1 //===-- SystemZInstrInfo.cpp - SystemZ instruction information ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the SystemZ implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SystemZInstrInfo.h"
14 #include "MCTargetDesc/SystemZMCTargetDesc.h"
15 #include "SystemZ.h"
16 #include "SystemZInstrBuilder.h"
17 #include "SystemZSubtarget.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/CodeGen/LiveInterval.h"
20 #include "llvm/CodeGen/LiveIntervals.h"
21 #include "llvm/CodeGen/LiveVariables.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstr.h"
26 #include "llvm/CodeGen/MachineMemOperand.h"
27 #include "llvm/CodeGen/MachineOperand.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/SlotIndexes.h"
30 #include "llvm/CodeGen/TargetInstrInfo.h"
31 #include "llvm/CodeGen/TargetSubtargetInfo.h"
32 #include "llvm/MC/MCInstrDesc.h"
33 #include "llvm/MC/MCRegisterInfo.h"
34 #include "llvm/Support/BranchProbability.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Target/TargetMachine.h"
38 #include <cassert>
39 #include <cstdint>
40 #include <iterator>
41 
42 using namespace llvm;
43 
44 #define GET_INSTRINFO_CTOR_DTOR
45 #define GET_INSTRMAP_INFO
46 #include "SystemZGenInstrInfo.inc"
47 
48 #define DEBUG_TYPE "systemz-II"
49 
50 // Return a mask with Count low bits set.
51 static uint64_t allOnes(unsigned int Count) {
52   return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1;
53 }
54 
55 // Pin the vtable to this file.
56 void SystemZInstrInfo::anchor() {}
57 
58 SystemZInstrInfo::SystemZInstrInfo(SystemZSubtarget &sti)
59   : SystemZGenInstrInfo(SystemZ::ADJCALLSTACKDOWN, SystemZ::ADJCALLSTACKUP),
60     RI(), STI(sti) {
61 }
62 
63 // MI is a 128-bit load or store.  Split it into two 64-bit loads or stores,
64 // each having the opcode given by NewOpcode.
65 void SystemZInstrInfo::splitMove(MachineBasicBlock::iterator MI,
66                                  unsigned NewOpcode) const {
67   MachineBasicBlock *MBB = MI->getParent();
68   MachineFunction &MF = *MBB->getParent();
69 
70   // Get two load or store instructions.  Use the original instruction for one
71   // of them (arbitrarily the second here) and create a clone for the other.
72   MachineInstr *EarlierMI = MF.CloneMachineInstr(&*MI);
73   MBB->insert(MI, EarlierMI);
74 
75   // Set up the two 64-bit registers and remember super reg and its flags.
76   MachineOperand &HighRegOp = EarlierMI->getOperand(0);
77   MachineOperand &LowRegOp = MI->getOperand(0);
78   Register Reg128 = LowRegOp.getReg();
79   unsigned Reg128Killed = getKillRegState(LowRegOp.isKill());
80   unsigned Reg128Undef  = getUndefRegState(LowRegOp.isUndef());
81   HighRegOp.setReg(RI.getSubReg(HighRegOp.getReg(), SystemZ::subreg_h64));
82   LowRegOp.setReg(RI.getSubReg(LowRegOp.getReg(), SystemZ::subreg_l64));
83 
84   if (MI->mayStore()) {
85     // Add implicit uses of the super register in case one of the subregs is
86     // undefined. We could track liveness and skip storing an undefined
87     // subreg, but this is hopefully rare (discovered with llvm-stress).
88     // If Reg128 was killed, set kill flag on MI.
89     unsigned Reg128UndefImpl = (Reg128Undef | RegState::Implicit);
90     MachineInstrBuilder(MF, EarlierMI).addReg(Reg128, Reg128UndefImpl);
91     MachineInstrBuilder(MF, MI).addReg(Reg128, (Reg128UndefImpl | Reg128Killed));
92   }
93 
94   // The address in the first (high) instruction is already correct.
95   // Adjust the offset in the second (low) instruction.
96   MachineOperand &HighOffsetOp = EarlierMI->getOperand(2);
97   MachineOperand &LowOffsetOp = MI->getOperand(2);
98   LowOffsetOp.setImm(LowOffsetOp.getImm() + 8);
99 
100   // Clear the kill flags on the registers in the first instruction.
101   if (EarlierMI->getOperand(0).isReg() && EarlierMI->getOperand(0).isUse())
102     EarlierMI->getOperand(0).setIsKill(false);
103   EarlierMI->getOperand(1).setIsKill(false);
104   EarlierMI->getOperand(3).setIsKill(false);
105 
106   // Set the opcodes.
107   unsigned HighOpcode = getOpcodeForOffset(NewOpcode, HighOffsetOp.getImm());
108   unsigned LowOpcode = getOpcodeForOffset(NewOpcode, LowOffsetOp.getImm());
109   assert(HighOpcode && LowOpcode && "Both offsets should be in range");
110 
111   EarlierMI->setDesc(get(HighOpcode));
112   MI->setDesc(get(LowOpcode));
113 }
114 
115 // Split ADJDYNALLOC instruction MI.
116 void SystemZInstrInfo::splitAdjDynAlloc(MachineBasicBlock::iterator MI) const {
117   MachineBasicBlock *MBB = MI->getParent();
118   MachineFunction &MF = *MBB->getParent();
119   MachineFrameInfo &MFFrame = MF.getFrameInfo();
120   MachineOperand &OffsetMO = MI->getOperand(2);
121 
122   uint64_t Offset = (MFFrame.getMaxCallFrameSize() +
123                      SystemZMC::CallFrameSize +
124                      OffsetMO.getImm());
125   unsigned NewOpcode = getOpcodeForOffset(SystemZ::LA, Offset);
126   assert(NewOpcode && "No support for huge argument lists yet");
127   MI->setDesc(get(NewOpcode));
128   OffsetMO.setImm(Offset);
129 }
130 
131 // MI is an RI-style pseudo instruction.  Replace it with LowOpcode
132 // if the first operand is a low GR32 and HighOpcode if the first operand
133 // is a high GR32.  ConvertHigh is true if LowOpcode takes a signed operand
134 // and HighOpcode takes an unsigned 32-bit operand.  In those cases,
135 // MI has the same kind of operand as LowOpcode, so needs to be converted
136 // if HighOpcode is used.
137 void SystemZInstrInfo::expandRIPseudo(MachineInstr &MI, unsigned LowOpcode,
138                                       unsigned HighOpcode,
139                                       bool ConvertHigh) const {
140   Register Reg = MI.getOperand(0).getReg();
141   bool IsHigh = SystemZ::isHighReg(Reg);
142   MI.setDesc(get(IsHigh ? HighOpcode : LowOpcode));
143   if (IsHigh && ConvertHigh)
144     MI.getOperand(1).setImm(uint32_t(MI.getOperand(1).getImm()));
145 }
146 
147 // MI is a three-operand RIE-style pseudo instruction.  Replace it with
148 // LowOpcodeK if the registers are both low GR32s, otherwise use a move
149 // followed by HighOpcode or LowOpcode, depending on whether the target
150 // is a high or low GR32.
151 void SystemZInstrInfo::expandRIEPseudo(MachineInstr &MI, unsigned LowOpcode,
152                                        unsigned LowOpcodeK,
153                                        unsigned HighOpcode) const {
154   Register DestReg = MI.getOperand(0).getReg();
155   Register SrcReg = MI.getOperand(1).getReg();
156   bool DestIsHigh = SystemZ::isHighReg(DestReg);
157   bool SrcIsHigh = SystemZ::isHighReg(SrcReg);
158   if (!DestIsHigh && !SrcIsHigh)
159     MI.setDesc(get(LowOpcodeK));
160   else {
161     if (DestReg != SrcReg) {
162       emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(), DestReg, SrcReg,
163                     SystemZ::LR, 32, MI.getOperand(1).isKill(),
164                     MI.getOperand(1).isUndef());
165       MI.getOperand(1).setReg(DestReg);
166     }
167     MI.setDesc(get(DestIsHigh ? HighOpcode : LowOpcode));
168     MI.tieOperands(0, 1);
169   }
170 }
171 
172 // MI is an RXY-style pseudo instruction.  Replace it with LowOpcode
173 // if the first operand is a low GR32 and HighOpcode if the first operand
174 // is a high GR32.
175 void SystemZInstrInfo::expandRXYPseudo(MachineInstr &MI, unsigned LowOpcode,
176                                        unsigned HighOpcode) const {
177   Register Reg = MI.getOperand(0).getReg();
178   unsigned Opcode = getOpcodeForOffset(
179       SystemZ::isHighReg(Reg) ? HighOpcode : LowOpcode,
180       MI.getOperand(2).getImm());
181   MI.setDesc(get(Opcode));
182 }
183 
184 // MI is a load-on-condition pseudo instruction with a single register
185 // (source or destination) operand.  Replace it with LowOpcode if the
186 // register is a low GR32 and HighOpcode if the register is a high GR32.
187 void SystemZInstrInfo::expandLOCPseudo(MachineInstr &MI, unsigned LowOpcode,
188                                        unsigned HighOpcode) const {
189   Register Reg = MI.getOperand(0).getReg();
190   unsigned Opcode = SystemZ::isHighReg(Reg) ? HighOpcode : LowOpcode;
191   MI.setDesc(get(Opcode));
192 }
193 
194 // MI is an RR-style pseudo instruction that zero-extends the low Size bits
195 // of one GRX32 into another.  Replace it with LowOpcode if both operands
196 // are low registers, otherwise use RISB[LH]G.
197 void SystemZInstrInfo::expandZExtPseudo(MachineInstr &MI, unsigned LowOpcode,
198                                         unsigned Size) const {
199   MachineInstrBuilder MIB =
200     emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(),
201                MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), LowOpcode,
202                Size, MI.getOperand(1).isKill(), MI.getOperand(1).isUndef());
203 
204   // Keep the remaining operands as-is.
