DF, z_viabs16, v128h, v128h, 1>;
451  def VLPF : UnaryVRRa<"vlpf", 0xE7DF, z_viabs32, v128f, v128f, 2>;
452  def VLPG : UnaryVRRa<"vlpg", 0xE7DF, z_viabs64, v128g, v128g, 3>;
453
454  // Maximum.
455  def VMX  : BinaryVRRcGeneric<"vmx", 0xE7FF>;
456  def VMXB : BinaryVRRc<"vmxb", 0xE7FF, null_frag, v128b, v128b, 0>;
457  def VMXH : BinaryVRRc<"vmxh", 0xE7FF, null_frag, v128h, v128h, 1>;
458  def VMXF : BinaryVRRc<"vmxf", 0xE7FF, null_frag, v128f, v128f, 2>;
459  def VMXG : BinaryVRRc<"vmxg", 0xE7FF, null_frag, v128g, v128g, 3>;
460
461  // Maximum logical.
462  def VMXL  : BinaryVRRcGeneric<"vmxl", 0xE7FD>;
463  def VMXLB : BinaryVRRc<"vmxlb", 0xE7FD, null_frag, v128b, v128b, 0>;
464  def VMXLH : BinaryVRRc<"vmxlh", 0xE7FD, null_frag, v128h, v128h, 1>;
465  def VMXLF : BinaryVRRc<"vmxlf", 0xE7FD, null_frag, v128f, v128f, 2>;
466  def VMXLG : BinaryVRRc<"vmxlg", 0xE7FD, null_frag, v128g, v128g, 3>;
467
468  // Minimum.
469  def VMN  : BinaryVRRcGeneric<"vmn", 0xE7FE>;
470  def VMNB : BinaryVRRc<"vmnb", 0xE7FE, null_frag, v128b, v128b, 0>;
471  def VMNH : BinaryVRRc<"vmnh", 0xE7FE, null_frag, v128h, v128h, 1>;
472  def VMNF : BinaryVRRc<"vmnf", 0xE7FE, null_frag, v128f, v128f, 2>;
473  def VMNG : BinaryVRRc<"vmng", 0xE7FE, null_frag, v128g, v128g, 3>;
474
475  // Minimum logical.
476  def VMNL  : BinaryVRRcGeneric<"vmnl", 0xE7FC>;
477  def VMNLB : BinaryVRRc<"vmnlb", 0xE7FC, null_frag, v128b, v128b, 0>;
478  def VMNLH : BinaryVRRc<"vmnlh", 0xE7FC, null_frag, v128h, v128h, 1>;
479  def VMNLF : BinaryVRRc<"vmnlf", 0xE7FC, null_frag, v128f, v128f, 2>;
480  def VMNLG : BinaryVRRc<"vmnlg", 0xE7FC, null_frag, v128g, v128g, 3>;
481
482  // Multiply and add low.
483  def VMAL   : TernaryVRRdGeneric<"vmal", 0xE7AA>;
484  def VMALB  : TernaryVRRd<"vmalb",  0xE7AA, z_muladd, v128b, v128b, 0>;
485  def VMALHW : TernaryVRRd<"vmalhw", 0xE7AA, z_muladd, v128h, v128h, 1>;
486  def VMALF  : TernaryVRRd<"vmalf",  0xE7AA, z_muladd, v128f, v128f, 2>;
487
488  // Multiply and add high.
489  def VMAH  : TernaryVRRdGeneric<"vmah", 0xE7AB>;
490  def VMAHB : TernaryVRRd<"vmahb", 0xE7AB, int_s390_vmahb, v128b, v128b, 0>;
491  def VMAHH : TernaryVRRd<"vmahh", 0xE7AB, int_s390_vmahh, v128h, v128h, 1>;
492  def VMAHF : TernaryVRRd<"vmahf", 0xE7AB, int_s390_vmahf, v128f, v128f, 2>;
493
494  // Multiply and add logical high.
495  def VMALH  : TernaryVRRdGeneric<"vmalh", 0xE7A9>;
496  def VMALHB : TernaryVRRd<"vmalhb", 0xE7A9, int_s390_vmalhb, v128b, v128b, 0>;
497  def VMALHH : TernaryVRRd<"vmalhh", 0xE7A9, int_s390_vmalhh, v128h, v128h, 1>;
498  def VMALHF : TernaryVRRd<"vmalhf", 0xE7A9, int_s390_vmalhf, v128f, v128f, 2>;
499
500  // Multiply and add even.
501  def VMAE  : TernaryVRRdGeneric<"vmae", 0xE7AE>;
502  def VMAEB : TernaryVRRd<"vmaeb", 0xE7AE, int_s390_vmaeb, v128h, v128b, 0>;
503  def VMAEH : TernaryVRRd<"vmaeh", 0xE7AE, int_s390_vmaeh, v128f, v128h, 1>;
504  def VMAEF : TernaryVRRd<"vmaef", 0xE7AE, int_s390_vmaef, v128g, v128f, 2>;
505
506  // Multiply and add logical even.
507  def VMALE  : TernaryVRRdGeneric<"vmale", 0xE7AC>;
508  def VMALEB : TernaryVRRd<"vmaleb", 0xE7AC, int_s390_vmaleb, v128h, v128b, 0>;
509  def VMALEH : TernaryVRRd<"vmaleh", 0xE7AC, int_s390_vmaleh, v128f, v128h, 1>;
510  def VMALEF : TernaryVRRd<"vmalef", 0xE7AC, int_s390_vmalef, v128g, v128f, 2>;
511
512  // Multiply and add odd.
513  def VMAO  : TernaryVRRdGeneric<"vmao", 0xE7AF>;
514  def VMAOB : TernaryVRRd<"vmaob", 0xE7AF, int_s390_vmaob, v128h, v128b, 0>;
515  def VMAOH : TernaryVRRd<"vmaoh", 0xE7AF, int_s390_vmaoh, v128f, v128h, 1>;
516  def VMAOF : TernaryVRRd<"vmaof", 0xE7AF, int_s390_vmaof, v128g, v128f, 2>;
517
518  // Multiply and add logical odd.
519  def VMALO  : TernaryVRRdGeneric<"vmalo", 0xE7AD>;
520  def VMALOB : TernaryVRRd<"vmalob", 0xE7AD, int_s390_vmalob, v128h, v128b, 0>;
521  def VMALOH : TernaryVRRd<"vmaloh", 0xE7AD, int_s390_vmaloh, v128f, v128h, 1>;
522  def VMALOF : TernaryVRRd<"vmalof", 0xE7AD, int_s390_vmalof, v128g, v128f, 2>;
523
524  // Multiply high.
525  def VMH  : BinaryVRRcGeneric<"vmh", 0xE7A3>;
526  def VMHB : BinaryVRRc<"vmhb", 0xE7A3, int_s390_vmhb, v128b, v128b, 0>;
527  def VMHH : BinaryVRRc<"vmhh", 0xE7A3, int_s390_vmhh, v128h, v128h, 1>;
528  def VMHF : BinaryVRRc<"vmhf", 0xE7A3, int_s390_vmhf, v128f, v128f, 2>;
529
530  // Multiply logical high.
