1 //===-- SystemZInstrInfo.cpp - SystemZ instruction information ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the SystemZ implementation of the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SystemZInstrInfo.h" 15 #include "MCTargetDesc/SystemZMCTargetDesc.h" 16 #include "SystemZ.h" 17 #include "SystemZInstrBuilder.h" 18 #include "SystemZSubtarget.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/CodeGen/LiveInterval.h" 21 #include "llvm/CodeGen/LiveIntervals.h" 22 #include "llvm/CodeGen/LiveVariables.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstr.h" 27 #include "llvm/CodeGen/MachineMemOperand.h" 28 #include "llvm/CodeGen/MachineOperand.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/SlotIndexes.h" 31 #include "llvm/CodeGen/TargetInstrInfo.h" 32 #include "llvm/CodeGen/TargetSubtargetInfo.h" 33 #include "llvm/MC/MCInstrDesc.h" 34 #include "llvm/MC/MCRegisterInfo.h" 35 #include "llvm/Support/BranchProbability.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Target/TargetMachine.h" 39 #include <cassert> 40 #include <cstdint> 41 #include <iterator> 42 43 using namespace llvm; 44 45 #define GET_INSTRINFO_CTOR_DTOR 46 #define GET_INSTRMAP_INFO 47 #include "SystemZGenInstrInfo.inc" 48 49 #define DEBUG_TYPE "systemz-II" 50 STATISTIC(LOCRMuxJumps, "Number of LOCRMux jump-sequences (lower is better)"); 51 52 // Return a mask with Count low bits set. 53 static uint64_t allOnes(unsigned int Count) { 54 return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1; 55 } 56 57 // Reg should be a 32-bit GPR. Return true if it is a high register rather 58 // than a low register. 59 static bool isHighReg(unsigned int Reg) { 60 if (SystemZ::GRH32BitRegClass.contains(Reg)) 61 return true; 62 assert(SystemZ::GR32BitRegClass.contains(Reg) && "Invalid GRX32"); 63 return false; 64 } 65 66 // Pin the vtable to this file. 67 void SystemZInstrInfo::anchor() {} 68 69 SystemZInstrInfo::SystemZInstrInfo(SystemZSubtarget &sti) 70 : SystemZGenInstrInfo(SystemZ::ADJCALLSTACKDOWN, SystemZ::ADJCALLSTACKUP), 71 RI(), STI(sti) { 72 } 73 74 // MI is a 128-bit load or store. Split it into two 64-bit loads or stores, 75 // each having the opcode given by NewOpcode. 76 void SystemZInstrInfo::splitMove(MachineBasicBlock::iterator MI, 77 unsigned NewOpcode) const { 78 MachineBasicBlock *MBB = MI->getParent(); 79 MachineFunction &MF = *MBB->getParent(); 80 81 // Get two load or store instructions. Use the original instruction for one 82 // of them (arbitrarily the second here) and create a clone for the other. 83 MachineInstr *EarlierMI = MF.CloneMachineInstr(&*MI); 84 MBB->insert(MI, EarlierMI); 85 86 // Set up the two 64-bit registers and remember super reg and its flags. 87 MachineOperand &HighRegOp = EarlierMI->getOperand(0); 88 MachineOperand &LowRegOp = MI->getOperand(0); 89 unsigned Reg128 = LowRegOp.getReg(); 90 unsigned Reg128Killed = getKillRegState(LowRegOp.isKill()); 91 unsigned Reg128Undef = getUndefRegState(LowRegOp.isUndef()); 92 HighRegOp.setReg(RI.getSubReg(HighRegOp.getReg(), SystemZ::subreg_h64)); 93 LowRegOp.setReg(RI.getSubReg(LowRegOp.getReg(), SystemZ::subreg_l64)); 94 95 if (MI->mayStore()) { 96 // Add implicit uses of the super register in case one of the subregs is 97 // undefined. We could track liveness and skip storing an undefined 98 // subreg, but this is hopefully rare (discovered with llvm-stress). 99 // If Reg128 was killed, set kill flag on MI. 100 unsigned Reg128UndefImpl = (Reg128Undef | RegState::Implicit); 101 MachineInstrBuilder(MF, EarlierMI).addReg(Reg128, Reg128UndefImpl); 102 MachineInstrBuilder(MF, MI).addReg(Reg128, (Reg128UndefImpl | Reg128Killed)); 103 } 104 105 // The address in the first (high) instruction is already correct. 106 // Adjust the offset in the second (low) instruction. 107 MachineOperand &HighOffsetOp = EarlierMI->getOperand(2); 108 MachineOperand &LowOffsetOp = MI->getOperand(2); 109 LowOffsetOp.setImm(LowOffsetOp.getImm() + 8); 110 111 // Clear the kill flags on the registers in the first instruction. 112 if (EarlierMI->getOperand(0).isReg() && EarlierMI->getOperand(0).isUse()) 113 EarlierMI->getOperand(0).setIsKill(false); 114 EarlierMI->getOperand(1).setIsKill(false); 115 EarlierMI->getOperand(3).setIsKill(false); 116 117 // Set the opcodes. 118 unsigned HighOpcode = getOpcodeForOffset(NewOpcode, HighOffsetOp.getImm()); 119 unsigned LowOpcode = getOpcodeForOffset(NewOpcode, LowOffsetOp.getImm()); 120 assert(HighOpcode && LowOpcode && "Both offsets should be in range"); 121 122 EarlierMI->setDesc(get(HighOpcode)); 123 MI->setDesc(get(LowOpcode)); 124 } 125 126 // Split ADJDYNALLOC instruction MI. 127 void SystemZInstrInfo::splitAdjDynAlloc(MachineBasicBlock::iterator MI) const { 128 MachineBasicBlock *MBB = MI->getParent(); 129 MachineFunction &MF = *MBB->getParent(); 130 MachineFrameInfo &MFFrame = MF.getFrameInfo(); 131 MachineOperand &OffsetMO = MI->getOperand(2); 132 133 uint64_t Offset = (MFFrame.getMaxCallFrameSize() + 134 SystemZMC::CallFrameSize + 135 OffsetMO.getImm()); 136 unsigned NewOpcode = getOpcodeForOffset(SystemZ::LA, Offset); 137 assert(NewOpcode && "No support for huge argument lists yet"); 138 MI->setDesc(get(NewOpcode)); 139 OffsetMO.setImm(Offset); 140 } 141 142 // MI is an RI-style pseudo instruction. Replace it with LowOpcode 143 // if the first operand is a low