205   for (unsigned I = 2; I < MI.getNumOperands(); ++I)
206     MIB.add(MI.getOperand(I));
207 
208   MI.eraseFromParent();
209 }
210 
211 void SystemZInstrInfo::expandLoadStackGuard(MachineInstr *MI) const {
212   MachineBasicBlock *MBB = MI->getParent();
213   MachineFunction &MF = *MBB->getParent();
214   const Register Reg64 = MI->getOperand(0).getReg();
215   const Register Reg32 = RI.getSubReg(Reg64, SystemZ::subreg_l32);
216 
217   // EAR can only load the low subregister so us a shift for %a0 to produce
218   // the GR containing %a0 and %a1.
219 
220   // ear <reg>, %a0
221   BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::EAR), Reg32)
222     .addReg(SystemZ::A0)
223     .addReg(Reg64, RegState::ImplicitDefine);
224 
225   // sllg <reg>, <reg>, 32
226   BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::SLLG), Reg64)
227     .addReg(Reg64)
228     .addReg(0)
229     .addImm(32);
230 
231   // ear <reg>, %a1
232   BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::EAR), Reg32)
233     .addReg(SystemZ::A1);
234 
235   // lg <reg>, 40(<reg>)
236   MI->setDesc(get(SystemZ::LG));
237   MachineInstrBuilder(MF, MI).addReg(Reg64).addImm(40).addReg(0);
238 }
239 
240 // Emit a zero-extending move from 32-bit GPR SrcReg to 32-bit GPR
241 // DestReg before MBBI in MBB.  Use LowLowOpcode when both DestReg and SrcReg
242 // are low registers, otherwise use RISB[LH]G.  Size is the number of bits
243 // taken from the low end of SrcReg (8 for LLCR, 16 for LLHR and 32 for LR).
244 // KillSrc is true if this move is the last use of SrcReg.
245 MachineInstrBuilder
246 SystemZInstrInfo::emitGRX32Move(MachineBasicBlock &MBB,
247                                 MachineBasicBlock::iterator MBBI,
248                                 const DebugLoc &DL, unsigned DestReg,
249                                 unsigned SrcReg, unsigned LowLowOpcode,
250                                 unsigned Size, bool KillSrc,
251                                 bool UndefSrc) const {
252   unsigned Opcode;
253   bool DestIsHigh = SystemZ::isHighReg(DestReg);
254   bool SrcIsHigh = SystemZ::isHighReg(SrcReg);
255   if (DestIsHigh && SrcIsHigh)
256     Opcode = SystemZ::RISBHH;
257   else if (DestIsHigh && !SrcIsHigh)
258     Opcode = SystemZ::RISBHL;
259   else if (!DestIsHigh && SrcIsHigh)
260     Opcode = SystemZ::RISBLH;
261   else {
262     return BuildMI(MBB, MBBI, DL, get(LowLowOpcode), DestReg)
263       .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc));
264   }
265   unsigned Rotate = (DestIsHigh != SrcIsHigh ? 32 : 0);
266   return BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
267     .addReg(DestReg, RegState::Undef)
268     .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc))
269     .addImm(32 - Size).addImm(128 + 31).addImm(Rotate);
270 }
271 
272 MachineInstr *SystemZInstrInfo::commuteInstructionImpl(MachineInstr &MI,
273                                                        bool NewMI,
274                                                        unsigned OpIdx1,
275                                                        unsigned OpIdx2) const {
276   auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & {
277     if (NewMI)
278       return *MI.getParent()->getParent()->CloneMachineInstr(&MI);
279     return MI;
280   };
281 
282   switch (MI.getOpcode()) {
283   case SystemZ::SELRMux:
284   case SystemZ::SELFHR:
285   case SystemZ::SELR:
286   case SystemZ::SELGR:
287   case SystemZ::LOCRMux:
288   case SystemZ::LOCFHR:
289   case SystemZ::LOCR:
290   case SystemZ::LOCGR: {
291     auto &WorkingMI = cloneIfNew(MI);
292     // Invert condition.
293     unsigned CCValid = WorkingMI.getOperand(3).getImm();
294     unsigned CCMask = WorkingMI.getOperand(4).getImm();
295     WorkingMI.getOperand(4).setImm(CCMask ^ CCValid);
296     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
297                                                    OpIdx1, OpIdx2);
298   }
299   default:
300     return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
301   }
302 }
303 
304 // If MI is a simple load or store for a frame object, return the register
305 // it loads or stores and set FrameIndex to the index of the frame object.
306 // Return 0 otherwise.
307 //
308 // Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
309 static int isSimpleMove(const MachineInstr &MI, int &FrameIndex,
310                         unsigned Flag) {
311   const MCInstrDesc &MCID = MI.getDesc();
312   if ((MCID.TSFlags & Flag) && MI.getOperand(1).isFI() &&
313       MI.getOperand(2).getImm() == 0 && MI.getOperand(3).getReg() == 0) {
314     FrameIndex = MI.getOperand(1).getIndex();
315     return MI.getOperand(0).getReg();
316   }
317   return 0;
318 }
319 
320 unsigned SystemZInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
321                                                int &FrameIndex) const {
322   return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXLoad);
323 }
324 
325 unsigned SystemZInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
326                                               int &FrameIndex) const {
327   return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXStore);
328 }
329 
330 bool SystemZInstrInfo::isStackSlotCopy(const MachineInstr &MI,
331                                        int &DestFrameIndex,
332                                        int &SrcFrameIndex) const {
333   // Check for MVC 0(Length,FI1),0(FI2)
334   const MachineFrameInfo &MFI = MI.getParent()->getParent()->getFrameInfo();
335   if (MI.getOpcode() != SystemZ::MVC || !MI.getOperand(0).isFI() ||
336       MI.getOperand(1).getImm() != 0 || !MI.getOperand(3).isFI() ||
337       MI.getOperand(4).getImm() != 0)
338     return false;
339 
340   // Check that Length covers the full slots.
341   int64_t Length = MI.getOperand(2).getImm();
342   unsigned FI1 = MI.getOperand(0).getIndex();
343   unsigned FI2 = MI.getOperand(3).getIndex();
344   if (MFI.getObjectSize(FI1) != Length ||
345       MFI.getObjectSize(FI2) != Length)
346     return false;
347 
348   DestFrameIndex = FI1;
349   SrcFrameIndex = FI2;
350   return true;
351 }
352 
353 bool SystemZInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
354                                      MachineBasicBlock *&TBB,
355                                      MachineBasicBlock *&FBB,
356                                      SmallVectorImpl<MachineOperand> &Cond,
357                                      bool AllowModify) const {
358   // Most of the code and comments here are boilerplate.
359 
360   // Start from the bottom of the block and work up, examining the
361   // terminator instructions.
362   MachineBasicBlock::iterator I = MBB.end();
363   while (I != MBB.begin()) {
364     --I;
365     if (I->isDebugInstr())
366       continue;
367 
368     // Working from the bottom, when we see a non-terminator instruction, we're
369     // done.
370     if (!isUnpredicatedTerminator(*I))
371       break;
372 
373     // A terminator that isn't a branch can't easily be handled by this
374     // analysis.
375     if (!I->isBranch())
376       return true;
377 
378     // Can't handle indirect branches.
379     SystemZII::Branch Branch(getBranchInfo(*I));
380     if (!Branch.hasMBBTarget())
381       return true;
382 
383     // Punt on compound branches.
384     if (Branch.Type != SystemZII::BranchNormal)
385       return true;
386 
387     if (Branch.CCMask == SystemZ::CCMASK_ANY) {
388       // Handle unconditional branches.
389       if (!AllowModify) {
390         TBB = Branch.getMBBTarget();
391         continue;
392       }
393 
394       // If the block has any instructions after a JMP, delete them.
395       while (std::next(I) != MBB.end())
396         std::next(I)->eraseFromParent();
397 
398       Cond.clear();
399       FBB = nullptr;
400 
401       // Delete the JMP if it's equivalent to a fall-through.
402       if (MBB.isLayoutSuccessor(Branch.getMBBTarget())) {
403         TBB = nullptr;
404         I->eraseFromParent();
405         I = MBB.end();
406         continue;
407       }
408 
409       // TBB is used to indicate the unconditinal destination.
410       TBB = Branch.getMBBTarget();
411       continue;
412     }
413 
414     // Working from the bottom, handle the first conditional branch.
415     if (Cond.empty()) {
416       // FIXME: add X86-style branch swap
417       FBB = TBB;
418       TBB = Branch.getMBBTarget();
419       Cond.push_back(MachineOperand::CreateImm(Branch.CCValid));
420       Cond.push_back(MachineOperand::CreateImm(Branch.CCMask));
421       continue;
422     }
423 
424     // Handle subsequent conditional branches.
425     assert(Cond.size() == 2 && TBB && "Should have seen a conditional branch");
426 
427     // Only handle the case where all conditional branches branch to the same
428     // destination.
429     if (TBB != Branch.getMBBTarget())
430       return true;
431 
432     // If the conditions are the same, we can leave them alone.
433     unsigned OldCCValid = Cond[0].getImm();
434     unsigned OldCCMask = Cond[1].getImm();
435     if (OldCCValid == Branch.CCValid && OldCCMask == Branch.CCMask)
436       continue;
437 
438     // FIXME: Try combining conditions like X86 does.  Should be easy on Z!
439     return false;
440   }
441 
442   return false;
443 }
444 
445 unsigned SystemZInstrInfo::removeBranch(MachineBasicBlock &MBB,
446                                         int *BytesRemoved) const {
447   assert(!BytesRemoved && "code size not handled");
448 
449   // Most of the code and comments here are boilerplate.
450   MachineBasicBlock::iterator I = MBB.end();
451   unsigned Count = 0;
452 
453   while (I != MBB.begin()) {
454     --I;
455     if (I->isDebugInstr())
456       continue;
457     if (!I->isBranch())
458       break;
459     if (!getBranchInfo(*I).hasMBBTarget())
460       break;
461     // Remove the branch.