531  def VMLH  : BinaryVRRcGeneric<"vmlh", 0xE7A1>;
532  def VMLHB : BinaryVRRc<"vmlhb", 0xE7A1, int_s390_vmlhb, v128b, v128b, 0>;
533  def VMLHH : BinaryVRRc<"vmlhh", 0xE7A1, int_s390_vmlhh, v128h, v128h, 1>;
534  def VMLHF : BinaryVRRc<"vmlhf", 0xE7A1, int_s390_vmlhf, v128f, v128f, 2>;
535
536  // Multiply low.
537  def VML   : BinaryVRRcGeneric<"vml", 0xE7A2>;
538  def VMLB  : BinaryVRRc<"vmlb",  0xE7A2, mul, v128b, v128b, 0>;
539  def VMLHW : BinaryVRRc<"vmlhw", 0xE7A2, mul, v128h, v128h, 1>;
540  def VMLF  : BinaryVRRc<"vmlf",  0xE7A2, mul, v128f, v128f, 2>;
541
542  // Multiply even.
543  def VME  : BinaryVRRcGeneric<"vme", 0xE7A6>;
544  def VMEB : BinaryVRRc<"vmeb", 0xE7A6, int_s390_vmeb, v128h, v128b, 0>;
545  def VMEH : BinaryVRRc<"vmeh", 0xE7A6, int_s390_vmeh, v128f, v128h, 1>;
546  def VMEF : BinaryVRRc<"vmef", 0xE7A6, int_s390_vmef, v128g, v128f, 2>;
547
548  // Multiply logical even.
549  def VMLE  : BinaryVRRcGeneric<"vmle", 0xE7A4>;
550  def VMLEB : BinaryVRRc<"vmleb", 0xE7A4, int_s390_vmleb, v128h, v128b, 0>;
551  def VMLEH : BinaryVRRc<"vmleh", 0xE7A4, int_s390_vmleh, v128f, v128h, 1>;
552  def VMLEF : BinaryVRRc<"vmlef", 0xE7A4, int_s390_vmlef, v128g, v128f, 2>;
553
554  // Multiply odd.
555  def VMO  : BinaryVRRcGeneric<"vmo", 0xE7A7>;
556  def VMOB : BinaryVRRc<"vmob", 0xE7A7, int_s390_vmob, v128h, v128b, 0>;
557  def VMOH : BinaryVRRc<"vmoh", 0xE7A7, int_s390_vmoh, v128f, v128h, 1>;
558  def VMOF : BinaryVRRc<"vmof", 0xE7A7, int_s390_vmof, v128g, v128f, 2>;
559
560  // Multiply logical odd.
561  def VMLO  : BinaryVRRcGeneric<"vmlo", 0xE7A5>;
562  def VMLOB : BinaryVRRc<"vmlob", 0xE7A5, int_s390_vmlob, v128h, v128b, 0>;
563  def VMLOH : BinaryVRRc<"vmloh", 0xE7A5, int_s390_vmloh, v128f, v128h, 1>;
564  def VMLOF : BinaryVRRc<"vmlof", 0xE7A5, int_s390_vmlof, v128g, v128f, 2>;
565
566  // Nor.
567  def VNO : BinaryVRRc<"vno", 0xE76B, null_frag, v128any, v128any>;
568  def : InstAlias<"vnot\t$V1, $V2", (VNO VR128:$V1, VR128:$V2, VR128:$V2), 0>;
569
570  // Or.
571  def VO : BinaryVRRc<"vo", 0xE76A, null_frag, v128any, v128any>;
572
573  // Population count.
574  def VPOPCT : UnaryVRRaGeneric<"vpopct", 0xE750>;
575  def : Pat<(v16i8 (z_popcnt VR128:$x)), (VPOPCT VR128:$x, 0)>;
576
577  // Element rotate left logical (with vector shift amount).
578  def VERLLV  : BinaryVRRcGeneric<"verllv", 0xE773>;
579  def VERLLVB : BinaryVRRc<"verllvb", 0xE773, int_s390_verllvb,
580                           v128b, v128b, 0>;
581  def VERLLVH : BinaryVRRc<"verllvh", 0xE773, int_s390_verllvh,
582                           v128h, v128h, 1>;
583  def VERLLVF : BinaryVRRc<"verllvf", 0xE773, int_s390_verllvf,
584                           v128f, v128f, 2>;
585  def VERLLVG : BinaryVRRc<"verllvg", 0xE773, int_s390_verllvg,
586                           v128g, v128g, 3>;
587
588  // Element rotate left logical (with scalar shift amount).
589  def VERLL  : BinaryVRSaGeneric<"verll", 0xE733>;
590  def VERLLB : BinaryVRSa<"verllb", 0xE733, int_s390_verllb, v128b, v128b, 0>;
591  def VERLLH : BinaryVRSa<"verllh", 0xE733, int_s390_verllh, v128h, v128h, 1>;
592  def VERLLF : BinaryVRSa<"verllf", 0xE733, int_s390_verllf, v128f, v128f, 2>;
593  def VERLLG : BinaryVRSa<"verllg", 0xE733, int_s390_verllg, v128g, v128g, 3>;
594
595  // Element rotate and insert under mask.
596  def VERIM  : QuaternaryVRIdGeneric<"verim", 0xE772>;
597  def VERIMB : QuaternaryVRId<"verimb", 0xE772, int_s390_verimb, v128b, v128b, 0>;
598  def VERIMH : QuaternaryVRId<"verimh", 0xE772, int_s390_verimh, v128h, v128h, 1>;
599  def VERIMF : QuaternaryVRId<"verimf", 0xE772, int_s390_verimf, v128f, v128f, 2>;
600  def VERIMG : QuaternaryVRId<"verimg", 0xE772, int_s390_verimg, v128g, v128g, 3>;
601
602  // Element shift left (with vector shift amount).
603  def VESLV  : BinaryVRRcGeneric<"veslv", 0xE770>;
604  def VESLVB : BinaryVRRc<"veslvb", 0xE770, z_vshl, v128b, v128b, 0>;
605  def VESLVH : BinaryVRRc<"veslvh", 0xE770, z_vshl, v128h, v128h, 1>;
606  def VESLVF : BinaryVRRc<"veslvf", 0xE770, z_vshl, v128f, v128f, 2>;
607  def VESLVG : BinaryVRRc<"veslvg", 0xE770, z_vshl, v128g, v128g, 3>;
608
609  // Element shift left (with scalar shift amount).
610  def VESL  : BinaryVRSaGeneric<"vesl", 0xE730>;
611  def VESLB : BinaryVRSa<"veslb", 0xE730, z_vshl_by_scalar, v128b, v128b, 0>;
612  def VESLH : BinaryVRSa<"veslh", 0xE730, z_vshl_by_scalar, v128h, v128h, 1>;
613  def VESLF : BinaryVRSa<"veslf", 0xE730, z_vshl_by_scalar, v128f, v128f, 2>;
614  def VESLG : BinaryVRSa<"veslg", 0xE730, z_vshl_by_scalar, v128g, v128g, 3>;
615
616  // Element shift right arithmetic (with vector shift amount).
