1//==- SystemZInstrVector.td - SystemZ Vector instructions ------*- tblgen-*-==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10//===----------------------------------------------------------------------===//
11// Move instructions
12//===----------------------------------------------------------------------===//
13
14let Predicates = [FeatureVector] in {
15  // Register move.
16  def VLR : UnaryVRRa<"vlr", 0xE756, null_frag, v128any, v128any>;
17  def VLR32 : UnaryAliasVRR<null_frag, v32eb, v32eb>;
18  def VLR64 : UnaryAliasVRR<null_frag, v64db, v64db>;
19
20  // Load GR from VR element.
21  def VLGV  : BinaryVRScGeneric<"vlgv", 0xE721>;
22  def VLGVB : BinaryVRSc<"vlgvb", 0xE721, null_frag, v128b, 0>;
23  def VLGVH : BinaryVRSc<"vlgvh", 0xE721, null_frag, v128h, 1>;
24  def VLGVF : BinaryVRSc<"vlgvf", 0xE721, null_frag, v128f, 2>;
25  def VLGVG : BinaryVRSc<"vlgvg", 0xE721, z_vector_extract, v128g, 3>;
26
27  // Load VR element from GR.
28  def VLVG  : TernaryVRSbGeneric<"vlvg", 0xE722>;
29  def VLVGB : TernaryVRSb<"vlvgb", 0xE722, z_vector_insert,
30                          v128b, v128b, GR32, 0>;
31  def VLVGH : TernaryVRSb<"vlvgh", 0xE722, z_vector_insert,
32                          v128h, v128h, GR32, 1>;
33  def VLVGF : TernaryVRSb<"vlvgf", 0xE722, z_vector_insert,
34                          v128f, v128f, GR32, 2>;
35  def VLVGG : TernaryVRSb<"vlvgg", 0xE722, z_vector_insert,
36                          v128g, v128g, GR64, 3>;
37
38  // Load VR from GRs disjoint.
39  def VLVGP : BinaryVRRf<"vlvgp", 0xE762, z_join_dwords, v128g>;
40  def VLVGP32 : BinaryAliasVRRf<GR32>;
41}
42
43// Extractions always assign to the full GR64, even if the element would
44// fit in the lower 32 bits.  Sub-i64 extracts therefore need to take a
45// subreg of the result.
46class VectorExtractSubreg<ValueType type, Instruction insn>
47  : Pat<(i32 (z_vector_extract (type VR128:$vec), shift12only:$index)),
48        (EXTRACT_SUBREG (insn VR128:$vec, shift12only:$index), subreg_l32)>;
49
50def : VectorExtractSubreg<v16i8, VLGVB>;
51def : VectorExtractSubreg<v8i16, VLGVH>;
52def : VectorExtractSubreg<v4i32, VLGVF>;
53
54//===----------------------------------------------------------------------===//
55// Immediate instructions
56//===----------------------------------------------------------------------===//
57
58let Predicates = [FeatureVector] in {
59  let hasSideEffects = 0, isAsCheapAsAMove = 1, isMoveImm = 1,
60      isReMaterializable = 1 in {
61
62    // Generate byte mask.
63    def VZERO : InherentVRIa<"vzero", 0xE744, 0>;
64    def VONE  : InherentVRIa<"vone", 0xE744, 0xffff>;
65    def VGBM  : UnaryVRIa<"vgbm", 0xE744, z_byte_mask, v128b, imm32zx16>;
66
67    // Generate mask.
68    def VGM  : BinaryVRIbGeneric<"vgm", 0xE746>;
69    def VGMB : BinaryVRIb<"vgmb", 0xE746, z_rotate_mask, v128b, 0>;
70    def VGMH : BinaryVRIb<"vgmh", 0xE746, z_rotate_mask, v128h, 1>;
71    def VGMF : BinaryVRIb<"vgmf", 0xE746, z_rotate_mask, v128f, 2>;
72    def VGMG : BinaryVRIb<"vgmg", 0xE746, z_rotate_mask, v128g, 3>;
73
74    // Replicate immediate.
75    def VREPI  : UnaryVRIaGeneric<"vrepi", 0xE745, imm32sx16>;
76    def VREPIB : UnaryVRIa<"vrepib", 0xE745, z_replicate, v128b, imm32sx16, 0>;
77    def VREPIH : UnaryVRIa<"vrepih", 0xE745, z_replicate, v128h, imm32sx16, 1>;
78    def VREPIF : UnaryVRIa<"vrepif", 0xE745, z_replicate, v128f, imm32sx16, 2>;
79    def VREPIG : UnaryVRIa<"vrepig", 0xE745, z_replicate, v128g, imm32sx16, 3>;
80  }
81
82  // Load element immediate.
83  //
84  // We want these instructions to be used ahead of VLVG* where possible.
85  // However, VLVG* takes a variable BD-format index whereas VLEI takes
86  // a plain immediate index.  This means that VLVG* has an extra "base"
87  // register operand and is 3 units more complex.  Bumping the complexity
88  // of the VLEI* instructions by 4 means that they are strictly better
89  // than VLVG* in cases where both forms match.
90  let AddedComplexity = 4 in {
91    def VLEIB : TernaryVRIa<"vleib", 0xE740, z_vector_insert,
92                            v128b, v128b, imm32sx16trunc, imm32zx4>;
93    def VLEIH : TernaryVRIa<"vleih", 0xE741, z_vector_insert,
94                            v128h, v128h, imm32sx16trunc, imm32zx3>;
95    def VLEIF : TernaryVRIa<"vleif", 0xE743, z_vector_insert,
96                            v128f, v128f, imm32sx16, imm32zx2>;
97    def VLEIG : TernaryVRIa<"vleig", 0xE742, z_vector_insert,
98                            v128g, v128g, imm64sx16, imm32zx1>;
99  }
100}
101
102//===----------------------------------------------------------------------===//
103// Loads
104//===----------------------------------------------------------------------===//
105
106let Predicates = [FeatureVector] in {
107  // Load.
108  def VL : UnaryVRX<"vl", 0xE706, null_frag, v128any, 16>;
109
110  // Load to block boundary.  The number of loaded bytes is only known
111  // at run time.  The instruction is really polymorphic, but v128b matches
112  // the return type of the associated intrinsic.
113  def VLBB : BinaryVRX<"vlbb", 0xE707, int_s390_vlbb, v128b, 0>;
114
115  // Load count to block boundary.
116  let Defs = [CC] in
117    def LCBB : InstRXE<0xE727, (outs GR32:$R1),
118                               (ins bdxaddr12only:$XBD2, imm32zx4:$M3),
119                       "lcbb\t$R1, $XBD2, $M3",
120                       [(set GR32:$R1, (int_s390_lcbb bdxaddr12only:$XBD2,
121                                                      imm32zx4:$M3))]>;
122
123  // Load with length.  The number of loaded bytes is only known at run time.
124  def VLL : BinaryVRSb<"vll", 0xE737, int_s390_vll, 0>;
125
126  // Load multiple.
127  def VLM : LoadMultipleVRSa<"vlm", 0xE736>;
128
129  // Load and replicate
130  def VLREP  : UnaryVRXGeneric<"vlrep", 0xE705>;
131  def VLREPB : UnaryVRX<"vlrepb", 0xE705, z_replicate_loadi8,  v128b, 1, 0>;
132  def VLREPH : UnaryVRX<"vlreph", 0xE705, z_replicate_loadi16, v128h, 2, 1>;
133  def VLREPF : UnaryVRX<"vlrepf", 0xE705, z_replicate_loadi32, v128f, 4, 2>;
134  def VLREPG : UnaryVRX<"vlrepg", 0xE705, z_replicate_loadi64, v128g, 8, 3>;
135  def : Pat<(v4f32 (z_replicate_loadf32 bdxaddr12only:$addr)),
136            (VLREPF bdxaddr12only:$addr)>;
137  def : Pat<(v2f64 (z_replicate_loadf64 bdxaddr12only:$addr)),
138            (VLREPG bdxaddr12only:$addr)>;
139
140  // Use VLREP to load subvectors.  These patterns use "12pair" because
141  // LEY and LDY offer full 20-bit displacement fields.  It's often better
142  // to use those instructions rather than force a 20-bit displacement
143  // into a GPR temporary.
144  def VL32 : UnaryAliasVRX<load, v32eb, bdxaddr12pair>;
145  def VL64 : UnaryAliasVRX<load, v64db, bdxaddr12pair>;
146
147  // Load logical element and zero.
148  def VLLEZ  : UnaryVRXGeneric<"vllez", 0xE704>;
149  def VLLEZB : UnaryVRX<"vllezb", 0xE704, z_vllezi8,  v128b, 1, 0>;
150  def VLLEZH : UnaryVRX<"vllezh", 0xE704, z_vllezi16, v128h, 2, 1>;
151  def VLLEZF : UnaryVRX<"vllezf", 0xE704, z_vllezi32, v128f, 4, 2>;
152  def VLLEZG : UnaryVRX<"vllezg", 0xE704, z_vllezi64, v128g, 8, 3>;
153  def : Pat<(v4f32 (z_vllezf32 bdxaddr12only:$addr)),
154            (VLLEZF bdxaddr12only:$addr)>;
155  def : Pat<(v2f64 (z_vllezf64 bdxaddr12only:$addr)),
156            (VLLEZG bdxaddr12only:$addr)>;
157
158  // Load element.
159  def VLEB : TernaryVRX<"vleb", 0xE700, z_vlei8,  v128b, v128b, 1, imm32zx4>;
160  def VLEH : TernaryVRX<"vleh", 0xE701, z_vlei16, v128h, v128h, 2, imm32zx3>;
161  def VLEF : TernaryVRX<"vlef", 0xE703, z_vlei32, v128f, v128f, 4, imm32zx2>;
162  def VLEG : TernaryVRX<"vleg", 0xE702, z_vlei64, v128g, v128g, 8, imm32zx1>;
163  def : Pat<(z_vlef32 (v4f32 VR128:$val), bdxaddr12only:$addr, imm32zx2:$index),
164            (VLEF VR128:$val, bdxaddr12only:$addr, imm32zx2:$index)>;
165  def : Pat<(z_vlef64 (v2f64 VR128:$val), bdxaddr12only:$addr, imm32zx1:$index),
166            (VLEG VR128:$val, bdxaddr12only:$addr, imm32zx1:$index)>;
167
168  // Gather element.
169  def VGEF : TernaryVRV<"vgef", 0xE713, 4, imm32zx2>;
170  def VGEG : TernaryVRV<"vgeg", 0xE712, 8, imm32zx1>;
171}
172
173// Use replicating loads if we're inserting a single element into an
174// undefined vector.  This avoids a false dependency on the previous
175// register contents.