GR32 and HighOpcode if the first operand 144 // is a high GR32. ConvertHigh is true if LowOpcode takes a signed operand 145 // and HighOpcode takes an unsigned 32-bit operand. In those cases, 146 // MI has the same kind of operand as LowOpcode, so needs to be converted 147 // if HighOpcode is used. 148 void SystemZInstrInfo::expandRIPseudo(MachineInstr &MI, unsigned LowOpcode, 149 unsigned HighOpcode, 150 bool ConvertHigh) const { 151 unsigned Reg = MI.getOperand(0).getReg(); 152 bool IsHigh = isHighReg(Reg); 153 MI.setDesc(get(IsHigh ? HighOpcode : LowOpcode)); 154 if (IsHigh && ConvertHigh) 155 MI.getOperand(1).setImm(uint32_t(MI.getOperand(1).getImm())); 156 } 157 158 // MI is a three-operand RIE-style pseudo instruction. Replace it with 159 // LowOpcodeK if the registers are both low GR32s, otherwise use a move 160 // followed by HighOpcode or LowOpcode, depending on whether the target 161 // is a high or low GR32. 162 void SystemZInstrInfo::expandRIEPseudo(MachineInstr &MI, unsigned LowOpcode, 163 unsigned LowOpcodeK, 164 unsigned HighOpcode) const { 165 unsigned DestReg = MI.getOperand(0).getReg(); 166 unsigned SrcReg = MI.getOperand(1).getReg(); 167 bool DestIsHigh = isHighReg(DestReg); 168 bool SrcIsHigh = isHighReg(SrcReg); 169 if (!DestIsHigh && !SrcIsHigh) 170 MI.setDesc(get(LowOpcodeK)); 171 else { 172 emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(), DestReg, SrcReg, 173 SystemZ::LR, 32, MI.getOperand(1).isKill(), 174 MI.getOperand(1).isUndef()); 175 MI.setDesc(get(DestIsHigh ? HighOpcode : LowOpcode)); 176 MI.getOperand(1).setReg(DestReg); 177 MI.tieOperands(0, 1); 178 } 179 } 180 181 // MI is an RXY-style pseudo instruction. Replace it with LowOpcode 182 // if the first operand is a low GR32 and HighOpcode if the first operand 183 // is a high GR32. 184 void SystemZInstrInfo::expandRXYPseudo(MachineInstr &MI, unsigned LowOpcode, 185 unsigned HighOpcode) const { 186 unsigned Reg = MI.getOperand(0).getReg(); 187 unsigned Opcode = getOpcodeForOffset(isHighReg(Reg) ? HighOpcode : LowOpcode, 188 MI.getOperand(2).getImm()); 189 MI.setDesc(get(Opcode)); 190 } 191 192 // MI is a load-on-condition pseudo instruction with a single register 193 // (source or destination) operand. Replace it with LowOpcode if the 194 // register is a low GR32 and HighOpcode if the register is a high GR32. 195 void SystemZInstrInfo::expandLOCPseudo(MachineInstr &MI, unsigned LowOpcode, 196 unsigned HighOpcode) const { 197 unsigned Reg = MI.getOperand(0).getReg(); 198 unsigned Opcode = isHighReg(Reg) ? HighOpcode : LowOpcode; 199 MI.setDesc(get(Opcode)); 200 } 201 202 // MI is a load-register-on-condition pseudo instruction. Replace it with 203 // LowOpcode if source and destination are both low GR32s and HighOpcode if 204 // source and destination are both high GR32s. 205 void SystemZInstrInfo::expandLOCRPseudo(MachineInstr &MI, unsigned LowOpcode, 206 unsigned HighOpcode) const { 207 unsigned DestReg = MI.getOperand(0).getReg(); 208 unsigned SrcReg = MI.getOperand(2).getReg(); 209 bool DestIsHigh = isHighReg(DestReg); 210 bool SrcIsHigh = isHighReg(SrcReg); 211 212 if (!DestIsHigh && !SrcIsHigh) 213 MI.setDesc(get(LowOpcode)); 214 else if (DestIsHigh && SrcIsHigh) 215 MI.setDesc(get(HighOpcode)); 216 else 217 LOCRMuxJumps++; 218 219 // If we were unable to implement the pseudo with a single instruction, we 220 // need to convert it back into a branch sequence. This cannot be done here 221 // since the caller of expandPostRAPseudo does not handle changes to the CFG 222 // correctly. This change is defered to the SystemZExpandPseudo pass. 223 } 224 225 // MI is an RR-style pseudo instruction that zero-extends the low Size bits 226 // of one GRX32 into another. Replace it with LowOpcode if both operands 227 // are low registers, otherwise use RISB[LH]G. 228 void SystemZInstrInfo::expandZExtPseudo(MachineInstr &MI, unsigned LowOpcode, 229 unsigned Size) const { 230 MachineInstrBuilder MIB = 231 emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(), 232 MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), LowOpcode, 233 Size, MI.getOperand(1).isKill(), MI.getOperand(1).isUndef()); 234 235 // Keep the remaining operands as-is. 236 for (unsigned I = 2; I < MI.getNumOperands(); ++I) 237 MIB.add(MI.getOperand(I)); 238 239 MI.eraseFromParent(); 240 } 241 242 void SystemZInstrInfo::expandLoadStackGuard(MachineInstr *MI) const { 243 MachineBasicBlock *MBB = MI->getParent(); 244 MachineFunction &MF = *MBB->getParent(); 245 const unsigned Reg64 = MI->getOperand(0).getReg(); 246 const unsigned Reg32 = RI.getSubReg(Reg64, SystemZ::subreg_l32); 247 248 // EAR can only load the low subregister so us a shift for %a0 to produce 249 // the GR containing %a0 and %a1. 250 251 // ear <reg>, %a0 252 BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::EAR), Reg32) 253 .addReg(SystemZ::A0) 254 .addReg(Reg64, RegState::ImplicitDefine); 255 256 // sllg <reg>, <reg>, 32 257 BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::SLLG), Reg64) 258 .addReg(Reg64) 259 .addReg(0) 260 .addImm(32); 261 262 // ear <reg>, %a1 263 BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::EAR), Reg32) 264 .addReg(SystemZ::A1); 265 266 // lg <reg>, 40(<reg>) 267 MI->setDesc(get(SystemZ::LG)); 268 MachineInstrBuilder(MF, MI).addReg(Reg64).addImm(40).addReg(0); 269 } 270 271 // Emit a zero-extending move from 32-bit GPR SrcReg to 32-bit GPR 272 // DestReg before MBBI in MBB. Use LowLowOpcode when both DestReg and SrcReg 273 // are low registers, otherwise use RISB[LH]G. Size is the number of bits 274 // taken from the low end of SrcReg (8 for LLCR, 16 for LLHR and 32 for LR). 