617  def VESRAV  : BinaryVRRcGeneric<"vesrav", 0xE77A>;
618  def VESRAVB : BinaryVRRc<"vesravb", 0xE77A, z_vsra, v128b, v128b, 0>;
619  def VESRAVH : BinaryVRRc<"vesravh", 0xE77A, z_vsra, v128h, v128h, 1>;
620  def VESRAVF : BinaryVRRc<"vesravf", 0xE77A, z_vsra, v128f, v128f, 2>;
621  def VESRAVG : BinaryVRRc<"vesravg", 0xE77A, z_vsra, v128g, v128g, 3>;
622
623  // Element shift right arithmetic (with scalar shift amount).
624  def VESRA  : BinaryVRSaGeneric<"vesra", 0xE73A>;
625  def VESRAB : BinaryVRSa<"vesrab", 0xE73A, z_vsra_by_scalar, v128b, v128b, 0>;
626  def VESRAH : BinaryVRSa<"vesrah", 0xE73A, z_vsra_by_scalar, v128h, v128h, 1>;
627  def VESRAF : BinaryVRSa<"vesraf", 0xE73A, z_vsra_by_scalar, v128f, v128f, 2>;
628  def VESRAG : BinaryVRSa<"vesrag", 0xE73A, z_vsra_by_scalar, v128g, v128g, 3>;
629
630  // Element shift right logical (with vector shift amount).
631  def VESRLV  : BinaryVRRcGeneric<"vesrlv", 0xE778>;
632  def VESRLVB : BinaryVRRc<"vesrlvb", 0xE778, z_vsrl, v128b, v128b, 0>;
633  def VESRLVH : BinaryVRRc<"vesrlvh", 0xE778, z_vsrl, v128h, v128h, 1>;
634  def VESRLVF : BinaryVRRc<"vesrlvf", 0xE778, z_vsrl, v128f, v128f, 2>;
635  def VESRLVG : BinaryVRRc<"vesrlvg", 0xE778, z_vsrl, v128g, v128g, 3>;
636
637  // Element shift right logical (with scalar shift amount).
638  def VESRL  : BinaryVRSaGeneric<"vesrl", 0xE738>;
639  def VESRLB : BinaryVRSa<"vesrlb", 0xE738, z_vsrl_by_scalar, v128b, v128b, 0>;
640  def VESRLH : BinaryVRSa<"vesrlh", 0xE738, z_vsrl_by_scalar, v128h, v128h, 1>;
641  def VESRLF : BinaryVRSa<"vesrlf", 0xE738, z_vsrl_by_scalar, v128f, v128f, 2>;
642  def VESRLG : BinaryVRSa<"vesrlg", 0xE738, z_vsrl_by_scalar, v128g, v128g, 3>;
643
644  // Shift left.
645  def VSL : BinaryVRRc<"vsl", 0xE774, int_s390_vsl, v128b, v128b>;
646
647  // Shift left by byte.
648  def VSLB : BinaryVRRc<"vslb", 0xE775, int_s390_vslb, v128b, v128b>;
649
650  // Shift left double by byte.
651  def VSLDB : TernaryVRId<"vsldb", 0xE777, z_shl_double, v128b, v128b, 0>;
652  def : Pat<(int_s390_vsldb VR128:$x, VR128:$y, imm32zx8:$z),
653            (VSLDB VR128:$x, VR128:$y, imm32zx8:$z)>;
654
655  // Shift right arithmetic.
656  def VSRA : BinaryVRRc<"vsra", 0xE77E, int_s390_vsra, v128b, v128b>;
657
658  // Shift right arithmetic by byte.
659  def VSRAB : BinaryVRRc<"vsrab", 0xE77F, int_s390_vsrab, v128b, v128b>;
660
661  // Shift right logical.
662  def VSRL : BinaryVRRc<"vsrl", 0xE77C, int_s390_vsrl, v128b, v128b>;
663
664  // Shift right logical by byte.
665  def VSRLB : BinaryVRRc<"vsrlb", 0xE77D, int_s390_vsrlb, v128b, v128b>;
666
667  // Subtract.
668  def VS  : BinaryVRRcGeneric<"vs", 0xE7F7>;
669  def VSB : BinaryVRRc<"vsb", 0xE7F7, sub, v128b, v128b, 0>;
670  def VSH : BinaryVRRc<"vsh", 0xE7F7, sub, v128h, v128h, 1>;
671  def VSF : BinaryVRRc<"vsf", 0xE7F7, sub, v128f, v128f, 2>;
672  def VSG : BinaryVRRc<"vsg", 0xE7F7, sub, v128g, v128g, 3>;
673  def VSQ : BinaryVRRc<"vsq", 0xE7F7, int_s390_vsq, v128q, v128q, 4>;
674
675  // Subtract compute borrow indication.
676  def VSCBI  : BinaryVRRcGeneric<"vscbi", 0xE7F5>;
677  def VSCBIB : BinaryVRRc<"vscbib", 0xE7F5, int_s390_vscbib, v128b, v128b, 0>;
678  def VSCBIH : BinaryVRRc<"vscbih", 0xE7F5, int_s390_vscbih, v128h, v128h, 1>;
679  def VSCBIF : BinaryVRRc<"vscbif", 0xE7F5, int_s390_vscbif, v128f, v128f, 2>;
680  def VSCBIG : BinaryVRRc<"vscbig", 0xE7F5, int_s390_vscbig, v128g, v128g, 3>;
681  def VSCBIQ : BinaryVRRc<"vscbiq", 0xE7F5, int_s390_vscbiq, v128q, v128q, 4>;
682
683  // Subtract with borrow indication.
684  def VSBI  : TernaryVRRdGeneric<"vsbi", 0xE7BF>;
685  def VSBIQ : TernaryVRRd<"vsbiq", 0xE7BF, int_s390_vsbiq, v128q, v128q, 4>;
686
687  // Subtract with borrow compute borrow indication.
688  def VSBCBI  : TernaryVRRdGeneric<"vsbcbi", 0xE7BD>;
689  def VSBCBIQ : TernaryVRRd<"vsbcbiq", 0xE7BD, int_s390_vsbcbiq,
690                            v128q, v128q, 4>;
691
692  // Sum across doubleword.
693  def VSUMG  : BinaryVRRcGeneric<"vsumg", 0xE765>;
694  def VSUMGH : BinaryVRRc<"vsumgh", 0xE765, z_vsum, v128g, v128h, 1>;
695  def VSUMGF : BinaryVRRc<"vsumgf", 0xE765, z_vsum, v128g, v128f, 2>;
696
697  // Sum across quadword.
698  def VSUMQ  : BinaryVRRcGeneric<"vsumq", 0xE767>;
699  def VSUMQF : BinaryVRRc<"vsumqf", 0xE767, z_vsum, v128q, v128f, 2>;
700  def VSUMQG : BinaryVRRc<"vsumqg", 0xE767, z_vsum, v128q, v128g, 3>;
701
702  // Sum across word.
703  def VSUM  : BinaryVRRcGeneric<"vsum", 0xE764>;
704  def VSUMB : BinaryVRRc<"vsumb", 0xE764, z_vsum, v128f, v128b, 0>;
705  def VSUMH : BinaryVRRc<"vsumh", 0xE764, z_vsum, v128f, v128h, 1>;
706}
707
708// Instantiate the bitwise ops for type TYPE.