462     I->eraseFromParent();
463     I = MBB.end();
464     ++Count;
465   }
466 
467   return Count;
468 }
469 
470 bool SystemZInstrInfo::
471 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
472   assert(Cond.size() == 2 && "Invalid condition");
473   Cond[1].setImm(Cond[1].getImm() ^ Cond[0].getImm());
474   return false;
475 }
476 
477 unsigned SystemZInstrInfo::insertBranch(MachineBasicBlock &MBB,
478                                         MachineBasicBlock *TBB,
479                                         MachineBasicBlock *FBB,
480                                         ArrayRef<MachineOperand> Cond,
481                                         const DebugLoc &DL,
482                                         int *BytesAdded) const {
483   // In this function we output 32-bit branches, which should always
484   // have enough range.  They can be shortened and relaxed by later code
485   // in the pipeline, if desired.
486 
487   // Shouldn't be a fall through.
488   assert(TBB && "insertBranch must not be told to insert a fallthrough");
489   assert((Cond.size() == 2 || Cond.size() == 0) &&
490          "SystemZ branch conditions have one component!");
491   assert(!BytesAdded && "code size not handled");
492 
493   if (Cond.empty()) {
494     // Unconditional branch?
495     assert(!FBB && "Unconditional branch with multiple successors!");
496     BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(TBB);
497     return 1;
498   }
499 
500   // Conditional branch.
501   unsigned Count = 0;
502   unsigned CCValid = Cond[0].getImm();
503   unsigned CCMask = Cond[1].getImm();
504   BuildMI(&MBB, DL, get(SystemZ::BRC))
505     .addImm(CCValid).addImm(CCMask).addMBB(TBB);
506   ++Count;
507 
508   if (FBB) {
509     // Two-way Conditional branch. Insert the second branch.
510     BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(FBB);
511     ++Count;
512   }
513   return Count;
514 }
515 
516 bool SystemZInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
517                                       unsigned &SrcReg2, int &Mask,
518                                       int &Value) const {
519   assert(MI.isCompare() && "Caller should have checked for a comparison");
520 
521   if (MI.getNumExplicitOperands() == 2 && MI.getOperand(0).isReg() &&
522       MI.getOperand(1).isImm()) {
523     SrcReg = MI.getOperand(0).getReg();
524     SrcReg2 = 0;
525     Value = MI.getOperand(1).getImm();
526     Mask = ~0;
527     return true;
528   }
529 
530   return false;
531 }
532 
533 bool SystemZInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
534                                        ArrayRef<MachineOperand> Pred,
535                                        unsigned DstReg, unsigned TrueReg,
536                                        unsigned FalseReg, int &CondCycles,
537                                        int &TrueCycles,
538                                        int &FalseCycles) const {
539   // Not all subtargets have LOCR instructions.
540   if (!STI.hasLoadStoreOnCond())
541     return false;
542   if (Pred.size() != 2)
543     return false;
544 
545   // Check register classes.
546   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
547   const TargetRegisterClass *RC =
548     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
549   if (!RC)
550     return false;
551 
552   // We have LOCR instructions for 32 and 64 bit general purpose registers.
553   if ((STI.hasLoadStoreOnCond2() &&
554        SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) ||
555       SystemZ::GR32BitRegClass.hasSubClassEq(RC) ||
556       SystemZ::GR64BitRegClass.hasSubClassEq(RC)) {
557     CondCycles = 2;
558     TrueCycles = 2;
559     FalseCycles = 2;
560     return true;
561   }
562 
563   // Can't do anything else.
564   return false;
565 }
566 
567 void SystemZInstrInfo::insertSelect(MachineBasicBlock &MBB,
568                                     MachineBasicBlock::iterator I,
569                                     const DebugLoc &DL, unsigned DstReg,
570                                     ArrayRef<MachineOperand> Pred,
571                                     unsigned TrueReg,
572                                     unsigned FalseReg) const {
573   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
574   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
575 
576   assert(Pred.size() == 2 && "Invalid condition");
577   unsigned CCValid = Pred[0].getImm();
578   unsigned CCMask = Pred[1].getImm();
579 
580   unsigned Opc;
581   if (SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) {
582     if (STI.hasMiscellaneousExtensions3())
583       Opc = SystemZ::SELRMux;
584     else if (STI.hasLoadStoreOnCond2())
585       Opc = SystemZ::LOCRMux;
586     else {
587       Opc = SystemZ::LOCR;
588       MRI.constrainRegClass(DstReg, &SystemZ::GR32BitRegClass);
589       Register TReg = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
590       Register FReg = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
591       BuildMI(MBB, I, DL, get(TargetOpcode::COPY), TReg).addReg(TrueReg);
592       BuildMI(MBB, I, DL, get(TargetOpcode::COPY), FReg).addReg(FalseReg);
593       TrueReg = TReg;
594       FalseReg = FReg;
595     }
596   } else if (SystemZ::GR64BitRegClass.hasSubClassEq(RC)) {
597     if (STI.hasMiscellaneousExtensions3())
598       Opc = SystemZ::SELGR;
599     else
600       Opc = SystemZ::LOCGR;
601   } else
602     llvm_unreachable("Invalid register class");
603 
604   BuildMI(MBB, I, DL, get(Opc), DstReg)
605     .addReg(FalseReg).addReg(TrueReg)
606     .addImm(CCValid).addImm(CCMask);
607 }
608 
609 bool SystemZInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
610                                      unsigned Reg,
611                                      MachineRegisterInfo *MRI) const {
612   unsigned DefOpc = DefMI.getOpcode();
613   if (DefOpc != SystemZ::LHIMux && DefOpc != SystemZ::LHI &&
614       DefOpc != SystemZ::LGHI)
615     return false;
616   if (DefMI.getOperand(0).getReg() != Reg)
617     return false;
618   int32_t ImmVal = (int32_t)DefMI.getOperand(1).getImm();
619 
620   unsigned UseOpc = UseMI.getOpcode();
621   unsigned NewUseOpc;
622   unsigned UseIdx;
623   int CommuteIdx = -1;
624   bool TieOps = false;
625   switch (UseOpc) {
626   case SystemZ::SELRMux:
627     TieOps = true;
628     LLVM_FALLTHROUGH;
629   case SystemZ::LOCRMux:
630     if (!STI.hasLoadStoreOnCond2())
631       return false;
632     NewUseOpc = SystemZ::LOCHIMux;
633     if (UseMI.getOperand(2).getReg() == Reg)
634       UseIdx = 2;
635     else if (UseMI.getOperand(1).getReg() == Reg)
636       UseIdx = 2, CommuteIdx = 1;
637     else
638       return false;
639     break;
640   case SystemZ::SELGR:
641     TieOps = true;
642     LLVM_FALLTHROUGH;
643   case SystemZ::LOCGR:
644     if (!STI.hasLoadStoreOnCond2())
645       return false;
646     NewUseOpc = SystemZ::LOCGHI;
647     if (UseMI.getOperand(2).getReg() == Reg)
648       UseIdx = 2;
649     else if (UseMI.getOperand(1).getReg() == Reg)
650       UseIdx = 2, CommuteIdx = 1;
651     else
652       return false;
653     break;
654   default:
655     return false;
656   }
657 
658   if (CommuteIdx != -1)
659     if (!commuteInstruction(UseMI, false, CommuteIdx, UseIdx))
660       return false;
661 
662   bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
663   UseMI.setDesc(get(NewUseOpc));
664   if (TieOps)
665     UseMI.tieOperands(0, 1);
666   UseMI.getOperand(UseIdx).ChangeToImmediate(ImmVal);
667   if (DeleteDef)
668     DefMI.eraseFromParent();
669 
670   return true;
671 }
672 
673 bool SystemZInstrInfo::isPredicable(const MachineInstr &MI) const {
674   unsigned Opcode = MI.getOpcode();
675   if (Opcode == SystemZ::Return ||
676       Opcode == SystemZ::Trap ||
677       Opcode == SystemZ::CallJG ||
678       Opcode == SystemZ::CallBR)
679     return true;
680   return false;
681 }
682 
683 bool SystemZInstrInfo::
684 isProfitableToIfCvt(MachineBasicBlock &MBB,
685                     unsigned NumCycles, unsigned ExtraPredCycles,
686                     BranchProbability Probability) const {
687   // Avoid using conditional returns at the end of a loop (since then
688   // we'd need to emit an unconditional branch to the beginning anyway,
689   // making the loop body longer).  This doesn't apply for low-probability
690   // loops (eg. compare-and-swap retry), so just decide based on branch
691   // probability instead of looping structure.
692   // However, since Compare and Trap instructions cost the same as a regular
693   // Compare instruction, we should allow the if conversion to convert this
694   // into a Conditional Compare regardless of the branch probability.
695   if (MBB.getLastNonDebugInstr()->getOpcode() != SystemZ::Trap &&
696       MBB.succ_empty() && Probability < BranchProbability(1, 8))
697     return false;
698   // For now only convert single instructions.
699   return NumCycles == 1;
700 }
701 
702 bool SystemZInstrInfo::
703 isProfitableToIfCvt(MachineBasicBlock &TMBB,
704                     unsigned NumCyclesT, unsigned ExtraPredCyclesT,
705                     MachineBasicBlock &FMBB,
706                     unsigned NumCyclesF, unsigned ExtraPredCyclesF,
707                     BranchProbability Probability) const {
708   // For now avoid converting mutually-exclusive cases.
709   return false;
710 }
711 
712 bool SystemZInstrInfo::
713 isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
714                           BranchProbability Probability) const {
715   // For now only duplicate single instructions.
