1//==- SystemZInstrVector.td - SystemZ Vector instructions ------*- tblgen-*-==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10//===----------------------------------------------------------------------===//
11// Move instructions
12//===----------------------------------------------------------------------===//
13
14let Predicates = [FeatureVector] in {
15  // Register move.
16  def VLR : UnaryVRRa<"vlr", 0xE756, null_frag, v128any, v128any>;
17  def VLR32 : UnaryAliasVRR<null_frag, v32sb, v32sb>;
18  def VLR64 : UnaryAliasVRR<null_frag, v64db, v64db>;
19
20  // Load GR from VR element.
21  def VLGV  : BinaryVRScGeneric<"vlgv", 0xE721>;
22  def VLGVB : BinaryVRSc<"vlgvb", 0xE721, null_frag, v128b, 0>;
23  def VLGVH : BinaryVRSc<"vlgvh", 0xE721, null_frag, v128h, 1>;
24  def VLGVF : BinaryVRSc<"vlgvf", 0xE721, null_frag, v128f, 2>;
25  def VLGVG : BinaryVRSc<"vlgvg", 0xE721, z_vector_extract, v128g, 3>;
26
27  // Load VR element from GR.
28  def VLVG  : TernaryVRSbGeneric<"vlvg", 0xE722>;
29  def VLVGB : TernaryVRSb<"vlvgb", 0xE722, z_vector_insert,
30                          v128b, v128b, GR32, 0>;
31  def VLVGH : TernaryVRSb<"vlvgh", 0xE722, z_vector_insert,
32                          v128h, v128h, GR32, 1>;
33  def VLVGF : TernaryVRSb<"vlvgf", 0xE722, z_vector_insert,
34                          v128f, v128f, GR32, 2>;
35  def VLVGG : TernaryVRSb<"vlvgg", 0xE722, z_vector_insert,
36                          v128g, v128g, GR64, 3>;
37
38  // Load VR from GRs disjoint.
39  def VLVGP : BinaryVRRf<"vlvgp", 0xE762, z_join_dwords, v128g>;
40  def VLVGP32 : BinaryAliasVRRf<GR32>;
41}
42
43// Extractions always assign to the full GR64, even if the element would
44// fit in the lower 32 bits.  Sub-i64 extracts therefore need to take a
45// subreg of the result.
46class VectorExtractSubreg<ValueType type, Instruction insn>
47  : Pat<(i32 (z_vector_extract (type VR128:$vec), shift12only:$index)),
48        (EXTRACT_SUBREG (insn VR128:$vec, shift12only:$index), subreg_l32)>;
49
50def : VectorExtractSubreg<v16i8, VLGVB>;
51def : VectorExtractSubreg<v8i16, VLGVH>;
52def : VectorExtractSubreg<v4i32, VLGVF>;
53
54//===----------------------------------------------------------------------===//
55// Immediate instructions
56//===----------------------------------------------------------------------===//
57
58let Predicates = [FeatureVector] in {
59  let hasSideEffects = 0, isAsCheapAsAMove = 1, isMoveImm = 1,
60      isReMaterializable = 1 in {
61
62    // Generate byte mask.
63    def VZERO : InherentVRIa<"vzero", 0xE744, 0>;
64    def VONE  : InherentVRIa<"vone", 0xE744, 0xffff>;
65    def VGBM  : UnaryVRIa<"vgbm", 0xE744, z_byte_mask, v128b, imm32zx16>;
66
67    // Generate mask.
68    def VGM  : BinaryVRIbGeneric<"vgm", 0xE746>;
69    def VGMB : BinaryVRIb<"vgmb", 0xE746, z_rotate_mask, v128b, 0>;
70    def VGMH : BinaryVRIb<"vgmh", 0xE746, z_rotate_mask, v128h, 1>;
71    def VGMF : BinaryVRIb<"vgmf", 0xE746, z_rotate_mask, v128f, 2>;
72    def VGMG : BinaryVRIb<"vgmg", 0xE746, z_rotate_mask, v128g, 3>;
73
74    // Replicate immediate.
75    def VREPI  : UnaryVRIaGeneric<"vrepi", 0xE745, imm32sx16>;
76    def VREPIB : UnaryVRIa<"vrepib", 0xE745, z_replicate, v128b, imm32sx16, 0>;
77    def VREPIH : UnaryVRIa<"vrepih", 0xE745, z_replicate, v128h, imm32sx16, 1>;
78    def VREPIF : UnaryVRIa<"vrepif", 0xE745, z_replicate, v128f, imm32sx16, 2>;
79    def VREPIG : UnaryVRIa<"vrepig", 0xE745, z_replicate, v128g, imm32sx16, 3>;
80  }
81
82  // Load element immediate.
83  //
84  // We want these instructions to be used ahead of VLVG* where possible.
85  // However, VLVG* takes a variable BD-format index whereas VLEI takes
86  // a plain immediate index.  This means that VLVG* has an extra "base"
87  // register operand and is 3 units more complex.  Bumping the complexity
88  // of the VLEI* instructions by 4 means that they are strictly better
89  // than VLVG* in cases where both forms match.
90  let AddedComplexity = 4 in {
91    def VLEIB : TernaryVRIa<"vleib", 0xE740, z_vector_insert,
92                            v128b, v128b, imm32sx16trunc, imm32zx4>;
93    def VLEIH : TernaryVRIa<"vleih", 0xE741, z_vector_insert,
94                            v128h, v128h, imm32sx16trunc, imm32zx3>;
95    def VLEIF : TernaryVRIa<"vleif", 0xE743, z_vector_insert,
96                            v128f, v128f, imm32sx16, imm32zx2>;
97    def VLEIG : TernaryVRIa<"vleig", 0xE742, z_vector_insert,
98                            v128g, v128g, imm64sx16, imm32zx1>;
99  }
100}
101
102//===----------------------------------------------------------------------===//
103// Loads
104//===----------------------------------------------------------------------===//
105
106let Predicates = [FeatureVector] in {
107  // Load.
108  def VL : UnaryVRX<"vl", 0xE706, null_frag, v128any, 16>;
109
110  // Load to block boundary.  The number of loaded bytes is only known
111  // at run time.  The instruction is really polymorphic, but v128b matches
112  // the return type of the associated intrinsic.
113  def VLBB : BinaryVRX<"vlbb", 0xE707, int_s390_vlbb, v128b, 0>;
114
115  // Load count to block boundary.
116  let Defs = [CC] in
117    def LCBB : InstRXE<0xE727, (outs GR32:$R1),
118                               (ins bdxaddr12only:$XBD2, imm32zx4:$M3),
119                       "lcbb\t$R1, $XBD2, $M3",
120                       [(set GR32:$R1, (int_s390_lcbb bdxaddr12only:$XBD2,
121                                                      imm32zx4:$M3))]>;
122
123  // Load with length.  The number of loaded bytes is only known at run time.
124  def VLL : BinaryVRSb<"vll", 0xE737, int_s390_vll, 0>;
125
126  // Load multiple.
127  def VLM : LoadMultipleVRSa<"vlm", 0xE736>;
128
129  // Load and replicate
130  def VLREP  : UnaryVRXGeneric<"vlrep", 0xE705>;
131  def VLREPB : UnaryVRX<"vlrepb", 0xE705, z_replicate_loadi8,  v128b, 1, 0>;
132  def VLREPH : UnaryVRX<"vlreph", 0xE705, z_replicate_loadi16, v128h, 2, 1>;
133  def VLREPF : UnaryVRX<"vlrepf", 0xE705, z_replicate_loadi32, v128f, 4, 2>;
134  def VLREPG : UnaryVRX<"vlrepg", 0xE705, z_replicate_loadi64, v128g, 8, 3>;
135  def : Pat<(v4f32 (z_replicate_loadf32 bdxaddr12only:$addr)),
136            (VLREPF bdxaddr12only:$addr)>;
137  def : Pat<(v2f64 (z_replicate_loadf64 bdxaddr12only:$addr)),
138            (VLREPG bdxaddr12only:$addr)>;
139
140  // Use VLREP to load subvectors.  These patterns use "12pair" because
141  // LEY and LDY offer full 20-bit displacement fields.  It's often better
142  // to use those instructions rather than force a 20-bit displacement
143  // into a GPR temporary.
144  def VL32 : UnaryAliasVRX<load, v32sb, bdxaddr12pair>;
145  def VL64 : UnaryAliasVRX<load, v64db, bdxaddr12pair>;
146
147  // Load logical element and zero.
148  def VLLEZ  : UnaryVRXGeneric<"vllez", 0xE704>;
149  def VLLEZB : UnaryVRX<"vllezb", 0xE704, z_vllezi8,  v128b, 1, 0>;
150  def VLLEZH : UnaryVRX<"vllezh", 0xE704, z_vllezi16, v128h, 2, 1>;
151  def VLLEZF : UnaryVRX<"vllezf", 0xE704, z_vllezi32, v128f, 4, 2>;
152  def VLLEZG : UnaryVRX<"vllezg", 0xE704, z_vllezi64, v128g, 8, 3>;
153  def : Pat<(v4f32 (z_vllezf32 bdxaddr12only:$addr)),
154            (VLLEZF bdxaddr12only:$addr)>;
155  def : Pat<(v2f64 (z_vllezf64 bdxaddr12only:$addr)),
156            (VLLEZG bdxaddr12only:$addr)>;
157  let Predicates = [FeatureVectorEnhancements1] in {
158    def VLLEZLF : UnaryVRX<"vllezlf", 0xE704, z_vllezli32, v128f, 4, 6>;
159    def : Pat<(v4f32 (z_vllezlf32 bdxaddr12only:$addr)),
160              (VLLEZLF bdxaddr12only:$addr)>;
161  }
162
163  // Load element.
164  def VLEB : TernaryVRX<"vleb", 0xE700, z_vlei8,  v128b, v128b, 1, imm32zx4>;
165  def VLEH : TernaryVRX<"vleh", 0xE701, z_vlei16, v128h, v128h, 2, imm32zx3>;
166  def VLEF : TernaryVRX<"vlef", 0xE703, z_vlei32, v128f, v128f, 4, imm32zx2>;
167  def VLEG : TernaryVRX<"vleg", 0xE702, z_vlei64, v128g, v128g, 8, imm32zx1>;
168  def : Pat<(z_vlef32 (v4f32 VR128:$val), bdxaddr12only:$addr, imm32zx2:$index),
169            (VLEF VR128:$val, bdxaddr12only:$addr, imm32zx2:$index)>;
170  def : Pat<(z_vlef64 (v2f64 VR128:$val), bdxaddr12only:$addr, imm32zx1:$index),
171            (VLEG VR128:$val, bdxaddr12only:$addr, imm32zx1:$index)>;
172
173  // Gather element.
174  def VGEF : TernaryVRV<"vgef", 0xE713, 4, imm32zx2>;
175  def VGEG : TernaryVRV<"vgeg", 0xE712, 8, imm32zx1>;
176}
177
178let Predicates = [FeatureVectorPackedDecimal] in {
179  // Load rightmost with length.  The number of loaded bytes is only known
180  // at run time.
181  def VLRL : BinaryVSI<"vlrl", 0xE635, int_s390_vlrl, 0>;
182  def VLRLR : BinaryVRSd<"vlrlr", 0xE637, int_s390_vlrl, 0>;
183}
184
185// Use replicating loads if we're inserting a single element into an
186// undefined vector.  This avoids a false dependency on the previous
187// register contents.
188multiclass ReplicatePeephole<Instruction vlrep, ValueType vectype,
189                             SDPatternOperator load, ValueType scalartype> {
190  def : Pat<(vectype (z_vector_insert
191                      (undef), (scalartype (load bdxaddr12only:$addr)), 0)),
192            (vlrep bdxaddr12only:$addr)>;
193  def : Pat<(vectype (scalar_to_vector
194                      (scalartype (load bdxaddr12only:$addr)))),
195            (vlrep bdxaddr12only:$addr)>;
196}
197defm : ReplicatePeephole<VLREPB, v16i8, anyextloadi8, i32>;
198defm : ReplicatePeephole<VLREPH, v8i16, anyextloadi16, i32>;
199defm : ReplicatePeephole<VLREPF, v4i32, load, i32>;
200defm : ReplicatePeephole<VLREPG, v2i64, load, i64>;
201defm : ReplicatePeephole<VLREPF, v4f32, load, f32>;
202defm : ReplicatePeephole<VLREPG, v2f64, load, f64>;
203
204//===----------------------------------------------------------------------===//
205// Stores
206//===----------------------------------------------------------------------===//
207
208let Predicates = [FeatureVector] in {
209  // Store.
210  def VST : StoreVRX<"vst", 0xE70E, null_frag, v128any, 16>;
211
212  // Store with length.  The number of stored bytes is only known at run time.
213  def VSTL : StoreLengthVRSb<"vstl", 0xE73F, int_s390_vstl, 0>;
214
215  // Store multiple.
216  def VSTM : StoreMultipleVRSa<"vstm", 0xE73E>;
217
218  // Store element.
219  def VSTEB : StoreBinaryVRX<"vsteb", 0xE708, z_vstei8,  v128b, 1, imm32zx4>;
220  def VSTEH : StoreBinaryVRX<"vsteh", 0xE709, z_vstei16, v128h, 2, imm32zx3>;
221  def VSTEF : StoreBinaryVRX<"vstef", 0xE70B, z_vstei32, v128f, 4, imm32zx2>;
222  def VSTEG : StoreBinaryVRX<"vsteg", 0xE70A, z_vstei64, v128g, 8, imm32zx1>;
223  def : Pat<(z_vstef32 (v4f32 VR128:$val), bdxaddr12only:$addr,
224                       imm32zx2:$index),
225            (VSTEF VR128:$val, bdxaddr12only:$addr, imm32zx2:$index)>;
226  def : Pat<(z_vstef64 (v2f64 VR128:$val), bdxaddr12only:$addr,
227                       imm32zx1:$index),
228            (VSTEG VR128:$val, bdxaddr12only:$addr, imm32zx1:$index)>;
229
230  // Use VSTE to store subvectors.  These patterns use "12pair" because
231  // STEY and STDY offer full 20-bit displacement fields.  It's often better
232  // to use those instructions rather than force a 20-bit displacement
233  // into a GPR temporary.