709multiclass BitwiseVectorOps<ValueType type> {
710  let Predicates = [FeatureVector] in {
711    def : Pat<(type (and VR128:$x, VR128:$y)), (VN VR128:$x, VR128:$y)>;
712    def : Pat<(type (and VR128:$x, (z_vnot VR128:$y))),
713              (VNC VR128:$x, VR128:$y)>;
714    def : Pat<(type (or VR128:$x, VR128:$y)), (VO VR128:$x, VR128:$y)>;
715    def : Pat<(type (xor VR128:$x, VR128:$y)), (VX VR128:$x, VR128:$y)>;
716    def : Pat<(type (or (and VR128:$x, VR128:$z),
717                        (and VR128:$y, (z_vnot VR128:$z)))),
718              (VSEL VR128:$x, VR128:$y, VR128:$z)>;
719    def : Pat<(type (z_vnot (or VR128:$x, VR128:$y))),
720              (VNO VR128:$x, VR128:$y)>;
721    def : Pat<(type (z_vnot VR128:$x)), (VNO VR128:$x, VR128:$x)>;
722  }
723}
724
725defm : BitwiseVectorOps<v16i8>;
726defm : BitwiseVectorOps<v8i16>;
727defm : BitwiseVectorOps<v4i32>;
728defm : BitwiseVectorOps<v2i64>;
729
730// Instantiate additional patterns for absolute-related expressions on
731// type TYPE.  LC is the negate instruction for TYPE and LP is the absolute
732// instruction.
733multiclass IntegerAbsoluteVectorOps<ValueType type, Instruction lc,
734                                    Instruction lp, int shift> {
735  let Predicates = [FeatureVector] in {
736    def : Pat<(type (vselect (type (z_vicmph_zero VR128:$x)),
737                             (z_vneg VR128:$x), VR128:$x)),
738              (lc (lp VR128:$x))>;
739    def : Pat<(type (vselect (type (z_vnot (z_vicmph_zero VR128:$x))),
740                             VR128:$x, (z_vneg VR128:$x))),
741              (lc (lp VR128:$x))>;
742    def : Pat<(type (vselect (type (z_vicmpl_zero VR128:$x)),
743                             VR128:$x, (z_vneg VR128:$x))),
744              (lc (lp VR128:$x))>;
745    def : Pat<(type (vselect (type (z_vnot (z_vicmpl_zero VR128:$x))),
746                             (z_vneg VR128:$x), VR128:$x)),
747              (lc (lp VR128:$x))>;
748    def : Pat<(type (or (and (z_vsra_by_scalar VR128:$x, (i32 shift)),
749                             (z_vneg VR128:$x)),
750                        (and (z_vnot (z_vsra_by_scalar VR128:$x, (i32 shift))),
751                             VR128:$x))),
752              (lp VR128:$x)>;
753    def : Pat<(type (or (and (z_vsra_by_scalar VR128:$x, (i32 shift)),
754                             VR128:$x),
755                        (and (z_vnot (z_vsra_by_scalar VR128:$x, (i32 shift))),
756                             (z_vneg VR128:$x)))),
757              (lc (lp VR128:$x))>;
758  }
759}
760
761defm : IntegerAbsoluteVectorOps<v16i8, VLCB, VLPB, 7>;
762defm : IntegerAbsoluteVectorOps<v8i16, VLCH, VLPH, 15>;
763defm : IntegerAbsoluteVectorOps<v4i32, VLCF, VLPF, 31>;
764defm : IntegerAbsoluteVectorOps<v2i64, VLCG, VLPG, 63>;
765
766// Instantiate minimum- and maximum-related patterns for TYPE.  CMPH is the
767// signed or unsigned "set if greater than" comparison instruction and
768// MIN and MAX are the associated minimum and maximum instructions.
769multiclass IntegerMinMaxVectorOps<ValueType type, SDPatternOperator cmph,
770                                  Instruction min, Instruction max> {
771  let Predicates = [FeatureVector] in {
772    def : Pat<(type (vselect (cmph VR128:$x, VR128:$y), VR128:$x, VR128:$y)),
773              (max VR128:$x, VR128:$y)>;
774    def : Pat<(type (vselect (cmph VR128:$x, VR128:$y), VR128:$y, VR128:$x)),
775              (min VR128:$x, VR128:$y)>;
776    def : Pat<(type (vselect (z_vnot (cmph VR128:$x, VR128:$y)),
777                             VR128:$x, VR128:$y)),
778              (min VR128:$x, VR128:$y)>;
779    def : Pat<(type (vselect (z_vnot (cmph VR128:$x, VR128:$y)),
780                             VR128:$y, VR128:$x)),
781              (max VR128:$x, VR128:$y)>;
782  }
783}
784
785// Signed min/max.
786defm : IntegerMinMaxVectorOps<v16i8, z_vicmph, VMNB, VMXB>;
787defm : IntegerMinMaxVectorOps<v8i16, z_vicmph, VMNH, VMXH>;
788defm : IntegerMinMaxVectorOps<v4i32, z_vicmph, VMNF, VMXF>;
789defm : IntegerMinMaxVectorOps<v2i64, z_vicmph, VMNG, VMXG>;
790
791// Unsigned min/max.
792defm : IntegerMinMaxVectorOps<v16i8, z_vicmphl, VMNLB, VMXLB>;
793defm : IntegerMinMaxVectorOps<v8i16, z_vicmphl, VMNLH, VMXLH>;
794defm : IntegerMinMaxVectorOps<v4i32, z_vicmphl, VMNLF, VMXLF>;
795defm : IntegerMinMaxVectorOps<v2i64, z_vicmphl, VMNLG, VMXLG>;
796
797//===----------------------------------------------------------------------===//
798// Integer comparison
799//===----------------------------------------------------------------------===//
800
801let Predicates = [FeatureVector] in {
802  // Element compare.
803  let Defs = [CC] in {
804    def VEC  : CompareVRRaGeneric<"vec", 0xE7DB>;
805    def VECB : CompareVRRa<"vecb", 0xE7DB, null_frag, v128b, 0>;
806    def VECH : CompareVRRa<"vech", 0xE7DB, null_frag, v128h, 1>;
807    def VECF : CompareVRRa<"vecf", 0xE7DB, null_frag, v128f, 2>;
808    def VECG : CompareVRRa<"vecg", 0xE7DB, null_frag, v128g, 3>;
809  }
810
811  // Element compare logical.
812  let Defs = [CC] in {
813    def VECL  : CompareVRRaGeneric<"vecl", 0xE7D9>;
814    def VECLB : CompareVRRa<"veclb", 0xE7D9, null_frag, v128b, 0>;
815    def VECLH : CompareVRRa<"veclh", 0xE7D9, null_frag, v128h, 1>;
816    def VECLF : CompareVRRa<"veclf", 0xE7D9, null_frag, v128f, 2>;
817    def VECLG : CompareVRRa<"veclg", 0xE7D9, null_frag, v128g, 3>;
818  }
819
820  // Compare equal.