716   return NumCycles == 1;
717 }
718 
719 bool SystemZInstrInfo::PredicateInstruction(
720     MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
721   assert(Pred.size() == 2 && "Invalid condition");
722   unsigned CCValid = Pred[0].getImm();
723   unsigned CCMask = Pred[1].getImm();
724   assert(CCMask > 0 && CCMask < 15 && "Invalid predicate");
725   unsigned Opcode = MI.getOpcode();
726   if (Opcode == SystemZ::Trap) {
727     MI.setDesc(get(SystemZ::CondTrap));
728     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
729       .addImm(CCValid).addImm(CCMask)
730       .addReg(SystemZ::CC, RegState::Implicit);
731     return true;
732   }
733   if (Opcode == SystemZ::Return) {
734     MI.setDesc(get(SystemZ::CondReturn));
735     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
736       .addImm(CCValid).addImm(CCMask)
737       .addReg(SystemZ::CC, RegState::Implicit);
738     return true;
739   }
740   if (Opcode == SystemZ::CallJG) {
741     MachineOperand FirstOp = MI.getOperand(0);
742     const uint32_t *RegMask = MI.getOperand(1).getRegMask();
743     MI.RemoveOperand(1);
744     MI.RemoveOperand(0);
745     MI.setDesc(get(SystemZ::CallBRCL));
746     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
747         .addImm(CCValid)
748         .addImm(CCMask)
749         .add(FirstOp)
750         .addRegMask(RegMask)
751         .addReg(SystemZ::CC, RegState::Implicit);
752     return true;
753   }
754   if (Opcode == SystemZ::CallBR) {
755     const uint32_t *RegMask = MI.getOperand(0).getRegMask();
756     MI.RemoveOperand(0);
757     MI.setDesc(get(SystemZ::CallBCR));
758     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
759       .addImm(CCValid).addImm(CCMask)
760       .addRegMask(RegMask)
761       .addReg(SystemZ::CC, RegState::Implicit);
762     return true;
763   }
764   return false;
765 }
766 
767 void SystemZInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
768                                    MachineBasicBlock::iterator MBBI,
769                                    const DebugLoc &DL, MCRegister DestReg,
770                                    MCRegister SrcReg, bool KillSrc) const {
771   // Split 128-bit GPR moves into two 64-bit moves. Add implicit uses of the
772   // super register in case one of the subregs is undefined.
773   // This handles ADDR128 too.
774   if (SystemZ::GR128BitRegClass.contains(DestReg, SrcReg)) {
775     copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_h64),
776                 RI.getSubReg(SrcReg, SystemZ::subreg_h64), KillSrc);
777     MachineInstrBuilder(*MBB.getParent(), std::prev(MBBI))
778       .addReg(SrcReg, RegState::Implicit);
779     copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_l64),
780                 RI.getSubReg(SrcReg, SystemZ::subreg_l64), KillSrc);
781     MachineInstrBuilder(*MBB.getParent(), std::prev(MBBI))
782       .addReg(SrcReg, (getKillRegState(KillSrc) | RegState::Implicit));
783     return;
784   }
785 
786   if (SystemZ::GRX32BitRegClass.contains(DestReg, SrcReg)) {
787     emitGRX32Move(MBB, MBBI, DL, DestReg, SrcReg, SystemZ::LR, 32, KillSrc,
788                   false);
789     return;
790   }
791 
792   // Move 128-bit floating-point values between VR128 and FP128.
793   if (SystemZ::VR128BitRegClass.contains(DestReg) &&
794       SystemZ::FP128BitRegClass.contains(SrcReg)) {
795     MCRegister SrcRegHi =
796         RI.getMatchingSuperReg(RI.getSubReg(SrcReg, SystemZ::subreg_h64),
797                                SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
798     MCRegister SrcRegLo =
799         RI.getMatchingSuperReg(RI.getSubReg(SrcReg, SystemZ::subreg_l64),
800                                SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
801 
802     BuildMI(MBB, MBBI, DL, get(SystemZ::VMRHG), DestReg)
803       .addReg(SrcRegHi, getKillRegState(KillSrc))
804       .addReg(SrcRegLo, getKillRegState(KillSrc));
805     return;
806   }
807   if (SystemZ::FP128BitRegClass.contains(DestReg) &&
808       SystemZ::VR128BitRegClass.contains(SrcReg)) {
809     MCRegister DestRegHi =
810         RI.getMatchingSuperReg(RI.getSubReg(DestReg, SystemZ::subreg_h64),
811                                SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
812     MCRegister DestRegLo =
813         RI.getMatchingSuperReg(RI.getSubReg(DestReg, SystemZ::subreg_l64),
814                                SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
815 
816     if (DestRegHi != SrcReg)
817       copyPhysReg(MBB, MBBI, DL, DestRegHi, SrcReg, false);
818     BuildMI(MBB, MBBI, DL, get(SystemZ::VREPG), DestRegLo)
819       .addReg(SrcReg, getKillRegState(KillSrc)).addImm(1);
820     return;
821   }
822 
823   // Move CC value from/to a GR32.
824   if (SrcReg == SystemZ::CC) {
825     auto MIB = BuildMI(MBB, MBBI, DL, get(SystemZ::IPM), DestReg);
826     if (KillSrc) {
827       const MachineFunction *MF = MBB.getParent();
828       const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
829       MIB->addRegisterKilled(SrcReg, TRI);
830     }
831     return;
832   }
833   if (DestReg == SystemZ::CC) {
834     BuildMI(MBB, MBBI, DL, get(SystemZ::TMLH))
835       .addReg(SrcReg, getKillRegState(KillSrc))
836       .addImm(3 << (SystemZ::IPM_CC - 16));
837     return;
838   }
839 
840   // Everything else needs only one instruction.
841   unsigned Opcode;
842   if (SystemZ::GR64BitRegClass.contains(DestReg, SrcReg))
843     Opcode = SystemZ::LGR;
844   else if (SystemZ::FP32BitRegClass.contains(DestReg, SrcReg))
845     // For z13 we prefer LDR over LER to avoid partial register dependencies.
846     Opcode = STI.hasVector() ? SystemZ::LDR32 : SystemZ::LER;
847   else if (SystemZ::FP64BitRegClass.contains(DestReg, SrcReg))
848     Opcode = SystemZ::LDR;
849   else if (SystemZ::FP128BitRegClass.contains(DestReg, SrcReg))
850     Opcode = SystemZ::LXR;
851   else if (SystemZ::VR32BitRegClass.contains(DestReg, SrcReg))
852     Opcode = SystemZ::VLR32;
853   else if (SystemZ::VR64BitRegClass.contains(DestReg, SrcReg))
854     Opcode = SystemZ::VLR64;
855   else if (SystemZ::VR128BitRegClass.contains(DestReg, SrcReg))
856     Opcode = SystemZ::VLR;
857   else if (SystemZ::AR32BitRegClass.contains(DestReg, SrcReg))
858     Opcode = SystemZ::CPYA;
859   else if (SystemZ::AR32BitRegClass.contains(DestReg) &&
860            SystemZ::GR32BitRegClass.contains(SrcReg))
861     Opcode = SystemZ::SAR;
862   else if (SystemZ::GR32BitRegClass.contains(DestReg) &&
863            SystemZ::AR32BitRegClass.contains(SrcReg))
864     Opcode = SystemZ::EAR;
865   else
866     llvm_unreachable("Impossible reg-to-reg copy");
867 
868   BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
869     .addReg(SrcReg, getKillRegState(KillSrc));
870 }
871 
872 void SystemZInstrInfo::storeRegToStackSlot(
873     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, Register SrcReg,
874     bool isKill, int FrameIdx, const TargetRegisterClass *RC,
875     const TargetRegisterInfo *TRI) const {
876   DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
877 
878   // Callers may expect a single instruction, so keep 128-bit moves
879   // together for now and lower them after register allocation.
880   unsigned LoadOpcode, StoreOpcode;
881   getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
882   addFrameReference(BuildMI(MBB, MBBI, DL, get(StoreOpcode))
883                         .addReg(SrcReg, getKillRegState(isKill)),
884                     FrameIdx);
885 }
886 
887 void SystemZInstrInfo::loadRegFromStackSlot(
888     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, Register DestReg,
889     int FrameIdx, const TargetRegisterClass *RC,
890     const TargetRegisterInfo *TRI) const {
891   DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
892 
893   // Callers may expect a single instruction, so keep 128-bit moves
894   // together for now and lower them after register allocation.
895   unsigned LoadOpcode, StoreOpcode;
896   getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
897   addFrameReference(BuildMI(MBB, MBBI, DL, get(LoadOpcode), DestReg),
898                     FrameIdx);
899 }
900 
901 // Return true if MI is a simple load or store with a 12-bit displacement
902 // and no index.  Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
903 static bool isSimpleBD12Move(const MachineInstr *MI, unsigned Flag) {
904   const MCInstrDesc &MCID = MI->getDesc();
905   return ((MCID.TSFlags & Flag) &&
906           isUInt<12>(MI->getOperand(2).getImm()) &&
907           MI->getOperand(3).getReg() == 0);
908 }
909 
910 namespace {
911 
912 struct LogicOp {
913   LogicOp() = default;
914   LogicOp(unsigned regSize, unsigned immLSB, unsigned immSize)
915     : RegSize(regSize), ImmLSB(immLSB), ImmSize(immSize) {}
916 
917   explicit operator bool() const { return RegSize; }
918 
919   unsigned RegSize = 0;
920   unsigned ImmLSB = 0;
921   unsigned ImmSize = 0;
922 };
923 
924 } // end anonymous namespace
925 
926 static LogicOp interpretAndImmediate(unsigned Opcode) {
927   switch (Opcode) {
928   case SystemZ::NILMux: return LogicOp(32,  0, 16);
929   case SystemZ::NIHMux: return LogicOp(32, 16, 16);
930   case SystemZ::NILL64: return LogicOp(64,  0, 16);
931   case SystemZ::NILH64: return LogicOp(64, 16, 16);
932   case SystemZ::NIHL64: return LogicOp(64, 32, 16);
933   case SystemZ::NIHH64: return LogicOp(64, 48, 16);
934   case SystemZ::NIFMux: return LogicOp(32,  0, 32);
935   case SystemZ::NILF64: return LogicOp(64,  0, 32);
936   case SystemZ::NIHF64: return LogicOp(64, 32, 32);
937   default:              return LogicOp();
938   }
939 }
940 
941 static void transferDeadCC(MachineInstr *OldMI, MachineInstr *NewMI) {
942   if (OldMI->registerDefIsDead(SystemZ::CC)) {
943     MachineOperand *CCDef = NewMI->findRegisterDefOperand(SystemZ::CC);
944     if (CCDef != nullptr)
945       CCDef->setIsDead(true);
946   }
947 }
948 
949 static void transferMIFlag(MachineInstr *OldMI, MachineInstr *NewMI,
950                            MachineInstr::MIFlag Flag) {
951   if (OldMI->getFlag(Flag))
952     NewMI->setFlag(Flag);
953 }
954 
955 MachineInstr *SystemZInstrInfo::convertToThreeAddress(
956     MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const {
957   MachineBasicBlock *MBB = MI.getParent();
958 
959   // Try to convert an AND into an RISBG-type instruction.