275 // KillSrc is true if this move is the last use of SrcReg. 276 MachineInstrBuilder 277 SystemZInstrInfo::emitGRX32Move(MachineBasicBlock &MBB, 278 MachineBasicBlock::iterator MBBI, 279 const DebugLoc &DL, unsigned DestReg, 280 unsigned SrcReg, unsigned LowLowOpcode, 281 unsigned Size, bool KillSrc, 282 bool UndefSrc) const { 283 unsigned Opcode; 284 bool DestIsHigh = isHighReg(DestReg); 285 bool SrcIsHigh = isHighReg(SrcReg); 286 if (DestIsHigh && SrcIsHigh) 287 Opcode = SystemZ::RISBHH; 288 else if (DestIsHigh && !SrcIsHigh) 289 Opcode = SystemZ::RISBHL; 290 else if (!DestIsHigh && SrcIsHigh) 291 Opcode = SystemZ::RISBLH; 292 else { 293 return BuildMI(MBB, MBBI, DL, get(LowLowOpcode), DestReg) 294 .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc)); 295 } 296 unsigned Rotate = (DestIsHigh != SrcIsHigh ? 32 : 0); 297 return BuildMI(MBB, MBBI, DL, get(Opcode), DestReg) 298 .addReg(DestReg, RegState::Undef) 299 .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc)) 300 .addImm(32 - Size).addImm(128 + 31).addImm(Rotate); 301 } 302 303 MachineInstr *SystemZInstrInfo::commuteInstructionImpl(MachineInstr &MI, 304 bool NewMI, 305 unsigned OpIdx1, 306 unsigned OpIdx2) const { 307 auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & { 308 if (NewMI) 309 return *MI.getParent()->getParent()->CloneMachineInstr(&MI); 310 return MI; 311 }; 312 313 switch (MI.getOpcode()) { 314 case SystemZ::LOCRMux: 315 case SystemZ::LOCFHR: 316 case SystemZ::LOCR: 317 case SystemZ::LOCGR: { 318 auto &WorkingMI = cloneIfNew(MI); 319 // Invert condition. 320 unsigned CCValid = WorkingMI.getOperand(3).getImm(); 321 unsigned CCMask = WorkingMI.getOperand(4).getImm(); 322 WorkingMI.getOperand(4).setImm(CCMask ^ CCValid); 323 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 324 OpIdx1, OpIdx2); 325 } 326 default: 327 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 328 } 329 } 330 331 // If MI is a simple load or store for a frame object, return the register 332 // it loads or stores and set FrameIndex to the index of the frame object. 333 // Return 0 otherwise. 334 // 335 // Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores. 336 static int isSimpleMove(const MachineInstr &MI, int &FrameIndex, 337 unsigned Flag) { 338 const MCInstrDesc &MCID = MI.getDesc(); 339 if ((MCID.TSFlags & Flag) && MI.getOperand(1).isFI() && 340 MI.getOperand(2).getImm() == 0 && MI.getOperand(3).getReg() == 0) { 341 FrameIndex = MI.getOperand(1).getIndex(); 342 return MI.getOperand(0).getReg(); 343 } 344 return 0; 345 } 346 347 unsigned SystemZInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 348 int &FrameIndex) const { 349 return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXLoad); 350 } 351 352 unsigned SystemZInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 353 int &FrameIndex) const { 354 return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXStore); 355 } 356 357 bool SystemZInstrInfo::isStackSlotCopy(const MachineInstr &MI, 358 int &DestFrameIndex, 359 int &SrcFrameIndex) const { 360 // Check for MVC 0(Length,FI1),0(FI2) 361 const MachineFrameInfo &MFI = MI.getParent()->getParent()->getFrameInfo(); 362 if (MI.getOpcode() != SystemZ::MVC || !MI.getOperand(0).isFI() || 363 MI.getOperand(1).getImm() != 0 || !MI.getOperand(3).isFI() || 364 MI.getOperand(4).getImm() != 0) 365 return false; 366 367 // Check that Length covers the full slots. 368 int64_t Length = MI.getOperand(2).getImm(); 369 unsigned FI1 = MI.getOperand(0).getIndex(); 370 unsigned FI2 = MI.getOperand(3).getIndex(); 371 if (MFI.getObjectSize(FI1) != Length || 372 MFI.getObjectSize(FI2) != Length) 373 return false; 374 375 DestFrameIndex = FI1; 376 SrcFrameIndex = FI2; 377 return true; 378 } 379 380 bool SystemZInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 381 MachineBasicBlock *&TBB, 382 MachineBasicBlock *&FBB, 383 SmallVectorImpl<MachineOperand> &Cond, 384 bool AllowModify) const { 385 // Most of the code and comments here are boilerplate. 386 387 // Start from the bottom of the block and work up, examining the 388 // terminator instructions. 389 MachineBasicBlock::iterator I = MBB.end(); 390 while (I != MBB.begin()) { 391 --I; 392 if (I->isDebugInstr()) 393 continue; 394 395 // Working from the bottom, when we see a non-terminator instruction, we're 396 // done. 397 if (!isUnpredicatedTerminator(*I)) 398 break; 399 400 // A terminator that isn't a branch can't easily be handled by this 401 // analysis. 402 if (!I->isBranch()) 403 return true; 404 405 // Can't handle indirect branches. 406 SystemZII::Branch Branch(getBranchInfo(*I)); 407 if (!Branch.Target->isMBB()) 408 return true; 409 410 // Punt on compound branches. 411 if (Branch.Type != SystemZII::BranchNormal) 412 return true; 413 414 if (Branch.CCMask == SystemZ::CCMASK_ANY) { 415 // Handle unconditional branches. 416 if (!AllowModify) { 417 TBB = Branch.Target->getMBB(); 418 continue; 419 } 420 421 // If the block has any instructions after a JMP, delete them. 422 while (std::next(I) != MBB.end()) 423 std::next(I)->eraseFromParent(); 424 425 Cond.clear(); 426 FBB = nullptr; 427 428 // Delete the JMP if it's equivalent to a fall-through. 