821  def  VCEQ  : BinaryVRRbSPairGeneric<"vceq", 0xE7F8>;
822  defm VCEQB : BinaryVRRbSPair<"vceqb", 0xE7F8, z_vicmpe, z_vicmpes,
823                               v128b, v128b, 0>;
824  defm VCEQH : BinaryVRRbSPair<"vceqh", 0xE7F8, z_vicmpe, z_vicmpes,
825                               v128h, v128h, 1>;
826  defm VCEQF : BinaryVRRbSPair<"vceqf", 0xE7F8, z_vicmpe, z_vicmpes,
827                               v128f, v128f, 2>;
828  defm VCEQG : BinaryVRRbSPair<"vceqg", 0xE7F8, z_vicmpe, z_vicmpes,
829                               v128g, v128g, 3>;
830
831  // Compare high.
832  def  VCH  : BinaryVRRbSPairGeneric<"vch", 0xE7FB>;
833  defm VCHB : BinaryVRRbSPair<"vchb", 0xE7FB, z_vicmph, z_vicmphs,
834                              v128b, v128b, 0>;
835  defm VCHH : BinaryVRRbSPair<"vchh", 0xE7FB, z_vicmph, z_vicmphs,
836                              v128h, v128h, 1>;
837  defm VCHF : BinaryVRRbSPair<"vchf", 0xE7FB, z_vicmph, z_vicmphs,
838                              v128f, v128f, 2>;
839  defm VCHG : BinaryVRRbSPair<"vchg", 0xE7FB, z_vicmph, z_vicmphs,
840                              v128g, v128g, 3>;
841
842  // Compare high logical.
843  def  VCHL  : BinaryVRRbSPairGeneric<"vchl", 0xE7F9>;
844  defm VCHLB : BinaryVRRbSPair<"vchlb", 0xE7F9, z_vicmphl, z_vicmphls,
845                               v128b, v128b, 0>;
846  defm VCHLH : BinaryVRRbSPair<"vchlh", 0xE7F9, z_vicmphl, z_vicmphls,
847                               v128h, v128h, 1>;
848  defm VCHLF : BinaryVRRbSPair<"vchlf", 0xE7F9, z_vicmphl, z_vicmphls,
849                               v128f, v128f, 2>;
850  defm VCHLG : BinaryVRRbSPair<"vchlg", 0xE7F9, z_vicmphl, z_vicmphls,
851                               v128g, v128g, 3>;
852
853  // Test under mask.
854  let Defs = [CC] in
855    def VTM : CompareVRRa<"vtm", 0xE7D8, z_vtm, v128b, 0>;
856}
857
858//===----------------------------------------------------------------------===//
859// Floating-point arithmetic
860//===----------------------------------------------------------------------===//
861
862// See comments in SystemZInstrFP.td for the suppression flags and
863// rounding modes.
864multiclass VectorRounding<Instruction insn, TypedReg tr> {
865  def : FPConversion<insn, frint,      tr, tr, 0, 0>;
866  def : FPConversion<insn, fnearbyint, tr, tr, 4, 0>;
867  def : FPConversion<insn, ffloor,     tr, tr, 4, 7>;
868  def : FPConversion<insn, fceil,      tr, tr, 4, 6>;
869  def : FPConversion<insn, ftrunc,     tr, tr, 4, 5>;
870  def : FPConversion<insn, fround,     tr, tr, 4, 1>;
871}
872
873let Predicates = [FeatureVector] in {
874  // Add.
875  def VFA   : BinaryVRRcFloatGeneric<"vfa", 0xE7E3>;
876  def VFADB : BinaryVRRc<"vfadb", 0xE7E3, fadd, v128db, v128db, 3, 0>;
877  def WFADB : BinaryVRRc<"wfadb", 0xE7E3, fadd, v64db, v64db, 3, 8>;
878
879  // Convert from fixed 64-bit.
880  def VCDG  : TernaryVRRaFloatGeneric<"vcdg", 0xE7C3>;
881  def VCDGB : TernaryVRRa<"vcdgb", 0xE7C3, null_frag, v128db, v128g, 3, 0>;
882  def WCDGB : TernaryVRRa<"wcdgb", 0xE7C3, null_frag, v64db, v64g, 3, 8>;
883  def : FPConversion<VCDGB, sint_to_fp, v128db, v128g, 0, 0>;
884
885  // Convert from logical 64-bit.
886  def VCDLG  : TernaryVRRaFloatGeneric<"vcdlg", 0xE7C1>;
887  def VCDLGB : TernaryVRRa<"vcdlgb", 0xE7C1, null_frag, v128db, v128g, 3, 0>;
888  def WCDLGB : TernaryVRRa<"wcdlgb", 0xE7C1, null_frag, v64db, v64g, 3, 8>;
889  def : FPConversion<VCDLGB, uint_to_fp, v128db, v128g, 0, 0>;
890
891  // Convert to fixed 64-bit.
892  def VCGD  : TernaryVRRaFloatGeneric<"vcgd", 0xE7C2>;
893  def VCGDB : TernaryVRRa<"vcgdb", 0xE7C2, null_frag, v128g, v128db, 3, 0>;
894  def WCGDB : TernaryVRRa<"wcgdb", 0xE7C2, null_frag, v64g, v64db, 3, 8>;
895  // Rounding mode should agree with SystemZInstrFP.td.
896  def : FPConversion<VCGDB, fp_to_sint, v128g, v128db, 0, 5>;
897
898  // Convert to logical 64-bit.
899  def VCLGD  : TernaryVRRaFloatGeneric<"vclgd", 0xE7C0>;
900  def VCLGDB : TernaryVRRa<"vclgdb", 0xE7C0, null_frag, v128g, v128db, 3, 0>;
901  def WCLGDB : TernaryVRRa<"wclgdb", 0xE7C0, null_frag, v64g, v64db, 3, 8>;
902  // Rounding mode should agree with SystemZInstrFP.td.
903  def : FPConversion<VCLGDB, fp_to_uint, v128g, v128db, 0, 5>;
904
905  // Divide.
906  def VFD   : BinaryVRRcFloatGeneric<"vfd", 0xE7E5>;
907  def VFDDB : BinaryVRRc<"vfddb", 0xE7E5, fdiv, v128db, v128db, 3, 0>;
908  def WFDDB : BinaryVRRc<"wfddb", 0xE7E5, fdiv, v64db, v64db, 3, 8>;
909
910  // Load FP integer.
911  def VFI   : TernaryVRRaFloatGeneric<"vfi", 0xE7C7>;
912  def VFIDB : TernaryVRRa<"vfidb", 0xE7C7, int_s390_vfidb, v128db, v128db, 3, 0>;
913  def WFIDB : TernaryVRRa<"wfidb", 0xE7C7, null_frag, v64db, v64db, 3, 8>;
914  defm : VectorRounding<VFIDB, v128db>;
915  defm : VectorRounding<WFIDB, v64db>;
916
917  // Load lengthened.