234  def VST32 : StoreAliasVRX<store, v32sb, bdxaddr12pair>;
235  def VST64 : StoreAliasVRX<store, v64db, bdxaddr12pair>;
236
237  // Scatter element.
238  def VSCEF : StoreBinaryVRV<"vscef", 0xE71B, 4, imm32zx2>;
239  def VSCEG : StoreBinaryVRV<"vsceg", 0xE71A, 8, imm32zx1>;
240}
241
242let Predicates = [FeatureVectorPackedDecimal] in {
243  // Store rightmost with length.  The number of stored bytes is only known
244  // at run time.
245  def VSTRL : StoreLengthVSI<"vstrl", 0xE63D, int_s390_vstrl, 0>;
246  def VSTRLR : StoreLengthVRSd<"vstrlr", 0xE63F, int_s390_vstrl, 0>;
247}
248
249//===----------------------------------------------------------------------===//
250// Selects and permutes
251//===----------------------------------------------------------------------===//
252
253let Predicates = [FeatureVector] in {
254  // Merge high.
255  def VMRH:   BinaryVRRcGeneric<"vmrh", 0xE761>;
256  def VMRHB : BinaryVRRc<"vmrhb", 0xE761, z_merge_high, v128b, v128b, 0>;
257  def VMRHH : BinaryVRRc<"vmrhh", 0xE761, z_merge_high, v128h, v128h, 1>;
258  def VMRHF : BinaryVRRc<"vmrhf", 0xE761, z_merge_high, v128f, v128f, 2>;
259  def VMRHG : BinaryVRRc<"vmrhg", 0xE761, z_merge_high, v128g, v128g, 3>;
260  def : BinaryRRWithType<VMRHF, VR128, z_merge_high, v4f32>;
261  def : BinaryRRWithType<VMRHG, VR128, z_merge_high, v2f64>;
262
263  // Merge low.
264  def VMRL:   BinaryVRRcGeneric<"vmrl", 0xE760>;
265  def VMRLB : BinaryVRRc<"vmrlb", 0xE760, z_merge_low, v128b, v128b, 0>;
266  def VMRLH : BinaryVRRc<"vmrlh", 0xE760, z_merge_low, v128h, v128h, 1>;
267  def VMRLF : BinaryVRRc<"vmrlf", 0xE760, z_merge_low, v128f, v128f, 2>;
268  def VMRLG : BinaryVRRc<"vmrlg", 0xE760, z_merge_low, v128g, v128g, 3>;
269  def : BinaryRRWithType<VMRLF, VR128, z_merge_low, v4f32>;
270  def : BinaryRRWithType<VMRLG, VR128, z_merge_low, v2f64>;
271
272  // Permute.
273  def VPERM : TernaryVRRe<"vperm", 0xE78C, z_permute, v128b, v128b>;
274
275  // Permute doubleword immediate.
276  def VPDI : TernaryVRRc<"vpdi", 0xE784, z_permute_dwords, v128g, v128g>;
277
278  // Bit Permute.
279  let Predicates = [FeatureVectorEnhancements1] in
280    def VBPERM : BinaryVRRc<"vbperm", 0xE785, int_s390_vbperm, v128g, v128b>;
281
282  // Replicate.
283  def VREP:   BinaryVRIcGeneric<"vrep", 0xE74D>;
284  def VREPB : BinaryVRIc<"vrepb", 0xE74D, z_splat, v128b, v128b, 0>;
285  def VREPH : BinaryVRIc<"vreph", 0xE74D, z_splat, v128h, v128h, 1>;
286  def VREPF : BinaryVRIc<"vrepf", 0xE74D, z_splat, v128f, v128f, 2>;
287  def VREPG : BinaryVRIc<"vrepg", 0xE74D, z_splat, v128g, v128g, 3>;
288  def : Pat<(v4f32 (z_splat VR128:$vec, imm32zx16:$index)),
289            (VREPF VR128:$vec, imm32zx16:$index)>;
290  def : Pat<(v2f64 (z_splat VR128:$vec, imm32zx16:$index)),
291            (VREPG VR128:$vec, imm32zx16:$index)>;
292
293  // Select.
294  def VSEL : TernaryVRRe<"vsel", 0xE78D, null_frag, v128any, v128any>;
295}
296
297//===----------------------------------------------------------------------===//
298// Widening and narrowing
299//===----------------------------------------------------------------------===//
300
301let Predicates = [FeatureVector] in {
302  // Pack
303  def VPK  : BinaryVRRcGeneric<"vpk", 0xE794>;
304  def VPKH : BinaryVRRc<"vpkh", 0xE794, z_pack, v128b, v128h, 1>;
305  def VPKF : BinaryVRRc<"vpkf", 0xE794, z_pack, v128h, v128f, 2>;
306  def VPKG : BinaryVRRc<"vpkg", 0xE794, z_pack, v128f, v128g, 3>;
307
308  // Pack saturate.
309  def  VPKS  : BinaryVRRbSPairGeneric<"vpks", 0xE797>;
310  defm VPKSH : BinaryVRRbSPair<"vpksh", 0xE797, int_s390_vpksh, z_packs_cc,
311                               v128b, v128h, 1>;
312  defm VPKSF : BinaryVRRbSPair<"vpksf", 0xE797, int_s390_vpksf, z_packs_cc,
313                               v128h, v128f, 2>;
314  defm VPKSG : BinaryVRRbSPair<"vpksg", 0xE797, int_s390_vpksg, z_packs_cc,
315                               v128f, v128g, 3>;
316
317  // Pack saturate logical.
318  def  VPKLS  : BinaryVRRbSPairGeneric<"vpkls", 0xE795>;
319  defm VPKLSH : BinaryVRRbSPair<"vpklsh", 0xE795, int_s390_vpklsh, z_packls_cc,
320                                v128b, v128h, 1>;
321  defm VPKLSF : BinaryVRRbSPair<"vpklsf", 0xE795, int_s390_vpklsf, z_packls_cc,
322                                v128h, v128f, 2>;
323  defm VPKLSG : BinaryVRRbSPair<"vpklsg", 0xE795, int_s390_vpklsg, z_packls_cc,
324                                v128f, v128g, 3>;
325
326  // Sign-extend to doubleword.
327  def VSEG  : UnaryVRRaGeneric<"vseg", 0xE75F>;
328  def VSEGB : UnaryVRRa<"vsegb", 0xE75F, z_vsei8,  v128g, v128g, 0>;
329  def VSEGH : UnaryVRRa<"vsegh", 0xE75F, z_vsei16, v128g, v128g, 1>;
330  def VSEGF : UnaryVRRa<"vsegf", 0xE75F, z_vsei32, v128g, v128g, 2>;
331  def : Pat<(z_vsei8_by_parts  (v16i8 VR128:$src)), (VSEGB VR128:$src)>;
332  def : Pat<(z_vsei16_by_parts (v8i16 VR128:$src)), (VSEGH VR128:$src)>;
333  def : Pat<(z_vsei32_by_parts (v4i32 VR128:$src)), (VSEGF VR128:$src)>;
334
335  // Unpack high.
336  def VUPH  : UnaryVRRaGeneric<"vuph", 0xE7D7>;
337  def VUPHB : UnaryVRRa<"vuphb", 0xE7D7, z_unpack_high, v128h, v128b, 0>;
338  def VUPHH : UnaryVRRa<"vuphh", 0xE7D7, z_unpack_high, v128f, v128h, 1>;
339  def VUPHF : UnaryVRRa<"vuphf", 0xE7D7, z_unpack_high, v128g, v128f, 2>;
340
341  // Unpack logical high.
342  def VUPLH  : UnaryVRRaGeneric<"vuplh", 0xE7D5>;
343  def VUPLHB : UnaryVRRa<"vuplhb", 0xE7D5, z_unpackl_high, v128h, v128b, 0>;
344  def VUPLHH : UnaryVRRa<"vuplhh", 0xE7D5, z_unpackl_high, v128f, v128h, 1>;
345  def VUPLHF : UnaryVRRa<"vuplhf", 0xE7D5, z_unpackl_high, v128g, v128f, 2>;
346
347  // Unpack low.
348  def VUPL   : UnaryVRRaGeneric<"vupl", 0xE7D6>;
349  def VUPLB  : UnaryVRRa<"vuplb",  0xE7D6, z_unpack_low, v128h, v128b, 0>;
350  def VUPLHW : UnaryVRRa<"vuplhw", 0xE7D6, z_unpack_low, v128f, v128h, 1>;
351  def VUPLF  : UnaryVRRa<"vuplf",  0xE7D6, z_unpack_low, v128g, v128f, 2>;
352
353  // Unpack logical low.
354  def VUPLL  : UnaryVRRaGeneric<"vupll", 0xE7D4>;
355  def VUPLLB : UnaryVRRa<"vupllb", 0xE7D4, z_unpackl_low, v128h, v128b, 0>;
356  def VUPLLH : UnaryVRRa<"vupllh", 0xE7D4, z_unpackl_low, v128f, v128h, 1>;
357  def VUPLLF : UnaryVRRa<"vupllf", 0xE7D4, z_unpackl_low, v128g, v128f, 2>;
358}
359
360//===----------------------------------------------------------------------===//
361// Instantiating generic operations for specific types.
362//===----------------------------------------------------------------------===//
363
364multiclass GenericVectorOps<ValueType type, ValueType inttype> {
365  let Predicates = [FeatureVector] in {
366    def : Pat<(type (load bdxaddr12only:$addr)),
367              (VL bdxaddr12only:$addr)>;
368    def : Pat<(store (type VR128:$src), bdxaddr12only:$addr),
369              (VST VR128:$src, bdxaddr12only:$addr)>;
370    def : Pat<(type (vselect (inttype VR128:$x), VR128:$y, VR128:$z)),
371              (VSEL VR128:$y, VR128:$z, VR128:$x)>;
372    def : Pat<(type (vselect (inttype (z_vnot VR128:$x)), VR128:$y, VR128:$z)),
373              (VSEL VR128:$z, VR128:$y, VR128:$x)>;
374  }
375}
376
377defm : GenericVectorOps<v16i8, v16i8>;
378defm : GenericVectorOps<v8i16, v8i16>;
379defm : GenericVectorOps<v4i32, v4i32>;
380defm : GenericVectorOps<v2i64, v2i64>;
381defm : GenericVectorOps<v4f32, v4i32>;
382defm : GenericVectorOps<v2f64, v2i64>;
383
384//===----------------------------------------------------------------------===//
385// Integer arithmetic
386//===----------------------------------------------------------------------===//
387
388let Predicates = [FeatureVector] in {
389  // Add.
390  def VA  : BinaryVRRcGeneric<"va", 0xE7F3>;
391  def VAB : BinaryVRRc<"vab", 0xE7F3, add, v128b, v128b, 0>;
392  def VAH : BinaryVRRc<"vah", 0xE7F3, add, v128h, v128h, 1>;
393  def VAF : BinaryVRRc<"vaf", 0xE7F3, add, v128f, v128f, 2>;
394  def VAG : BinaryVRRc<"vag", 0xE7F3, add, v128g, v128g, 3>;
395  def VAQ : BinaryVRRc<"vaq", 0xE7F3, int_s390_vaq, v128q, v128q, 4>;
396
397  // Add compute carry.
398  def VACC  : BinaryVRRcGeneric<"vacc", 0xE7F1>;
399  def VACCB : BinaryVRRc<"vaccb", 0xE7F1, int_s390_vaccb, v128b, v128b, 0>;
400  def VACCH : BinaryVRRc<"vacch", 0xE7F1, int_s390_vacch, v128h, v128h, 1>;
401  def VACCF : BinaryVRRc<"vaccf", 0xE7F1, int_s390_vaccf, v128f, v128f, 2>;
402  def VACCG : BinaryVRRc<"vaccg", 0xE7F1, int_s390_vaccg, v128g, v128g, 3>;
403  def VACCQ : BinaryVRRc<"vaccq", 0xE7F1, int_s390_vaccq, v128q, v128q, 4>;
404
405  // Add with carry.
406  def VAC  : TernaryVRRdGeneric<"vac", 0xE7BB>;
407  def VACQ : TernaryVRRd<"vacq", 0xE7BB, int_s390_vacq, v128q, v128q, 4>;
408
409  // Add with carry compute carry.
410  def VACCC  : TernaryVRRdGeneric<"vaccc", 0xE7B9>;
411  def VACCCQ : TernaryVRRd<"vacccq", 0xE7B9, int_s390_vacccq, v128q, v128q, 4>;
412
413  // And.
414  def VN : BinaryVRRc<"vn", 0xE768, null_frag, v128any, v128any>;
415
416  // And with complement.
417  def VNC : BinaryVRRc<"vnc", 0xE769, null_frag, v128any, v128any>;
418
419  // Average.
420  def VAVG  : BinaryVRRcGeneric<"vavg", 0xE7F2>;
421  def VAVGB : BinaryVRRc<"vavgb", 0xE7F2, int_s390_vavgb, v128b, v128b, 0>;
422  def VAVGH : BinaryVRRc<"vavgh", 0xE7F2, int_s390_vavgh, v128h, v128h, 1>;
423  def VAVGF : BinaryVRRc<"vavgf", 0xE7F2, int_s390_vavgf, v128f, v128f, 2>;
424  def VAVGG : BinaryVRRc<"vavgg", 0xE7F2, int_s390_vavgg, v128g, v128g, 3>;
425
426  // Average logical.
427  def VAVGL  : BinaryVRRcGeneric<"vavgl", 0xE7F0>;
428  def VAVGLB : BinaryVRRc<"vavglb", 0xE7F0, int_s390_vavglb, v128b, v128b, 0>;
429  def VAVGLH : BinaryVRRc<"vavglh", 0xE7F0, int_s390_vavglh, v128h, v128h, 1>;
430  def VAVGLF : BinaryVRRc<"vavglf", 0xE7F0, int_s390_vavglf, v128f, v128f, 2>;
431  def VAVGLG : BinaryVRRc<"vavglg", 0xE7F0, int_s390_vavglg, v128g, v128g, 3>;
432
433  // Checksum.
434  def VCKSM : BinaryVRRc<"vcksm", 0xE766, int_s390_vcksm, v128f, v128f>;
435
436  // Count leading zeros.