429 if (MBB.isLayoutSuccessor(Branch.Target->getMBB())) { 430 TBB = nullptr; 431 I->eraseFromParent(); 432 I = MBB.end(); 433 continue; 434 } 435 436 // TBB is used to indicate the unconditinal destination. 437 TBB = Branch.Target->getMBB(); 438 continue; 439 } 440 441 // Working from the bottom, handle the first conditional branch. 442 if (Cond.empty()) { 443 // FIXME: add X86-style branch swap 444 FBB = TBB; 445 TBB = Branch.Target->getMBB(); 446 Cond.push_back(MachineOperand::CreateImm(Branch.CCValid)); 447 Cond.push_back(MachineOperand::CreateImm(Branch.CCMask)); 448 continue; 449 } 450 451 // Handle subsequent conditional branches. 452 assert(Cond.size() == 2 && TBB && "Should have seen a conditional branch"); 453 454 // Only handle the case where all conditional branches branch to the same 455 // destination. 456 if (TBB != Branch.Target->getMBB()) 457 return true; 458 459 // If the conditions are the same, we can leave them alone. 460 unsigned OldCCValid = Cond[0].getImm(); 461 unsigned OldCCMask = Cond[1].getImm(); 462 if (OldCCValid == Branch.CCValid && OldCCMask == Branch.CCMask) 463 continue; 464 465 // FIXME: Try combining conditions like X86 does. Should be easy on Z! 466 return false; 467 } 468 469 return false; 470 } 471 472 unsigned SystemZInstrInfo::removeBranch(MachineBasicBlock &MBB, 473 int *BytesRemoved) const { 474 assert(!BytesRemoved && "code size not handled"); 475 476 // Most of the code and comments here are boilerplate. 477 MachineBasicBlock::iterator I = MBB.end(); 478 unsigned Count = 0; 479 480 while (I != MBB.begin()) { 481 --I; 482 if (I->isDebugInstr()) 483 continue; 484 if (!I->isBranch()) 485 break; 486 if (!getBranchInfo(*I).Target->isMBB()) 487 break; 488 // Remove the branch. 489 I->eraseFromParent(); 490 I = MBB.end(); 491 ++Count; 492 } 493 494 return Count; 495 } 496 497 bool SystemZInstrInfo:: 498 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 499 assert(Cond.size() == 2 && "Invalid condition"); 500 Cond[1].setImm(Cond[1].getImm() ^ Cond[0].getImm()); 501 return false; 502 } 503 504 unsigned SystemZInstrInfo::insertBranch(MachineBasicBlock &MBB, 505 MachineBasicBlock *TBB, 506 MachineBasicBlock *FBB, 507 ArrayRef<MachineOperand> Cond, 508 const DebugLoc &DL, 509 int *BytesAdded) const { 510 // In this function we output 32-bit branches, which should always 511 // have enough range. They can be shortened and relaxed by later code 512 // in the pipeline, if desired. 513 514 // Shouldn't be a fall through. 515 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 516 assert((Cond.size() == 2 || Cond.size() == 0) && 517 "SystemZ branch conditions have one component!"); 518 assert(!BytesAdded && "code size not handled"); 519 520 if (Cond.empty()) { 521 // Unconditional branch? 522 assert(!FBB && "Unconditional branch with multiple successors!"); 523 BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(TBB); 524 return 1; 525 } 526 527 // Conditional branch. 528 unsigned Count = 0; 529 unsigned CCValid = Cond[0].getImm(); 530 unsigned CCMask = Cond[1].getImm(); 531 BuildMI(&MBB, DL, get(SystemZ::BRC)) 532 .addImm(CCValid).addImm(CCMask).addMBB(TBB); 533 ++Count; 534 535 if (FBB) { 536 // Two-way Conditional branch. Insert the second branch. 537 BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(FBB); 538 ++Count; 539 } 540 return Count; 541 } 542 543 bool SystemZInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg, 544 unsigned &SrcReg2, int &Mask, 545 int &Value) const { 546 assert(MI.isCompare() && "Caller should have checked for a comparison"); 547 548 if (MI.getNumExplicitOperands() == 2 && MI.getOperand(0).isReg() && 549 MI.getOperand(1).isImm()) { 550 SrcReg = MI.getOperand(0).getReg(); 551 SrcReg2 = 0; 552 Value = MI.getOperand(1).getImm(); 553 Mask = ~0; 554 return true; 555 } 556 557 return false; 558 } 559 560 // If Reg is a virtual register, return its definition, otherwise return null. 561 static MachineInstr *getDef(unsigned Reg, 562 const MachineRegisterInfo *MRI) { 563 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 564 return nullptr; 565 return MRI->getUniqueVRegDef(Reg); 566 } 567 568 // Return true if MI is a shift of type Opcode by Imm bits. 569 static bool isShift(MachineInstr *MI, unsigned Opcode, int64_t Imm) { 570 return (MI->getOpcode() == Opcode && 571 !MI->getOperand(2).getReg() && 572 MI->getOperand(3).getImm() == Imm); 573 } 574 575 // If the destination of MI has no uses, delete it as dead. 576 static void eraseIfDead(MachineInstr *MI, const MachineRegisterInfo *MRI) { 577 if (MRI->use_nodbg_empty(MI->getOperand(0).getReg())) 578 MI->eraseFromParent(); 579 } 580 581 // Compare compares SrcReg against zero. Check whether SrcReg contains 582 // the result of an IPM sequence whose input CC survives until Compare, 583 // and whether Compare is therefore redundant. Delete it and return 584 // true if so. 585 static bool removeIPMBasedCompare(MachineInstr &Compare, unsigned SrcReg, 586 const MachineRegisterInfo *MRI, 587 const TargetRegisterInfo *TRI) { 588 MachineInstr *LGFR = nullptr; 589 MachineInstr *RLL = getDef(SrcReg, MRI); 590 if (RLL && RLL->getOpcode() == SystemZ::LGFR) { 591 LGFR = RLL; 592 RLL = getDef(LGFR->getOperand(1).getReg(), MRI); 