960   // TODO: It might be beneficial to select RISBG and shorten to AND instead.
961   if (LogicOp And = interpretAndImmediate(MI.getOpcode())) {
962     uint64_t Imm = MI.getOperand(2).getImm() << And.ImmLSB;
963     // AND IMMEDIATE leaves the other bits of the register unchanged.
964     Imm |= allOnes(And.RegSize) & ~(allOnes(And.ImmSize) << And.ImmLSB);
965     unsigned Start, End;
966     if (isRxSBGMask(Imm, And.RegSize, Start, End)) {
967       unsigned NewOpcode;
968       if (And.RegSize == 64) {
969         NewOpcode = SystemZ::RISBG;
970         // Prefer RISBGN if available, since it does not clobber CC.
971         if (STI.hasMiscellaneousExtensions())
972           NewOpcode = SystemZ::RISBGN;
973       } else {
974         NewOpcode = SystemZ::RISBMux;
975         Start &= 31;
976         End &= 31;
977       }
978       MachineOperand &Dest = MI.getOperand(0);
979       MachineOperand &Src = MI.getOperand(1);
980       MachineInstrBuilder MIB =
981           BuildMI(*MBB, MI, MI.getDebugLoc(), get(NewOpcode))
982               .add(Dest)
983               .addReg(0)
984               .addReg(Src.getReg(), getKillRegState(Src.isKill()),
985                       Src.getSubReg())
986               .addImm(Start)
987               .addImm(End + 128)
988               .addImm(0);
989       if (LV) {
990         unsigned NumOps = MI.getNumOperands();
991         for (unsigned I = 1; I < NumOps; ++I) {
992           MachineOperand &Op = MI.getOperand(I);
993           if (Op.isReg() && Op.isKill())
994             LV->replaceKillInstruction(Op.getReg(), MI, *MIB);
995         }
996       }
997       transferDeadCC(&MI, MIB);
998       return MIB;
999     }
1000   }
1001   return nullptr;
1002 }
1003 
1004 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl(
1005     MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
1006     MachineBasicBlock::iterator InsertPt, int FrameIndex,
1007     LiveIntervals *LIS, VirtRegMap *VRM) const {
1008   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1009   const MachineFrameInfo &MFI = MF.getFrameInfo();
1010   unsigned Size = MFI.getObjectSize(FrameIndex);
1011   unsigned Opcode = MI.getOpcode();
1012 
1013   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
1014     if (LIS != nullptr && (Opcode == SystemZ::LA || Opcode == SystemZ::LAY) &&
1015         isInt<8>(MI.getOperand(2).getImm()) && !MI.getOperand(3).getReg()) {
1016 
1017       // Check CC liveness, since new instruction introduces a dead
1018       // def of CC.
1019       MCRegUnitIterator CCUnit(SystemZ::CC, TRI);
1020       LiveRange &CCLiveRange = LIS->getRegUnit(*CCUnit);
1021       ++CCUnit;
1022       assert(!CCUnit.isValid() && "CC only has one reg unit.");
1023       SlotIndex MISlot =
1024           LIS->getSlotIndexes()->getInstructionIndex(MI).getRegSlot();
1025       if (!CCLiveRange.liveAt(MISlot)) {
1026         // LA(Y) %reg, CONST(%reg) -> AGSI %mem, CONST
1027         MachineInstr *BuiltMI = BuildMI(*InsertPt->getParent(), InsertPt,
1028                                         MI.getDebugLoc(), get(SystemZ::AGSI))
1029                                     .addFrameIndex(FrameIndex)
1030                                     .addImm(0)
1031                                     .addImm(MI.getOperand(2).getImm());
1032         BuiltMI->findRegisterDefOperand(SystemZ::CC)->setIsDead(true);
1033         CCLiveRange.createDeadDef(MISlot, LIS->getVNInfoAllocator());
1034         return BuiltMI;
1035       }
1036     }
1037     return nullptr;
1038   }
1039 
1040   // All other cases require a single operand.
1041   if (Ops.size() != 1)
1042     return nullptr;
1043 
1044   unsigned OpNum = Ops[0];
1045   assert(Size * 8 ==
1046            TRI->getRegSizeInBits(*MF.getRegInfo()
1047                                .getRegClass(MI.getOperand(OpNum).getReg())) &&
1048          "Invalid size combination");
1049 
1050   if ((Opcode == SystemZ::AHI || Opcode == SystemZ::AGHI) && OpNum == 0 &&
1051       isInt<8>(MI.getOperand(2).getImm())) {
1052     // A(G)HI %reg, CONST -> A(G)SI %mem, CONST
1053     Opcode = (Opcode == SystemZ::AHI ? SystemZ::ASI : SystemZ::AGSI);
1054     MachineInstr *BuiltMI =
1055         BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode))
1056             .addFrameIndex(FrameIndex)
1057             .addImm(0)
1058             .addImm(MI.getOperand(2).getImm());
1059     transferDeadCC(&MI, BuiltMI);
1060     transferMIFlag(&MI, BuiltMI, MachineInstr::NoSWrap);
1061     return BuiltMI;
1062   }
1063 
1064   if ((Opcode == SystemZ::ALFI && OpNum == 0 &&
1065        isInt<8>((int32_t)MI.getOperand(2).getImm())) ||
1066       (Opcode == SystemZ::ALGFI && OpNum == 0 &&
1067        isInt<8>((int64_t)MI.getOperand(2).getImm()))) {
1068     // AL(G)FI %reg, CONST -> AL(G)SI %mem, CONST
1069     Opcode = (Opcode == SystemZ::ALFI ? SystemZ::ALSI : SystemZ::ALGSI);
1070     MachineInstr *BuiltMI =
1071         BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode))
1072             .addFrameIndex(FrameIndex)
1073             .addImm(0)
1074             .addImm((int8_t)MI.getOperand(2).getImm());
1075     transferDeadCC(&MI, BuiltMI);
1076     return BuiltMI;
1077   }
1078 
1079   if ((Opcode == SystemZ::SLFI && OpNum == 0 &&
1080        isInt<8>((int32_t)-MI.getOperand(2).getImm())) ||
1081       (Opcode == SystemZ::SLGFI && OpNum == 0 &&
1082        isInt<8>((int64_t)-MI.getOperand(2).getImm()))) {
1083     // SL(G)FI %reg, CONST -> AL(G)SI %mem, -CONST
1084     Opcode = (Opcode == SystemZ::SLFI ? SystemZ::ALSI : SystemZ::ALGSI);
1085     MachineInstr *BuiltMI =
1086         BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode))
1087             .addFrameIndex(FrameIndex)
1088             .addImm(0)
1089             .addImm((int8_t)-MI.getOperand(2).getImm());
1090     transferDeadCC(&MI, BuiltMI);
1091     return BuiltMI;
1092   }
1093 
1094   if (Opcode == SystemZ::LGDR || Opcode == SystemZ::LDGR) {
1095     bool Op0IsGPR = (Opcode == SystemZ::LGDR);
1096     bool Op1IsGPR = (Opcode == SystemZ::LDGR);
1097     // If we're spilling the destination of an LDGR or LGDR, store the
1098     // source register instead.
1099     if (OpNum == 0) {
1100       unsigned StoreOpcode = Op1IsGPR ? SystemZ::STG : SystemZ::STD;
1101       return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1102                      get(StoreOpcode))
1103           .add(MI.getOperand(1))
1104           .addFrameIndex(FrameIndex)
1105           .addImm(0)
1106           .addReg(0);
1107     }
1108     // If we're spilling the source of an LDGR or LGDR, load the
1109     // destination register instead.
1110     if (OpNum == 1) {
1111       unsigned LoadOpcode = Op0IsGPR ? SystemZ::LG : SystemZ::LD;
1112       return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1113                      get(LoadOpcode))
1114         .add(MI.getOperand(0))
1115         .addFrameIndex(FrameIndex)
1116         .addImm(0)
1117         .addReg(0);
1118     }
1119   }
1120 
1121   // Look for cases where the source of a simple store or the destination
1122   // of a simple load is being spilled.  Try to use MVC instead.
1123   //
1124   // Although MVC is in practice a fast choice in these cases, it is still
1125   // logically a bytewise copy.  This means that we cannot use it if the
1126   // load or store is volatile.  We also wouldn't be able to use MVC if
1127   // the two memories partially overlap, but that case cannot occur here,
1128   // because we know that one of the memories is a full frame index.
1129   //
1130   // For performance reasons, we also want to avoid using MVC if the addresses
1131   // might be equal.  We don't worry about that case here, because spill slot
1132   // coloring happens later, and because we have special code to remove
1133   // MVCs that turn out to be redundant.