437  def VCLZ  : UnaryVRRaGeneric<"vclz", 0xE753>;
438  def VCLZB : UnaryVRRa<"vclzb", 0xE753, ctlz, v128b, v128b, 0>;
439  def VCLZH : UnaryVRRa<"vclzh", 0xE753, ctlz, v128h, v128h, 1>;
440  def VCLZF : UnaryVRRa<"vclzf", 0xE753, ctlz, v128f, v128f, 2>;
441  def VCLZG : UnaryVRRa<"vclzg", 0xE753, ctlz, v128g, v128g, 3>;
442
443  // Count trailing zeros.
444  def VCTZ  : UnaryVRRaGeneric<"vctz", 0xE752>;
445  def VCTZB : UnaryVRRa<"vctzb", 0xE752, cttz, v128b, v128b, 0>;
446  def VCTZH : UnaryVRRa<"vctzh", 0xE752, cttz, v128h, v128h, 1>;
447  def VCTZF : UnaryVRRa<"vctzf", 0xE752, cttz, v128f, v128f, 2>;
448  def VCTZG : UnaryVRRa<"vctzg", 0xE752, cttz, v128g, v128g, 3>;
449
450  // Not exclusive or.
451  let Predicates = [FeatureVectorEnhancements1] in
452    def VNX : BinaryVRRc<"vnx", 0xE76C, null_frag, v128any, v128any>;
453
454  // Exclusive or.
455  def VX : BinaryVRRc<"vx", 0xE76D, null_frag, v128any, v128any>;
456
457  // Galois field multiply sum.
458  def VGFM  : BinaryVRRcGeneric<"vgfm", 0xE7B4>;
459  def VGFMB : BinaryVRRc<"vgfmb", 0xE7B4, int_s390_vgfmb, v128h, v128b, 0>;
460  def VGFMH : BinaryVRRc<"vgfmh", 0xE7B4, int_s390_vgfmh, v128f, v128h, 1>;
461  def VGFMF : BinaryVRRc<"vgfmf", 0xE7B4, int_s390_vgfmf, v128g, v128f, 2>;
462  def VGFMG : BinaryVRRc<"vgfmg", 0xE7B4, int_s390_vgfmg, v128q, v128g, 3>;
463
464  // Galois field multiply sum and accumulate.
465  def VGFMA  : TernaryVRRdGeneric<"vgfma", 0xE7BC>;
466  def VGFMAB : TernaryVRRd<"vgfmab", 0xE7BC, int_s390_vgfmab, v128h, v128b, 0>;
467  def VGFMAH : TernaryVRRd<"vgfmah", 0xE7BC, int_s390_vgfmah, v128f, v128h, 1>;
468  def VGFMAF : TernaryVRRd<"vgfmaf", 0xE7BC, int_s390_vgfmaf, v128g, v128f, 2>;
469  def VGFMAG : TernaryVRRd<"vgfmag", 0xE7BC, int_s390_vgfmag, v128q, v128g, 3>;
470
471  // Load complement.
472  def VLC  : UnaryVRRaGeneric<"vlc", 0xE7DE>;
473  def VLCB : UnaryVRRa<"vlcb", 0xE7DE, z_vneg, v128b, v128b, 0>;
474  def VLCH : UnaryVRRa<"vlch", 0xE7DE, z_vneg, v128h, v128h, 1>;
475  def VLCF : UnaryVRRa<"vlcf", 0xE7DE, z_vneg, v128f, v128f, 2>;
476  def VLCG : UnaryVRRa<"vlcg", 0xE7DE, z_vneg, v128g, v128g, 3>;
477
478  // Load positive.
479  def VLP  : UnaryVRRaGeneric<"vlp", 0xE7DF>;
480  def VLPB : UnaryVRRa<"vlpb", 0xE7DF, z_viabs8,  v128b, v128b, 0>;
481  def VLPH : UnaryVRRa<"vlph", 0xE7DF, z_viabs16, v128h, v128h, 1>;
482  def VLPF : UnaryVRRa<"vlpf", 0xE7DF, z_viabs32, v128f, v128f, 2>;
483  def VLPG : UnaryVRRa<"vlpg", 0xE7DF, z_viabs64, v128g, v128g, 3>;
484
485  // Maximum.
486  def VMX  : BinaryVRRcGeneric<"vmx", 0xE7FF>;
487  def VMXB : BinaryVRRc<"vmxb", 0xE7FF, null_frag, v128b, v128b, 0>;
488  def VMXH : BinaryVRRc<"vmxh", 0xE7FF, null_frag, v128h, v128h, 1>;
489  def VMXF : BinaryVRRc<"vmxf", 0xE7FF, null_frag, v128f, v128f, 2>;
490  def VMXG : BinaryVRRc<"vmxg", 0xE7FF, null_frag, v128g, v128g, 3>;
491
492  // Maximum logical.
493  def VMXL  : BinaryVRRcGeneric<"vmxl", 0xE7FD>;
494  def VMXLB : BinaryVRRc<"vmxlb", 0xE7FD, null_frag, v128b, v128b, 0>;
495  def VMXLH : BinaryVRRc<"vmxlh", 0xE7FD, null_frag, v128h, v128h, 1>;
496  def VMXLF : BinaryVRRc<"vmxlf", 0xE7FD, null_frag, v128f, v128f, 2>;
497  def VMXLG : BinaryVRRc<"vmxlg", 0xE7FD, null_frag, v128g, v128g, 3>;
498
499  // Minimum.
500  def VMN  : BinaryVRRcGeneric<"vmn", 0xE7FE>;
501  def VMNB : BinaryVRRc<"vmnb", 0xE7FE, null_frag, v128b, v128b, 0>;
502  def VMNH : BinaryVRRc<"vmnh", 0xE7FE, null_frag, v128h, v128h, 1>;
503  def VMNF : BinaryVRRc<"vmnf", 0xE7FE, null_frag, v128f, v128f, 2>;
504  def VMNG : BinaryVRRc<"vmng", 0xE7FE, null_frag, v128g, v128g, 3>;
505
506  // Minimum logical.
507  def VMNL  : BinaryVRRcGeneric<"vmnl", 0xE7FC>;
508  def VMNLB : BinaryVRRc<"vmnlb", 0xE7FC, null_frag, v128b, v128b, 0>;
509  def VMNLH : BinaryVRRc<"vmnlh", 0xE7FC, null_frag, v128h, v128h, 1>;
510  def VMNLF : BinaryVRRc<"vmnlf", 0xE7FC, null_frag, v128f, v128f, 2>;
511  def VMNLG : BinaryVRRc<"vmnlg", 0xE7FC, null_frag, v128g, v128g, 3>;
512
513  // Multiply and add low.
514  def VMAL   : TernaryVRRdGeneric<"vmal", 0xE7AA>;
515  def VMALB  : TernaryVRRd<"vmalb",  0xE7AA, z_muladd, v128b, v128b, 0>;
516  def VMALHW : TernaryVRRd<"vmalhw", 0xE7AA, z_muladd, v128h, v128h, 1>;
517  def VMALF  : TernaryVRRd<"vmalf",  0xE7AA, z_muladd, v128f, v128f, 2>;
518
519  // Multiply and add high.
520  def VMAH  : TernaryVRRdGeneric<"vmah", 0xE7AB>;
521  def VMAHB : TernaryVRRd<"vmahb", 0xE7AB, int_s390_vmahb, v128b, v128b, 0>;
522  def VMAHH : TernaryVRRd<"vmahh", 0xE7AB, int_s390_vmahh, v128h, v128h, 1>;
523  def VMAHF : TernaryVRRd<"vmahf", 0xE7AB, int_s390_vmahf, v128f, v128f, 2>;
524
525  // Multiply and add logical high.
526  def VMALH  : TernaryVRRdGeneric<"vmalh", 0xE7A9>;
527  def VMALHB : TernaryVRRd<"vmalhb", 0xE7A9, int_s390_vmalhb, v128b, v128b, 0>;
528  def VMALHH : TernaryVRRd<"vmalhh", 0xE7A9, int_s390_vmalhh, v128h, v128h, 1>;
529  def VMALHF : TernaryVRRd<"vmalhf", 0xE7A9, int_s390_vmalhf, v128f, v128f, 2>;
530
531  // Multiply and add even.
532  def VMAE  : TernaryVRRdGeneric<"vmae", 0xE7AE>;
533  def VMAEB : TernaryVRRd<"vmaeb", 0xE7AE, int_s390_vmaeb, v128h, v128b, 0>;
534  def VMAEH : TernaryVRRd<"vmaeh", 0xE7AE, int_s390_vmaeh, v128f, v128h, 1>;
535  def VMAEF : TernaryVRRd<"vmaef", 0xE7AE, int_s390_vmaef, v128g, v128f, 2>;
536
537  // Multiply and add logical even.
538  def VMALE  : TernaryVRRdGeneric<"vmale", 0xE7AC>;
539  def VMALEB : TernaryVRRd<"vmaleb", 0xE7AC, int_s390_vmaleb, v128h, v128b, 0>;
540  def VMALEH : TernaryVRRd<"vmaleh", 0xE7AC, int_s390_vmaleh, v128f, v128h, 1>;
541  def VMALEF : TernaryVRRd<"vmalef", 0xE7AC, int_s390_vmalef, v128g, v128f, 2>;
542
543  // Multiply and add odd.
544  def VMAO  : TernaryVRRdGeneric<"vmao", 0xE7AF>;
545  def VMAOB : TernaryVRRd<"vmaob", 0xE7AF, int_s390_vmaob, v128h, v128b, 0>;
546  def VMAOH : TernaryVRRd<"vmaoh", 0xE7AF, int_s390_vmaoh, v128f, v128h, 1>;
547  def VMAOF : TernaryVRRd<"vmaof", 0xE7AF, int_s390_vmaof, v128g, v128f, 2>;
548
549  // Multiply and add logical odd.
550  def VMALO  : TernaryVRRdGeneric<"vmalo", 0xE7AD>;
551  def VMALOB : TernaryVRRd<"vmalob", 0xE7AD, int_s390_vmalob, v128h, v128b, 0>;
552  def VMALOH : TernaryVRRd<"vmaloh", 0xE7AD, int_s390_vmaloh, v128f, v128h, 1>;
553  def VMALOF : TernaryVRRd<"vmalof", 0xE7AD, int_s390_vmalof, v128g, v128f, 2>;
554
555  // Multiply high.
556  def VMH  : BinaryVRRcGeneric<"vmh", 0xE7A3>;
557  def VMHB : BinaryVRRc<"vmhb", 0xE7A3, int_s390_vmhb, v128b, v128b, 0>;
558  def VMHH : BinaryVRRc<"vmhh", 0xE7A3, int_s390_vmhh, v128h, v128h, 1>;
559  def VMHF : BinaryVRRc<"vmhf", 0xE7A3, int_s390_vmhf, v128f, v128f, 2>;
560
561  // Multiply logical high.
562  def VMLH  : BinaryVRRcGeneric<"vmlh", 0xE7A1>;
563  def VMLHB : BinaryVRRc<"vmlhb", 0xE7A1, int_s390_vmlhb, v128b, v128b, 0>;
564  def VMLHH : BinaryVRRc<"vmlhh", 0xE7A1, int_s390_vmlhh, v128h, v128h, 1>;
565  def VMLHF : BinaryVRRc<"vmlhf", 0xE7A1, int_s390_vmlhf, v128f, v128f, 2>;
566
567  // Multiply low.
568  def VML   : BinaryVRRcGeneric<"vml", 0xE7A2>;
569  def VMLB  : BinaryVRRc<"vmlb",  0xE7A2, mul, v128b, v128b, 0>;
570  def VMLHW : BinaryVRRc<"vmlhw", 0xE7A2, mul, v128h, v128h, 1>;
571  def VMLF  : BinaryVRRc<"vmlf",  0xE7A2, mul, v128f, v128f, 2>;
572
573  // Multiply even.
574  def VME  : BinaryVRRcGeneric<"vme", 0xE7A6>;
575  def VMEB : BinaryVRRc<"vmeb", 0xE7A6, int_s390_vmeb, v128h, v128b, 0>;
576  def VMEH : BinaryVRRc<"vmeh", 0xE7A6, int_s390_vmeh, v128f, v128h, 1>;
577  def VMEF : BinaryVRRc<"vmef", 0xE7A6, int_s390_vmef, v128g, v128f, 2>;
578
579  // Multiply logical even.
580  def VMLE  : BinaryVRRcGeneric<"vmle", 0xE7A4>;
581  def VMLEB : BinaryVRRc<"vmleb", 0xE7A4, int_s390_vmleb, v128h, v128b, 0>;
582  def VMLEH : BinaryVRRc<"vmleh", 0xE7A4, int_s390_vmleh, v128f, v128h, 1>;
583  def VMLEF : BinaryVRRc<"vmlef", 0xE7A4, int_s390_vmlef, v128g, v128f, 2>;
584
585  // Multiply odd.
586  def VMO  : BinaryVRRcGeneric<"vmo", 0xE7A7>;
587  def VMOB : BinaryVRRc<"vmob", 0xE7A7, int_s390_vmob, v128h, v128b, 0>;
588  def VMOH : BinaryVRRc<"vmoh", 0xE7A7, int_s390_vmoh, v128f, v128h, 1>;
589  def VMOF : BinaryVRRc<"vmof", 0xE7A7, int_s390_vmof, v128g, v128f, 2>;
590
591  // Multiply logical odd.
592  def VMLO  : BinaryVRRcGeneric<"vmlo", 0xE7A5>;
593  def VMLOB : BinaryVRRc<"vmlob", 0xE7A5, int_s390_vmlob, v128h, v128b, 0>;
594  def VMLOH : BinaryVRRc<"vmloh", 0xE7A5, int_s390_vmloh, v128f, v128h, 1>;
595  def VMLOF : BinaryVRRc<"vmlof", 0xE7A5, int_s390_vmlof, v128g, v128f, 2>;
596
597  // Multiply sum logical.