176multiclass ReplicatePeephole<Instruction vlrep, ValueType vectype,
177                             SDPatternOperator load, ValueType scalartype> {
178  def : Pat<(vectype (z_vector_insert
179                      (undef), (scalartype (load bdxaddr12only:$addr)), 0)),
180            (vlrep bdxaddr12only:$addr)>;
181  def : Pat<(vectype (scalar_to_vector
182                      (scalartype (load bdxaddr12only:$addr)))),
183            (vlrep bdxaddr12only:$addr)>;
184}
185defm : ReplicatePeephole<VLREPB, v16i8, anyextloadi8, i32>;
186defm : ReplicatePeephole<VLREPH, v8i16, anyextloadi16, i32>;
187defm : ReplicatePeephole<VLREPF, v4i32, load, i32>;
188defm : ReplicatePeephole<VLREPG, v2i64, load, i64>;
189defm : ReplicatePeephole<VLREPF, v4f32, load, f32>;
190defm : ReplicatePeephole<VLREPG, v2f64, load, f64>;
191
192//===----------------------------------------------------------------------===//
193// Stores
194//===----------------------------------------------------------------------===//
195
196let Predicates = [FeatureVector] in {
197  // Store.
198  def VST : StoreVRX<"vst", 0xE70E, null_frag, v128any, 16>;
199
200  // Store with length.  The number of stored bytes is only known at run time.
201  def VSTL : StoreLengthVRSb<"vstl", 0xE73F, int_s390_vstl, 0>;
202
203  // Store multiple.
204  def VSTM : StoreMultipleVRSa<"vstm", 0xE73E>;
205
206  // Store element.
207  def VSTEB : StoreBinaryVRX<"vsteb", 0xE708, z_vstei8,  v128b, 1, imm32zx4>;
208  def VSTEH : StoreBinaryVRX<"vsteh", 0xE709, z_vstei16, v128h, 2, imm32zx3>;
209  def VSTEF : StoreBinaryVRX<"vstef", 0xE70B, z_vstei32, v128f, 4, imm32zx2>;
210  def VSTEG : StoreBinaryVRX<"vsteg", 0xE70A, z_vstei64, v128g, 8, imm32zx1>;
211  def : Pat<(z_vstef32 (v4f32 VR128:$val), bdxaddr12only:$addr,
212                       imm32zx2:$index),
213            (VSTEF VR128:$val, bdxaddr12only:$addr, imm32zx2:$index)>;
214  def : Pat<(z_vstef64 (v2f64 VR128:$val), bdxaddr12only:$addr,
215                       imm32zx1:$index),
216            (VSTEG VR128:$val, bdxaddr12only:$addr, imm32zx1:$index)>;
217
218  // Use VSTE to store subvectors.  These patterns use "12pair" because
219  // STEY and STDY offer full 20-bit displacement fields.  It's often better
220  // to use those instructions rather than force a 20-bit displacement
221  // into a GPR temporary.
222  def VST32 : StoreAliasVRX<store, v32eb, bdxaddr12pair>;
223  def VST64 : StoreAliasVRX<store, v64db, bdxaddr12pair>;
224
225  // Scatter element.
226  def VSCEF : StoreBinaryVRV<"vscef", 0xE71B, 4, imm32zx2>;
227  def VSCEG : StoreBinaryVRV<"vsceg", 0xE71A, 8, imm32zx1>;
228}
229
230//===----------------------------------------------------------------------===//
231// Selects and permutes
232//===----------------------------------------------------------------------===//
233
234let Predicates = [FeatureVector] in {
235  // Merge high.
236  def VMRH:   BinaryVRRcGeneric<"vmrh", 0xE761>;
237  def VMRHB : BinaryVRRc<"vmrhb", 0xE761, z_merge_high, v128b, v128b, 0>;
238  def VMRHH : BinaryVRRc<"vmrhh", 0xE761, z_merge_high, v128h, v128h, 1>;
239  def VMRHF : BinaryVRRc<"vmrhf", 0xE761, z_merge_high, v128f, v128f, 2>;
240  def VMRHG : BinaryVRRc<"vmrhg", 0xE761, z_merge_high, v128g, v128g, 3>;
241  def : BinaryRRWithType<VMRHF, VR128, z_merge_high, v4f32>;
242  def : BinaryRRWithType<VMRHG, VR128, z_merge_high, v2f64>;
243
244  // Merge low.
245  def VMRL:   BinaryVRRcGeneric<"vmrl", 0xE760>;
246  def VMRLB : BinaryVRRc<"vmrlb", 0xE760, z_merge_low, v128b, v128b, 0>;
247  def VMRLH : BinaryVRRc<"vmrlh", 0xE760, z_merge_low, v128h, v128h, 1>;
248  def VMRLF : BinaryVRRc<"vmrlf", 0xE760, z_merge_low, v128f, v128f, 2>;
249  def VMRLG : BinaryVRRc<"vmrlg", 0xE760, z_merge_low, v128g, v128g, 3>;
250  def : BinaryRRWithType<VMRLF, VR128, z_merge_low, v4f32>;
251  def : BinaryRRWithType<VMRLG, VR128, z_merge_low, v2f64>;
252
253  // Permute.
254  def VPERM : TernaryVRRe<"vperm", 0xE78C, z_permute, v128b, v128b>;
255
256  // Permute doubleword immediate.
257  def VPDI : TernaryVRRc<"vpdi", 0xE784, z_permute_dwords, v128g, v128g>;
258
259  // Replicate.
260  def VREP:   BinaryVRIcGeneric<"vrep", 0xE74D>;
261  def VREPB : BinaryVRIc<"vrepb", 0xE74D, z_splat, v128b, v128b, 0>;
262  def VREPH : BinaryVRIc<"vreph", 0xE74D, z_splat, v128h, v128h, 1>;
263  def VREPF : BinaryVRIc<"vrepf", 0xE74D, z_splat, v128f, v128f, 2>;
264  def VREPG : BinaryVRIc<"vrepg", 0xE74D, z_splat, v128g, v128g, 3>;
265  def : Pat<(v4f32 (z_splat VR128:$vec, imm32zx16:$index)),
266            (VREPF VR128:$vec, imm32zx16:$index)>;
267  def : Pat<(v2f64 (z_splat VR128:$vec, imm32zx16:$index)),
268            (VREPG VR128:$vec, imm32zx16:$index)>;
269
270  // Select.
271  def VSEL : TernaryVRRe<"vsel", 0xE78D, null_frag, v128any, v128any>;
272}
273
274//===----------------------------------------------------------------------===//
275// Widening and narrowing
276//===----------------------------------------------------------------------===//
277
278let Predicates = [FeatureVector] in {
279  // Pack
280  def VPK  : BinaryVRRcGeneric<"vpk", 0xE794>;
281  def VPKH : BinaryVRRc<"vpkh", 0xE794, z_pack, v128b, v128h, 1>;
282  def VPKF : BinaryVRRc<"vpkf", 0xE794, z_pack, v128h, v128f, 2>;
283  def VPKG : BinaryVRRc<"vpkg", 0xE794, z_pack, v128f, v128g, 3>;
284
285  // Pack saturate.
286  def  VPKS  : BinaryVRRbSPairGeneric<"vpks", 0xE797>;
287  defm VPKSH : BinaryVRRbSPair<"vpksh", 0xE797, int_s390_vpksh, z_packs_cc,
288                               v128b, v128h, 1>;
289  defm VPKSF : BinaryVRRbSPair<"vpksf", 0xE797, int_s390_vpksf, z_packs_cc,
290                               v128h, v128f, 2>;
291  defm VPKSG : BinaryVRRbSPair<"vpksg", 0xE797, int_s390_vpksg, z_packs_cc,
292                               v128f, v128g, 3>;
293
294  // Pack saturate logical.
295  def  VPKLS  : BinaryVRRbSPairGeneric<"vpkls", 0xE795>;
296  defm VPKLSH : BinaryVRRbSPair<"vpklsh", 0xE795, int_s390_vpklsh, z_packls_cc,
297                                v128b, v128h, 1>;
298  defm VPKLSF : BinaryVRRbSPair<"vpklsf", 0xE795, int_s390_vpklsf, z_packls_cc,
299                                v128h, v128f, 2>;
300  defm VPKLSG : BinaryVRRbSPair<"vpklsg", 0xE795, int_s390_vpklsg, z_packls_cc,
301                                v128f, v128g, 3>;
302
303  // Sign-extend to doubleword.
304  def VSEG  : UnaryVRRaGeneric<"vseg", 0xE75F>;
305  def VSEGB : UnaryVRRa<"vsegb", 0xE75F, z_vsei8,  v128g, v128g, 0>;
306  def VSEGH : UnaryVRRa<"vsegh", 0xE75F, z_vsei16, v128g, v128g, 1>;
307  def VSEGF : UnaryVRRa<"vsegf", 0xE75F, z_vsei32, v128g, v128g, 2>;
308  def : Pat<(z_vsei8_by_parts  (v16i8 VR128:$src)), (VSEGB VR128:$src)>;
309  def : Pat<(z_vsei16_by_parts (v8i16 VR128:$src)), (VSEGH VR128:$src)>;
310  def : Pat<(z_vsei32_by_parts (v4i32 VR128:$src)), (VSEGF VR128:$src)>;
311
312  // Unpack high.
313  def VUPH  : UnaryVRRaGeneric<"vuph", 0xE7D7>;
314  def VUPHB : UnaryVRRa<"vuphb", 0xE7D7, z_unpack_high, v128h, v128b, 0>;
315  def VUPHH : UnaryVRRa<"vuphh", 0xE7D7, z_unpack_high, v128f, v128h, 1>;
316  def VUPHF : UnaryVRRa<"vuphf", 0xE7D7, z_unpack_high, v128g, v128f, 2>;
317
318  // Unpack logical high.
319  def VUPLH  : UnaryVRRaGeneric<"vuplh", 0xE7D5>;
320  def VUPLHB : UnaryVRRa<"vuplhb", 0xE7D5, z_unpackl_high, v128h, v128b, 0>;
321  def VUPLHH : UnaryVRRa<"vuplhh", 0xE7D5, z_unpackl_high, v128f, v128h, 1>;
322  def VUPLHF : UnaryVRRa<"vuplhf", 0xE7D5, z_unpackl_high, v128g, v128f, 2>;
323
324  // Unpack low.
325  def VUPL   : UnaryVRRaGeneric<"vupl", 0xE7D6>;
326  def VUPLB  : UnaryVRRa<"vuplb",  0xE7D6, z_unpack_low, v128h, v128b, 0>;
327  def VUPLHW : UnaryVRRa<"vuplhw", 0xE7D6, z_unpack_low, v128f, v128h, 1>;
328  def VUPLF  : UnaryVRRa<"vuplf",  0xE7D6, z_unpack_low, v128g, v128f, 2>;
329
330  // Unpack logical low.
331  def VUPLL  : UnaryVRRaGeneric<"vupll", 0xE7D4>;
332  def VUPLLB : UnaryVRRa<"vupllb", 0xE7D4, z_unpackl_low, v128h, v128b, 0>;
333  def VUPLLH : UnaryVRRa<"vupllh", 0xE7D4, z_unpackl_low, v128f, v128h, 1>;
334  def VUPLLF : UnaryVRRa<"vupllf", 0xE7D4, z_unpackl_low, v128g, v128f, 2>;
335}
336
337//===----------------------------------------------------------------------===//
338// Instantiating generic operations for specific types.