593 } 594 if (!RLL || !isShift(RLL, SystemZ::RLL, 31)) 595 return false; 596 597 MachineInstr *SRL = getDef(RLL->getOperand(1).getReg(), MRI); 598 if (!SRL || !isShift(SRL, SystemZ::SRL, SystemZ::IPM_CC)) 599 return false; 600 601 MachineInstr *IPM = getDef(SRL->getOperand(1).getReg(), MRI); 602 if (!IPM || IPM->getOpcode() != SystemZ::IPM) 603 return false; 604 605 // Check that there are no assignments to CC between the IPM and Compare, 606 if (IPM->getParent() != Compare.getParent()) 607 return false; 608 MachineBasicBlock::iterator MBBI = IPM, MBBE = Compare.getIterator(); 609 for (++MBBI; MBBI != MBBE; ++MBBI) { 610 MachineInstr &MI = *MBBI; 611 if (MI.modifiesRegister(SystemZ::CC, TRI)) 612 return false; 613 } 614 615 Compare.eraseFromParent(); 616 if (LGFR) 617 eraseIfDead(LGFR, MRI); 618 eraseIfDead(RLL, MRI); 619 eraseIfDead(SRL, MRI); 620 eraseIfDead(IPM, MRI); 621 622 return true; 623 } 624 625 bool SystemZInstrInfo::optimizeCompareInstr( 626 MachineInstr &Compare, unsigned SrcReg, unsigned SrcReg2, int Mask, 627 int Value, const MachineRegisterInfo *MRI) const { 628 assert(!SrcReg2 && "Only optimizing constant comparisons so far"); 629 bool IsLogical = (Compare.getDesc().TSFlags & SystemZII::IsLogical) != 0; 630 return Value == 0 && !IsLogical && 631 removeIPMBasedCompare(Compare, SrcReg, MRI, &RI); 632 } 633 634 bool SystemZInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 635 ArrayRef<MachineOperand> Pred, 636 unsigned TrueReg, unsigned FalseReg, 637 int &CondCycles, int &TrueCycles, 638 int &FalseCycles) const { 639 // Not all subtargets have LOCR instructions. 640 if (!STI.hasLoadStoreOnCond()) 641 return false; 642 if (Pred.size() != 2) 643 return false; 644 645 // Check register classes. 646 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 647 const TargetRegisterClass *RC = 648 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 649 if (!RC) 650 return false; 651 652 // We have LOCR instructions for 32 and 64 bit general purpose registers. 653 if ((STI.hasLoadStoreOnCond2() && 654 SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) || 655 SystemZ::GR32BitRegClass.hasSubClassEq(RC) || 656 SystemZ::GR64BitRegClass.hasSubClassEq(RC)) { 657 CondCycles = 2; 658 TrueCycles = 2; 659 FalseCycles = 2; 660 return true; 661 } 662 663 // Can't do anything else. 664 return false; 665 } 666 667 void SystemZInstrInfo::insertSelect(MachineBasicBlock &MBB, 668 MachineBasicBlock::iterator I, 669 const DebugLoc &DL, unsigned DstReg, 670 ArrayRef<MachineOperand> Pred, 671 unsigned TrueReg, 672 unsigned FalseReg) const { 673 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 674 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 675 676 assert(Pred.size() == 2 && "Invalid condition"); 677 unsigned CCValid = Pred[0].getImm(); 678 unsigned CCMask = Pred[1].getImm(); 679 680 unsigned Opc; 681 if (SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) { 682 if (STI.hasLoadStoreOnCond2()) 683 Opc = SystemZ::LOCRMux; 684 else { 685 Opc = SystemZ::LOCR; 686 MRI.constrainRegClass(DstReg, &SystemZ::GR32BitRegClass); 687 unsigned TReg = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass); 688 unsigned FReg = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass); 689 BuildMI(MBB, I, DL, get(TargetOpcode::COPY), TReg).addReg(TrueReg); 690 BuildMI(MBB, I, DL, get(TargetOpcode::COPY), FReg).addReg(FalseReg); 691 TrueReg = TReg; 692 FalseReg = FReg; 693 } 694 } else if (SystemZ::GR64BitRegClass.hasSubClassEq(RC)) 695 Opc = SystemZ::LOCGR; 696 else 697 llvm_unreachable("Invalid register class"); 698 699 BuildMI(MBB, I, DL, get(Opc), DstReg) 700 .addReg(FalseReg).addReg(TrueReg) 701 .addImm(CCValid).addImm(CCMask); 702 } 703 704 bool SystemZInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 705 unsigned Reg, 706 MachineRegisterInfo *MRI) const { 707 unsigned DefOpc = DefMI.getOpcode(); 708 if (DefOpc != SystemZ::LHIMux && DefOpc != SystemZ::LHI && 709 DefOpc != SystemZ::LGHI) 710 return false; 711 if (DefMI.getOperand(0).getReg() != Reg) 712 return false; 713 int32_t ImmVal = (int32_t)DefMI.getOperand(1).getImm(); 714 715 unsigned UseOpc = UseMI.getOpcode(); 716 unsigned NewUseOpc; 717 unsigned UseIdx; 718 int CommuteIdx = -1; 719 switch (UseOpc) { 720 case SystemZ::LOCRMux: 721 if (!STI.hasLoadStoreOnCond2()) 722 return false; 723 NewUseOpc = SystemZ::LOCHIMux; 724 if (UseMI.getOperand(2).getReg() == Reg) 725 UseIdx = 2; 726 else if (UseMI.getOperand(1).getReg() == Reg) 727 UseIdx = 2, CommuteIdx = 1; 728 else 729 return false; 730 break; 731 case SystemZ::LOCGR: 732 if (!STI.hasLoadStoreOnCond2()) 733 return false; 734 NewUseOpc = SystemZ::LOCGHI; 735 if (UseMI.getOperand(2).getReg() == Reg) 736 UseIdx = 2; 737 else if (UseMI.getOperand(1).getReg() == Reg) 738 UseIdx = 2, CommuteIdx = 1; 739 else 740 return false; 741 break; 742 default: 743 return false; 744 } 745 746 if (CommuteIdx != -1) 747 if (!commuteInstruction(UseMI, false, CommuteIdx, UseIdx)) 748 return false; 749 750 bool DeleteDef = MRI->hasOneNonDBGUse(Reg); 751 UseMI.setDesc(get(NewUseOpc)); 752 UseMI.getOperand(UseIdx).ChangeToImmediate(ImmVal); 753 if (DeleteDef) 754 DefMI.eraseFromParent(); 755 756 return true; 757 } 758 759 bool SystemZInstrInfo::isPredicable(const MachineInstr &MI) const { 760 unsigned Opcode = MI.getOpcode(); 761 if (Opcode == SystemZ::Return || 762 Opcode == SystemZ::Trap || 763 Opcode == SystemZ::CallJG || 764 Opcode == SystemZ::CallBR) 765 return true; 766 return false; 767 } 768 769 bool SystemZInstrInfo:: 770 isProfitableToIfCvt(MachineBasicBlock &MBB, 771 unsigned NumCycles, unsigned ExtraPredCycles, 772 BranchProbability Probability) const { 773 // Avoid using conditional returns at the end of a loop (since then 774 // we'd need to emit an unconditional branch to the beginning anyway, 775 // making the loop body longer). This doesn't apply for low-probability 776 // loops (eg. compare-and-swap retry), so just decide based on branch 777 // probability instead of looping structure. 