598  let Predicates = [FeatureVectorEnhancements1] in {
599    def VMSL  : QuaternaryVRRdGeneric<"vmsl", 0xE7B8>;
600    def VMSLG : QuaternaryVRRd<"vmslg", 0xE7B8, int_s390_vmslg,
601                               v128q, v128g, v128g, v128q, 3>;
602  }
603
604  // Nand.
605  let Predicates = [FeatureVectorEnhancements1] in
606    def VNN : BinaryVRRc<"vnn", 0xE76E, null_frag, v128any, v128any>;
607
608  // Nor.
609  def VNO : BinaryVRRc<"vno", 0xE76B, null_frag, v128any, v128any>;
610  def : InstAlias<"vnot\t$V1, $V2", (VNO VR128:$V1, VR128:$V2, VR128:$V2), 0>;
611
612  // Or.
613  def VO : BinaryVRRc<"vo", 0xE76A, null_frag, v128any, v128any>;
614
615  // Or with complement.
616  let Predicates = [FeatureVectorEnhancements1] in
617    def VOC : BinaryVRRc<"voc", 0xE76F, null_frag, v128any, v128any>;
618
619  // Population count.
620  def VPOPCT : UnaryVRRaGeneric<"vpopct", 0xE750>;
621  def : Pat<(v16i8 (z_popcnt VR128:$x)), (VPOPCT VR128:$x, 0)>;
622  let Predicates = [FeatureVectorEnhancements1] in {
623    def VPOPCTB : UnaryVRRa<"vpopctb", 0xE750, ctpop, v128b, v128b, 0>;
624    def VPOPCTH : UnaryVRRa<"vpopcth", 0xE750, ctpop, v128h, v128h, 1>;
625    def VPOPCTF : UnaryVRRa<"vpopctf", 0xE750, ctpop, v128f, v128f, 2>;
626    def VPOPCTG : UnaryVRRa<"vpopctg", 0xE750, ctpop, v128g, v128g, 3>;
627  }
628
629  // Element rotate left logical (with vector shift amount).
630  def VERLLV  : BinaryVRRcGeneric<"verllv", 0xE773>;
631  def VERLLVB : BinaryVRRc<"verllvb", 0xE773, int_s390_verllvb,
632                           v128b, v128b, 0>;
633  def VERLLVH : BinaryVRRc<"verllvh", 0xE773, int_s390_verllvh,
634                           v128h, v128h, 1>;
635  def VERLLVF : BinaryVRRc<"verllvf", 0xE773, int_s390_verllvf,
636                           v128f, v128f, 2>;
637  def VERLLVG : BinaryVRRc<"verllvg", 0xE773, int_s390_verllvg,
638                           v128g, v128g, 3>;
639
640  // Element rotate left logical (with scalar shift amount).
641  def VERLL  : BinaryVRSaGeneric<"verll", 0xE733>;
642  def VERLLB : BinaryVRSa<"verllb", 0xE733, int_s390_verllb, v128b, v128b, 0>;
643  def VERLLH : BinaryVRSa<"verllh", 0xE733, int_s390_verllh, v128h, v128h, 1>;
644  def VERLLF : BinaryVRSa<"verllf", 0xE733, int_s390_verllf, v128f, v128f, 2>;
645  def VERLLG : BinaryVRSa<"verllg", 0xE733, int_s390_verllg, v128g, v128g, 3>;
646
647  // Element rotate and insert under mask.
648  def VERIM  : QuaternaryVRIdGeneric<"verim", 0xE772>;
649  def VERIMB : QuaternaryVRId<"verimb", 0xE772, int_s390_verimb, v128b, v128b, 0>;
650  def VERIMH : QuaternaryVRId<"verimh", 0xE772, int_s390_verimh, v128h, v128h, 1>;
651  def VERIMF : QuaternaryVRId<"verimf", 0xE772, int_s390_verimf, v128f, v128f, 2>;
652  def VERIMG : QuaternaryVRId<"verimg", 0xE772, int_s390_verimg, v128g, v128g, 3>;
653
654  // Element shift left (with vector shift amount).
655  def VESLV  : BinaryVRRcGeneric<"veslv", 0xE770>;
656  def VESLVB : BinaryVRRc<"veslvb", 0xE770, z_vshl, v128b, v128b, 0>;
657  def VESLVH : BinaryVRRc<"veslvh", 0xE770, z_vshl, v128h, v128h, 1>;
658  def VESLVF : BinaryVRRc<"veslvf", 0xE770, z_vshl, v128f, v128f, 2>;
659  def VESLVG : BinaryVRRc<"veslvg", 0xE770, z_vshl, v128g, v128g, 3>;
660
661  // Element shift left (with scalar shift amount).
662  def VESL  : BinaryVRSaGeneric<"vesl", 0xE730>;
663  def VESLB : BinaryVRSa<"veslb", 0xE730, z_vshl_by_scalar, v128b, v128b, 0>;
664  def VESLH : BinaryVRSa<"veslh", 0xE730, z_vshl_by_scalar, v128h, v128h, 1>;
665  def VESLF : BinaryVRSa<"veslf", 0xE730, z_vshl_by_scalar, v128f, v128f, 2>;
666  def VESLG : BinaryVRSa<"veslg", 0xE730, z_vshl_by_scalar, v128g, v128g, 3>;
667
668  // Element shift right arithmetic (with vector shift amount).
669  def VESRAV  : BinaryVRRcGeneric<"vesrav", 0xE77A>;
670  def VESRAVB : BinaryVRRc<"vesravb", 0xE77A, z_vsra, v128b, v128b, 0>;
671  def VESRAVH : BinaryVRRc<"vesravh", 0xE77A, z_vsra, v128h, v128h, 1>;
672  def VESRAVF : BinaryVRRc<"vesravf", 0xE77A, z_vsra, v128f, v128f, 2>;
673  def VESRAVG : BinaryVRRc<"vesravg", 0xE77A, z_vsra, v128g, v128g, 3>;
674
675  // Element shift right arithmetic (with scalar shift amount).
676  def VESRA  : BinaryVRSaGeneric<"vesra", 0xE73A>;
677  def VESRAB : BinaryVRSa<"vesrab", 0xE73A, z_vsra_by_scalar, v128b, v128b, 0>;
678  def VESRAH : BinaryVRSa<"vesrah", 0xE73A, z_vsra_by_scalar, v128h, v128h, 1>;
679  def VESRAF : BinaryVRSa<"vesraf", 0xE73A, z_vsra_by_scalar, v128f, v128f, 2>;
680  def VESRAG : BinaryVRSa<"vesrag", 0xE73A, z_vsra_by_scalar, v128g, v128g, 3>;
681
682  // Element shift right logical (with vector shift amount).
683  def VESRLV  : BinaryVRRcGeneric<"vesrlv", 0xE778>;
684  def VESRLVB : BinaryVRRc<"vesrlvb", 0xE778, z_vsrl, v128b, v128b, 0>;
685  def VESRLVH : BinaryVRRc<"vesrlvh", 0xE778, z_vsrl, v128h, v128h, 1>;
686  def VESRLVF : BinaryVRRc<"vesrlvf", 0xE778, z_vsrl, v128f, v128f, 2>;
687  def VESRLVG : BinaryVRRc<"vesrlvg", 0xE778, z_vsrl, v128g, v128g, 3>;
688
689  // Element shift right logical (with scalar shift amount).
690  def VESRL  : BinaryVRSaGeneric<"vesrl", 0xE738>;
691  def VESRLB : BinaryVRSa<"vesrlb", 0xE738, z_vsrl_by_scalar, v128b, v128b, 0>;
692  def VESRLH : BinaryVRSa<"vesrlh", 0xE738, z_vsrl_by_scalar, v128h, v128h, 1>;
693  def VESRLF : BinaryVRSa<"vesrlf", 0xE738, z_vsrl_by_scalar, v128f, v128f, 2>;
694  def VESRLG : BinaryVRSa<"vesrlg", 0xE738, z_vsrl_by_scalar, v128g, v128g, 3>;
695
696  // Shift left.
697  def VSL : BinaryVRRc<"vsl", 0xE774, int_s390_vsl, v128b, v128b>;
698
699  // Shift left by byte.
700  def VSLB : BinaryVRRc<"vslb", 0xE775, int_s390_vslb, v128b, v128b>;
701
702  // Shift left double by byte.
703  def VSLDB : TernaryVRId<"vsldb", 0xE777, z_shl_double, v128b, v128b, 0>;
704  def : Pat<(int_s390_vsldb VR128:$x, VR128:$y, imm32zx8:$z),
705            (VSLDB VR128:$x, VR128:$y, imm32zx8:$z)>;
706
707  // Shift right arithmetic.
708  def VSRA : BinaryVRRc<"vsra", 0xE77E, int_s390_vsra, v128b, v128b>;
709
710  // Shift right arithmetic by byte.
711  def VSRAB : BinaryVRRc<"vsrab", 0xE77F, int_s390_vsrab, v128b, v128b>;
712
713  // Shift right logical.
714  def VSRL : BinaryVRRc<"vsrl", 0xE77C, int_s390_vsrl, v128b, v128b>;
715
716  // Shift right logical by byte.
717  def VSRLB : BinaryVRRc<"vsrlb", 0xE77D, int_s390_vsrlb, v128b, v128b>;
718
719  // Subtract.
720  def VS  : BinaryVRRcGeneric<"vs", 0xE7F7>;
721  def VSB : BinaryVRRc<"vsb", 0xE7F7, sub, v128b, v128b, 0>;
722  def VSH : BinaryVRRc<"vsh", 0xE7F7, sub, v128h, v128h, 1>;
723  def VSF : BinaryVRRc<"vsf", 0xE7F7, sub, v128f, v128f, 2>;
724  def VSG : BinaryVRRc<"vsg", 0xE7F7, sub, v128g, v128g, 3>;
725  def VSQ : BinaryVRRc<"vsq", 0xE7F7, int_s390_vsq, v128q, v128q, 4>;
726
727  // Subtract compute borrow indication.
728  def VSCBI  : BinaryVRRcGeneric<"vscbi", 0xE7F5>;
729  def VSCBIB : BinaryVRRc<"vscbib", 0xE7F5, int_s390_vscbib, v128b, v128b, 0>;
730  def VSCBIH : BinaryVRRc<"vscbih", 0xE7F5, int_s390_vscbih, v128h, v128h, 1>;
731  def VSCBIF : BinaryVRRc<"vscbif", 0xE7F5, int_s390_vscbif, v128f, v128f, 2>;
732  def VSCBIG : BinaryVRRc<"vscbig", 0xE7F5, int_s390_vscbig, v128g, v128g, 3>;
733  def VSCBIQ : BinaryVRRc<"vscbiq", 0xE7F5, int_s390_vscbiq, v128q, v128q, 4>;
734
735  // Subtract with borrow indication.
736  def VSBI  : TernaryVRRdGeneric<"vsbi", 0xE7BF>;
737  def VSBIQ : TernaryVRRd<"vsbiq", 0xE7BF, int_s390_vsbiq, v128q, v128q, 4>;
738
739  // Subtract with borrow compute borrow indication.
740  def VSBCBI  : TernaryVRRdGeneric<"vsbcbi", 0xE7BD>;
741  def VSBCBIQ : TernaryVRRd<"vsbcbiq", 0xE7BD, int_s390_vsbcbiq,
742                            v128q, v128q, 4>;
743
744  // Sum across doubleword.
745  def VSUMG  : BinaryVRRcGeneric<"vsumg", 0xE765>;
746  def VSUMGH : BinaryVRRc<"vsumgh", 0xE765, z_vsum, v128g, v128h, 1>;
747  def VSUMGF : BinaryVRRc<"vsumgf", 0xE765, z_vsum, v128g, v128f, 2>;
748
749  // Sum across quadword.
750  def VSUMQ  : BinaryVRRcGeneric<"vsumq", 0xE767>;
751  def VSUMQF : BinaryVRRc<"vsumqf", 0xE767, z_vsum, v128q, v128f, 2>;
752  def VSUMQG : BinaryVRRc<"vsumqg", 0xE767, z_vsum, v128q, v128g, 3>;
753
754  // Sum across word.
755  def VSUM  : BinaryVRRcGeneric<"vsum", 0xE764>;
756  def VSUMB : BinaryVRRc<"vsumb", 0xE764, z_vsum, v128f, v128b, 0>;
757  def VSUMH : BinaryVRRc<"vsumh", 0xE764, z_vsum, v128f, v128h, 1>;
758}
759
760// Instantiate the bitwise ops for type TYPE.
761multiclass BitwiseVectorOps<ValueType type> {
762  let Predicates = [FeatureVector] in {
763    def : Pat<(type (and VR128:$x, VR128:$y)), (VN VR128:$x, VR128:$y)>;
764    def : Pat<(type (and VR128:$x, (z_vnot VR128:$y))),
765              (VNC VR128:$x, VR128:$y)>;
766    def : Pat<(type (or VR128:$x, VR128:$y)), (VO VR128:$x, VR128:$y)>;
767    def : Pat<(type (xor VR128:$x, VR128:$y)), (VX VR128:$x, VR128:$y)>;
768    def : Pat<(type (or (and VR128:$x, VR128:$z),
769                        (and VR128:$y, (z_vnot VR128:$z)))),
770              (VSEL VR128:$x, VR128:$y, VR128:$z)>;
771    def : Pat<(type (z_vnot (or VR128:$x, VR128:$y))),
772              (VNO VR128:$x, VR128:$y)>;
773    def : Pat<(type (z_vnot VR128:$x)), (VNO VR128:$x, VR128:$x)>;
774  }
775  let Predicates = [FeatureVectorEnhancements1] in {
776    def : Pat<(type (z_vnot (xor VR128:$x, VR128:$y))),
777              (VNX VR128:$x, VR128:$y)>;
778    def : Pat<(type (z_vnot (and VR128:$x, VR128:$y))),
779              (VNN VR128:$x, VR128:$y)>;
780    def : Pat<(type (or VR128:$x, (z_vnot VR128:$y))),
781              (VOC VR128:$x, VR128:$y)>;
782  }
783}
784
785defm : BitwiseVectorOps<v16i8>;
786defm : BitwiseVectorOps<v8i16>;
787defm : BitwiseVectorOps<v4i32>;
788defm : BitwiseVectorOps<v2i64>;
789
790// Instantiate additional patterns for absolute-related expressions on
791// type TYPE.  LC is the negate instruction for TYPE and LP is the absolute
792// instruction.