339//===----------------------------------------------------------------------===//
340
341multiclass GenericVectorOps<ValueType type, ValueType inttype> {
342  let Predicates = [FeatureVector] in {
343    def : Pat<(type (load bdxaddr12only:$addr)),
344              (VL bdxaddr12only:$addr)>;
345    def : Pat<(store (type VR128:$src), bdxaddr12only:$addr),
346              (VST VR128:$src, bdxaddr12only:$addr)>;
347    def : Pat<(type (vselect (inttype VR128:$x), VR128:$y, VR128:$z)),
348              (VSEL VR128:$y, VR128:$z, VR128:$x)>;
349    def : Pat<(type (vselect (inttype (z_vnot VR128:$x)), VR128:$y, VR128:$z)),
350              (VSEL VR128:$z, VR128:$y, VR128:$x)>;
351  }
352}
353
354defm : GenericVectorOps<v16i8, v16i8>;
355defm : GenericVectorOps<v8i16, v8i16>;
356defm : GenericVectorOps<v4i32, v4i32>;
357defm : GenericVectorOps<v2i64, v2i64>;
358defm : GenericVectorOps<v4f32, v4i32>;
359defm : GenericVectorOps<v2f64, v2i64>;
360
361//===----------------------------------------------------------------------===//
362// Integer arithmetic
363//===----------------------------------------------------------------------===//
364
365let Predicates = [FeatureVector] in {
366  // Add.
367  def VA  : BinaryVRRcGeneric<"va", 0xE7F3>;
368  def VAB : BinaryVRRc<"vab", 0xE7F3, add, v128b, v128b, 0>;
369  def VAH : BinaryVRRc<"vah", 0xE7F3, add, v128h, v128h, 1>;
370  def VAF : BinaryVRRc<"vaf", 0xE7F3, add, v128f, v128f, 2>;
371  def VAG : BinaryVRRc<"vag", 0xE7F3, add, v128g, v128g, 3>;
372  def VAQ : BinaryVRRc<"vaq", 0xE7F3, int_s390_vaq, v128q, v128q, 4>;
373
374  // Add compute carry.
375  def VACC  : BinaryVRRcGeneric<"vacc", 0xE7F1>;
376  def VACCB : BinaryVRRc<"vaccb", 0xE7F1, int_s390_vaccb, v128b, v128b, 0>;
377  def VACCH : BinaryVRRc<"vacch", 0xE7F1, int_s390_vacch, v128h, v128h, 1>;
378  def VACCF : BinaryVRRc<"vaccf", 0xE7F1, int_s390_vaccf, v128f, v128f, 2>;
379  def VACCG : BinaryVRRc<"vaccg", 0xE7F1, int_s390_vaccg, v128g, v128g, 3>;
380  def VACCQ : BinaryVRRc<"vaccq", 0xE7F1, int_s390_vaccq, v128q, v128q, 4>;
381
382  // Add with carry.
383  def VAC  : TernaryVRRdGeneric<"vac", 0xE7BB>;
384  def VACQ : TernaryVRRd<"vacq", 0xE7BB, int_s390_vacq, v128q, v128q, 4>;
385
386  // Add with carry compute carry.
387  def VACCC  : TernaryVRRdGeneric<"vaccc", 0xE7B9>;
388  def VACCCQ : TernaryVRRd<"vacccq", 0xE7B9, int_s390_vacccq, v128q, v128q, 4>;
389
390  // And.
391  def VN : BinaryVRRc<"vn", 0xE768, null_frag, v128any, v128any>;
392
393  // And with complement.
394  def VNC : BinaryVRRc<"vnc", 0xE769, null_frag, v128any, v128any>;
395
396  // Average.
397  def VAVG  : BinaryVRRcGeneric<"vavg", 0xE7F2>;
398  def VAVGB : BinaryVRRc<"vavgb", 0xE7F2, int_s390_vavgb, v128b, v128b, 0>;
399  def VAVGH : BinaryVRRc<"vavgh", 0xE7F2, int_s390_vavgh, v128h, v128h, 1>;
400  def VAVGF : BinaryVRRc<"vavgf", 0xE7F2, int_s390_vavgf, v128f, v128f, 2>;
401  def VAVGG : BinaryVRRc<"vavgg", 0xE7F2, int_s390_vavgg, v128g, v128g, 3>;
402
403  // Average logical.
404  def VAVGL  : BinaryVRRcGeneric<"vavgl", 0xE7F0>;
405  def VAVGLB : BinaryVRRc<"vavglb", 0xE7F0, int_s390_vavglb, v128b, v128b, 0>;
406  def VAVGLH : BinaryVRRc<"vavglh", 0xE7F0, int_s390_vavglh, v128h, v128h, 1>;
407  def VAVGLF : BinaryVRRc<"vavglf", 0xE7F0, int_s390_vavglf, v128f, v128f, 2>;
408  def VAVGLG : BinaryVRRc<"vavglg", 0xE7F0, int_s390_vavglg, v128g, v128g, 3>;
409
410  // Checksum.
411  def VCKSM : BinaryVRRc<"vcksm", 0xE766, int_s390_vcksm, v128f, v128f>;
412
413  // Count leading zeros.
414  def VCLZ  : UnaryVRRaGeneric<"vclz", 0xE753>;
415  def VCLZB : UnaryVRRa<"vclzb", 0xE753, ctlz, v128b, v128b, 0>;
416  def VCLZH : UnaryVRRa<"vclzh", 0xE753, ctlz, v128h, v128h, 1>;
417  def VCLZF : UnaryVRRa<"vclzf", 0xE753, ctlz, v128f, v128f, 2>;
418  def VCLZG : UnaryVRRa<"vclzg", 0xE753, ctlz, v128g, v128g, 3>;
419
420  // Count trailing zeros.
421  def VCTZ  : UnaryVRRaGeneric<"vctz", 0xE752>;
422  def VCTZB : UnaryVRRa<"vctzb", 0xE752, cttz, v128b, v128b, 0>;
423  def VCTZH : UnaryVRRa<"vctzh", 0xE752, cttz, v128h, v128h, 1>;
424  def VCTZF : UnaryVRRa<"vctzf", 0xE752, cttz, v128f, v128f, 2>;
425  def VCTZG : UnaryVRRa<"vctzg", 0xE752, cttz, v128g, v128g, 3>;
426
427  // Exclusive or.
428  def VX : BinaryVRRc<"vx", 0xE76D, null_frag, v128any, v128any>;
429
430  // Galois field multiply sum.
431  def VGFM  : BinaryVRRcGeneric<"vgfm", 0xE7B4>;
432  def VGFMB : BinaryVRRc<"vgfmb", 0xE7B4, int_s390_vgfmb, v128h, v128b, 0>;
433  def VGFMH : BinaryVRRc<"vgfmh", 0xE7B4, int_s390_vgfmh, v128f, v128h, 1>;
434  def VGFMF : BinaryVRRc<"vgfmf", 0xE7B4, int_s390_vgfmf, v128g, v128f, 2>;
435  def VGFMG : BinaryVRRc<"vgfmg", 0xE7B4, int_s390_vgfmg, v128q, v128g, 3>;
436
437  // Galois field multiply sum and accumulate.
438  def VGFMA  : TernaryVRRdGeneric<"vgfma", 0xE7BC>;
439  def VGFMAB : TernaryVRRd<"vgfmab", 0xE7BC, int_s390_vgfmab, v128h, v128b, 0>;
440  def VGFMAH : TernaryVRRd<"vgfmah", 0xE7BC, int_s390_vgfmah, v128f, v128h, 1>;
441  def VGFMAF : TernaryVRRd<"vgfmaf", 0xE7BC, int_s390_vgfmaf, v128g, v128f, 2>;
442  def VGFMAG : TernaryVRRd<"vgfmag", 0xE7BC, int_s390_vgfmag, v128q, v128g, 3>;
443
444  // Load complement.
445  def VLC  : UnaryVRRaGeneric<"vlc", 0xE7DE>;
446  def VLCB : UnaryVRRa<"vlcb", 0xE7DE, z_vneg, v128b, v128b, 0>;
447  def VLCH : UnaryVRRa<"vlch", 0xE7DE, z_vneg, v128h, v128h, 1>;
448  def VLCF : UnaryVRRa<"vlcf", 0xE7DE, z_vneg, v128f, v128f, 2>;
449  def VLCG : UnaryVRRa<"vlcg", 0xE7DE, z_vneg, v128g, v128g, 3>;
450
451  // Load positive.
452  def VLP  : UnaryVRRaGeneric<"vlp", 0xE7DF>;
453  def VLPB : UnaryVRRa<"vlpb", 0xE7DF, z_viabs8,  v128b, v128b, 0>;
454  def VLPH : UnaryVRRa<"vlph", 0xE7DF, z_viabs16, v128h, v128h, 1>;
455  def VLPF : UnaryVRRa<"vlpf", 0xE7DF, z_viabs32, v128f, v128f, 2>;
456  def VLPG : UnaryVRRa<"vlpg", 0xE7DF, z_viabs64, v128g, v128g, 3>;
457
458  // Maximum.
459  def VMX  : BinaryVRRcGeneric<"vmx", 0xE7FF>;
460  def VMXB : BinaryVRRc<"vmxb", 0xE7FF, null_frag, v128b, v128b, 0>;
461  def VMXH : BinaryVRRc<"vmxh", 0xE7FF, null_frag, v128h, v128h, 1>;
462  def VMXF : BinaryVRRc<"vmxf", 0xE7FF, null_frag, v128f, v128f, 2>;
463  def VMXG : BinaryVRRc<"vmxg", 0xE7FF, null_frag, v128g, v128g, 3>;
464
465  // Maximum logical.
466  def VMXL  : BinaryVRRcGeneric<"vmxl", 0xE7FD>;
467  def VMXLB : BinaryVRRc<"vmxlb", 0xE7FD, null_frag, v128b, v128b, 0>;
468  def VMXLH : BinaryVRRc<"vmxlh", 0xE7FD, null_frag, v128h, v128h, 1>;
469  def VMXLF : BinaryVRRc<"vmxlf", 0xE7FD, null_frag, v128f, v128f, 2>;
470  def VMXLG : BinaryVRRc<"vmxlg", 0xE7FD, null_frag, v128g, v128g, 3>;
471
472  // Minimum.
473  def VMN  : BinaryVRRcGeneric<"vmn", 0xE7FE>;
474  def VMNB : BinaryVRRc<"vmnb", 0xE7FE, null_frag, v128b, v128b, 0>;
475  def VMNH : BinaryVRRc<"vmnh", 0xE7FE, null_frag, v128h, v128h, 1>;
476  def VMNF : BinaryVRRc<"vmnf", 0xE7FE, null_frag, v128f, v128f, 2>;
477  def VMNG : BinaryVRRc<"vmng", 0xE7FE, null_frag, v128g, v128g, 3>;
478
479  // Minimum logical.