918  def VLDE  : UnaryVRRaFloatGeneric<"vlde", 0xE7C4>;
919  def VLDEB : UnaryVRRa<"vldeb", 0xE7C4, z_vextend, v128db, v128eb, 2, 0>;
920  def WLDEB : UnaryVRRa<"wldeb", 0xE7C4, fpextend, v64db, v32eb, 2, 8>;
921
922  // Load rounded,
923  def VLED  : TernaryVRRaFloatGeneric<"vled", 0xE7C5>;
924  def VLEDB : TernaryVRRa<"vledb", 0xE7C5, null_frag, v128eb, v128db, 3, 0>;
925  def WLEDB : TernaryVRRa<"wledb", 0xE7C5, null_frag, v32eb, v64db, 3, 8>;
926  def : Pat<(v4f32 (z_vround (v2f64 VR128:$src))), (VLEDB VR128:$src, 0, 0)>;
927  def : FPConversion<WLEDB, fpround, v32eb, v64db, 0, 0>;
928
929  // Multiply.
930  def VFM   : BinaryVRRcFloatGeneric<"vfm", 0xE7E7>;
931  def VFMDB : BinaryVRRc<"vfmdb", 0xE7E7, fmul, v128db, v128db, 3, 0>;
932  def WFMDB : BinaryVRRc<"wfmdb", 0xE7E7, fmul, v64db, v64db, 3, 8>;
933
934  // Multiply and add.
935  def VFMA   : TernaryVRReFloatGeneric<"vfma", 0xE78F>;
936  def VFMADB : TernaryVRRe<"vfmadb", 0xE78F, fma, v128db, v128db, 0, 3>;
937  def WFMADB : TernaryVRRe<"wfmadb", 0xE78F, fma, v64db, v64db, 8, 3>;
938
939  // Multiply and subtract.
940  def VFMS   : TernaryVRReFloatGeneric<"vfms", 0xE78E>;
941  def VFMSDB : TernaryVRRe<"vfmsdb", 0xE78E, fms, v128db, v128db, 0, 3>;
942  def WFMSDB : TernaryVRRe<"wfmsdb", 0xE78E, fms, v64db, v64db, 8, 3>;
943
944  // Perform sign operation.
945  def VFPSO   : BinaryVRRaFloatGeneric<"vfpso", 0xE7CC>;
946  def VFPSODB : BinaryVRRa<"vfpsodb", 0xE7CC, null_frag, v128db, v128db, 3, 0>;
947  def WFPSODB : BinaryVRRa<"wfpsodb", 0xE7CC, null_frag, v64db, v64db, 3, 8>;
948
949  // Load complement.
950  def VFLCDB : UnaryVRRa<"vflcdb", 0xE7CC, fneg, v128db, v128db, 3, 0, 0>;
951  def WFLCDB : UnaryVRRa<"wflcdb", 0xE7CC, fneg, v64db, v64db, 3, 8, 0>;
952
953  // Load negative.
954  def VFLNDB : UnaryVRRa<"vflndb", 0xE7CC, fnabs, v128db, v128db, 3, 0, 1>;
955  def WFLNDB : UnaryVRRa<"wflndb", 0xE7CC, fnabs, v64db, v64db, 3, 8, 1>;
956
957  // Load positive.
958  def VFLPDB : UnaryVRRa<"vflpdb", 0xE7CC, fabs, v128db, v128db, 3, 0, 2>;
959  def WFLPDB : UnaryVRRa<"wflpdb", 0xE7CC, fabs, v64db, v64db, 3, 8, 2>;
960
961  // Square root.
962  def VFSQ   : UnaryVRRaFloatGeneric<"vfsq", 0xE7CE>;
963  def VFSQDB : UnaryVRRa<"vfsqdb", 0xE7CE, fsqrt, v128db, v128db, 3, 0>;
964  def WFSQDB : UnaryVRRa<"wfsqdb", 0xE7CE, fsqrt, v64db, v64db, 3, 8>;
965
966  // Subtract.
967  def VFS   : BinaryVRRcFloatGeneric<"vfs", 0xE7E2>;
968  def VFSDB : BinaryVRRc<"vfsdb", 0xE7E2, fsub, v128db, v128db, 3, 0>;
969  def WFSDB : BinaryVRRc<"wfsdb", 0xE7E2, fsub, v64db, v64db, 3, 8>;
970
971  // Test data class immediate.
972  let Defs = [CC] in {
973    def VFTCI   : BinaryVRIeFloatGeneric<"vftci", 0xE74A>;
974    def VFTCIDB : BinaryVRIe<"vftcidb", 0xE74A, z_vftci, v128g, v128db, 3, 0>;
975    def WFTCIDB : BinaryVRIe<"wftcidb", 0xE74A, null_frag, v64g, v64db, 3, 8>;
976  }
977}
978
979//===----------------------------------------------------------------------===//
980// Floating-point comparison
981//===----------------------------------------------------------------------===//
982
983let Predicates = [FeatureVector] in {
984  // Compare scalar.
985  let Defs = [CC] in {
986    def WFC   : CompareVRRaFloatGeneric<"wfc", 0xE7CB>;
987    def WFCDB : CompareVRRa<"wfcdb", 0xE7CB, z_fcmp, v64db, 3>;
988  }
989
990  // Compare and signal scalar.
991  let Defs = [CC] in {
992    def WFK   : CompareVRRaFloatGeneric<"wfk", 0xE7CA>;
993    def WFKDB : CompareVRRa<"wfkdb", 0xE7CA, null_frag, v64db, 3>;
994  }
995
996  // Compare equal.
997  def  VFCE   : BinaryVRRcSPairFloatGeneric<"vfce", 0xE7E8>;
998  defm VFCEDB : BinaryVRRcSPair<"vfcedb", 0xE7E8, z_vfcmpe, z_vfcmpes,
999                                v128g, v128db, 3, 0>;
1000  defm WFCEDB : BinaryVRRcSPair<"wfcedb", 0xE7E8, null_frag, null_frag,
1001                                v64g, v64db, 3, 8>;
1002
1003  // Compare high.
1004  def  VFCH   : BinaryVRRcSPairFloatGeneric<"vfch", 0xE7EB>;
1005  defm VFCHDB : BinaryVRRcSPair<"vfchdb", 0xE7EB, z_vfcmph, z_vfcmphs,
1006                                v128g, v128db, 3, 0>;
1007  defm WFCHDB : BinaryVRRcSPair<"wfchdb", 0xE7EB, null_frag, null_frag,
1008                                v64g, v64db, 3, 8>;
1009
1010  // Compare high or equal.