793multiclass IntegerAbsoluteVectorOps<ValueType type, Instruction lc,
794                                    Instruction lp, int shift> {
795  let Predicates = [FeatureVector] in {
796    def : Pat<(type (vselect (type (z_vicmph_zero VR128:$x)),
797                             (z_vneg VR128:$x), VR128:$x)),
798              (lc (lp VR128:$x))>;
799    def : Pat<(type (vselect (type (z_vnot (z_vicmph_zero VR128:$x))),
800                             VR128:$x, (z_vneg VR128:$x))),
801              (lc (lp VR128:$x))>;
802    def : Pat<(type (vselect (type (z_vicmpl_zero VR128:$x)),
803                             VR128:$x, (z_vneg VR128:$x))),
804              (lc (lp VR128:$x))>;
805    def : Pat<(type (vselect (type (z_vnot (z_vicmpl_zero VR128:$x))),
806                             (z_vneg VR128:$x), VR128:$x)),
807              (lc (lp VR128:$x))>;
808    def : Pat<(type (or (and (z_vsra_by_scalar VR128:$x, (i32 shift)),
809                             (z_vneg VR128:$x)),
810                        (and (z_vnot (z_vsra_by_scalar VR128:$x, (i32 shift))),
811                             VR128:$x))),
812              (lp VR128:$x)>;
813    def : Pat<(type (or (and (z_vsra_by_scalar VR128:$x, (i32 shift)),
814                             VR128:$x),
815                        (and (z_vnot (z_vsra_by_scalar VR128:$x, (i32 shift))),
816                             (z_vneg VR128:$x)))),
817              (lc (lp VR128:$x))>;
818  }
819}
820
821defm : IntegerAbsoluteVectorOps<v16i8, VLCB, VLPB, 7>;
822defm : IntegerAbsoluteVectorOps<v8i16, VLCH, VLPH, 15>;
823defm : IntegerAbsoluteVectorOps<v4i32, VLCF, VLPF, 31>;
824defm : IntegerAbsoluteVectorOps<v2i64, VLCG, VLPG, 63>;
825
826// Instantiate minimum- and maximum-related patterns for TYPE.  CMPH is the
827// signed or unsigned "set if greater than" comparison instruction and
828// MIN and MAX are the associated minimum and maximum instructions.
829multiclass IntegerMinMaxVectorOps<ValueType type, SDPatternOperator cmph,
830                                  Instruction min, Instruction max> {
831  let Predicates = [FeatureVector] in {
832    def : Pat<(type (vselect (cmph VR128:$x, VR128:$y), VR128:$x, VR128:$y)),
833              (max VR128:$x, VR128:$y)>;
834    def : Pat<(type (vselect (cmph VR128:$x, VR128:$y), VR128:$y, VR128:$x)),
835              (min VR128:$x, VR128:$y)>;
836    def : Pat<(type (vselect (z_vnot (cmph VR128:$x, VR128:$y)),
837                             VR128:$x, VR128:$y)),
838              (min VR128:$x, VR128:$y)>;
839    def : Pat<(type (vselect (z_vnot (cmph VR128:$x, VR128:$y)),
840                             VR128:$y, VR128:$x)),
841              (max VR128:$x, VR128:$y)>;
842  }
843}
844
845// Signed min/max.
846defm : IntegerMinMaxVectorOps<v16i8, z_vicmph, VMNB, VMXB>;
847defm : IntegerMinMaxVectorOps<v8i16, z_vicmph, VMNH, VMXH>;
848defm : IntegerMinMaxVectorOps<v4i32, z_vicmph, VMNF, VMXF>;
849defm : IntegerMinMaxVectorOps<v2i64, z_vicmph, VMNG, VMXG>;
850
851// Unsigned min/max.
852defm : IntegerMinMaxVectorOps<v16i8, z_vicmphl, VMNLB, VMXLB>;
853defm : IntegerMinMaxVectorOps<v8i16, z_vicmphl, VMNLH, VMXLH>;
854defm : IntegerMinMaxVectorOps<v4i32, z_vicmphl, VMNLF, VMXLF>;
855defm : IntegerMinMaxVectorOps<v2i64, z_vicmphl, VMNLG, VMXLG>;
856
857//===----------------------------------------------------------------------===//
858// Integer comparison
859//===----------------------------------------------------------------------===//
860
861let Predicates = [FeatureVector] in {
862  // Element compare.
863  let Defs = [CC] in {
864    def VEC  : CompareVRRaGeneric<"vec", 0xE7DB>;
865    def VECB : CompareVRRa<"vecb", 0xE7DB, null_frag, v128b, 0>;
866    def VECH : CompareVRRa<"vech", 0xE7DB, null_frag, v128h, 1>;
867    def VECF : CompareVRRa<"vecf", 0xE7DB, null_frag, v128f, 2>;
868    def VECG : CompareVRRa<"vecg", 0xE7DB, null_frag, v128g, 3>;
869  }
870
871  // Element compare logical.
872  let Defs = [CC] in {
873    def VECL  : CompareVRRaGeneric<"vecl", 0xE7D9>;
874    def VECLB : CompareVRRa<"veclb", 0xE7D9, null_frag, v128b, 0>;
875    def VECLH : CompareVRRa<"veclh", 0xE7D9, null_frag, v128h, 1>;
876    def VECLF : CompareVRRa<"veclf", 0xE7D9, null_frag, v128f, 2>;
877    def VECLG : CompareVRRa<"veclg", 0xE7D9, null_frag, v128g, 3>;
878  }
879
880  // Compare equal.
881  def  VCEQ  : BinaryVRRbSPairGeneric<"vceq", 0xE7F8>;
882  defm VCEQB : BinaryVRRbSPair<"vceqb", 0xE7F8, z_vicmpe, z_vicmpes,
883                               v128b, v128b, 0>;
884  defm VCEQH : BinaryVRRbSPair<"vceqh", 0xE7F8, z_vicmpe, z_vicmpes,
885                               v128h, v128h, 1>;
886  defm VCEQF : BinaryVRRbSPair<"vceqf", 0xE7F8, z_vicmpe, z_vicmpes,
887                               v128f, v128f, 2>;
888  defm VCEQG : BinaryVRRbSPair<"vceqg", 0xE7F8, z_vicmpe, z_vicmpes,
889                               v128g, v128g, 3>;
890
891  // Compare high.
892  def  VCH  : BinaryVRRbSPairGeneric<"vch", 0xE7FB>;
893  defm VCHB : BinaryVRRbSPair<"vchb", 0xE7FB, z_vicmph, z_vicmphs,
894                              v128b, v128b, 0>;
895  defm VCHH : BinaryVRRbSPair<"vchh", 0xE7FB, z_vicmph, z_vicmphs,
896                              v128h, v128h, 1>;
897  defm VCHF : BinaryVRRbSPair<"vchf", 0xE7FB, z_vicmph, z_vicmphs,
898                              v128f, v128f, 2>;
899  defm VCHG : BinaryVRRbSPair<"vchg", 0xE7FB, z_vicmph, z_vicmphs,
900                              v128g, v128g, 3>;
901
902  // Compare high logical.
903  def  VCHL  : BinaryVRRbSPairGeneric<"vchl", 0xE7F9>;
904  defm VCHLB : BinaryVRRbSPair<"vchlb", 0xE7F9, z_vicmphl, z_vicmphls,
905                               v128b, v128b, 0>;
906  defm VCHLH : BinaryVRRbSPair<"vchlh", 0xE7F9, z_vicmphl, z_vicmphls,
907                               v128h, v128h, 1>;
908  defm VCHLF : BinaryVRRbSPair<"vchlf", 0xE7F9, z_vicmphl, z_vicmphls,
909                               v128f, v128f, 2>;
910  defm VCHLG : BinaryVRRbSPair<"vchlg", 0xE7F9, z_vicmphl, z_vicmphls,
911                               v128g, v128g, 3>;
912
913  // Test under mask.
914  let Defs = [CC] in
915    def VTM : CompareVRRa<"vtm", 0xE7D8, z_vtm, v128b, 0>;
916}
917
918//===----------------------------------------------------------------------===//
919// Floating-point arithmetic
920//===----------------------------------------------------------------------===//
921
922// See comments in SystemZInstrFP.td for the suppression flags and
923// rounding modes.
924multiclass VectorRounding<Instruction insn, TypedReg tr> {
925  def : FPConversion<insn, frint,      tr, tr, 0, 0>;
926  def : FPConversion<insn, fnearbyint, tr, tr, 4, 0>;
927  def : FPConversion<insn, ffloor,     tr, tr, 4, 7>;
928  def : FPConversion<insn, fceil,      tr, tr, 4, 6>;
929  def : FPConversion<insn, ftrunc,     tr, tr, 4, 5>;
930  def : FPConversion<insn, fround,     tr, tr, 4, 1>;
931}
932
933let Predicates = [FeatureVector] in {
934  // Add.
935  def VFA   : BinaryVRRcFloatGeneric<"vfa", 0xE7E3>;
936  def VFADB : BinaryVRRc<"vfadb", 0xE7E3, fadd, v128db, v128db, 3, 0>;
937  def WFADB : BinaryVRRc<"wfadb", 0xE7E3, fadd, v64db, v64db, 3, 8>;
938  let Predicates = [FeatureVectorEnhancements1] in {
939    def VFASB : BinaryVRRc<"vfasb", 0xE7E3, fadd, v128sb, v128sb, 2, 0>;
940    def WFASB : BinaryVRRc<"wfasb", 0xE7E3, fadd, v32sb, v32sb, 2, 8>;
941    def WFAXB : BinaryVRRc<"wfaxb", 0xE7E3, fadd, v128xb, v128xb, 4, 8>;
942  }
943
944  // Convert from fixed 64-bit.
945  def VCDG  : TernaryVRRaFloatGeneric<"vcdg", 0xE7C3>;
946  def VCDGB : TernaryVRRa<"vcdgb", 0xE7C3, null_frag, v128db, v128g, 3, 0>;
947  def WCDGB : TernaryVRRa<"wcdgb", 0xE7C3, null_frag, v64db, v64g, 3, 8>;
948  def : FPConversion<VCDGB, sint_to_fp, v128db, v128g, 0, 0>;
949
950  // Convert from logical 64-bit.
951  def VCDLG  : TernaryVRRaFloatGeneric<"vcdlg", 0xE7C1>;
952  def VCDLGB : TernaryVRRa<"vcdlgb", 0xE7C1, null_frag, v128db, v128g, 3, 0>;
953  def WCDLGB : TernaryVRRa<"wcdlgb", 0xE7C1, null_frag, v64db, v64g, 3, 8>;
954  def : FPConversion<VCDLGB, uint_to_fp, v128db, v128g, 0, 0>;
955
956  // Convert to fixed 64-bit.
957  def VCGD  : TernaryVRRaFloatGeneric<"vcgd", 0xE7C2>;
958  def VCGDB : TernaryVRRa<"vcgdb", 0xE7C2, null_frag, v128g, v128db, 3, 0>;
959  def WCGDB : TernaryVRRa<"wcgdb", 0xE7C2, null_frag, v64g, v64db, 3, 8>;
960  // Rounding mode should agree with SystemZInstrFP.td.
961  def : FPConversion<VCGDB, fp_to_sint, v128g, v128db, 0, 5>;
962
963  // Convert to logical 64-bit.
964  def VCLGD  : TernaryVRRaFloatGeneric<"vclgd", 0xE7C0>;
965  def VCLGDB : TernaryVRRa<"vclgdb", 0xE7C0, null_frag, v128g, v128db, 3, 0>;
966  def WCLGDB : TernaryVRRa<"wclgdb", 0xE7C0, null_frag, v64g, v64db, 3, 8>;
967  // Rounding mode should agree with SystemZInstrFP.td.
968  def : FPConversion<VCLGDB, fp_to_uint, v128g, v128db, 0, 5>;
969
970  // Divide.
971  def VFD   : BinaryVRRcFloatGeneric<"vfd", 0xE7E5>;
972  def VFDDB : BinaryVRRc<"vfddb", 0xE7E5, fdiv, v128db, v128db, 3, 0>;
973  def WFDDB : BinaryVRRc<"wfddb", 0xE7E5, fdiv, v64db, v64db, 3, 8>;
974  let Predicates = [FeatureVectorEnhancements1] in {
975    def VFDSB : BinaryVRRc<"vfdsb", 0xE7E5, fdiv, v128sb, v128sb, 2, 0>;
976    def WFDSB : BinaryVRRc<"wfdsb", 0xE7E5, fdiv, v32sb, v32sb, 2, 8>;
977    def WFDXB : BinaryVRRc<"wfdxb", 0xE7E5, fdiv, v128xb, v128xb, 4, 8>;
978  }
979
980  // Load FP integer.
981  def VFI   : TernaryVRRaFloatGeneric<"vfi", 0xE7C7>;
982  def VFIDB : TernaryVRRa<"vfidb", 0xE7C7, int_s390_vfidb, v128db, v128db, 3, 0>;
983  def WFIDB : TernaryVRRa<"wfidb", 0xE7C7, null_frag, v64db, v64db, 3, 8>;
984  defm : VectorRounding<VFIDB, v128db>;
985  defm : VectorRounding<WFIDB, v64db>;
986  let Predicates = [FeatureVectorEnhancements1] in {
987    def VFISB : TernaryVRRa<"vfisb", 0xE7C7, int_s390_vfisb, v128sb, v128sb, 2, 0>;
988    def WFISB : TernaryVRRa<"wfisb", 0xE7C7, null_frag, v32sb, v32sb, 2, 8>;
989    def WFIXB : TernaryVRRa<"wfixb", 0xE7C7, null_frag, v128xb, v128xb, 4, 8>;
990    defm : VectorRounding<VFISB, v128sb>;
991    defm : VectorRounding<WFISB, v32sb>;
992    defm : VectorRounding<WFIXB, v128xb>;
993  }
994
995  // Load lengthened.