1134   if (OpNum == 0 && MI.hasOneMemOperand()) {
1135     MachineMemOperand *MMO = *MI.memoperands_begin();
1136     if (MMO->getSize() == Size && !MMO->isVolatile() && !MMO->isAtomic()) {
1137       // Handle conversion of loads.
1138       if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXLoad)) {
1139         return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1140                        get(SystemZ::MVC))
1141             .addFrameIndex(FrameIndex)
1142             .addImm(0)
1143             .addImm(Size)
1144             .add(MI.getOperand(1))
1145             .addImm(MI.getOperand(2).getImm())
1146             .addMemOperand(MMO);
1147       }
1148       // Handle conversion of stores.
1149       if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXStore)) {
1150         return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1151                        get(SystemZ::MVC))
1152             .add(MI.getOperand(1))
1153             .addImm(MI.getOperand(2).getImm())
1154             .addImm(Size)
1155             .addFrameIndex(FrameIndex)
1156             .addImm(0)
1157             .addMemOperand(MMO);
1158       }
1159     }
1160   }
1161 
1162   // If the spilled operand is the final one or the instruction is
1163   // commutable, try to change <INSN>R into <INSN>.
1164   unsigned NumOps = MI.getNumExplicitOperands();
1165   int MemOpcode = SystemZ::getMemOpcode(Opcode);
1166 
1167   // See if this is a 3-address instruction that is convertible to 2-address
1168   // and suitable for folding below.  Only try this with virtual registers
1169   // and a provided VRM (during regalloc).
1170   bool NeedsCommute = false;
1171   if (SystemZ::getTwoOperandOpcode(Opcode) != -1 && MemOpcode != -1) {
1172     if (VRM == nullptr)
1173       MemOpcode = -1;
1174     else {
1175       assert(NumOps == 3 && "Expected two source registers.");
1176       Register DstReg = MI.getOperand(0).getReg();
1177       Register DstPhys =
1178           (Register::isVirtualRegister(DstReg) ? VRM->getPhys(DstReg) : DstReg);
1179       Register SrcReg = (OpNum == 2 ? MI.getOperand(1).getReg()
1180                                     : ((OpNum == 1 && MI.isCommutable())
1181                                            ? MI.getOperand(2).getReg()
1182                                          : Register()));
1183       if (DstPhys && !SystemZ::GRH32BitRegClass.contains(DstPhys) && SrcReg &&
1184           Register::isVirtualRegister(SrcReg) &&
1185           DstPhys == VRM->getPhys(SrcReg))
1186         NeedsCommute = (OpNum == 1);
1187       else
1188         MemOpcode = -1;
1189     }
1190   }
1191 
1192   if (MemOpcode >= 0) {
1193     if ((OpNum == NumOps - 1) || NeedsCommute) {
1194       const MCInstrDesc &MemDesc = get(MemOpcode);
1195       uint64_t AccessBytes = SystemZII::getAccessSize(MemDesc.TSFlags);
1196       assert(AccessBytes != 0 && "Size of access should be known");
1197       assert(AccessBytes <= Size && "Access outside the frame index");
1198       uint64_t Offset = Size - AccessBytes;
1199       MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt,
1200                                         MI.getDebugLoc(), get(MemOpcode));
1201       MIB.add(MI.getOperand(0));
1202       if (NeedsCommute)
1203         MIB.add(MI.getOperand(2));
1204       else
1205         for (unsigned I = 1; I < OpNum; ++I)
1206           MIB.add(MI.getOperand(I));
1207       MIB.addFrameIndex(FrameIndex).addImm(Offset);
1208       if (MemDesc.TSFlags & SystemZII::HasIndex)
1209         MIB.addReg(0);
1210       transferDeadCC(&MI, MIB);
1211       transferMIFlag(&MI, MIB, MachineInstr::NoSWrap);
1212       return MIB;
1213     }
1214   }
1215 
1216   return nullptr;
1217 }
1218 
1219 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl(
1220     MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
1221     MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
1222     LiveIntervals *LIS) const {
1223   return nullptr;
1224 }
1225 
1226 bool SystemZInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1227   switch (MI.getOpcode()) {
1228   case SystemZ::L128:
1229     splitMove(MI, SystemZ::LG);
1230     return true;
1231 
1232   case SystemZ::ST128:
1233     splitMove(MI, SystemZ::STG);
1234     return true;
1235 
1236   case SystemZ::LX:
1237     splitMove(MI, SystemZ::LD);
1238     return true;
1239 
1240   case SystemZ::STX:
1241     splitMove(MI, SystemZ::STD);
1242     return true;
1243 
1244   case SystemZ::LBMux:
1245     expandRXYPseudo(MI, SystemZ::LB, SystemZ::LBH);
1246     return true;
1247 
1248   case SystemZ::LHMux:
1249     expandRXYPseudo(MI, SystemZ::LH, SystemZ::LHH);
1250     return true;
1251 
1252   case SystemZ::LLCRMux:
1253     expandZExtPseudo(MI, SystemZ::LLCR, 8);
1254     return true;
1255 
1256   case SystemZ::LLHRMux:
1257     expandZExtPseudo(MI, SystemZ::LLHR, 16);
1258     return true;
1259 
1260   case SystemZ::LLCMux:
1261     expandRXYPseudo(MI, SystemZ::LLC, SystemZ::LLCH);
1262     return true;
1263 
1264   case SystemZ::LLHMux:
1265     expandRXYPseudo(MI, SystemZ::LLH, SystemZ::LLHH);
1266     return true;
1267 
1268   case SystemZ::LMux:
1269     expandRXYPseudo(MI, SystemZ::L, SystemZ::LFH);
1270     return true;
1271 
1272   case SystemZ::LOCMux:
1273     expandLOCPseudo(MI, SystemZ::LOC, SystemZ::LOCFH);
1274     return true;
1275 
1276   case SystemZ::LOCHIMux:
1277     expandLOCPseudo(MI, SystemZ::LOCHI, SystemZ::LOCHHI);
1278     return true;
1279 
1280   case SystemZ::STCMux:
1281     expandRXYPseudo(MI, SystemZ::STC, SystemZ::STCH);
1282     return true;
1283 
1284   case SystemZ::STHMux:
1285     expandRXYPseudo(MI, SystemZ::STH, SystemZ::STHH);
1286     return true;
1287 
1288   case SystemZ::STMux:
1289     expandRXYPseudo(MI, SystemZ::ST, SystemZ::STFH);
1290     return true;
1291 
1292   case SystemZ::STOCMux:
1293     expandLOCPseudo(MI, SystemZ::STOC, SystemZ::STOCFH);
1294     return true;
1295 
1296   case SystemZ::LHIMux:
1297     expandRIPseudo(MI, SystemZ::LHI, SystemZ::IIHF, true);
1298     return true;
1299 
1300   case SystemZ::IIFMux:
1301     expandRIPseudo(MI, SystemZ::IILF, SystemZ::IIHF, false);
1302     return true;
1303 
1304   case SystemZ::IILMux:
1305     expandRIPseudo(MI, SystemZ::IILL, SystemZ::IIHL, false);
1306     return true;
1307 
1308   case SystemZ::IIHMux:
1309     expandRIPseudo(MI, SystemZ::IILH, SystemZ::IIHH, false);
1310     return true;
1311 
1312   case SystemZ::NIFMux:
1313     expandRIPseudo(MI, SystemZ::NILF, SystemZ::NIHF, false);
1314     return true;
1315 
1316   case SystemZ::NILMux:
1317     expandRIPseudo(MI, SystemZ::NILL, SystemZ::NIHL, false);
1318     return true;
1319 
1320   case SystemZ::NIHMux:
1321     expandRIPseudo(MI, SystemZ::NILH, SystemZ::NIHH, false);
1322     return true;
1323 
1324   case SystemZ::OIFMux:
1325     expandRIPseudo(MI, SystemZ::OILF, SystemZ::OIHF, false);
1326     return true;
1327 
1328   case SystemZ::OILMux:
1329     expandRIPseudo(MI, SystemZ::OILL, SystemZ::OIHL, false);
1330     return true;
1331 
1332   case SystemZ::OIHMux:
1333     expandRIPseudo(MI, SystemZ::OILH, SystemZ::OIHH, false);
1334     return true;
1335 
1336   case SystemZ::XIFMux:
1337     expandRIPseudo(MI, SystemZ::XILF, SystemZ::XIHF, false);
1338     return true;
1339 
1340   case SystemZ::TMLMux:
1341     expandRIPseudo(MI, SystemZ::TMLL, SystemZ::TMHL, false);
1342     return true;
1343 
1344   case SystemZ::TMHMux:
1345     expandRIPseudo(MI, SystemZ::TMLH, SystemZ::TMHH, false);
1346     return true;
1347 
1348   case SystemZ::AHIMux:
1349     expandRIPseudo(MI, SystemZ::AHI, SystemZ::AIH, false);
1350     return true;
1351 
1352   case SystemZ::AHIMuxK:
1353     expandRIEPseudo(MI, SystemZ::AHI, SystemZ::AHIK, SystemZ::AIH);
1354     return true;
1355 
1356   case SystemZ::AFIMux:
1357     expandRIPseudo(MI, SystemZ::AFI, SystemZ::AIH, false);
1358     return true;
1359 
1360   case SystemZ::CHIMux:
1361     expandRIPseudo(MI, SystemZ::CHI, SystemZ::CIH, false);
1362     return true;
1363 
1364   case SystemZ::CFIMux:
1365     expandRIPseudo(MI, SystemZ::CFI, SystemZ::CIH, false);
1366     return true;
1367 
1368   case SystemZ::CLFIMux:
1369     expandRIPseudo(MI, SystemZ::CLFI, SystemZ::CLIH, false);
1370     return true;
1371 
1372   case SystemZ::CMux:
1373     expandRXYPseudo(MI, SystemZ::C, SystemZ::CHF);
1374     return true;
1375 
1376   case SystemZ::CLMux:
1377     expandRXYPseudo(MI, SystemZ::CL, SystemZ::CLHF);
1378     return true;
1379 
1380   case SystemZ::RISBMux: {
1381     bool DestIsHigh = SystemZ::isHighReg(MI.getOperand(0).getReg());
1382     bool SrcIsHigh = SystemZ::isHighReg(MI.getOperand(2).getReg());
1383     if (SrcIsHigh == DestIsHigh)
1384       MI.setDesc(get(DestIsHigh ? SystemZ::RISBHH : SystemZ::RISBLL));
1385     else {
1386       MI.setDesc(get(DestIsHigh ? SystemZ::RISBHL : SystemZ::RISBLH));
1387       MI.getOperand(5).setImm(MI.getOperand(5).getImm() ^ 32);
1388     }
1389     return true;
1390   }
1391 
1392   case SystemZ::ADJDYNALLOC:
1393     splitAdjDynAlloc(MI);
1394     return true;
1395 
1396   case TargetOpcode::LOAD_STACK_GUARD:
1397     expandLoadStackGuard(&MI);
1398     return true;
1399 
1400   default:
1401     return false;
1402   }
1403 }
1404 
1405 unsigned SystemZInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
1406   if (MI.isInlineAsm()) {
1407     const MachineFunction *MF = MI.getParent()->getParent();
1408     const char *AsmStr = MI.getOperand(0).getSymbolName();
1409     return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
1410   }
1411   return MI.getDesc().getSize();
1412 }
1413 
1414 SystemZII::Branch
1415 SystemZInstrInfo::getBranchInfo(const MachineInstr &MI) const {
1416   switch (MI.getOpcode()) {
1417   case SystemZ::BR:
1418   case SystemZ::BI:
1419   case SystemZ::J:
1420   case SystemZ::JG:
1421     return SystemZII::Branch(SystemZII::BranchNormal, SystemZ::CCMASK_ANY,
1422                              SystemZ::CCMASK_ANY, &MI.getOperand(0));
1423 
1424   case SystemZ::BRC:
1425   case SystemZ::BRCL:
1426     return SystemZII::Branch(SystemZII::BranchNormal, MI.getOperand(0).getImm(),
1427                              MI.getOperand(1).getImm(), &MI.getOperand(2));
1428 
1429   case SystemZ::BRCT:
1430   case SystemZ::BRCTH:
1431     return SystemZII::Branch(SystemZII::BranchCT, SystemZ::CCMASK_ICMP,
1432                              SystemZ::CCMASK_CMP_NE, &MI.getOperand(2));
1433 
1434   case SystemZ::BRCTG:
1435     return SystemZII::Branch(SystemZII::BranchCTG, SystemZ::CCMASK_ICMP,
1436                              SystemZ::CCMASK_CMP_NE, &MI.getOperand(2));
1437 
1438   case SystemZ::CIJ:
1439   case SystemZ::CRJ:
1440     return SystemZII::Branch(SystemZII::BranchC, SystemZ::CCMASK_ICMP,
1441                              MI.getOperand(2).getImm(), &MI.getOperand(3));
1442 
1443   case SystemZ::CLIJ:
1444   case SystemZ::CLRJ:
1445     return SystemZII::Branch(SystemZII::BranchCL, SystemZ::CCMASK_ICMP,
1446                              MI.getOperand(2).getImm(), &MI.getOperand(3));
1447 
1448   case SystemZ::CGIJ:
1449   case SystemZ::CGRJ:
1450     return SystemZII::Branch(SystemZII::BranchCG, SystemZ::CCMASK_ICMP,
1451                              MI.getOperand(2).getImm(), &MI.getOperand(3));
1452 
1453   case SystemZ::CLGIJ:
1454   case SystemZ::CLGRJ:
1455     return SystemZII::Branch(SystemZII::BranchCLG, SystemZ::CCMASK_ICMP,
1456                              MI.getOperand(2).getImm(), &MI.getOperand(3));
1457 
1458   case SystemZ::INLINEASM_BR:
1459     // Don't try to analyze asm goto, so pass nullptr as branch target argument.
1460     return SystemZII::Branch(SystemZII::AsmGoto, 0, 0, nullptr);
1461 
1462   default:
1463     llvm_unreachable("Unrecognized branch opcode");
1464   }
1465 }
1466 
1467 void SystemZInstrInfo::getLoadStoreOpcodes(const TargetRegisterClass *RC,
1468                                            unsigned &LoadOpcode,
1469                                            unsigned &StoreOpcode) const {
1470   if (RC == &SystemZ::GR32BitRegClass || RC == &SystemZ::ADDR32BitRegClass) {
1471     LoadOpcode = SystemZ::L;
1472     StoreOpcode = SystemZ::ST;
1473   } else if (RC == &SystemZ::GRH32BitRegClass) {
1474     LoadOpcode = SystemZ::LFH;
1475     StoreOpcode = SystemZ::STFH;
1476   } else if (RC == &SystemZ::GRX32BitRegClass) {
1477     LoadOpcode = SystemZ::LMux;
1478     StoreOpcode = SystemZ::STMux;
1479   } else if (RC == &SystemZ::GR64BitRegClass ||
1480              RC == &SystemZ::ADDR64BitRegClass) {
1481     LoadOpcode = SystemZ::LG;
1482     StoreOpcode = SystemZ::STG;
1483   } else if (RC == &SystemZ::GR128BitRegClass ||
1484              RC == &SystemZ::ADDR128BitRegClass) {
1485     LoadOpcode = SystemZ::L128;
1486     StoreOpcode = SystemZ::ST128;
1487   } else if (RC == &SystemZ::FP32BitRegClass) {
1488     LoadOpcode = SystemZ::LE;
1489     StoreOpcode = SystemZ::STE;
1490   } else if (RC == &SystemZ::FP64BitRegClass) {
1491     LoadOpcode = SystemZ::LD;
1492     StoreOpcode = SystemZ::STD;
1493   } else if (RC == &SystemZ::FP128BitRegClass) {
1494     LoadOpcode = SystemZ::LX;
1495     StoreOpcode = SystemZ::STX;
1496   } else if (RC == &SystemZ::VR32BitRegClass) {
1497     LoadOpcode = SystemZ::VL32;
1498     StoreOpcode = SystemZ::VST32;
1499   } else if (RC == &SystemZ::VR64BitRegClass) {
1500     LoadOpcode = SystemZ::VL64;
1501     StoreOpcode = SystemZ::VST64;
1502   } else if (RC == &SystemZ::VF128BitRegClass ||
1503              RC == &SystemZ::VR128BitRegClass) {
1504     LoadOpcode = SystemZ::VL;
1505     StoreOpcode = SystemZ::VST;
1506   } else
1507     llvm_unreachable("Unsupported regclass to load or store");
1508 }
1509 
1510 unsigned SystemZInstrInfo::getOpcodeForOffset(unsigned Opcode,
1511                                               int64_t Offset) const {
1512   const MCInstrDesc &MCID = get(Opcode);
1513   int64_t Offset2 = (MCID.TSFlags & SystemZII::Is128Bit ? Offset + 8 : Offset);
1514   if (isUInt<12>(Offset) && isUInt<12>(Offset2)) {
1515     // Get the instruction to use for unsigned 12-bit displacements.
1516     int Disp12Opcode = SystemZ::getDisp12Opcode(Opcode);
1517     if (Disp12Opcode >= 0)
1518       return Disp12Opcode;
1519 
1520     // All address-related instructions can use unsigned 12-bit
1521     // displacements.
1522     return Opcode;
1523   }
1524   if (isInt<20>(Offset) && isInt<20>(Offset2)) {
1525     // Get the instruction to use for signed 20-bit displacements.
1526     int Disp20Opcode = SystemZ::getDisp20Opcode(Opcode);
1527     if (Disp20Opcode >= 0)
1528       return Disp20Opcode;
1529 
1530     // Check whether Opcode allows signed 20-bit displacements.
1531     if (MCID.TSFlags & SystemZII::Has20BitOffset)
1532       return Opcode;
1533   }
1534   return 0;
1535 }
1536 
1537 unsigned SystemZInstrInfo::getLoadAndTest(unsigned Opcode) const {
1538   switch (Opcode) {
1539   case SystemZ::L:      return SystemZ::LT;
1540   case SystemZ::LY:     return SystemZ::LT;
1541   case SystemZ::LG:     return SystemZ::LTG;
1542   case SystemZ::LGF:    return SystemZ::LTGF;
1543   case SystemZ::LR:     return SystemZ::LTR;
1544   case SystemZ::LGFR:   return SystemZ::LTGFR;
1545   case SystemZ::LGR:    return SystemZ::LTGR;
1546   case SystemZ::LER:    return SystemZ::LTEBR;
1547   case SystemZ::LDR:    return SystemZ::LTDBR;
1548   case SystemZ::LXR:    return SystemZ::LTXBR;
1549   case SystemZ::LCDFR:  return SystemZ::LCDBR;
1550   case SystemZ::LPDFR:  return SystemZ::LPDBR;
1551   case SystemZ::LNDFR:  return SystemZ::LNDBR;
1552   case SystemZ::LCDFR_32:  return SystemZ::LCEBR;
1553   case SystemZ::LPDFR_32:  return SystemZ::LPEBR;
1554   case SystemZ::LNDFR_32:  return SystemZ::LNEBR;
1555   // On zEC12 we prefer to use RISBGN.  But if there is a chance to
1556   // actually use the condition code, we may turn it back into RISGB.
1557   // Note that RISBG is not really a "load-and-test" instruction,
1558   // but sets the same condition code values, so is OK to use here.
1559   case SystemZ::RISBGN: return SystemZ::RISBG;
1560   default:              return 0;
1561   }
1562 }
1563 
1564 // Return true if Mask matches the regexp 0*1+0*, given that zero masks
1565 // have already been filtered out.  Store the first set bit in LSB and
1566 // the number of set bits in Length if so.