1011  def  VFCHE   : BinaryVRRcSPairFloatGeneric<"vfche", 0xE7EA>;
1012  defm VFCHEDB : BinaryVRRcSPair<"vfchedb", 0xE7EA, z_vfcmphe, z_vfcmphes,
1013                                 v128g, v128db, 3, 0>;
1014  defm WFCHEDB : BinaryVRRcSPair<"wfchedb", 0xE7EA, null_frag, null_frag,
1015                                 v64g, v64db, 3, 8>;
1016}
1017
1018//===----------------------------------------------------------------------===//
1019// Conversions
1020//===----------------------------------------------------------------------===//
1021
1022def : Pat<(v16i8 (bitconvert (v8i16 VR128:$src))), (v16i8 VR128:$src)>;
1023def : Pat<(v16i8 (bitconvert (v4i32 VR128:$src))), (v16i8 VR128:$src)>;
1024def : Pat<(v16i8 (bitconvert (v2i64 VR128:$src))), (v16i8 VR128:$src)>;
1025def : Pat<(v16i8 (bitconvert (v4f32 VR128:$src))), (v16i8 VR128:$src)>;
1026def : Pat<(v16i8 (bitconvert (v2f64 VR128:$src))), (v16i8 VR128:$src)>;
1027
1028def : Pat<(v8i16 (bitconvert (v16i8 VR128:$src))), (v8i16 VR128:$src)>;
1029def : Pat<(v8i16 (bitconvert (v4i32 VR128:$src))), (v8i16 VR128:$src)>;
1030def : Pat<(v8i16 (bitconvert (v2i64 VR128:$src))), (v8i16 VR128:$src)>;
1031def : Pat<(v8i16 (bitconvert (v4f32 VR128:$src))), (v8i16 VR128:$src)>;
1032def : Pat<(v8i16 (bitconvert (v2f64 VR128:$src))), (v8i16 VR128:$src)>;
1033
1034def : Pat<(v4i32 (bitconvert (v16i8 VR128:$src))), (v4i32 VR128:$src)>;
1035def : Pat<(v4i32 (bitconvert (v8i16 VR128:$src))), (v4i32 VR128:$src)>;
1036def : Pat<(v4i32 (bitconvert (v2i64 VR128:$src))), (v4i32 VR128:$src)>;
1037def : Pat<(v4i32 (bitconvert (v4f32 VR128:$src))), (v4i32 VR128:$src)>;
1038def : Pat<(v4i32 (bitconvert (v2f64 VR128:$src))), (v4i32 VR128:$src)>;
1039
1040def : Pat<(v2i64 (bitconvert (v16i8 VR128:$src))), (v2i64 VR128:$src)>;
1041def : Pat<(v2i64 (bitconvert (v8i16 VR128:$src))), (v2i64 VR128:$src)>;
1042def : Pat<(v2i64 (bitconvert (v4i32 VR128:$src))), (v2i64 VR128:$src)>;
1043def : Pat<(v2i64 (bitconvert (v4f32 VR128:$src))), (v2i64 VR128:$src)>;
1044def : Pat<(v2i64 (bitconvert (v2f64 VR128:$src))), (v2i64 VR128:$src)>;
1045
1046def : Pat<(v4f32 (bitconvert (v16i8 VR128:$src))), (v4f32 VR128:$src)>;
1047def : Pat<(v4f32 (bitconvert (v8i16 VR128:$src))), (v4f32 VR128:$src)>;
1048def : Pat<(v4f32 (bitconvert (v4i32 VR128:$src))), (v4f32 VR128:$src)>;
1049def : Pat<(v4f32 (bitconvert (v2i64 VR128:$src))), (v4f32 VR128:$src)>;
1050def : Pat<(v4f32 (bitconvert (v2f64 VR128:$src))), (v4f32 VR128:$src)>;
1051
1052def : Pat<(v2f64 (bitconvert (v16i8 VR128:$src))), (v2f64 VR128:$src)>;
1053def : Pat<(v2f64 (bitconvert (v8i16 VR128:$src))), (v2f64 VR128:$src)>;
1054def : Pat<(v2f64 (bitconvert (v4i32 VR128:$src))), (v2f64 VR128:$src)>;
1055def : Pat<(v2f64 (bitconvert (v2i64 VR128:$src))), (v2f64 VR128:$src)>;
1056def : Pat<(v2f64 (bitconvert (v4f32 VR128:$src))), (v2f64 VR128:$src)>;
1057
1058//===----------------------------------------------------------------------===//
1059// Replicating scalars
1060//===----------------------------------------------------------------------===//
1061
1062// Define patterns for replicating a scalar GR32 into a vector of type TYPE.
1063// INDEX is 8 minus the element size in bytes.
1064class VectorReplicateScalar<ValueType type, Instruction insn, bits<16> index>
1065  : Pat<(type (z_replicate GR32:$scalar)),
1066        (insn (VLVGP32 GR32:$scalar, GR32:$scalar), index)>;
1067
1068def : VectorReplicateScalar<v16i8, VREPB, 7>;
1069def : VectorReplicateScalar<v8i16, VREPH, 3>;
1070def : VectorReplicateScalar<v4i32, VREPF, 1>;
1071
1072// i64 replications are just a single isntruction.
1073def : Pat<(v2i64 (z_replicate GR64:$scalar)),
1074          (VLVGP GR64:$scalar, GR64:$scalar)>;
1075
1076//===----------------------------------------------------------------------===//
1077// Floating-point insertion and extraction
1078//===----------------------------------------------------------------------===//
1079
1080// Moving 32-bit values between GPRs and FPRs can be done using VLVGF
1081// and VLGVF.
1082let Predicates = [FeatureVector] in {
1083  def LEFR : UnaryAliasVRS<VR32, GR32>;
1084  def LFER : UnaryAliasVRS<GR64, VR32>;
1085  def : Pat<(f32 (bitconvert (i32 GR32:$src))), (LEFR GR32:$src)>;
1086  def : Pat<(i32 (bitconvert (f32 VR32:$src))),
1087            (EXTRACT_SUBREG (LFER VR32:$src), subreg_l32)>;
1088}
1089
1090// Floating-point values are stored in element 0 of the corresponding
1091// vector register.  Scalar to vector conversion is just a subreg and
1092// scalar replication can just replicate element 0 of the vector register.
1093multiclass ScalarToVectorFP<Instruction vrep, ValueType vt, RegisterOperand cls,
1094                            SubRegIndex subreg> {
1095  def : Pat<(vt (scalar_to_vector cls:$scalar)),
1096            (INSERT_SUBREG (vt (IMPLICIT_DEF)), cls:$scalar, subreg)>;
1097  def : Pat<(vt (z_replicate cls:$scalar)),
1098            (vrep (INSERT_SUBREG (vt (IMPLICIT_DEF)), cls:$scalar,
1099                                 subreg), 0)>;
1100}
1101defm : ScalarToVectorFP<VREPF, v4f32, FP32, subreg_r32>;
1102defm : ScalarToVectorFP<VREPG, v2f64, FP64, subreg_r64>;
1103
1104// Match v2f64 insertions.  The AddedComplexity counters the 3 added by
1105// TableGen for the base register operand in VLVG-based integer insertions
1106// and ensures that this version is strictly better.
1107let AddedComplexity = 4 in {
1108  def : Pat<(z_vector_insert (v2f64 VR128:$vec), FP64:$elt, 0),
1109            (VPDI (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FP64:$elt,
1110                                 subreg_r64), VR128:$vec, 1)>;
1111  def : Pat<(z_vector_insert (v2f64 VR128:$vec), FP64:$elt, 1),
1112            (VPDI VR128:$vec, (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FP64:$elt,
1113                                             subreg_r64), 0)>;
1114}
1115
1116// We extract floating-point element X by replicating (for elements other
1117// than 0) and then taking a high subreg.  The AddedComplexity counters the
1118// 3 added by TableGen for the base register operand in VLGV-based integer
1119// extractions and ensures that this version is strictly better.