996  def VLDE  : UnaryVRRaFloatGeneric<"vlde", 0xE7C4>;
997  def VLDEB : UnaryVRRa<"vldeb", 0xE7C4, z_vextend, v128db, v128sb, 2, 0>;
998  def WLDEB : UnaryVRRa<"wldeb", 0xE7C4, fpextend, v64db, v32sb, 2, 8>;
999  let Predicates = [FeatureVectorEnhancements1] in {
1000    let isAsmParserOnly = 1 in {
1001      def VFLL  : UnaryVRRaFloatGeneric<"vfll", 0xE7C4>;
1002      def VFLLS : UnaryVRRa<"vflls", 0xE7C4, null_frag, v128db, v128sb, 2, 0>;
1003      def WFLLS : UnaryVRRa<"wflls", 0xE7C4, null_frag, v64db, v32sb, 2, 8>;
1004    }
1005    def WFLLD : UnaryVRRa<"wflld", 0xE7C4, fpextend, v128xb, v64db, 3, 8>;
1006    def : Pat<(f128 (fpextend (f32 VR32:$src))),
1007              (WFLLD (WLDEB VR32:$src))>;
1008  }
1009
1010  // Load rounded.
1011  def VLED  : TernaryVRRaFloatGeneric<"vled", 0xE7C5>;
1012  def VLEDB : TernaryVRRa<"vledb", 0xE7C5, null_frag, v128sb, v128db, 3, 0>;
1013  def WLEDB : TernaryVRRa<"wledb", 0xE7C5, null_frag, v32sb, v64db, 3, 8>;
1014  def : Pat<(v4f32 (z_vround (v2f64 VR128:$src))), (VLEDB VR128:$src, 0, 0)>;
1015  def : FPConversion<WLEDB, fpround, v32sb, v64db, 0, 0>;
1016  let Predicates = [FeatureVectorEnhancements1] in {
1017    let isAsmParserOnly = 1 in {
1018      def VFLR  : TernaryVRRaFloatGeneric<"vflr", 0xE7C5>;
1019      def VFLRD : TernaryVRRa<"vflrd", 0xE7C5, null_frag, v128sb, v128db, 3, 0>;
1020      def WFLRD : TernaryVRRa<"wflrd", 0xE7C5, null_frag, v32sb, v64db, 3, 8>;
1021    }
1022    def WFLRX : TernaryVRRa<"wflrx", 0xE7C5, null_frag, v64db, v128xb, 4, 8>;
1023    def : FPConversion<WFLRX, fpround, v64db, v128xb, 0, 0>;
1024    def : Pat<(f32 (fpround (f128 VR128:$src))),
1025              (WLEDB (WFLRX VR128:$src, 0, 3), 0, 0)>;
1026  }
1027
1028  // Maximum.
1029  multiclass VectorMax<Instruction insn, TypedReg tr> {
1030    def : FPMinMax<insn, fmaxnum, tr, 4>;
1031    def : FPMinMax<insn, fmaxnan, tr, 1>;
1032  }
1033  let Predicates = [FeatureVectorEnhancements1] in {
1034    def VFMAX   : TernaryVRRcFloatGeneric<"vfmax", 0xE7EF>;
1035    def VFMAXDB : TernaryVRRcFloat<"vfmaxdb", 0xE7EF, int_s390_vfmaxdb,
1036                                   v128db, v128db, 3, 0>;
1037    def WFMAXDB : TernaryVRRcFloat<"wfmaxdb", 0xE7EF, null_frag,
1038                                   v64db, v64db, 3, 8>;
1039    def VFMAXSB : TernaryVRRcFloat<"vfmaxsb", 0xE7EF, int_s390_vfmaxsb,
1040                                   v128sb, v128sb, 2, 0>;
1041    def WFMAXSB : TernaryVRRcFloat<"wfmaxsb", 0xE7EF, null_frag,
1042                                   v32sb, v32sb, 2, 8>;
1043    def WFMAXXB : TernaryVRRcFloat<"wfmaxxb", 0xE7EF, null_frag,
1044                                   v128xb, v128xb, 4, 8>;
1045    defm : VectorMax<VFMAXDB, v128db>;
1046    defm : VectorMax<WFMAXDB, v64db>;
1047    defm : VectorMax<VFMAXSB, v128sb>;
1048    defm : VectorMax<WFMAXSB, v32sb>;
1049    defm : VectorMax<WFMAXXB, v128xb>;
1050  }
1051
1052  // Minimum.
1053  multiclass VectorMin<Instruction insn, TypedReg tr> {
1054    def : FPMinMax<insn, fminnum, tr, 4>;
1055    def : FPMinMax<insn, fminnan, tr, 1>;
1056  }
1057  let Predicates = [FeatureVectorEnhancements1] in {
1058    def VFMIN   : TernaryVRRcFloatGeneric<"vfmin", 0xE7EE>;
1059    def VFMINDB : TernaryVRRcFloat<"vfmindb", 0xE7EE, int_s390_vfmindb,
1060                                   v128db, v128db, 3, 0>;
1061    def WFMINDB : TernaryVRRcFloat<"wfmindb", 0xE7EE, null_frag,
1062                                   v64db, v64db, 3, 8>;
1063    def VFMINSB : TernaryVRRcFloat<"vfminsb", 0xE7EE, int_s390_vfminsb,
1064                                   v128sb, v128sb, 2, 0>;
1065    def WFMINSB : TernaryVRRcFloat<"wfminsb", 0xE7EE, null_frag,
1066                                   v32sb, v32sb, 2, 8>;
1067    def WFMINXB : TernaryVRRcFloat<"wfminxb", 0xE7EE, null_frag,
1068                                   v128xb, v128xb, 4, 8>;
1069    defm : VectorMin<VFMINDB, v128db>;
1070    defm : VectorMin<WFMINDB, v64db>;
1071    defm : VectorMin<VFMINSB, v128sb>;
1072    defm : VectorMin<WFMINSB, v32sb>;
1073    defm : VectorMin<WFMINXB, v128xb>;
1074  }
1075
1076  // Multiply.
1077  def VFM   : BinaryVRRcFloatGeneric<"vfm", 0xE7E7>;
1078  def VFMDB : BinaryVRRc<"vfmdb", 0xE7E7, fmul, v128db, v128db, 3, 0>;
1079  def WFMDB : BinaryVRRc<"wfmdb", 0xE7E7, fmul, v64db, v64db, 3, 8>;
1080  let Predicates = [FeatureVectorEnhancements1] in {
1081    def VFMSB : BinaryVRRc<"vfmsb", 0xE7E7, fmul, v128sb, v128sb, 2, 0>;
1082    def WFMSB : BinaryVRRc<"wfmsb", 0xE7E7, fmul, v32sb, v32sb, 2, 8>;
1083    def WFMXB : BinaryVRRc<"wfmxb", 0xE7E7, fmul, v128xb, v128xb, 4, 8>;
1084  }
1085
1086  // Multiply and add.
1087  def VFMA   : TernaryVRReFloatGeneric<"vfma", 0xE78F>;
1088  def VFMADB : TernaryVRRe<"vfmadb", 0xE78F, fma, v128db, v128db, 0, 3>;
1089  def WFMADB : TernaryVRRe<"wfmadb", 0xE78F, fma, v64db, v64db, 8, 3>;
1090  let Predicates = [FeatureVectorEnhancements1] in {
1091    def VFMASB : TernaryVRRe<"vfmasb", 0xE78F, fma, v128sb, v128sb, 0, 2>;
1092    def WFMASB : TernaryVRRe<"wfmasb", 0xE78F, fma, v32sb, v32sb, 8, 2>;
1093    def WFMAXB : TernaryVRRe<"wfmaxb", 0xE78F, fma, v128xb, v128xb, 8, 4>;
1094  }
1095
1096  // Multiply and subtract.
1097  def VFMS   : TernaryVRReFloatGeneric<"vfms", 0xE78E>;
1098  def VFMSDB : TernaryVRRe<"vfmsdb", 0xE78E, fms, v128db, v128db, 0, 3>;
1099  def WFMSDB : TernaryVRRe<"wfmsdb", 0xE78E, fms, v64db, v64db, 8, 3>;
1100  let Predicates = [FeatureVectorEnhancements1] in {
1101    def VFMSSB : TernaryVRRe<"vfmssb", 0xE78E, fms, v128sb, v128sb, 0, 2>;
1102    def WFMSSB : TernaryVRRe<"wfmssb", 0xE78E, fms, v32sb, v32sb, 8, 2>;
1103    def WFMSXB : TernaryVRRe<"wfmsxb", 0xE78E, fms, v128xb, v128xb, 8, 4>;
1104  }
1105
1106  // Negative multiply and add.
1107  let Predicates = [FeatureVectorEnhancements1] in {
1108    def VFNMA   : TernaryVRReFloatGeneric<"vfnma", 0xE79F>;
1109    def VFNMADB : TernaryVRRe<"vfnmadb", 0xE79F, fnma, v128db, v128db, 0, 3>;
1110    def WFNMADB : TernaryVRRe<"wfnmadb", 0xE79F, fnma, v64db, v64db, 8, 3>;
1111    def VFNMASB : TernaryVRRe<"vfnmasb", 0xE79F, fnma, v128sb, v128sb, 0, 2>;
1112    def WFNMASB : TernaryVRRe<"wfnmasb", 0xE79F, fnma, v32sb, v32sb, 8, 2>;
1113    def WFNMAXB : TernaryVRRe<"wfnmaxb", 0xE79F, fnma, v128xb, v128xb, 8, 4>;
1114  }
1115
1116  // Negative multiply and subtract.
1117  let Predicates = [FeatureVectorEnhancements1] in {
1118    def VFNMS   : TernaryVRReFloatGeneric<"vfnms", 0xE79E>;
1119    def VFNMSDB : TernaryVRRe<"vfnmsdb", 0xE79E, fnms, v128db, v128db, 0, 3>;
1120    def WFNMSDB : TernaryVRRe<"wfnmsdb", 0xE79E, fnms, v64db, v64db, 8, 3>;
1121    def VFNMSSB : TernaryVRRe<"vfnmssb", 0xE79E, fnms, v128sb, v128sb, 0, 2>;
1122    def WFNMSSB : TernaryVRRe<"wfnmssb", 0xE79E, fnms, v32sb, v32sb, 8, 2>;
1123    def WFNMSXB : TernaryVRRe<"wfnmsxb", 0xE79E, fnms, v128xb, v128xb, 8, 4>;
1124  }
1125
1126  // Perform sign operation.
1127  def VFPSO   : BinaryVRRaFloatGeneric<"vfpso", 0xE7CC>;
1128  def VFPSODB : BinaryVRRa<"vfpsodb", 0xE7CC, null_frag, v128db, v128db, 3, 0>;
1129  def WFPSODB : BinaryVRRa<"wfpsodb", 0xE7CC, null_frag, v64db, v64db, 3, 8>;
1130  let Predicates = [FeatureVectorEnhancements1] in {
1131    def VFPSOSB : BinaryVRRa<"vfpsosb", 0xE7CC, null_frag, v128sb, v128sb, 2, 0>;
1132    def WFPSOSB : BinaryVRRa<"wfpsosb", 0xE7CC, null_frag, v32sb, v32sb, 2, 8>;
1133    def WFPSOXB : BinaryVRRa<"wfpsoxb", 0xE7CC, null_frag, v128xb, v128xb, 4, 8>;
1134  }
1135
1136  // Load complement.
1137  def VFLCDB : UnaryVRRa<"vflcdb", 0xE7CC, fneg, v128db, v128db, 3, 0, 0>;
1138  def WFLCDB : UnaryVRRa<"wflcdb", 0xE7CC, fneg, v64db, v64db, 3, 8, 0>;
1139  let Predicates = [FeatureVectorEnhancements1] in {
1140    def VFLCSB : UnaryVRRa<"vflcsb", 0xE7CC, fneg, v128sb, v128sb, 2, 0, 0>;
1141    def WFLCSB : UnaryVRRa<"wflcsb", 0xE7CC, fneg, v32sb, v32sb, 2, 8, 0>;
1142    def WFLCXB : UnaryVRRa<"wflcxb", 0xE7CC, fneg, v128xb, v128xb, 4, 8, 0>;
1143  }
1144
1145  // Load negative.
1146  def VFLNDB : UnaryVRRa<"vflndb", 0xE7CC, fnabs, v128db, v128db, 3, 0, 1>;
1147  def WFLNDB : UnaryVRRa<"wflndb", 0xE7CC, fnabs, v64db, v64db, 3, 8, 1>;
1148  let Predicates = [FeatureVectorEnhancements1] in {
1149    def VFLNSB : UnaryVRRa<"vflnsb", 0xE7CC, fnabs, v128sb, v128sb, 2, 0, 1>;
1150    def WFLNSB : UnaryVRRa<"wflnsb", 0xE7CC, fnabs, v32sb, v32sb, 2, 8, 1>;
1151    def WFLNXB : UnaryVRRa<"wflnxb", 0xE7CC, fnabs, v128xb, v128xb, 4, 8, 1>;
1152  }
1153
1154  // Load positive.
1155  def VFLPDB : UnaryVRRa<"vflpdb", 0xE7CC, fabs, v128db, v128db, 3, 0, 2>;
1156  def WFLPDB : UnaryVRRa<"wflpdb", 0xE7CC, fabs, v64db, v64db, 3, 8, 2>;
1157  let Predicates = [FeatureVectorEnhancements1] in {
1158    def VFLPSB : UnaryVRRa<"vflpsb", 0xE7CC, fabs, v128sb, v128sb, 2, 0, 2>;
1159    def WFLPSB : UnaryVRRa<"wflpsb", 0xE7CC, fabs, v32sb, v32sb, 2, 8, 2>;
1160    def WFLPXB : UnaryVRRa<"wflpxb", 0xE7CC, fabs, v128xb, v128xb, 4, 8, 2>;
1161  }
1162
1163  // Square root.
1164  def VFSQ   : UnaryVRRaFloatGeneric<"vfsq", 0xE7CE>;
1165  def VFSQDB : UnaryVRRa<"vfsqdb", 0xE7CE, fsqrt, v128db, v128db, 3, 0>;
1166  def WFSQDB : UnaryVRRa<"wfsqdb", 0xE7CE, fsqrt, v64db, v64db, 3, 8>;
1167  let Predicates = [FeatureVectorEnhancements1] in {
1168    def VFSQSB : UnaryVRRa<"vfsqsb", 0xE7CE, fsqrt, v128sb, v128sb, 2, 0>;
1169    def WFSQSB : UnaryVRRa<"wfsqsb", 0xE7CE, fsqrt, v32sb, v32sb, 2, 8>;
1170    def WFSQXB : UnaryVRRa<"wfsqxb", 0xE7CE, fsqrt, v128xb, v128xb, 4, 8>;
1171  }
1172
1173  // Subtract.