778 // However, since Compare and Trap instructions cost the same as a regular 779 // Compare instruction, we should allow the if conversion to convert this 780 // into a Conditional Compare regardless of the branch probability. 781 if (MBB.getLastNonDebugInstr()->getOpcode() != SystemZ::Trap && 782 MBB.succ_empty() && Probability < BranchProbability(1, 8)) 783 return false; 784 // For now only convert single instructions. 785 return NumCycles == 1; 786 } 787 788 bool SystemZInstrInfo:: 789 isProfitableToIfCvt(MachineBasicBlock &TMBB, 790 unsigned NumCyclesT, unsigned ExtraPredCyclesT, 791 MachineBasicBlock &FMBB, 792 unsigned NumCyclesF, unsigned ExtraPredCyclesF, 793 BranchProbability Probability) const { 794 // For now avoid converting mutually-exclusive cases. 795 return false; 796 } 797 798 bool SystemZInstrInfo:: 799 isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, 800 BranchProbability Probability) const { 801 // For now only duplicate single instructions. 802 return NumCycles == 1; 803 } 804 805 bool SystemZInstrInfo::PredicateInstruction( 806 MachineInstr &MI, ArrayRef<MachineOperand> Pred) const { 807 assert(Pred.size() == 2 && "Invalid condition"); 808 unsigned CCValid = Pred[0].getImm(); 809 unsigned CCMask = Pred[1].getImm(); 810 assert(CCMask > 0 && CCMask < 15 && "Invalid predicate"); 811 unsigned Opcode = MI.getOpcode(); 812 if (Opcode == SystemZ::Trap) { 813 MI.setDesc(get(SystemZ::CondTrap)); 814 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 815 .addImm(CCValid).addImm(CCMask) 816 .addReg(SystemZ::CC, RegState::Implicit); 817 return true; 818 } 819 if (Opcode == SystemZ::Return) { 820 MI.setDesc(get(SystemZ::CondReturn)); 821 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 822 .addImm(CCValid).addImm(CCMask) 823 .addReg(SystemZ::CC, RegState::Implicit); 824 return true; 825 } 826 if (Opcode == SystemZ::CallJG) { 827 MachineOperand FirstOp = MI.getOperand(0); 828 const uint32_t *RegMask = MI.getOperand(1).getRegMask(); 829 MI.RemoveOperand(1); 830 MI.RemoveOperand(0); 831 MI.setDesc(get(SystemZ::CallBRCL)); 832 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 833 .addImm(CCValid) 834 .addImm(CCMask) 835 .add(FirstOp) 836 .addRegMask(RegMask) 837 .addReg(SystemZ::CC, RegState::Implicit); 838 return true; 839 } 840 if (Opcode == SystemZ::CallBR) { 841 const uint32_t *RegMask = MI.getOperand(0).getRegMask(); 842 MI.RemoveOperand(0); 843 MI.setDesc(get(SystemZ::CallBCR)); 844 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 845 .addImm(CCValid).addImm(CCMask) 846 .addRegMask(RegMask) 847 .addReg(SystemZ::CC, RegState::Implicit); 848 return true; 849 } 850 return false; 851 } 852 853 void SystemZInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 854 MachineBasicBlock::iterator MBBI, 855 const DebugLoc &DL, unsigned DestReg, 856 unsigned SrcReg, bool KillSrc) const { 857 // Split 128-bit GPR moves into two 64-bit moves. Add implicit uses of the 858 // super register in case one of the subregs is undefined. 859 // This handles ADDR128 too. 860 if (SystemZ::GR128BitRegClass.contains(DestReg, SrcReg)) { 861 copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_h64), 862 RI.getSubReg(SrcReg, SystemZ::subreg_h64), KillSrc); 863 MachineInstrBuilder(*MBB.getParent(), std::prev(MBBI)) 864 .addReg(SrcReg, RegState::Implicit); 865 copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_l64), 866 RI.getSubReg(SrcReg, SystemZ::subreg_l64), KillSrc); 867 MachineInstrBuilder(*MBB.getParent(), std::prev(MBBI)) 868 .addReg(SrcReg, (getKillRegState(KillSrc) | RegState::Implicit)); 869 return; 870 } 871 872 if (SystemZ::GRX32BitRegClass.contains(DestReg, SrcReg)) { 873 emitGRX32Move(MBB, MBBI, DL, DestReg, SrcReg, SystemZ::LR, 32, KillSrc, 874 false); 875 return; 876 } 877 878 // Move 128-bit floating-point values between VR128 and FP128. 879 if (SystemZ::VR128BitRegClass.contains(DestReg) && 880 SystemZ::FP128BitRegClass.contains(SrcReg)) { 881 unsigned SrcRegHi = 882 RI.getMatchingSuperReg(RI.getSubReg(SrcReg, SystemZ::subreg_h64), 883 SystemZ::subreg_h64, &SystemZ::VR128BitRegClass); 884 unsigned SrcRegLo = 885 RI.getMatchingSuperReg(RI.getSubReg(SrcReg, SystemZ::subreg_l64), 886 SystemZ::subreg_h64, &SystemZ::VR128BitRegClass); 887 888 BuildMI(MBB, MBBI, DL, get(SystemZ::VMRHG), DestReg) 889 .addReg(SrcRegHi, getKillRegState(KillSrc)) 890 .addReg(SrcRegLo, getKillRegState(KillSrc)); 891 return; 892 } 893 if (SystemZ::FP128BitRegClass.contains(DestReg) && 894 SystemZ::VR128BitRegClass.contains(SrcReg)) { 895 unsigned DestRegHi = 896 RI.getMatchingSuperReg(RI.getSubReg(DestReg, SystemZ::subreg_h64), 897 SystemZ::subreg_h64, &SystemZ::VR128BitRegClass); 898 unsigned DestRegLo = 899 RI.getMatchingSuperReg(RI.getSubReg(DestReg, SystemZ::subreg_l64), 900 SystemZ::subreg_h64, &SystemZ::VR128BitRegClass); 901 902 if (DestRegHi != SrcReg) 903 copyPhysReg(MBB, MBBI, DL, DestRegHi, SrcReg, false); 904 BuildMI(MBB, MBBI, DL, get(SystemZ::VREPG), DestRegLo) 905 .addReg(SrcReg, getKillRegState(KillSrc)).addImm(1); 906 return; 907 } 908 909 // Move CC value from/to a GR32. 