1567 static bool isStringOfOnes(uint64_t Mask, unsigned &LSB, unsigned &Length) {
1568   unsigned First = findFirstSet(Mask);
1569   uint64_t Top = (Mask >> First) + 1;
1570   if ((Top & -Top) == Top) {
1571     LSB = First;
1572     Length = findFirstSet(Top);
1573     return true;
1574   }
1575   return false;
1576 }
1577 
1578 bool SystemZInstrInfo::isRxSBGMask(uint64_t Mask, unsigned BitSize,
1579                                    unsigned &Start, unsigned &End) const {
1580   // Reject trivial all-zero masks.
1581   Mask &= allOnes(BitSize);
1582   if (Mask == 0)
1583     return false;
1584 
1585   // Handle the 1+0+ or 0+1+0* cases.  Start then specifies the index of
1586   // the msb and End specifies the index of the lsb.
1587   unsigned LSB, Length;
1588   if (isStringOfOnes(Mask, LSB, Length)) {
1589     Start = 63 - (LSB + Length - 1);
1590     End = 63 - LSB;
1591     return true;
1592   }
1593 
1594   // Handle the wrap-around 1+0+1+ cases.  Start then specifies the msb
1595   // of the low 1s and End specifies the lsb of the high 1s.
1596   if (isStringOfOnes(Mask ^ allOnes(BitSize), LSB, Length)) {
1597     assert(LSB > 0 && "Bottom bit must be set");
1598     assert(LSB + Length < BitSize && "Top bit must be set");
1599     Start = 63 - (LSB - 1);
1600     End = 63 - (LSB + Length);
1601     return true;
1602   }
1603 
1604   return false;
1605 }
1606 
1607 unsigned SystemZInstrInfo::getFusedCompare(unsigned Opcode,
1608                                            SystemZII::FusedCompareType Type,
1609                                            const MachineInstr *MI) const {
1610   switch (Opcode) {
1611   case SystemZ::CHI:
1612   case SystemZ::CGHI:
1613     if (!(MI && isInt<8>(MI->getOperand(1).getImm())))
1614       return 0;
1615     break;
1616   case SystemZ::CLFI:
1617   case SystemZ::CLGFI:
1618     if (!(MI && isUInt<8>(MI->getOperand(1).getImm())))
1619       return 0;
1620     break;
1621   case SystemZ::CL:
1622   case SystemZ::CLG:
1623     if (!STI.hasMiscellaneousExtensions())
1624       return 0;
1625     if (!(MI && MI->getOperand(3).getReg() == 0))
1626       return 0;
1627     break;
1628   }
1629   switch (Type) {
1630   case SystemZII::CompareAndBranch:
1631     switch (Opcode) {
1632     case SystemZ::CR:
1633       return SystemZ::CRJ;
1634     case SystemZ::CGR:
1635       return SystemZ::CGRJ;
1636     case SystemZ::CHI:
1637       return SystemZ::CIJ;
1638     case SystemZ::CGHI:
1639       return SystemZ::CGIJ;
1640     case SystemZ::CLR:
1641       return SystemZ::CLRJ;
1642     case SystemZ::CLGR:
1643       return SystemZ::CLGRJ;
1644     case SystemZ::CLFI:
1645       return SystemZ::CLIJ;
1646     case SystemZ::CLGFI:
1647       return SystemZ::CLGIJ;
1648     default:
1649       return 0;
1650     }
1651   case SystemZII::CompareAndReturn:
1652     switch (Opcode) {
1653     case SystemZ::CR:
1654       return SystemZ::CRBReturn;
1655     case SystemZ::CGR:
1656       return SystemZ::CGRBReturn;
1657     case SystemZ::CHI:
1658       return SystemZ::CIBReturn;
1659     case SystemZ::CGHI:
1660       return SystemZ::CGIBReturn;
1661     case SystemZ::CLR:
1662       return SystemZ::CLRBReturn;
1663     case SystemZ::CLGR:
1664       return SystemZ::CLGRBReturn;
1665     case SystemZ::CLFI:
1666       return SystemZ::CLIBReturn;
1667     case SystemZ::CLGFI:
1668       return SystemZ::CLGIBReturn;
1669     default:
1670       return 0;
1671     }
1672   case SystemZII::CompareAndSibcall:
1673     switch (Opcode) {
1674     case SystemZ::CR:
1675       return SystemZ::CRBCall;
1676     case SystemZ::CGR:
1677       return SystemZ::CGRBCall;
1678     case SystemZ::CHI:
1679       return SystemZ::CIBCall;
1680     case SystemZ::CGHI:
1681       return SystemZ::CGIBCall;
1682     case SystemZ::CLR:
1683       return SystemZ::CLRBCall;
1684     case SystemZ::CLGR:
1685       return SystemZ::CLGRBCall;
1686     case SystemZ::CLFI:
1687       return SystemZ::CLIBCall;
1688     case SystemZ::CLGFI:
1689       return SystemZ::CLGIBCall;
1690     default:
1691       return 0;
1692     }
1693   case SystemZII::CompareAndTrap:
1694     switch (Opcode) {
1695     case SystemZ::CR:
1696       return SystemZ::CRT;
1697     case SystemZ::CGR:
1698       return SystemZ::CGRT;
1699     case SystemZ::CHI:
1700       return SystemZ::CIT;
1701     case SystemZ::CGHI:
1702       return SystemZ::CGIT;
1703     case SystemZ::CLR:
1704       return SystemZ::CLRT;
1705     case SystemZ::CLGR:
1706       return SystemZ::CLGRT;
1707     case SystemZ::CLFI:
1708       return SystemZ::CLFIT;
1709     case SystemZ::CLGFI:
1710       return SystemZ::CLGIT;
1711     case SystemZ::CL:
1712       return SystemZ::CLT;
1713     case SystemZ::CLG:
1714       return SystemZ::CLGT;
1715     default:
1716       return 0;
1717     }
1718   }
1719   return 0;
1720 }
1721 
1722 unsigned SystemZInstrInfo::getLoadAndTrap(unsigned Opcode) const {
1723   if (!STI.hasLoadAndTrap())
1724     return 0;
1725   switch (Opcode) {
1726   case SystemZ::L:
1727   case SystemZ::LY:
1728     return SystemZ::LAT;
1729   case SystemZ::LG:
1730     return SystemZ::LGAT;
1731   case SystemZ::LFH:
1732     return SystemZ::LFHAT;
1733   case SystemZ::LLGF:
1734     return SystemZ::LLGFAT;
1735   case SystemZ::LLGT:
1736     return SystemZ::LLGTAT;
1737   }
1738   return 0;
1739 }
1740 
1741 void SystemZInstrInfo::loadImmediate(MachineBasicBlock &MBB,
1742                                      MachineBasicBlock::iterator MBBI,
1743                                      unsigned Reg, uint64_t Value) const {
1744   DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
1745   unsigned Opcode;
1746   if (isInt<16>(Value))
1747     Opcode = SystemZ::LGHI;
1748   else if (SystemZ::isImmLL(Value))
1749     Opcode = SystemZ::LLILL;
1750   else if (SystemZ::isImmLH(Value)) {
1751     Opcode = SystemZ::LLILH;
1752     Value >>= 16;
1753   } else {
1754     assert(isInt<32>(Value) && "Huge values not handled yet");
1755     Opcode = SystemZ::LGFI;
1756   }
1757   BuildMI(MBB, MBBI, DL, get(Opcode), Reg).addImm(Value);
1758 }
1759 
1760 bool SystemZInstrInfo::verifyInstruction(const MachineInstr &MI,
1761                                          StringRef &ErrInfo) const {
1762   const MCInstrDesc &MCID = MI.getDesc();
1763   for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
1764     if (I >= MCID.getNumOperands())
1765       break;
1766     const MachineOperand &Op = MI.getOperand(I);
1767     const MCOperandInfo &MCOI = MCID.OpInfo[I];
1768     // Addressing modes have register and immediate operands. Op should be a
1769     // register (or frame index) operand if MCOI.RegClass contains a valid
1770     // register class, or an immediate otherwise.
1771     if (MCOI.OperandType == MCOI::OPERAND_MEMORY &&
1772         ((MCOI.RegClass != -1 && !Op.isReg() && !Op.isFI()) ||
1773          (MCOI.RegClass == -1 && !Op.isImm()))) {
1774       ErrInfo = "Addressing mode operands corrupt!";
1775       return false;
1776     }
1777   }
1778 
1779   return true;
1780 }
1781 
1782 bool SystemZInstrInfo::
1783 areMemAccessesTriviallyDisjoint(const MachineInstr &MIa,
1784                                 const MachineInstr &MIb) const {
1785 
1786   if (!MIa.hasOneMemOperand() || !MIb.hasOneMemOperand())
1787     return false;
1788 
1789   // If mem-operands show that the same address Value is used by both
1790   // instructions, check for non-overlapping offsets and widths. Not
1791   // sure if a register based analysis would be an improvement...
1792 
1793   MachineMemOperand *MMOa = *MIa.memoperands_begin();
1794   MachineMemOperand *MMOb = *MIb.memoperands_begin();
1795   const Value *VALa = MMOa->getValue();
1796   const Value *VALb = MMOb->getValue();
1797   bool SameVal = (VALa && VALb && (VALa == VALb));
1798   if (!SameVal) {
1799     const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
1800     const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
1801     if (PSVa && PSVb && (PSVa == PSVb))
1802       SameVal = true;
1803   }
1804   if (SameVal) {
1805     int OffsetA = MMOa->getOffset(), OffsetB = MMOb->getOffset();
1806     int WidthA = MMOa->getSize(), WidthB = MMOb->getSize();
1807     int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB;
1808     int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA;
1809     int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
1810     if (LowOffset + LowWidth <= HighOffset)
1811       return true;
1812   }
1813 
1814   return false;
1815 }
1816