1174  def VFS   : BinaryVRRcFloatGeneric<"vfs", 0xE7E2>;
1175  def VFSDB : BinaryVRRc<"vfsdb", 0xE7E2, fsub, v128db, v128db, 3, 0>;
1176  def WFSDB : BinaryVRRc<"wfsdb", 0xE7E2, fsub, v64db, v64db, 3, 8>;
1177  let Predicates = [FeatureVectorEnhancements1] in {
1178    def VFSSB : BinaryVRRc<"vfssb", 0xE7E2, fsub, v128sb, v128sb, 2, 0>;
1179    def WFSSB : BinaryVRRc<"wfssb", 0xE7E2, fsub, v32sb, v32sb, 2, 8>;
1180    def WFSXB : BinaryVRRc<"wfsxb", 0xE7E2, fsub, v128xb, v128xb, 4, 8>;
1181  }
1182
1183  // Test data class immediate.
1184  let Defs = [CC] in {
1185    def VFTCI   : BinaryVRIeFloatGeneric<"vftci", 0xE74A>;
1186    def VFTCIDB : BinaryVRIe<"vftcidb", 0xE74A, z_vftci, v128g, v128db, 3, 0>;
1187    def WFTCIDB : BinaryVRIe<"wftcidb", 0xE74A, null_frag, v64g, v64db, 3, 8>;
1188    let Predicates = [FeatureVectorEnhancements1] in {
1189      def VFTCISB : BinaryVRIe<"vftcisb", 0xE74A, z_vftci, v128f, v128sb, 2, 0>;
1190      def WFTCISB : BinaryVRIe<"wftcisb", 0xE74A, null_frag, v32f, v32sb, 2, 8>;
1191      def WFTCIXB : BinaryVRIe<"wftcixb", 0xE74A, null_frag, v128q, v128xb, 4, 8>;
1192    }
1193  }
1194}
1195
1196//===----------------------------------------------------------------------===//
1197// Floating-point comparison
1198//===----------------------------------------------------------------------===//
1199
1200let Predicates = [FeatureVector] in {
1201  // Compare scalar.
1202  let Defs = [CC] in {
1203    def WFC   : CompareVRRaFloatGeneric<"wfc", 0xE7CB>;
1204    def WFCDB : CompareVRRa<"wfcdb", 0xE7CB, z_fcmp, v64db, 3>;
1205    let Predicates = [FeatureVectorEnhancements1] in {
1206      def WFCSB : CompareVRRa<"wfcsb", 0xE7CB, z_fcmp, v32sb, 2>;
1207      def WFCXB : CompareVRRa<"wfcxb", 0xE7CB, z_fcmp, v128xb, 4>;
1208    }
1209  }
1210
1211  // Compare and signal scalar.
1212  let Defs = [CC] in {
1213    def WFK   : CompareVRRaFloatGeneric<"wfk", 0xE7CA>;
1214    def WFKDB : CompareVRRa<"wfkdb", 0xE7CA, null_frag, v64db, 3>;
1215    let Predicates = [FeatureVectorEnhancements1] in {
1216      def WFKSB : CompareVRRa<"wfksb", 0xE7CA, null_frag, v32sb, 2>;
1217      def WFKXB : CompareVRRa<"wfkxb", 0xE7CA, null_frag, v128xb, 4>;
1218    }
1219  }
1220
1221  // Compare equal.
1222  def  VFCE   : BinaryVRRcSPairFloatGeneric<"vfce", 0xE7E8>;
1223  defm VFCEDB : BinaryVRRcSPair<"vfcedb", 0xE7E8, z_vfcmpe, z_vfcmpes,
1224                                v128g, v128db, 3, 0>;
1225  defm WFCEDB : BinaryVRRcSPair<"wfcedb", 0xE7E8, null_frag, null_frag,
1226                                v64g, v64db, 3, 8>;
1227  let Predicates = [FeatureVectorEnhancements1] in {
1228    defm VFCESB : BinaryVRRcSPair<"vfcesb", 0xE7E8, z_vfcmpe, z_vfcmpes,
1229                                  v128f, v128sb, 2, 0>;
1230    defm WFCESB : BinaryVRRcSPair<"wfcesb", 0xE7E8, null_frag, null_frag,
1231                                  v32f, v32sb, 2, 8>;
1232    defm WFCEXB : BinaryVRRcSPair<"wfcexb", 0xE7E8, null_frag, null_frag,
1233                                  v128q, v128xb, 4, 8>;
1234  }
1235
1236  // Compare and signal equal.
1237  let Predicates = [FeatureVectorEnhancements1] in {
1238    defm VFKEDB : BinaryVRRcSPair<"vfkedb", 0xE7E8, null_frag, null_frag,
1239                                  v128g, v128db, 3, 4>;
1240    defm WFKEDB : BinaryVRRcSPair<"wfkedb", 0xE7E8, null_frag, null_frag,
1241                                  v64g, v64db, 3, 12>;
1242    defm VFKESB : BinaryVRRcSPair<"vfkesb", 0xE7E8, null_frag, null_frag,
1243                                  v128f, v128sb, 2, 4>;
1244    defm WFKESB : BinaryVRRcSPair<"wfkesb", 0xE7E8, null_frag, null_frag,
1245                                  v32f, v32sb, 2, 12>;
1246    defm WFKEXB : BinaryVRRcSPair<"wfkexb", 0xE7E8, null_frag, null_frag,
1247                                  v128q, v128xb, 4, 12>;
1248  }
1249
1250  // Compare high.
1251  def  VFCH   : BinaryVRRcSPairFloatGeneric<"vfch", 0xE7EB>;
1252  defm VFCHDB : BinaryVRRcSPair<"vfchdb", 0xE7EB, z_vfcmph, z_vfcmphs,
1253                                v128g, v128db, 3, 0>;
1254  defm WFCHDB : BinaryVRRcSPair<"wfchdb", 0xE7EB, null_frag, null_frag,
1255                                v64g, v64db, 3, 8>;
1256  let Predicates = [FeatureVectorEnhancements1] in {
1257    defm VFCHSB : BinaryVRRcSPair<"vfchsb", 0xE7EB, z_vfcmph, z_vfcmphs,
1258                                  v128f, v128sb, 2, 0>;
1259    defm WFCHSB : BinaryVRRcSPair<"wfchsb", 0xE7EB, null_frag, null_frag,
1260                                  v32f, v32sb, 2, 8>;
1261    defm WFCHXB : BinaryVRRcSPair<"wfchxb", 0xE7EB, null_frag, null_frag,
1262                                  v128q, v128xb, 4, 8>;
1263  }
1264
1265  // Compare and signal high.
1266  let Predicates = [FeatureVectorEnhancements1] in {
1267    defm VFKHDB : BinaryVRRcSPair<"vfkhdb", 0xE7EB, null_frag, null_frag,
1268                                  v128g, v128db, 3, 4>;
1269    defm WFKHDB : BinaryVRRcSPair<"wfkhdb", 0xE7EB, null_frag, null_frag,
1270                                  v64g, v64db, 3, 12>;
1271    defm VFKHSB : BinaryVRRcSPair<"vfkhsb", 0xE7EB, null_frag, null_frag,
1272                                  v128f, v128sb, 2, 4>;
1273    defm WFKHSB : BinaryVRRcSPair<"wfkhsb", 0xE7EB, null_frag, null_frag,
1274                                  v32f, v32sb, 2, 12>;
1275    defm WFKHXB : BinaryVRRcSPair<"wfkhxb", 0xE7EB, null_frag, null_frag,
1276                                  v128q, v128xb, 4, 12>;
1277  }
1278
1279  // Compare high or equal.
1280  def  VFCHE   : BinaryVRRcSPairFloatGeneric<"vfche", 0xE7EA>;
1281  defm VFCHEDB : BinaryVRRcSPair<"vfchedb", 0xE7EA, z_vfcmphe, z_vfcmphes,
1282                                 v128g, v128db, 3, 0>;
1283  defm WFCHEDB : BinaryVRRcSPair<"wfchedb", 0xE7EA, null_frag, null_frag,
1284                                 v64g, v64db, 3, 8>;
1285  let Predicates = [FeatureVectorEnhancements1] in {
1286    defm VFCHESB : BinaryVRRcSPair<"vfchesb", 0xE7EA, z_vfcmphe, z_vfcmphes,
1287                                   v128f, v128sb, 2, 0>;
1288    defm WFCHESB : BinaryVRRcSPair<"wfchesb", 0xE7EA, null_frag, null_frag,
1289                                   v32f, v32sb, 2, 8>;
1290    defm WFCHEXB : BinaryVRRcSPair<"wfchexb", 0xE7EA, null_frag, null_frag,
1291                                   v128q, v128xb, 4, 8>;
1292  }
1293
1294  // Compare and signal high or equal.
1295  let Predicates = [FeatureVectorEnhancements1] in {
1296    defm VFKHEDB : BinaryVRRcSPair<"vfkhedb", 0xE7EA, null_frag, null_frag,
1297                                   v128g, v128db, 3, 4>;
1298    defm WFKHEDB : BinaryVRRcSPair<"wfkhedb", 0xE7EA, null_frag, null_frag,
1299                                   v64g, v64db, 3, 12>;
1300    defm VFKHESB : BinaryVRRcSPair<"vfkhesb", 0xE7EA, null_frag, null_frag,
1301                                   v128f, v128sb, 2, 4>;
1302    defm WFKHESB : BinaryVRRcSPair<"wfkhesb", 0xE7EA, null_frag, null_frag,
1303                                   v32f, v32sb, 2, 12>;
1304    defm WFKHEXB : BinaryVRRcSPair<"wfkhexb", 0xE7EA, null_frag, null_frag,
1305                                   v128q, v128xb, 4, 12>;
1306  }
1307}
1308
1309//===----------------------------------------------------------------------===//
1310// Conversions
1311//===----------------------------------------------------------------------===//
1312
1313def : Pat<(v16i8 (bitconvert (v8i16 VR128:$src))), (v16i8 VR128:$src)>;
1314def : Pat<(v16i8 (bitconvert (v4i32 VR128:$src))), (v16i8 VR128:$src)>;
1315def : Pat<(v16i8 (bitconvert (v2i64 VR128:$src))), (v16i8 VR128:$src)>;
1316def : Pat<(v16i8 (bitconvert (v4f32 VR128:$src))), (v16i8 VR128:$src)>;
1317def : Pat<(v16i8 (bitconvert (v2f64 VR128:$src))), (v16i8 VR128:$src)>;
1318def : Pat<(v16i8 (bitconvert (f128  VR128:$src))), (v16i8 VR128:$src)>;
1319
1320def : Pat<(v8i16 (bitconvert (v16i8 VR128:$src))), (v8i16 VR128:$src)>;
1321def : Pat<(v8i16 (bitconvert (v4i32 VR128:$src))), (v8i16 VR128:$src)>;
1322def : Pat<(v8i16 (bitconvert (v2i64 VR128:$src))), (v8i16 VR128:$src)>;
1323def : Pat<(v8i16 (bitconvert (v4f32 VR128:$src))), (v8i16 VR128:$src)>;
1324def : Pat<(v8i16 (bitconvert (v2f64 VR128:$src))), (v8i16 VR128:$src)>;
1325def : Pat<(v8i16 (bitconvert (f128  VR128:$src))), (v8i16 VR128:$src)>;
1326
1327def : Pat<(v4i32 (bitconvert (v16i8 VR128:$src))), (v4i32 VR128:$src)>;
1328def : Pat<(v4i32 (bitconvert (v8i16 VR128:$src))), (v4i32 VR128:$src)>;
1329def : Pat<(v4i32 (bitconvert (v2i64 VR128:$src))), (v4i32 VR128:$src)>;
1330def : Pat<(v4i32 (bitconvert (v4f32 VR128:$src))), (v4i32 VR128:$src)>;
1331def : Pat<(v4i32 (bitconvert (v2f64 VR128:$src))), (v4i32 VR128:$src)>;
1332def : Pat<(v4i32 (bitconvert (f128  VR128:$src))), (v4i32 VR128:$src)>;
1333
1334def : Pat<(v2i64 (bitconvert (v16i8 VR128:$src))), (v2i64 VR128:$src)>;
1335def : Pat<(v2i64 (bitconvert (v8i16 VR128:$src))), (v2i64 VR128:$src)>;
1336def : Pat<(v2i64 (bitconvert (v4i32 VR128:$src))), (v2i64 VR128:$src)>;
1337def : Pat<(v2i64 (bitconvert (v4f32 VR128:$src))), (v2i64 VR128:$src)>;
1338def : Pat<(v2i64 (bitconvert (v2f64 VR128:$src))), (v2i64 VR128:$src)>;
1339def : Pat<(v2i64 (bitconvert (f128  VR128:$src))), (v2i64 VR128:$src)>;
1340
1341def : Pat<(v4f32 (bitconvert (v16i8 VR128:$src))), (v4f32 VR128:$src)>;
1342def : Pat<(v4f32 (bitconvert (v8i16 VR128:$src))), (v4f32 VR128:$src)>;
1343def : Pat<(v4f32 (bitconvert (v4i32 VR128:$src))), (v4f32 VR128:$src)>;
1344def : Pat<(v4f32 (bitconvert (v2i64 VR128:$src))), (v4f32 VR128:$src)>;
1345def : Pat<(v4f32 (bitconvert (v2f64 VR128:$src))), (v4f32 VR128:$src)>;
1346def : Pat<(v4f32 (bitconvert (f128  VR128:$src))), (v4f32 VR128:$src)>;
1347
1348def : Pat<(v2f64 (bitconvert (v16i8 VR128:$src))), (v2f64 VR128:$src)>;
1349def : Pat<(v2f64 (bitconvert (v8i16 VR128:$src))), (v2f64 VR128:$src)>;
1350def : Pat<(v2f64 (bitconvert (v4i32 VR128:$src))), (v2f64 VR128:$src)>;
1351def : Pat<(v2f64 (bitconvert (v2i64 VR128:$src))), (v2f64 VR128:$src)>;
1352def : Pat<(v2f64 (bitconvert (v4f32 VR128:$src))), (v2f64 VR128:$src)>;
1353def : Pat<(v2f64 (bitconvert (f128  VR128:$src))), (v2f64 VR128:$src)>;
1354
1355def : Pat<(f128  (bitconvert (v16i8 VR128:$src))), (f128  VR128:$src)>;
1356def : Pat<(f128  (bitconvert (v8i16 VR128:$src))), (f128  VR128:$src)>;
1357def : Pat<(f128  (bitconvert (v4i32 VR128:$src))), (f128  VR128:$src)>;
1358def : Pat<(f128  (bitconvert (v2i64 VR128:$src))), (f128  VR128:$src)>;
1359def : Pat<(f128  (bitconvert (v4f32 VR128:$src))), (f128  VR128:$src)>;
1360def : Pat<(f128  (bitconvert (v2f64 VR128:$src))), (f128  VR128:$src)>;
1361
1362//===----------------------------------------------------------------------===//
1363// Replicating scalars
1364//===----------------------------------------------------------------------===//
1365
1366// Define patterns for replicating a scalar GR32 into a vector of type TYPE.