1120let AddedComplexity = 4 in {
1121  def : Pat<(f32 (z_vector_extract (v4f32 VR128:$vec), 0)),
1122            (EXTRACT_SUBREG VR128:$vec, subreg_r32)>;
1123  def : Pat<(f32 (z_vector_extract (v4f32 VR128:$vec), imm32zx2:$index)),
1124            (EXTRACT_SUBREG (VREPF VR128:$vec, imm32zx2:$index), subreg_r32)>;
1125
1126  def : Pat<(f64 (z_vector_extract (v2f64 VR128:$vec), 0)),
1127            (EXTRACT_SUBREG VR128:$vec, subreg_r64)>;
1128  def : Pat<(f64 (z_vector_extract (v2f64 VR128:$vec), imm32zx1:$index)),
1129            (EXTRACT_SUBREG (VREPG VR128:$vec, imm32zx1:$index), subreg_r64)>;
1130}
1131
1132//===----------------------------------------------------------------------===//
1133// String instructions
1134//===----------------------------------------------------------------------===//
1135
1136let Predicates = [FeatureVector] in {
1137  defm VFAE  : TernaryOptVRRbSPairGeneric<"vfae", 0xE782>;
1138  defm VFAEB : TernaryOptVRRbSPair<"vfaeb", 0xE782, int_s390_vfaeb,
1139                                   z_vfae_cc, v128b, v128b, 0>;
1140  defm VFAEH : TernaryOptVRRbSPair<"vfaeh", 0xE782, int_s390_vfaeh,
1141                                   z_vfae_cc, v128h, v128h, 1>;
1142  defm VFAEF : TernaryOptVRRbSPair<"vfaef", 0xE782, int_s390_vfaef,
1143                                   z_vfae_cc, v128f, v128f, 2>;
1144  defm VFAEZB : TernaryOptVRRbSPair<"vfaezb", 0xE782, int_s390_vfaezb,
1145                                    z_vfaez_cc, v128b, v128b, 0, 2>;
1146  defm VFAEZH : TernaryOptVRRbSPair<"vfaezh", 0xE782, int_s390_vfaezh,
1147                                    z_vfaez_cc, v128h, v128h, 1, 2>;
1148  defm VFAEZF : TernaryOptVRRbSPair<"vfaezf", 0xE782, int_s390_vfaezf,
1149                                    z_vfaez_cc, v128f, v128f, 2, 2>;
1150
1151  defm VFEE  : BinaryExtraVRRbSPairGeneric<"vfee", 0xE780>;
1152  defm VFEEB : BinaryExtraVRRbSPair<"vfeeb", 0xE780, int_s390_vfeeb,
1153                                    z_vfee_cc, v128b, v128b, 0>;
1154  defm VFEEH : BinaryExtraVRRbSPair<"vfeeh", 0xE780, int_s390_vfeeh,
1155                                    z_vfee_cc, v128h, v128h, 1>;
1156  defm VFEEF : BinaryExtraVRRbSPair<"vfeef", 0xE780, int_s390_vfeef,
1157                                    z_vfee_cc, v128f, v128f, 2>;
1158  defm VFEEZB : BinaryVRRbSPair<"vfeezb", 0xE780, int_s390_vfeezb,
1159                                z_vfeez_cc, v128b, v128b, 0, 2>;
1160  defm VFEEZH : BinaryVRRbSPair<"vfeezh", 0xE780, int_s390_vfeezh,
1161                                z_vfeez_cc, v128h, v128h, 1, 2>;
1162  defm VFEEZF : BinaryVRRbSPair<"vfeezf", 0xE780, int_s390_vfeezf,
1163                                z_vfeez_cc, v128f, v128f, 2, 2>;
1164
1165  defm VFENE  : BinaryExtraVRRbSPairGeneric<"vfene", 0xE781>;
1166  defm VFENEB : BinaryExtraVRRbSPair<"vfeneb", 0xE781, int_s390_vfeneb,
1167                                     z_vfene_cc, v128b, v128b, 0>;
1168  defm VFENEH : BinaryExtraVRRbSPair<"vfeneh", 0xE781, int_s390_vfeneh,
1169                                     z_vfene_cc, v128h, v128h, 1>;
1170  defm VFENEF : BinaryExtraVRRbSPair<"vfenef", 0xE781, int_s390_vfenef,
1171                                     z_vfene_cc, v128f, v128f, 2>;
1172  defm VFENEZB : BinaryVRRbSPair<"vfenezb", 0xE781, int_s390_vfenezb,
1173                                 z_vfenez_cc, v128b, v128b, 0, 2>;
1174  defm VFENEZH : BinaryVRRbSPair<"vfenezh", 0xE781, int_s390_vfenezh,
1175                                 z_vfenez_cc, v128h, v128h, 1, 2>;
1176  defm VFENEZF : BinaryVRRbSPair<"vfenezf", 0xE781, int_s390_vfenezf,
1177                                 z_vfenez_cc, v128f, v128f, 2, 2>;
1178
1179  defm VISTR  : UnaryExtraVRRaSPairGeneric<"vistr", 0xE75C>;
1180  defm VISTRB : UnaryExtraVRRaSPair<"vistrb", 0xE75C, int_s390_vistrb,
1181                                    z_vistr_cc, v128b, v128b, 0>;
1182  defm VISTRH : UnaryExtraVRRaSPair<"vistrh", 0xE75C, int_s390_vistrh,
1183                                    z_vistr_cc, v128h, v128h, 1>;
1184  defm VISTRF : UnaryExtraVRRaSPair<"vistrf", 0xE75C, int_s390_vistrf,
1185                                    z_vistr_cc, v128f, v128f, 2>;
1186
1187  defm VSTRC  : QuaternaryOptVRRdSPairGeneric<"vstrc", 0xE78A>;
1188  defm VSTRCB : QuaternaryOptVRRdSPair<"vstrcb", 0xE78A, int_s390_vstrcb,
1189                                       z_vstrc_cc, v128b, v128b, 0>;
1190  defm VSTRCH : QuaternaryOptVRRdSPair<"vstrch", 0xE78A, int_s390_vstrch,
1191                                       z_vstrc_cc, v128h, v128h, 1>;
1192  defm VSTRCF : QuaternaryOptVRRdSPair<"vstrcf", 0xE78A, int_s390_vstrcf,
1193                                       z_vstrc_cc, v128f, v128f, 2>;
1194  defm VSTRCZB : QuaternaryOptVRRdSPair<"vstrczb", 0xE78A, int_s390_vstrczb,
1195                                        z_vstrcz_cc, v128b, v128b, 0, 2>;
1196  defm VSTRCZH : QuaternaryOptVRRdSPair<"vstrczh", 0xE78A, int_s390_vstrczh,
1197                                        z_vstrcz_cc, v128h, v128h, 1, 2>;
1198  defm VSTRCZF : QuaternaryOptVRRdSPair<"vstrczf", 0xE78A, int_s390_vstrczf,
1199                                        z_vstrcz_cc, v128f, v128f, 2, 2>;
1200}
1201