480  def VMNL  : BinaryVRRcGeneric<"vmnl", 0xE7FC>;
481  def VMNLB : BinaryVRRc<"vmnlb", 0xE7FC, null_frag, v128b, v128b, 0>;
482  def VMNLH : BinaryVRRc<"vmnlh", 0xE7FC, null_frag, v128h, v128h, 1>;
483  def VMNLF : BinaryVRRc<"vmnlf", 0xE7FC, null_frag, v128f, v128f, 2>;
484  def VMNLG : BinaryVRRc<"vmnlg", 0xE7FC, null_frag, v128g, v128g, 3>;
485
486  // Multiply and add low.
487  def VMAL   : TernaryVRRdGeneric<"vmal", 0xE7AA>;
488  def VMALB  : TernaryVRRd<"vmalb",  0xE7AA, z_muladd, v128b, v128b, 0>;
489  def VMALHW : TernaryVRRd<"vmalhw", 0xE7AA, z_muladd, v128h, v128h, 1>;
490  def VMALF  : TernaryVRRd<"vmalf",  0xE7AA, z_muladd, v128f, v128f, 2>;
491
492  // Multiply and add high.
493  def VMAH  : TernaryVRRdGeneric<"vmah", 0xE7AB>;
494  def VMAHB : TernaryVRRd<"vmahb", 0xE7AB, int_s390_vmahb, v128b, v128b, 0>;
495  def VMAHH : TernaryVRRd<"vmahh", 0xE7AB, int_s390_vmahh, v128h, v128h, 1>;
496  def VMAHF : TernaryVRRd<"vmahf", 0xE7AB, int_s390_vmahf, v128f, v128f, 2>;
497
498  // Multiply and add logical high.
499  def VMALH  : TernaryVRRdGeneric<"vmalh", 0xE7A9>;
500  def VMALHB : TernaryVRRd<"vmalhb", 0xE7A9, int_s390_vmalhb, v128b, v128b, 0>;
501  def VMALHH : TernaryVRRd<"vmalhh", 0xE7A9, int_s390_vmalhh, v128h, v128h, 1>;
502  def VMALHF : TernaryVRRd<"vmalhf", 0xE7A9, int_s390_vmalhf, v128f, v128f, 2>;
503
504  // Multiply and add even.
505  def VMAE  : TernaryVRRdGeneric<"vmae", 0xE7AE>;
506  def VMAEB : TernaryVRRd<"vmaeb", 0xE7AE, int_s390_vmaeb, v128h, v128b, 0>;
507  def VMAEH : TernaryVRRd<"vmaeh", 0xE7AE, int_s390_vmaeh, v128f, v128h, 1>;
508  def VMAEF : TernaryVRRd<"vmaef", 0xE7AE, int_s390_vmaef, v128g, v128f, 2>;
509
510  // Multiply and add logical even.
511  def VMALE  : TernaryVRRdGeneric<"vmale", 0xE7AC>;
512  def VMALEB : TernaryVRRd<"vmaleb", 0xE7AC, int_s390_vmaleb, v128h, v128b, 0>;
513  def VMALEH : TernaryVRRd<"vmaleh", 0xE7AC, int_s390_vmaleh, v128f, v128h, 1>;
514  def VMALEF : TernaryVRRd<"vmalef", 0xE7AC, int_s390_vmalef, v128g, v128f, 2>;
515
516  // Multiply and add odd.
517  def VMAO  : TernaryVRRdGeneric<"vmao", 0xE7AF>;
518  def VMAOB : TernaryVRRd<"vmaob", 0xE7AF, int_s390_vmaob, v128h, v128b, 0>;
519  def VMAOH : TernaryVRRd<"vmaoh", 0xE7AF, int_s390_vmaoh, v128f, v128h, 1>;
520  def VMAOF : TernaryVRRd<"vmaof", 0xE7AF, int_s390_vmaof, v128g, v128f, 2>;
521
522  // Multiply and add logical odd.
523  def VMALO  : TernaryVRRdGeneric<"vmalo", 0xE7AD>;
524  def VMALOB : TernaryVRRd<"vmalob", 0xE7AD, int_s390_vmalob, v128h, v128b, 0>;
525  def VMALOH : TernaryVRRd<"vmaloh", 0xE7AD, int_s390_vmaloh, v128f, v128h, 1>;
526  def VMALOF : TernaryVRRd<"vmalof", 0xE7AD, int_s390_vmalof, v128g, v128f, 2>;
527
528  // Multiply high.
529  def VMH  : BinaryVRRcGeneric<"vmh", 0xE7A3>;
530  def VMHB : BinaryVRRc<"vmhb", 0xE7A3, int_s390_vmhb, v128b, v128b, 0>;
531  def VMHH : BinaryVRRc<"vmhh", 0xE7A3, int_s390_vmhh, v128h, v128h, 1>;
532  def VMHF : BinaryVRRc<"vmhf", 0xE7A3, int_s390_vmhf, v128f, v128f, 2>;
533
534  // Multiply logical high.
535  def VMLH  : BinaryVRRcGeneric<"vmlh", 0xE7A1>;
536  def VMLHB : BinaryVRRc<"vmlhb", 0xE7A1, int_s390_vmlhb, v128b, v128b, 0>;
537  def VMLHH : BinaryVRRc<"vmlhh", 0xE7A1, int_s390_vmlhh, v128h, v128h, 1>;
538  def VMLHF : BinaryVRRc<"vmlhf", 0xE7A1, int_s390_vmlhf, v128f, v128f, 2>;
539
540  // Multiply low.
541  def VML   : BinaryVRRcGeneric<"vml", 0xE7A2>;
542  def VMLB  : BinaryVRRc<"vmlb",  0xE7A2, mul, v128b, v128b, 0>;
543  def VMLHW : BinaryVRRc<"vmlhw", 0xE7A2, mul, v128h, v128h, 1>;
544  def VMLF  : BinaryVRRc<"vmlf",  0xE7A2, mul, v128f, v128f, 2>;
545
546  // Multiply even.
547  def VME  : BinaryVRRcGeneric<"vme", 0xE7A6>;
548  def VMEB : BinaryVRRc<"vmeb", 0xE7A6, int_s390_vmeb, v128h, v128b, 0>;
549  def VMEH : BinaryVRRc<"vmeh", 0xE7A6, int_s390_vmeh, v128f, v128h, 1>;
550  def VMEF : BinaryVRRc<"vmef", 0xE7A6, int_s390_vmef, v128g, v128f, 2>;
551
552  // Multiply logical even.
553  def VMLE  : BinaryVRRcGeneric<"vmle", 0xE7A4>;
554  def VMLEB : BinaryVRRc<"vmleb", 0xE7A4, int_s390_vmleb, v128h, v128b, 0>;
555  def VMLEH : BinaryVRRc<"vmleh", 0xE7A4, int_s390_vmleh, v128f, v128h, 1>;
556  def VMLEF : BinaryVRRc<"vmlef", 0xE7A4, int_s390_vmlef, v128g, v128f, 2>;
557
558  // Multiply odd.
559  def VMO  : BinaryVRRcGeneric<"vmo", 0xE7A7>;
560  def VMOB : BinaryVRRc<"vmob", 0xE7A7, int_s390_vmob, v128h, v128b, 0>;
561  def VMOH : BinaryVRRc<"vmoh", 0xE7A7, int_s390_vmoh, v128f, v128h, 1>;
562  def VMOF : BinaryVRRc<"vmof", 0xE7A7, int_s390_vmof, v128g, v128f, 2>;
563
564  // Multiply logical odd.
565  def VMLO  : BinaryVRRcGeneric<"vmlo", 0xE7A5>;
566  def VMLOB : BinaryVRRc<"vmlob", 0xE7A5, int_s390_vmlob, v128h, v128b, 0>;
567  def VMLOH : BinaryVRRc<"vmloh", 0xE7A5, int_s390_vmloh, v128f, v128h, 1>;
568  def VMLOF : BinaryVRRc<"vmlof", 0xE7A5, int_s390_vmlof, v128g, v128f, 2>;
569
570  // Nor.
571  def VNO : BinaryVRRc<"vno", 0xE76B, null_frag, v128any, v128any>;
572  def : InstAlias<"vnot\t$V1, $V2", (VNO VR128:$V1, VR128:$V2, VR128:$V2), 0>;
573
574  // Or.
575  def VO : BinaryVRRc<"vo", 0xE76A, null_frag, v128any, v128any>;
576
577  // Population count.
578  def VPOPCT : UnaryVRRaGeneric<"vpopct", 0xE750>;
579  def : Pat<(v16i8 (z_popcnt VR128:$x)), (VPOPCT VR128:$x, 0)>;
580
581  // Element rotate left logical (with vector shift amount).
582  def VERLLV  : BinaryVRRcGeneric<"verllv", 0xE773>;
583  def VERLLVB : BinaryVRRc<"verllvb", 0xE773, int_s390_verllvb,
584                           v128b, v128b, 0>;
585  def VERLLVH : BinaryVRRc<"verllvh", 0xE773, int_s390_verllvh,
586                           v128h, v128h, 1>;
587  def VERLLVF : BinaryVRRc<"verllvf", 0xE773, int_s390_verllvf,
588                           v128f, v128f, 2>;
589  def VERLLVG : BinaryVRRc<"verllvg", 0xE773, int_s390_verllvg,
590                           v128g, v128g, 3>;
591
592  // Element rotate left logical (with scalar shift amount).
593  def VERLL  : BinaryVRSaGeneric<"verll", 0xE733>;
594  def VERLLB : BinaryVRSa<"verllb", 0xE733, int_s390_verllb, v128b, v128b, 0>;
595  def VERLLH : BinaryVRSa<"verllh", 0xE733, int_s390_verllh, v128h, v128h, 1>;
596  def VERLLF : BinaryVRSa<"verllf", 0xE733, int_s390_verllf, v128f, v128f, 2>;
597  def VERLLG : BinaryVRSa<"verllg", 0xE733, int_s390_verllg, v128g, v128g, 3>;
598
599  // Element rotate and insert under mask.
600  def VERIM  : QuaternaryVRIdGeneric<"verim", 0xE772>;
601  def VERIMB : QuaternaryVRId<"verimb", 0xE772, int_s390_verimb, v128b, v128b, 0>;
602  def VERIMH : QuaternaryVRId<"verimh", 0xE772, int_s390_verimh, v128h, v128h, 1>;
603  def VERIMF : QuaternaryVRId<"verimf", 0xE772, int_s390_verimf, v128f, v128f, 2>;
604  def VERIMG : QuaternaryVRId<"verimg", 0xE772, int_s390_verimg, v128g, v128g, 3>;
605
606  // Element shift left (with vector shift amount).