1367// INDEX is 8 minus the element size in bytes.
1368class VectorReplicateScalar<ValueType type, Instruction insn, bits<16> index>
1369  : Pat<(type (z_replicate GR32:$scalar)),
1370        (insn (VLVGP32 GR32:$scalar, GR32:$scalar), index)>;
1371
1372def : VectorReplicateScalar<v16i8, VREPB, 7>;
1373def : VectorReplicateScalar<v8i16, VREPH, 3>;
1374def : VectorReplicateScalar<v4i32, VREPF, 1>;
1375
1376// i64 replications are just a single isntruction.
1377def : Pat<(v2i64 (z_replicate GR64:$scalar)),
1378          (VLVGP GR64:$scalar, GR64:$scalar)>;
1379
1380//===----------------------------------------------------------------------===//
1381// Floating-point insertion and extraction
1382//===----------------------------------------------------------------------===//
1383
1384// Moving 32-bit values between GPRs and FPRs can be done using VLVGF
1385// and VLGVF.
1386let Predicates = [FeatureVector] in {
1387  def LEFR : UnaryAliasVRS<VR32, GR32>;
1388  def LFER : UnaryAliasVRS<GR64, VR32>;
1389  def : Pat<(f32 (bitconvert (i32 GR32:$src))), (LEFR GR32:$src)>;
1390  def : Pat<(i32 (bitconvert (f32 VR32:$src))),
1391            (EXTRACT_SUBREG (LFER VR32:$src), subreg_l32)>;
1392}
1393
1394// Floating-point values are stored in element 0 of the corresponding
1395// vector register.  Scalar to vector conversion is just a subreg and
1396// scalar replication can just replicate element 0 of the vector register.
1397multiclass ScalarToVectorFP<Instruction vrep, ValueType vt, RegisterOperand cls,
1398                            SubRegIndex subreg> {
1399  def : Pat<(vt (scalar_to_vector cls:$scalar)),
1400            (INSERT_SUBREG (vt (IMPLICIT_DEF)), cls:$scalar, subreg)>;
1401  def : Pat<(vt (z_replicate cls:$scalar)),
1402            (vrep (INSERT_SUBREG (vt (IMPLICIT_DEF)), cls:$scalar,
1403                                 subreg), 0)>;
1404}
1405defm : ScalarToVectorFP<VREPF, v4f32, FP32, subreg_r32>;
1406defm : ScalarToVectorFP<VREPG, v2f64, FP64, subreg_r64>;
1407
1408// Match v2f64 insertions.  The AddedComplexity counters the 3 added by
1409// TableGen for the base register operand in VLVG-based integer insertions
1410// and ensures that this version is strictly better.
1411let AddedComplexity = 4 in {
1412  def : Pat<(z_vector_insert (v2f64 VR128:$vec), FP64:$elt, 0),
1413            (VPDI (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FP64:$elt,
1414                                 subreg_r64), VR128:$vec, 1)>;
1415  def : Pat<(z_vector_insert (v2f64 VR128:$vec), FP64:$elt, 1),
1416            (VPDI VR128:$vec, (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FP64:$elt,
1417                                             subreg_r64), 0)>;
1418}
1419
1420// We extract floating-point element X by replicating (for elements other
1421// than 0) and then taking a high subreg.  The AddedComplexity counters the
1422// 3 added by TableGen for the base register operand in VLGV-based integer
1423// extractions and ensures that this version is strictly better.
1424let AddedComplexity = 4 in {
1425  def : Pat<(f32 (z_vector_extract (v4f32 VR128:$vec), 0)),
1426            (EXTRACT_SUBREG VR128:$vec, subreg_r32)>;
1427  def : Pat<(f32 (z_vector_extract (v4f32 VR128:$vec), imm32zx2:$index)),
1428            (EXTRACT_SUBREG (VREPF VR128:$vec, imm32zx2:$index), subreg_r32)>;
1429
1430  def : Pat<(f64 (z_vector_extract (v2f64 VR128:$vec), 0)),
1431            (EXTRACT_SUBREG VR128:$vec, subreg_r64)>;
1432  def : Pat<(f64 (z_vector_extract (v2f64 VR128:$vec), imm32zx1:$index)),
1433            (EXTRACT_SUBREG (VREPG VR128:$vec, imm32zx1:$index), subreg_r64)>;
1434}
1435
1436//===----------------------------------------------------------------------===//
1437// Support for 128-bit floating-point values in vector registers
1438//===----------------------------------------------------------------------===//
1439
1440let Predicates = [FeatureVectorEnhancements1] in {
1441  def : Pat<(f128 (load bdxaddr12only:$addr)),
1442            (VL bdxaddr12only:$addr)>;
1443  def : Pat<(store (f128 VR128:$src), bdxaddr12only:$addr),
1444            (VST VR128:$src, bdxaddr12only:$addr)>;
1445
1446  def : Pat<(f128 fpimm0), (VZERO)>;
1447  def : Pat<(f128 fpimmneg0), (WFLNXB (VZERO))>;
1448}
1449
1450//===----------------------------------------------------------------------===//
1451// String instructions
1452//===----------------------------------------------------------------------===//
1453
1454let Predicates = [FeatureVector] in {
1455  defm VFAE  : TernaryOptVRRbSPairGeneric<"vfae", 0xE782>;
1456  defm VFAEB : TernaryOptVRRbSPair<"vfaeb", 0xE782, int_s390_vfaeb,
1457                                   z_vfae_cc, v128b, v128b, 0>;
1458  defm VFAEH : TernaryOptVRRbSPair<"vfaeh", 0xE782, int_s390_vfaeh,
1459                                   z_vfae_cc, v128h, v128h, 1>;
1460  defm VFAEF : TernaryOptVRRbSPair<"vfaef", 0xE782, int_s390_vfaef,
1461                                   z_vfae_cc, v128f, v128f, 2>;
1462  defm VFAEZB : TernaryOptVRRbSPair<"vfaezb", 0xE782, int_s390_vfaezb,
1463                                    z_vfaez_cc, v128b, v128b, 0, 2>;
1464  defm VFAEZH : TernaryOptVRRbSPair<"vfaezh", 0xE782, int_s390_vfaezh,
1465                                    z_vfaez_cc, v128h, v128h, 1, 2>;
1466  defm VFAEZF : TernaryOptVRRbSPair<"vfaezf", 0xE782, int_s390_vfaezf,
1467                                    z_vfaez_cc, v128f, v128f, 2, 2>;
1468
1469  defm VFEE  : BinaryExtraVRRbSPairGeneric<"vfee", 0xE780>;
1470  defm VFEEB : BinaryExtraVRRbSPair<"vfeeb", 0xE780, int_s390_vfeeb,
1471                                    z_vfee_cc, v128b, v128b, 0>;
1472  defm VFEEH : BinaryExtraVRRbSPair<"vfeeh", 0xE780, int_s390_vfeeh,
1473                                    z_vfee_cc, v128h, v128h, 1>;
1474  defm VFEEF : BinaryExtraVRRbSPair<"vfeef", 0xE780, int_s390_vfeef,
1475                                    z_vfee_cc, v128f, v128f, 2>;
1476  defm VFEEZB : BinaryVRRbSPair<"vfeezb", 0xE780, int_s390_vfeezb,
1477                                z_vfeez_cc, v128b, v128b, 0, 2>;
1478  defm VFEEZH : BinaryVRRbSPair<"vfeezh", 0xE780, int_s390_vfeezh,
1479                                z_vfeez_cc, v128h, v128h, 1, 2>;
1480  defm VFEEZF : BinaryVRRbSPair<"vfeezf", 0xE780, int_s390_vfeezf,
1481                                z_vfeez_cc, v128f, v128f, 2, 2>;
1482
1483  defm VFENE  : BinaryExtraVRRbSPairGeneric<"vfene", 0xE781>;
1484  defm VFENEB : BinaryExtraVRRbSPair<"vfeneb", 0xE781, int_s390_vfeneb,
1485                                     z_vfene_cc, v128b, v128b, 0>;
1486  defm VFENEH : BinaryExtraVRRbSPair<"vfeneh", 0xE781, int_s390_vfeneh,
1487                                     z_vfene_cc, v128h, v128h, 1>;
1488  defm VFENEF : BinaryExtraVRRbSPair<"vfenef", 0xE781, int_s390_vfenef,
1489                                     z_vfene_cc, v128f, v128f, 2>;
1490  defm VFENEZB : BinaryVRRbSPair<"vfenezb", 0xE781, int_s390_vfenezb,
1491                                 z_vfenez_cc, v128b, v128b, 0, 2>;
1492  defm VFENEZH : BinaryVRRbSPair<"vfenezh", 0xE781, int_s390_vfenezh,
1493                                 z_vfenez_cc, v128h, v128h, 1, 2>;
1494  defm VFENEZF : BinaryVRRbSPair<"vfenezf", 0xE781, int_s390_vfenezf,
1495                                 z_vfenez_cc, v128f, v128f, 2, 2>;
1496
1497  defm VISTR  : UnaryExtraVRRaSPairGeneric<"vistr", 0xE75C>;
1498  defm VISTRB : UnaryExtraVRRaSPair<"vistrb", 0xE75C, int_s390_vistrb,
1499                                    z_vistr_cc, v128b, v128b, 0>;
1500  defm VISTRH : UnaryExtraVRRaSPair<"vistrh", 0xE75C, int_s390_vistrh,
1501                                    z_vistr_cc, v128h, v128h, 1>;
1502  defm VISTRF : UnaryExtraVRRaSPair<"vistrf", 0xE75C, int_s390_vistrf,
1503                                    z_vistr_cc, v128f, v128f, 2>;
1504
1505  defm VSTRC  : QuaternaryOptVRRdSPairGeneric<"vstrc", 0xE78A>;
1506  defm VSTRCB : QuaternaryOptVRRdSPair<"vstrcb", 0xE78A, int_s390_vstrcb,
1507                                       z_vstrc_cc, v128b, v128b, 0>;
1508  defm VSTRCH : QuaternaryOptVRRdSPair<"vstrch", 0xE78A, int_s390_vstrch,
1509                                       z_vstrc_cc, v128h, v128h, 1>;
1510  defm VSTRCF : QuaternaryOptVRRdSPair<"vstrcf", 0xE78A, int_s390_vstrcf,
1511                                       z_vstrc_cc, v128f, v128f, 2>;
1512  defm VSTRCZB : QuaternaryOptVRRdSPair<"vstrczb", 0xE78A, int_s390_vstrczb,
1513                                        z_vstrcz_cc, v128b, v128b, 0, 2>;
1514  defm VSTRCZH : QuaternaryOptVRRdSPair<"vstrczh", 0xE78A, int_s390_vstrczh,
1515                                        z_vstrcz_cc, v128h, v128h, 1, 2>;
1516  defm VSTRCZF : QuaternaryOptVRRdSPair<"vstrczf", 0xE78A, int_s390_vstrczf,
1517                                        z_vstrcz_cc, v128f, v128f, 2, 2>;
1518}
1519
1520//===----------------------------------------------------------------------===//
1521// Packed-decimal instructions
1522//===----------------------------------------------------------------------===//
1523
1524let Predicates = [FeatureVectorPackedDecimal] in {
1525  def VLIP : BinaryVRIh<"vlip", 0xE649>;
1526
1527  def VPKZ : BinaryVSI<"vpkz", 0xE634, null_frag, 0>;
1528  def VUPKZ : StoreLengthVSI<"vupkz", 0xE63C, null_frag, 0>;
1529
1530  let Defs = [CC] in {
1531    def VCVB : BinaryVRRi<"vcvb", 0xE650, GR32>;
1532    def VCVBG : BinaryVRRi<"vcvbg", 0xE652, GR64>;
1533    def VCVD : TernaryVRIi<"vcvd", 0xE658, GR32>;
1534    def VCVDG : TernaryVRIi<"vcvdg", 0xE65A, GR64>;
1535
1536    def VAP : QuaternaryVRIf<"vap", 0xE671>;
1537    def VSP : QuaternaryVRIf<"vsp", 0xE673>;
1538
1539    def VMP : QuaternaryVRIf<"vmp", 0xE678>;
1540    def VMSP : QuaternaryVRIf<"vmsp", 0xE679>;
1541
1542    def VDP : QuaternaryVRIf<"vdp", 0xE67A>;
1543    def VRP : QuaternaryVRIf<"vrp", 0xE67B>;
1544    def VSDP : QuaternaryVRIf<"vsdp", 0xE67E>;
1545
1546    def VSRP : QuaternaryVRIg<"vsrp", 0xE659>;
1547    def VPSOP : QuaternaryVRIg<"vpsop", 0xE65B>;
1548
1549    def VTP : TestVRRg<"vtp", 0xE65F>;
1550    def VCP : CompareVRRh<"vcp", 0xE677>;
1551  }
1552}
1553