910 if (SrcReg == SystemZ::CC) { 911 auto MIB = BuildMI(MBB, MBBI, DL, get(SystemZ::IPM), DestReg); 912 if (KillSrc) { 913 const MachineFunction *MF = MBB.getParent(); 914 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 915 MIB->addRegisterKilled(SrcReg, TRI); 916 } 917 return; 918 } 919 if (DestReg == SystemZ::CC) { 920 BuildMI(MBB, MBBI, DL, get(SystemZ::TMLH)) 921 .addReg(SrcReg, getKillRegState(KillSrc)) 922 .addImm(3 << (SystemZ::IPM_CC - 16)); 923 return; 924 } 925 926 // Everything else needs only one instruction. 927 unsigned Opcode; 928 if (SystemZ::GR64BitRegClass.contains(DestReg, SrcReg)) 929 Opcode = SystemZ::LGR; 930 else if (SystemZ::FP32BitRegClass.contains(DestReg, SrcReg)) 931 // For z13 we prefer LDR over LER to avoid partial register dependencies. 932 Opcode = STI.hasVector() ? SystemZ::LDR32 : SystemZ::LER; 933 else if (SystemZ::FP64BitRegClass.contains(DestReg, SrcReg)) 934 Opcode = SystemZ::LDR; 935 else if (SystemZ::FP128BitRegClass.contains(DestReg, SrcReg)) 936 Opcode = SystemZ::LXR; 937 else if (SystemZ::VR32BitRegClass.contains(DestReg, SrcReg)) 938 Opcode = SystemZ::VLR32; 939 else if (SystemZ::VR64BitRegClass.contains(DestReg, SrcReg)) 940 Opcode = SystemZ::VLR64; 941 else if (SystemZ::VR128BitRegClass.contains(DestReg, SrcReg)) 942 Opcode = SystemZ::VLR; 943 else if (SystemZ::AR32BitRegClass.contains(DestReg, SrcReg)) 944 Opcode = SystemZ::CPYA; 945 else if (SystemZ::AR32BitRegClass.contains(DestReg) && 946 SystemZ::GR32BitRegClass.contains(SrcReg)) 947 Opcode = SystemZ::SAR; 948 else if (SystemZ::GR32BitRegClass.contains(DestReg) && 949 SystemZ::AR32BitRegClass.contains(SrcReg)) 950 Opcode = SystemZ::EAR; 951 else 952 llvm_unreachable("Impossible reg-to-reg copy"); 953 954 BuildMI(MBB, MBBI, DL, get(Opcode), DestReg) 955 .addReg(SrcReg, getKillRegState(KillSrc)); 956 } 957 958 void SystemZInstrInfo::storeRegToStackSlot( 959 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned SrcReg, 960 bool isKill, int FrameIdx, const TargetRegisterClass *RC, 961 const TargetRegisterInfo *TRI) const { 962 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 963 964 // Callers may expect a single instruction, so keep 128-bit moves 965 // together for now and lower them after register allocation. 966 unsigned LoadOpcode, StoreOpcode; 967 getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode); 968 addFrameReference(BuildMI(MBB, MBBI, DL, get(StoreOpcode)) 969 .addReg(SrcReg, getKillRegState(isKill)), 970 FrameIdx); 971 } 972 973 void SystemZInstrInfo::loadRegFromStackSlot( 974 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned DestReg, 975 int FrameIdx, const TargetRegisterClass *RC, 976 const TargetRegisterInfo *TRI) const { 977 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 978 979 // Callers may expect a single instruction, so keep 128-bit moves 980 // together for now and lower them after register allocation. 981 unsigned LoadOpcode, StoreOpcode; 982 getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode); 983 addFrameReference(BuildMI(MBB, MBBI, DL, get(LoadOpcode), DestReg), 984 FrameIdx); 985 } 986 987 // Return true if MI is a simple load or store with a 12-bit displacement 988 // and no index. Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores. 989 static bool isSimpleBD12Move(const MachineInstr *MI, unsigned Flag) { 990 const MCInstrDesc &MCID = MI->getDesc(); 991 return ((MCID.TSFlags & Flag) && 992 isUInt<12>(MI->getOperand(2).getImm()) && 993 MI->getOperand(3).getReg() == 0); 994 } 995 996 namespace { 997 998 struct LogicOp { 999 LogicOp() = default; 1000 LogicOp(unsigned regSize, unsigned immLSB, unsigned immSize) 1001 : RegSize(regSize), ImmLSB(immLSB), ImmSize(immSize) {} 1002 1003 explicit operator bool() const { return RegSize; } 1004 1005 unsigned RegSize = 0; 1006 unsigned ImmLSB = 0; 1007 unsigned ImmSize = 0; 1008 }; 1009 1010 } // end anonymous namespace 1011 1012 static LogicOp interpretAndImmediate(unsigned Opcode) { 1013 switch (Opcode) { 1014 case SystemZ::NILMux: return LogicOp(32, 0, 16); 1015 case SystemZ::NIHMux: return LogicOp(32, 16, 16); 1016 case SystemZ::NILL64: return LogicOp(64, 0, 16); 1017 case SystemZ::NILH64: return LogicOp(64, 16, 16); 1018 case SystemZ::NIHL64: return LogicOp(64, 32, 16); 1019 case SystemZ::NIHH64: return LogicOp(64, 48, 16); 1020 case SystemZ::NIFMux: return LogicOp(32, 0, 32); 1021 case SystemZ::NILF64: return LogicOp(64, 0, 32); 1022 case SystemZ::NIHF64: return LogicOp(64, 32, 32); 1023 default: return LogicOp(); 1024 } 1025 } 1026 1027 static void transferDeadCC(MachineInstr *OldMI, MachineInstr *NewMI) { 1028 if (OldMI->registerDefIsDead(SystemZ::CC)) { 1029 MachineOperand *CCDef = NewMI->findRegisterDefOperand(SystemZ::CC); 1030 if (CCDef != nullptr) 1031 CCDef->setIsDead(true); 1032 } 1033 } 1034 1035 // Used to return from convertToThreeAddress after replacing two-address 1036 // instruction OldMI with three-address instruction NewMI. 