607  def VESLV  : BinaryVRRcGeneric<"veslv", 0xE770>;
608  def VESLVB : BinaryVRRc<"veslvb", 0xE770, z_vshl, v128b, v128b, 0>;
609  def VESLVH : BinaryVRRc<"veslvh", 0xE770, z_vshl, v128h, v128h, 1>;
610  def VESLVF : BinaryVRRc<"veslvf", 0xE770, z_vshl, v128f, v128f, 2>;
611  def VESLVG : BinaryVRRc<"veslvg", 0xE770, z_vshl, v128g, v128g, 3>;
612
613  // Element shift left (with scalar shift amount).
614  def VESL  : BinaryVRSaGeneric<"vesl", 0xE730>;
615  def VESLB : BinaryVRSa<"veslb", 0xE730, z_vshl_by_scalar, v128b, v128b, 0>;
616  def VESLH : BinaryVRSa<"veslh", 0xE730, z_vshl_by_scalar, v128h, v128h, 1>;
617  def VESLF : BinaryVRSa<"veslf", 0xE730, z_vshl_by_scalar, v128f, v128f, 2>;
618  def VESLG : BinaryVRSa<"veslg", 0xE730, z_vshl_by_scalar, v128g, v128g, 3>;
619
620  // Element shift right arithmetic (with vector shift amount).
621  def VESRAV  : BinaryVRRcGeneric<"vesrav", 0xE77A>;
622  def VESRAVB : BinaryVRRc<"vesravb", 0xE77A, z_vsra, v128b, v128b, 0>;
623  def VESRAVH : BinaryVRRc<"vesravh", 0xE77A, z_vsra, v128h, v128h, 1>;
624  def VESRAVF : BinaryVRRc<"vesravf", 0xE77A, z_vsra, v128f, v128f, 2>;
625  def VESRAVG : BinaryVRRc<"vesravg", 0xE77A, z_vsra, v128g, v128g, 3>;
626
627  // Element shift right arithmetic (with scalar shift amount).
628  def VESRA  : BinaryVRSaGeneric<"vesra", 0xE73A>;
629  def VESRAB : BinaryVRSa<"vesrab", 0xE73A, z_vsra_by_scalar, v128b, v128b, 0>;
630  def VESRAH : BinaryVRSa<"vesrah", 0xE73A, z_vsra_by_scalar, v128h, v128h, 1>;
631  def VESRAF : BinaryVRSa<"vesraf", 0xE73A, z_vsra_by_scalar, v128f, v128f, 2>;
632  def VESRAG : BinaryVRSa<"vesrag", 0xE73A, z_vsra_by_scalar, v128g, v128g, 3>;
633
634  // Element shift right logical (with vector shift amount).
635  def VESRLV  : BinaryVRRcGeneric<"vesrlv", 0xE778>;
636  def VESRLVB : BinaryVRRc<"vesrlvb", 0xE778, z_vsrl, v128b, v128b, 0>;
637  def VESRLVH : BinaryVRRc<"vesrlvh", 0xE778, z_vsrl, v128h, v128h, 1>;
638  def VESRLVF : BinaryVRRc<"vesrlvf", 0xE778, z_vsrl, v128f, v128f, 2>;
639  def VESRLVG : BinaryVRRc<"vesrlvg", 0xE778, z_vsrl, v128g, v128g, 3>;
640
641  // Element shift right logical (with scalar shift amount).
642  def VESRL  : BinaryVRSaGeneric<"vesrl", 0xE738>;
643  def VESRLB : BinaryVRSa<"vesrlb", 0xE738, z_vsrl_by_scalar, v128b, v128b, 0>;
644  def VESRLH : BinaryVRSa<"vesrlh", 0xE738, z_vsrl_by_scalar, v128h, v128h, 1>;
645  def VESRLF : BinaryVRSa<"vesrlf", 0xE738, z_vsrl_by_scalar, v128f, v128f, 2>;
646  def VESRLG : BinaryVRSa<"vesrlg", 0xE738, z_vsrl_by_scalar, v128g, v128g, 3>;
647
648  // Shift left.
649  def VSL : BinaryVRRc<"vsl", 0xE774, int_s390_vsl, v128b, v128b>;
650
651  // Shift left by byte.
652  def VSLB : BinaryVRRc<"vslb", 0xE775, int_s390_vslb, v128b, v128b>;
653
654  // Shift left double by byte.
655  def VSLDB : TernaryVRId<"vsldb", 0xE777, z_shl_double, v128b, v128b, 0>;
656  def : Pat<(int_s390_vsldb VR128:$x, VR128:$y, imm32zx8:$z),
657            (VSLDB VR128:$x, VR128:$y, imm32zx8:$z)>;
658
659  // Shift right arithmetic.
660  def VSRA : BinaryVRRc<"vsra", 0xE77E, int_s390_vsra, v128b, v128b>;
661
662  // Shift right arithmetic by byte.
663  def VSRAB : BinaryVRRc<"vsrab", 0xE77F, int_s390_vsrab, v128b, v128b>;
664
665  // Shift right logical.
666  def VSRL : BinaryVRRc<"vsrl", 0xE77C, int_s390_vsrl, v128b, v128b>;
667
668  // Shift right logical by byte.
669  def VSRLB : BinaryVRRc<"vsrlb", 0xE77D, int_s390_vsrlb, v128b, v128b>;
670
671  // Subtract.
672  def VS  : BinaryVRRcGeneric<"vs", 0xE7F7>;
673  def VSB : BinaryVRRc<"vsb", 0xE7F7, sub, v128b, v128b, 0>;
674  def VSH : BinaryVRRc<"vsh", 0xE7F7, sub, v128h, v128h, 1>;
675  def VSF : BinaryVRRc<"vsf", 0xE7F7, sub, v128f, v128f, 2>;
676  def VSG : BinaryVRRc<"vsg", 0xE7F7, sub, v128g, v128g, 3>;
677  def VSQ : BinaryVRRc<"vsq", 0xE7F7, int_s390_vsq, v128q, v128q, 4>;
678
679  // Subtract compute borrow indication.
680  def VSCBI  : BinaryVRRcGeneric<"vscbi", 0xE7F5>;
681  def VSCBIB : BinaryVRRc<"vscbib", 0xE7F5, int_s390_vscbib, v128b, v128b, 0>;
682  def VSCBIH : BinaryVRRc<"vscbih", 0xE7F5, int_s390_vscbih, v128h, v128h, 1>;
683  def VSCBIF : BinaryVRRc<"vscbif", 0xE7F5, int_s390_vscbif, v128f, v128f, 2>;
684  def VSCBIG : BinaryVRRc<"vscbig", 0xE7F5, int_s390_vscbig, v128g, v128g, 3>;
685  def VSCBIQ : BinaryVRRc<"vscbiq", 0xE7F5, int_s390_vscbiq, v128q, v128q, 4>;
686
687  // Subtract with borrow indication.
688  def VSBI  : TernaryVRRdGeneric<"vsbi", 0xE7BF>;
689  def VSBIQ : TernaryVRRd<"vsbiq", 0xE7BF, int_s390_vsbiq, v128q, v128q, 4>;
690
691  // Subtract with borrow compute borrow indication.
692  def VSBCBI  : TernaryVRRdGeneric<"vsbcbi", 0xE7BD>;
693  def VSBCBIQ : TernaryVRRd<"vsbcbiq", 0xE7BD, int_s390_vsbcbiq,
694                            v128q, v128q, 4>;
695
696  // Sum across doubleword.
697  def VSUMG  : BinaryVRRcGeneric<"vsumg", 0xE765>;
698  def VSUMGH : BinaryVRRc<"vsumgh", 0xE765, z_vsum, v128g, v128h, 1>;
699  def VSUMGF : BinaryVRRc<"vsumgf", 0xE765, z_vsum, v128g, v128f, 2>;
700
701  // Sum across quadword.
702  def VSUMQ  : BinaryVRRcGeneric<"vsumq", 0xE767>;
703  def VSUMQF : BinaryVRRc<"vsumqf", 0xE767, z_vsum, v128q, v128f, 2>;
704  def VSUMQG : BinaryVRRc<"vsumqg", 0xE767, z_vsum, v128q, v128g, 3>;
705
706  // Sum across word.
707  def VSUM  : BinaryVRRcGeneric<"vsum", 0xE764>;
708  def VSUMB : BinaryVRRc<"vsumb", 0xE764, z_vsum, v128f, v128b, 0>;
709  def VSUMH : BinaryVRRc<"vsumh", 0xE764, z_vsum, v128f, v128h, 1>;
710}
711
712// Instantiate the bitwise ops for type TYPE.
713multiclass BitwiseVectorOps<ValueType type> {
714  let Predicates = [FeatureVector] in {
715    def : Pat<(type (and VR128:$x, VR128:$y)), (VN VR128:$x, VR128:$y)>;
716    def : Pat<(type (and VR128:$x, (z_vnot VR128:$y))),
717              (VNC VR128:$x, VR128:$y)>;
718    def : Pat<(type (or VR128:$x, VR128:$y)), (VO VR128:$x, VR128:$y)>;
719    def : Pat<(type (xor VR128:$x, VR128:$y)), (VX VR128:$x, VR128:$y)>;
720    def : Pat<(type (or (and VR128:$x, VR128:$z),
721                        (and VR128:$y, (z_vnot VR128:$z)))),
722              (VSEL VR128:$x, VR128:$y, VR128:$z)>;
723    def : Pat<(type (z_vnot (or VR128:$x, VR128:$y))),
724              (VNO VR128:$x, VR128:$y)>;
725    def : Pat<(type (z_vnot VR128:$x)), (VNO VR128:$x, VR128:$x)>;
726  }
727}
728
729defm : BitwiseVectorOps<v16i8>;
730defm : BitwiseVectorOps<v8i16>;
731defm : BitwiseVectorOps<v4i32>;
732defm : BitwiseVectorOps<v2i64>;
733
734// Instantiate additional patterns for absolute-related expressions on
735// type TYPE.  LC is the negate instruction for TYPE and LP is the absolute
736// instruction.
737multiclass IntegerAbsoluteVectorOps<ValueType type, Instruction lc,
738                                    Instruction lp, int shift> {
739  let Predicates = [FeatureVector] in {
740    def : Pat<(type (vselect (type (z_vicmph_zero VR128:$x)),
741                             (z_vneg VR128:$x), VR128:$x)),
742              (lc (lp VR128:$x))>;
743    def : Pat<(type (vselect (type (z_vnot (z_vicmph_zero VR128:$x))),
744                             VR128:$x, (z_vneg VR128:$x))),
745              (lc (lp VR128:$x))>;
746    def : Pat<(type (vselect (type (z_vicmpl_zero VR128:$x)),
747                             VR128:$x, (z_vneg VR128:$x))),
748              (lc (lp VR128:$x))>;
749    def : Pat<(type (vselect (type (z_vnot (z_vicmpl_zero VR128:$x))),
750                             (z_vneg VR128:$x), VR128:$x)),
751              (lc (lp VR128:$x))>;
752    def : Pat<(type (or (and (z_vsra_by_scalar VR128:$x, (i32 shift)),
753                             (z_vneg VR128:$x)),
754                        (and (z_vnot (z_vsra_by_scalar VR128:$x, (i32 shift))),
755                             VR128:$x))),
756              (lp VR128:$x)>;
757    def : Pat<(type (or (and (z_vsra_by_scalar VR128:$x, (i32 shift)),
758                             VR128:$x),
759                        (and (z_vnot (z_vsra_by_scalar VR128:$x, (i32 shift))),
760                             (z_vneg VR128:$x)))),
761              (lc (lp VR128:$x))>;
762  }
763}
764
765defm : IntegerAbsoluteVectorOps<v16i8, VLCB, VLPB, 7>;
766defm : IntegerAbsoluteVectorOps<v8i16, VLCH, VLPH, 15>;
767defm : IntegerAbsoluteVectorOps<v4i32, VLCF, VLPF, 31>;
768defm : IntegerAbsoluteVectorOps<v2i64, VLCG, VLPG, 63>;
769
770// Instantiate minimum- and maximum-related patterns for TYPE.  CMPH is the
771// signed or unsigned "set if greater than" comparison instruction and
772// MIN and MAX are the associated minimum and maximum instructions.
773multiclass IntegerMinMaxVectorOps<ValueType type, SDPatternOperator cmph,
774                                  Instruction min, Instruction max> {
775  let Predicates = [FeatureVector] in {
776    def : Pat<(type (vselect (cmph VR128:$x, VR128:$y), VR128:$x, VR128:$y)),
777              (max VR128:$x, VR128:$y)>;
778    def : Pat<(type (vselect (cmph VR128:$x, VR128:$y), VR128:$y, VR128:$x)),
779              (min VR128:$x, VR128:$y)>;
780    def : Pat<(type (vselect (z_vnot (cmph VR128:$x, VR128:$y)),
781                             VR128:$x, VR128:$y)),
782              (min VR128:$x, VR128:$y)>;
783    def : Pat<(type (vselect (z_vnot (cmph VR128:$x, VR128:$y)),
784                             VR128:$y, VR128:$x)),
785              (max VR128:$x, VR128:$y)>;
786  }
787}
788
789// Signed min/max.
790defm : IntegerMinMaxVectorOps<v16i8, z_vicmph, VMNB, VMXB>;
791defm : IntegerMinMaxVectorOps<v8i16, z_vicmph, VMNH, VMXH>;
792defm : IntegerMinMaxVectorOps<v4i32, z_vicmph, VMNF, VMXF>;
793defm : IntegerMinMaxVectorOps<v2i64, z_vicmph, VMNG, VMXG>;
794
795// Unsigned min/max.
796defm : IntegerMinMaxVectorOps<v16i8, z_vicmphl, VMNLB, VMXLB>;
797defm : IntegerMinMaxVectorOps<v8i16, z_vicmphl, VMNLH, VMXLH>;
798defm : IntegerMinMaxVectorOps<v4i32, z_vicmphl, VMNLF, VMXLF>;
799defm : IntegerMinMaxVectorOps<v2i64, z_vicmphl, VMNLG, VMXLG>;
800
801//===----------------------------------------------------------------------===//
802// Integer comparison
803//===----------------------------------------------------------------------===//
804
805let Predicates = [FeatureVector] in {
806  // Element compare.
807  let Defs = [CC] in {
808    def VEC  : CompareVRRaGeneric<"vec", 0xE7DB>;
809    def VECB : CompareVRRa<"vecb", 0xE7DB, null_frag, v128b, 0>;
810    def VECH : CompareVRRa<"vech", 0xE7DB, null_frag, v128h, 1>;
811    def VECF : CompareVRRa<"vecf", 0xE7DB, null_frag, v128f, 2>;
812    def VECG : CompareVRRa<"vecg", 0xE7DB, null_frag, v128g, 3>;
813  }
814
815  // Element compare logical.
816  let Defs = [CC] in {
817    def VECL  : CompareVRRaGeneric<"vecl", 0xE7D9>;
818    def VECLB : CompareVRRa<"veclb", 0xE7D9, null_frag, v128b, 0>;
819    def VECLH : CompareVRRa<"veclh", 0xE7D9, null_frag, v128h, 1>;
820    def VECLF : CompareVRRa<"veclf", 0xE7D9, null_frag, v128f, 2>;
821    def VECLG : CompareVRRa<"veclg", 0xE7D9, null_frag, v128g, 3>;
822  }
823
824  // Compare equal.
825  def  VCEQ  : BinaryVRRbSPairGeneric<"vceq", 0xE7F8>;
826  defm VCEQB : BinaryVRRbSPair<"vceqb", 0xE7F8, z_vicmpe, z_vicmpes,
827                               v128b, v128b, 0>;
828  defm VCEQH : BinaryVRRbSPair<"vceqh", 0xE7F8, z_vicmpe, z_vicmpes,
829                               v128h, v128h, 1>;
830  defm VCEQF : BinaryVRRbSPair<"vceqf", 0xE7F8, z_vicmpe, z_vicmpes,
831                               v128f, v128f, 2>;
832  defm VCEQG : BinaryVRRbSPair<"vceqg", 0xE7F8, z_vicmpe, z_vicmpes,
833                               v128g, v128g, 3>;
834
835  // Compare high.
836  def  VCH  : BinaryVRRbSPairGeneric<"vch", 0xE7FB>;
837  defm VCHB : BinaryVRRbSPair<"vchb", 0xE7FB, z_vicmph, z_vicmphs,
838                              v128b, v128b, 0>;
839  defm VCHH : BinaryVRRbSPair<"vchh", 0xE7FB, z_vicmph, z_vicmphs,
840                              v128h, v128h, 1>;
841  defm VCHF : BinaryVRRbSPair<"vchf", 0xE7FB, z_vicmph, z_vicmphs,
842                              v128f, v128f, 2>;
843  defm VCHG : BinaryVRRbSPair<"vchg", 0xE7FB, z_vicmph, z_vicmphs,
844                              v128g, v128g, 3>;
845
846  // Compare high logical.
847  def  VCHL  : BinaryVRRbSPairGeneric<"vchl", 0xE7F9>;
848  defm VCHLB : BinaryVRRbSPair<"vchlb", 0xE7F9, z_vicmphl, z_vicmphls,
849                               v128b, v128b, 0>;
850  defm VCHLH : BinaryVRRbSPair<"vchlh", 0xE7F9, z_vicmphl, z_vicmphls,
851                               v128h, v128h, 1>;
852  defm VCHLF : BinaryVRRbSPair<"vchlf", 0xE7F9, z_vicmphl, z_vicmphls,
853                               v128f, v128f, 2>;
854  defm VCHLG : BinaryVRRbSPair<"vchlg", 0xE7F9, z_vicmphl, z_vicmphls,
855                               v128g, v128g, 3>;
856
857  // Test under mask.
858  let Defs = [CC] in
859    def VTM : CompareVRRa<"vtm", 0xE7D8, z_vtm, v128b, 0>;
860}
861
862//===----------------------------------------------------------------------===//
863// Floating-point arithmetic
864//===----------------------------------------------------------------------===//
865
866// See comments in SystemZInstrFP.td for the suppression flags and
867// rounding modes.
868multiclass VectorRounding<Instruction insn, TypedReg tr> {
869  def : FPConversion<insn, frint,      tr, tr, 0, 0>;
870  def : FPConversion<insn, fnearbyint, tr, tr, 4, 0>;
871  def : FPConversion<insn, ffloor,     tr, tr, 4, 7>;
872  def : FPConversion<insn, fceil,      tr, tr, 4, 6>;
873  def : FPConversion<insn, ftrunc,     tr, tr, 4, 5>;
874  def : FPConversion<insn, fround,     tr, tr, 4, 1>;
875}
876
877let Predicates = [FeatureVector] in {
878  // Add.
879  def VFA   : BinaryVRRcFloatGeneric<"vfa", 0xE7E3>;
880  def VFADB : BinaryVRRc<"vfadb", 0xE7E3, fadd, v128db, v128db, 3, 0>;
881  def WFADB : BinaryVRRc<"wfadb", 0xE7E3, fadd, v64db, v64db, 3, 8>;
882
883  // Convert from fixed 64-bit.
884  def VCDG  : TernaryVRRaFloatGeneric<"vcdg", 0xE7C3>;
885  def VCDGB : TernaryVRRa<"vcdgb", 0xE7C3, null_frag, v128db, v128g, 3, 0>;
886  def WCDGB : TernaryVRRa<"wcdgb", 0xE7C3, null_frag, v64db, v64g, 3, 8>;
887  def : FPConversion<VCDGB, sint_to_fp, v128db, v128g, 0, 0>;
888
889  // Convert from logical 64-bit.
890  def VCDLG  : TernaryVRRaFloatGeneric<"vcdlg", 0xE7C1>;
891  def VCDLGB : TernaryVRRa<"vcdlgb", 0xE7C1, null_frag, v128db, v128g, 3, 0>;
892  def WCDLGB : TernaryVRRa<"wcdlgb", 0xE7C1, null_frag, v64db, v64g, 3, 8>;
893  def : FPConversion<VCDLGB, uint_to_fp, v128db, v128g, 0, 0>;
894
895  // Convert to fixed 64-bit.
896  def VCGD  : TernaryVRRaFloatGeneric<"vcgd", 0xE7C2>;
897  def VCGDB : TernaryVRRa<"vcgdb", 0xE7C2, null_frag, v128g, v128db, 3, 0>;
898  def WCGDB : TernaryVRRa<"wcgdb", 0xE7C2, null_frag, v64g, v64db, 3, 8>;
899  // Rounding mode should agree with SystemZInstrFP.td.
900  def : FPConversion<VCGDB, fp_to_sint, v128g, v128db, 0, 5>;
901
902  // Convert to logical 64-bit.
903  def VCLGD  : TernaryVRRaFloatGeneric<"vclgd", 0xE7C0>;
904  def VCLGDB : TernaryVRRa<"vclgdb", 0xE7C0, null_frag, v128g, v128db, 3, 0>;
905  def WCLGDB : TernaryVRRa<"wclgdb", 0xE7C0, null_frag, v64g, v64db, 3, 8>;
906  // Rounding mode should agree with SystemZInstrFP.td.
907  def : FPConversion<VCLGDB, fp_to_uint, v128g, v128db, 0, 5>;
908
909  // Divide.
910  def VFD   : BinaryVRRcFloatGeneric<"vfd", 0xE7E5>;
911  def VFDDB : BinaryVRRc<"vfddb", 0xE7E5, fdiv, v128db, v128db, 3, 0>;
912  def WFDDB : BinaryVRRc<"wfddb", 0xE7E5, fdiv, v64db, v64db, 3, 8>;
913
914  // Load FP integer.
915  def VFI   : TernaryVRRaFloatGeneric<"vfi", 0xE7C7>;
916  def VFIDB : TernaryVRRa<"vfidb", 0xE7C7, int_s390_vfidb, v128db, v128db, 3, 0>;
917  def WFIDB : TernaryVRRa<"wfidb", 0xE7C7, null_frag, v64db, v64db, 3, 8>;
918  defm : VectorRounding<VFIDB, v128db>;
919  defm : VectorRounding<WFIDB, v64db>;
920
921  // Load lengthened.
922  def VLDE  : UnaryVRRaFloatGeneric<"vlde", 0xE7C4>;
923  def VLDEB : UnaryVRRa<"vldeb", 0xE7C4, z_vextend, v128db, v128eb, 2, 0>;
924  def WLDEB : UnaryVRRa<"wldeb", 0xE7C4, fpextend, v64db, v32eb, 2, 8>;
925
926  // Load rounded,
927  def VLED  : TernaryVRRaFloatGeneric<"vled", 0xE7C5>;
928  def VLEDB : TernaryVRRa<"vledb", 0xE7C5, null_frag, v128eb, v128db, 3, 0>;
929  def WLEDB : TernaryVRRa<"wledb", 0xE7C5, null_frag, v32eb, v64db, 3, 8>;
930  def : Pat<(v4f32 (z_vround (v2f64 VR128:$src))), (VLEDB VR128:$src, 0, 0)>;
931  def : FPConversion<WLEDB, fpround, v32eb, v64db, 0, 0>;
932
933  // Multiply.
934  def VFM   : BinaryVRRcFloatGeneric<"vfm", 0xE7E7>;
935  def VFMDB : BinaryVRRc<"vfmdb", 0xE7E7, fmul, v128db, v128db, 3, 0>;
936  def WFMDB : BinaryVRRc<"wfmdb", 0xE7E7, fmul, v64db, v64db, 3, 8>;
937
938  // Multiply and add.
939  def VFMA   : TernaryVRReFloatGeneric<"vfma", 0xE78F>;
940  def VFMADB : TernaryVRRe<"vfmadb", 0xE78F, fma, v128db, v128db, 0, 3>;
941  def WFMADB : TernaryVRRe<"wfmadb", 0xE78F, fma, v64db, v64db, 8, 3>;
942
943  // Multiply and subtract.
944  def VFMS   : TernaryVRReFloatGeneric<"vfms", 0xE78E>;
945  def VFMSDB : TernaryVRRe<"vfmsdb", 0xE78E, fms, v128db, v128db, 0, 3>;
946  def WFMSDB : TernaryVRRe<"wfmsdb", 0xE78E, fms, v64db, v64db, 8, 3>;
947
948  // Perform sign operation.
949  def VFPSO   : BinaryVRRaFloatGeneric<"vfpso", 0xE7CC>;
950  def VFPSODB : BinaryVRRa<"vfpsodb", 0xE7CC, null_frag, v128db, v128db, 3, 0>;
951  def WFPSODB : BinaryVRRa<"wfpsodb", 0xE7CC, null_frag, v64db, v64db, 3, 8>;
952
953  // Load complement.
954  def VFLCDB : UnaryVRRa<"vflcdb", 0xE7CC, fneg, v128db, v128db, 3, 0, 0>;
955  def WFLCDB : UnaryVRRa<"wflcdb", 0xE7CC, fneg, v64db, v64db, 3, 8, 0>;
956
957  // Load negative.
958  def VFLNDB : UnaryVRRa<"vflndb", 0xE7CC, fnabs, v128db, v128db, 3, 0, 1>;
959  def WFLNDB : UnaryVRRa<"wflndb", 0xE7CC, fnabs, v64db, v64db, 3, 8, 1>;
960
961  // Load positive.
962  def VFLPDB : UnaryVRRa<"vflpdb", 0xE7CC, fabs, v128db, v128db, 3, 0, 2>;
963  def WFLPDB : UnaryVRRa<"wflpdb", 0xE7CC, fabs, v64db, v64db, 3, 8, 2>;
964
965  // Square root.
966  def VFSQ   : UnaryVRRaFloatGeneric<"vfsq", 0xE7CE>;
967  def VFSQDB : UnaryVRRa<"vfsqdb", 0xE7CE, fsqrt, v128db, v128db, 3, 0>;
968  def WFSQDB : UnaryVRRa<"wfsqdb", 0xE7CE, fsqrt, v64db, v64db, 3, 8>;
969
970  // Subtract.
971  def VFS   : BinaryVRRcFloatGeneric<"vfs", 0xE7E2>;
972  def VFSDB : BinaryVRRc<"vfsdb", 0xE7E2, fsub, v128db, v128db, 3, 0>;
973  def WFSDB : BinaryVRRc<"wfsdb", 0xE7E2, fsub, v64db, v64db, 3, 8>;
974
975  // Test data class immediate.
976  let Defs = [CC] in {
977    def VFTCI   : BinaryVRIeFloatGeneric<"vftci", 0xE74A>;
978    def VFTCIDB : BinaryVRIe<"vftcidb", 0xE74A, z_vftci, v128g, v128db, 3, 0>;
979    def WFTCIDB : BinaryVRIe<"wftcidb", 0xE74A, null_frag, v64g, v64db, 3, 8>;
980  }
981}
982
983//===----------------------------------------------------------------------===//
984// Floating-point comparison
985//===----------------------------------------------------------------------===//
986
987let Predicates = [FeatureVector] in {
988  // Compare scalar.
989  let Defs = [CC] in {
990    def WFC   : CompareVRRaFloatGeneric<"wfc", 0xE7CB>;
991    def WFCDB : CompareVRRa<"wfcdb", 0xE7CB, z_fcmp, v64db, 3>;
992  }
993
994  // Compare and signal scalar.
995  let Defs = [CC] in {
996    def WFK   : CompareVRRaFloatGeneric<"wfk", 0xE7CA>;
997    def WFKDB : CompareVRRa<"wfkdb", 0xE7CA, null_frag, v64db, 3>;
998  }
999
1000  // Compare equal.
1001  def  VFCE   : BinaryVRRcSPairFloatGeneric<"vfce", 0xE7E8>;
1002  defm VFCEDB : BinaryVRRcSPair<"vfcedb", 0xE7E8, z_vfcmpe, z_vfcmpes,
1003                                v128g, v128db, 3, 0>;
1004  defm WFCEDB : BinaryVRRcSPair<"wfcedb", 0xE7E8, null_frag, null_frag,
1005                                v64g, v64db, 3, 8>;
1006
1007  // Compare high.
1008  def  VFCH   : BinaryVRRcSPairFloatGeneric<"vfch", 0xE7EB>;
1009  defm VFCHDB : BinaryVRRcSPair<"vfchdb", 0xE7EB, z_vfcmph, z_vfcmphs,
1010                                v128g, v128db, 3, 0>;
1011  defm WFCHDB : BinaryVRRcSPair<"wfchdb", 0xE7EB, null_frag, null_frag,
1012                                v64g, v64db, 3, 8>;
1013
1014  // Compare high or equal.
1015  def  VFCHE   : BinaryVRRcSPairFloatGeneric<"vfche", 0xE7EA>;
1016  defm VFCHEDB : BinaryVRRcSPair<"vfchedb", 0xE7EA, z_vfcmphe, z_vfcmphes,
1017                                 v128g, v128db, 3, 0>;
1018  defm WFCHEDB : BinaryVRRcSPair<"wfchedb", 0xE7EA, null_frag, null_frag,
1019                                 v64g, v64db, 3, 8>;
1020}
1021
1022//===----------------------------------------------------------------------===//
1023// Conversions
1024//===----------------------------------------------------------------------===//
1025
1026def : Pat<(v16i8 (bitconvert (v8i16 VR128:$src))), (v16i8 VR128:$src)>;
1027def : Pat<(v16i8 (bitconvert (v4i32 VR128:$src))), (v16i8 VR128:$src)>;
1028def : Pat<(v16i8 (bitconvert (v2i64 VR128:$src))), (v16i8 VR128:$src)>;
1029def : Pat<(v16i8 (bitconvert (v4f32 VR128:$src))), (v16i8 VR128:$src)>;
1030def : Pat<(v16i8 (bitconvert (v2f64 VR128:$src))), (v16i8 VR128:$src)>;
1031
1032def : Pat<(v8i16 (bitconvert (v16i8 VR128:$src))), (v8i16 VR128:$src)>;
1033def : Pat<(v8i16 (bitconvert (v4i32 VR128:$src))), (v8i16 VR128:$src)>;
1034def : Pat<(v8i16 (bitconvert (v2i64 VR128:$src))), (v8i16 VR128:$src)>;
1035def : Pat<(v8i16 (bitconvert (v4f32 VR128:$src))), (v8i16 VR128:$src)>;
1036def : Pat<(v8i16 (bitconvert (v2f64 VR128:$src))), (v8i16 VR128:$src)>;
1037
1038def : Pat<(v4i32 (bitconvert (v16i8 VR128:$src))), (v4i32 VR128:$src)>;
1039def : Pat<(v4i32 (bitconvert (v8i16 VR128:$src))), (v4i32 VR128:$src)>;
1040def : Pat<(v4i32 (bitconvert (v2i64 VR128:$src))), (v4i32 VR128:$src)>;
1041def : Pat<(v4i32 (bitconvert (v4f32 VR128:$src))), (v4i32 VR128:$src)>;
1042def : Pat<(v4i32 (bitconvert (v2f64 VR128:$src))), (v4i32 VR128:$src)>;
1043
1044def : Pat<(v2i64 (bitconvert (v16i8 VR128:$src))), (v2i64 VR128:$src)>;
1045def : Pat<(v2i64 (bitconvert (v8i16 VR128:$src))), (v2i64 VR128:$src)>;
1046def : Pat<(v2i64 (bitconvert (v4i32 VR128:$src))), (v2i64 VR128:$src)>;
1047def : Pat<(v2i64 (bitconvert (v4f32 VR128:$src))), (v2i64 VR128:$src)>;
1048def : Pat<(v2i64 (bitconvert (v2f64 VR128:$src))), (v2i64 VR128:$src)>;
1049
1050def : Pat<(v4f32 (bitconvert (v16i8 VR128:$src))), (v4f32 VR128:$src)>;
1051def : Pat<(v4f32 (bitconvert (v8i16 VR128:$src))), (v4f32 VR128:$src)>;
1052def : Pat<(v4f32 (bitconvert (v4i32 VR128:$src))), (v4f32 VR128:$src)>;
1053def : Pat<(v4f32 (bitconvert (v2i64 VR128:$src))), (v4f32 VR128:$src)>;
1054def : Pat<(v4f32 (bitconvert (v2f64 VR128:$src))), (v4f32 VR128:$src)>;
1055
1056def : Pat<(v2f64 (bitconvert (v16i8 VR128:$src))), (v2f64 VR128:$src)>;
1057def : Pat<(v2f64 (bitconvert (v8i16 VR128:$src))), (v2f64 VR128:$src)>;
1058def : Pat<(v2f64 (bitconvert (v4i32 VR128:$src))), (v2f64 VR128:$src)>;
1059def : Pat<(v2f64 (bitconvert (v2i64 VR128:$src))), (v2f64 VR128:$src)>;
1060def : Pat<(v2f64 (bitconvert (v4f32 VR128:$src))), (v2f64 VR128:$src)>;
1061
1062//===----------------------------------------------------------------------===//
1063// Replicating scalars
1064//===----------------------------------------------------------------------===//
1065
1066// Define patterns for replicating a scalar GR32 into a vector of type TYPE.
1067// INDEX is 8 minus the element size in bytes.
1068class VectorReplicateScalar<ValueType type, Instruction insn, bits<16> index>
1069  : Pat<(type (z_replicate GR32:$scalar)),
1070        (insn (VLVGP32 GR32:$scalar, GR32:$scalar), index)>;
1071
1072def : VectorReplicateScalar<v16i8, VREPB, 7>;
1073def : VectorReplicateScalar<v8i16, VREPH, 3>;
1074def : VectorReplicateScalar<v4i32, VREPF, 1>;
1075
1076// i64 replications are just a single isntruction.
1077def : Pat<(v2i64 (z_replicate GR64:$scalar)),
1078          (VLVGP GR64:$scalar, GR64:$scalar)>;
1079
1080//===----------------------------------------------------------------------===//
1081// Floating-point insertion and extraction
1082//===----------------------------------------------------------------------===//
1083
1084// Moving 32-bit values between GPRs and FPRs can be done using VLVGF
1085// and VLGVF.
1086let Predicates = [FeatureVector] in {
1087  def LEFR : UnaryAliasVRS<VR32, GR32>;
1088  def LFER : UnaryAliasVRS<GR64, VR32>;
1089  def : Pat<(f32 (bitconvert (i32 GR32:$src))), (LEFR GR32:$src)>;
1090  def : Pat<(i32 (bitconvert (f32 VR32:$src))),
1091            (EXTRACT_SUBREG (LFER VR32:$src), subreg_l32)>;
1092}
1093
1094// Floating-point values are stored in element 0 of the corresponding
1095// vector register.  Scalar to vector conversion is just a subreg and
1096// scalar replication can just replicate element 0 of the vector register.
1097multiclass ScalarToVectorFP<Instruction vrep, ValueType vt, RegisterOperand cls,
1098                            SubRegIndex subreg> {
1099  def : Pat<(vt (scalar_to_vector cls:$scalar)),
1100            (INSERT_SUBREG (vt (IMPLICIT_DEF)), cls:$scalar, subreg)>;
1101  def : Pat<(vt (z_replicate cls:$scalar)),
1102            (vrep (INSERT_SUBREG (vt (IMPLICIT_DEF)), cls:$scalar,
1103                                 subreg), 0)>;
1104}
1105defm : ScalarToVectorFP<VREPF, v4f32, FP32, subreg_r32>;
1106defm : ScalarToVectorFP<VREPG, v2f64, FP64, subreg_r64>;
1107
1108// Match v2f64 insertions.  The AddedComplexity counters the 3 added by
1109// TableGen for the base register operand in VLVG-based integer insertions
1110// and ensures that this version is strictly better.
1111let AddedComplexity = 4 in {
1112  def : Pat<(z_vector_insert (v2f64 VR128:$vec), FP64:$elt, 0),
1113            (VPDI (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FP64:$elt,
1114                                 subreg_r64), VR128:$vec, 1)>;
1115  def : Pat<(z_vector_insert (v2f64 VR128:$vec), FP64:$elt, 1),
1116            (VPDI VR128:$vec, (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FP64:$elt,
1117                                             subreg_r64), 0)>;
1118}
1119
1120// We extract floating-point element X by replicating (for elements other
1121// than 0) and then taking a high subreg.  The AddedComplexity counters the
1122// 3 added by TableGen for the base register operand in VLGV-based integer
1123// extractions and ensures that this version is strictly better.
1124let AddedComplexity = 4 in {
1125  def : Pat<(f32 (z_vector_extract (v4f32 VR128:$vec), 0)),
1126            (EXTRACT_SUBREG VR128:$vec, subreg_r32)>;
1127  def : Pat<(f32 (z_vector_extract (v4f32 VR128:$vec), imm32zx2:$index)),
1128            (EXTRACT_SUBREG (VREPF VR128:$vec, imm32zx2:$index), subreg_r32)>;
1129
1130  def : Pat<(f64 (z_vector_extract (v2f64 VR128:$vec), 0)),
1131            (EXTRACT_SUBREG VR128:$vec, subreg_r64)>;
1132  def : Pat<(f64 (z_vector_extract (v2f64 VR128:$vec), imm32zx1:$index)),
1133            (EXTRACT_SUBREG (VREPG VR128:$vec, imm32zx1:$index), subreg_r64)>;
1134}
1135
1136//===----------------------------------------------------------------------===//
1137// String instructions
1138//===----------------------------------------------------------------------===//
1139
1140let Predicates = [FeatureVector] in {
1141  defm VFAE  : TernaryOptVRRbSPairGeneric<"vfae", 0xE782>;
1142  defm VFAEB : TernaryOptVRRbSPair<"vfaeb", 0xE782, int_s390_vfaeb,
1143                                   z_vfae_cc, v128b, v128b, 0>;
1144  defm VFAEH : TernaryOptVRRbSPair<"vfaeh", 0xE782, int_s390_vfaeh,
1145                                   z_vfae_cc, v128h, v128h, 1>;
1146  defm VFAEF : TernaryOptVRRbSPair<"vfaef", 0xE782, int_s390_vfaef,
1147                                   z_vfae_cc, v128f, v128f, 2>;
1148  defm VFAEZB : TernaryOptVRRbSPair<"vfaezb", 0xE782, int_s390_vfaezb,
1149                                    z_vfaez_cc, v128b, v128b, 0, 2>;
1150  defm VFAEZH : TernaryOptVRRbSPair<"vfaezh", 0xE782, int_s390_vfaezh,
1151                                    z_vfaez_cc, v128h, v128h, 1, 2>;
1152  defm VFAEZF : TernaryOptVRRbSPair<"vfaezf", 0xE782, int_s390_vfaezf,
1153                                    z_vfaez_cc, v128f, v128f, 2, 2>;
1154
1155  defm VFEE  : BinaryExtraVRRbSPairGeneric<"vfee", 0xE780>;
1156  defm VFEEB : BinaryExtraVRRbSPair<"vfeeb", 0xE780, int_s390_vfeeb,
1157                                    z_vfee_cc, v128b, v128b, 0>;
1158  defm VFEEH : BinaryExtraVRRbSPair<"vfeeh", 0xE780, int_s390_vfeeh,
1159                                    z_vfee_cc, v128h, v128h, 1>;
1160  defm VFEEF : BinaryExtraVRRbSPair<"vfeef", 0xE780, int_s390_vfeef,
1161                                    z_vfee_cc, v128f, v128f, 2>;
1162  defm VFEEZB : BinaryVRRbSPair<"vfeezb", 0xE780, int_s390_vfeezb,
1163                                z_vfeez_cc, v128b, v128b, 0, 2>;
1164  defm VFEEZH : BinaryVRRbSPair<"vfeezh", 0xE780, int_s390_vfeezh,
1165                                z_vfeez_cc, v128h, v128h, 1, 2>;
1166  defm VFEEZF : BinaryVRRbSPair<"vfeezf", 0xE780, int_s390_vfeezf,
1167                                z_vfeez_cc, v128f, v128f, 2, 2>;
1168
1169  defm VFENE  : BinaryExtraVRRbSPairGeneric<"vfene", 0xE781>;
1170  defm VFENEB : BinaryExtraVRRbSPair<"vfeneb", 0xE781, int_s390_vfeneb,
1171                                     z_vfene_cc, v128b, v128b, 0>;
1172  defm VFENEH : BinaryExtraVRRbSPair<"vfeneh", 0xE781, int_s390_vfeneh,
1173                                     z_vfene_cc, v128h, v128h, 1>;
1174  defm VFENEF : BinaryExtraVRRbSPair<"vfenef", 0xE781, int_s390_vfenef,
1175                                     z_vfene_cc, v128f, v128f, 2>;
1176  defm VFENEZB : BinaryVRRbSPair<"vfenezb", 0xE781, int_s390_vfenezb,
1177                                 z_vfenez_cc, v128b, v128b, 0, 2>;
1178  defm VFENEZH : BinaryVRRbSPair<"vfenezh", 0xE781, int_s390_vfenezh,
1179                                 z_vfenez_cc, v128h, v128h, 1, 2>;
1180  defm VFENEZF : BinaryVRRbSPair<"vfenezf", 0xE781, int_s390_vfenezf,
1181                                 z_vfenez_cc, v128f, v128f, 2, 2>;
1182
1183  defm VISTR  : UnaryExtraVRRaSPairGeneric<"vistr", 0xE75C>;
1184  defm VISTRB : UnaryExtraVRRaSPair<"vistrb", 0xE75C, int_s390_vistrb,
1185                                    z_vistr_cc, v128b, v128b, 0>;
1186  defm VISTRH : UnaryExtraVRRaSPair<"vistrh", 0xE75C, int_s390_vistrh,
1187                                    z_vistr_cc, v128h, v128h, 1>;
1188  defm VISTRF : UnaryExtraVRRaSPair<"vistrf", 0xE75C, int_s390_vistrf,
1189                                    z_vistr_cc, v128f, v128f, 2>;
1190
1191  defm VSTRC  : QuaternaryOptVRRdSPairGeneric<"vstrc", 0xE78A>;
1192  defm VSTRCB : QuaternaryOptVRRdSPair<"vstrcb", 0xE78A, int_s390_vstrcb,
1193                                       z_vstrc_cc, v128b, v128b, 0>;
1194  defm VSTRCH : QuaternaryOptVRRdSPair<"vstrch", 0xE78A, int_s390_vstrch,
1195                                       z_vstrc_cc, v128h, v128h, 1>;
1196  defm VSTRCF : QuaternaryOptVRRdSPair<"vstrcf", 0xE78A, int_s390_vstrcf,
1197                                       z_vstrc_cc, v128f, v128f, 2>;
1198  defm VSTRCZB : QuaternaryOptVRRdSPair<"vstrczb", 0xE78A, int_s390_vstrczb,
1199                                        z_vstrcz_cc, v128b, v128b, 0, 2>;
1200  defm VSTRCZH : QuaternaryOptVRRdSPair<"vstrczh", 0xE78A, int_s390_vstrczh,
1201                                        z_vstrcz_cc, v128h, v128h, 1, 2>;
1202  defm VSTRCZF : QuaternaryOptVRRdSPair<"vstrczf", 0xE78A, int_s390_vstrczf,
1203                                        z_vstrcz_cc, v128f, v128f, 2, 2>;
1204}
1205