1037 static MachineInstr *finishConvertToThreeAddress(MachineInstr *OldMI, 1038 MachineInstr *NewMI, 1039 LiveVariables *LV) { 1040 if (LV) { 1041 unsigned NumOps = OldMI->getNumOperands(); 1042 for (unsigned I = 1; I < NumOps; ++I) { 1043 MachineOperand &Op = OldMI->getOperand(I); 1044 if (Op.isReg() && Op.isKill()) 1045 LV->replaceKillInstruction(Op.getReg(), *OldMI, *NewMI); 1046 } 1047 } 1048 transferDeadCC(OldMI, NewMI); 1049 return NewMI; 1050 } 1051 1052 MachineInstr *SystemZInstrInfo::convertToThreeAddress( 1053 MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const { 1054 MachineBasicBlock *MBB = MI.getParent(); 1055 MachineFunction *MF = MBB->getParent(); 1056 MachineRegisterInfo &MRI = MF->getRegInfo(); 1057 1058 unsigned Opcode = MI.getOpcode(); 1059 unsigned NumOps = MI.getNumOperands(); 1060 1061 // Try to convert something like SLL into SLLK, if supported. 1062 // We prefer to keep the two-operand form where possible both 1063 // because it tends to be shorter and because some instructions 1064 // have memory forms that can be used during spilling. 1065 if (STI.hasDistinctOps()) { 1066 MachineOperand &Dest = MI.getOperand(0); 1067 MachineOperand &Src = MI.getOperand(1); 1068 unsigned DestReg = Dest.getReg(); 1069 unsigned SrcReg = Src.getReg(); 1070 // AHIMux is only really a three-operand instruction when both operands 1071 // are low registers. Try to constrain both operands to be low if 1072 // possible. 1073 if (Opcode == SystemZ::AHIMux && 1074 TargetRegisterInfo::isVirtualRegister(DestReg) && 1075 TargetRegisterInfo::isVirtualRegister(SrcReg) && 1076 MRI.getRegClass(DestReg)->contains(SystemZ::R1L) && 1077 MRI.getRegClass(SrcReg)->contains(SystemZ::R1L)) { 1078 MRI.constrainRegClass(DestReg, &SystemZ::GR32BitRegClass); 1079 MRI.constrainRegClass(SrcReg, &SystemZ::GR32BitRegClass); 1080 } 1081 int ThreeOperandOpcode = SystemZ::getThreeOperandOpcode(Opcode); 1082 if (ThreeOperandOpcode >= 0) { 1083 // Create three address instruction without adding the implicit 1084 // operands. Those will instead be copied over from the original 1085 // instruction by the loop below. 1086 MachineInstrBuilder MIB( 1087 *MF, MF->CreateMachineInstr(get(ThreeOperandOpcode), MI.getDebugLoc(), 1088 /*NoImplicit=*/true)); 1089 MIB.add(Dest); 1090 // Keep the kill state, but drop the tied flag. 1091 MIB.addReg(Src.getReg(), getKillRegState(Src.isKill()), Src.getSubReg()); 1092 // Keep the remaining operands as-is. 1093 for (unsigned I = 2; I < NumOps; ++I) 1094 MIB.add(MI.getOperand(I)); 1095 MBB->insert(MI, MIB); 1096 return finishConvertToThreeAddress(&MI, MIB, LV); 1097 } 1098 } 1099 1100 // Try to convert an AND into an RISBG-type instruction. 1101 if (LogicOp And = interpretAndImmediate(Opcode)) { 1102 uint64_t Imm = MI.getOperand(2).getImm() << And.ImmLSB; 1103 // AND IMMEDIATE leaves the other bits of the register unchanged. 1104 Imm |= allOnes(And.RegSize) & ~(allOnes(And.ImmSize) << And.ImmLSB); 1105 unsigned Start, End; 1106 if (isRxSBGMask(Imm, And.RegSize, Start, End)) { 1107 unsigned NewOpcode; 1108 if (And.RegSize == 64) { 1109 NewOpcode = SystemZ::RISBG; 1110 // Prefer RISBGN if available, since it does not clobber CC. 1111 if (STI.hasMiscellaneousExtensions()) 1112 NewOpcode = SystemZ::RISBGN; 1113 } else { 1114 NewOpcode = SystemZ::RISBMux; 1115 Start &= 31; 1116 End &= 31; 1117 } 1118 MachineOperand &Dest = MI.getOperand(0); 1119 MachineOperand &Src = MI.getOperand(1); 1120 MachineInstrBuilder MIB = 1121 BuildMI(*MBB, MI, MI.getDebugLoc(), get(NewOpcode)) 1122 .add(Dest) 1123 .addReg(0) 1124 .addReg(Src.getReg(), getKillRegState(Src.isKill()), 1125 Src.getSubReg()) 1126 .addImm(Start) 1127 .addImm(End + 128) 1128 .addImm(0); 1129 return finishConvertToThreeAddress(&MI, MIB, LV); 1130 } 1131 } 1132 return nullptr; 1133 } 1134 1135 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl( 1136 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops, 1137 MachineBasicBlock::iterator InsertPt, int FrameIndex, 1138 LiveIntervals *LIS) const { 1139 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1140 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1141 unsigned Size = MFI.getObjectSize(FrameIndex); 1142 unsigned Opcode = MI.getOpcode(); 1143 1144 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { 1145 if (LIS != nullptr && (Opcode == SystemZ::LA || Opcode == SystemZ::LAY) && 1146 isInt<8>(MI.getOperand(2).getImm()) && !MI.getOperand(3).getReg()) { 1147 1148 // Check CC liveness, since new instruction introduces a dead 1149 // def of CC. 1150 MCRegUnitIterator CCUnit(SystemZ::CC, TRI); 1151 LiveRange &CCLiveRange = LIS->getRegUnit(*CCUnit); 1152 ++CCUnit; 1153 assert(!CCUnit.isValid() && "CC only has one reg unit."); 1154 SlotIndex MISlot = 1155 LIS->getSlotIndexes()->getInstructionIndex(MI).getRegSlot(); 1156 if (!CCLiveRange.liveAt(MISlot)) { 1157 // LA(Y) %reg, CONST(%reg) -> AGSI %mem, CONST 1158 MachineInstr *BuiltMI = BuildMI(*InsertPt->getParent(), InsertPt, 1159 MI.getDebugLoc(), get(SystemZ::AGSI)) 1160 .addFrameIndex(FrameIndex) 1161 .addImm(0) 1162 .addImm(MI.getOperand(2).getImm()); 1163 BuiltMI->findRegisterDefOperand(SystemZ::CC)->setIsDead(true); 1164 CCLiveRange.createDeadDef(MISlot, LIS->getVNInfoAllocator()); 1165 return BuiltMI; 1166 } 1167 } 1168 return nullptr; 1169 } 1170 1171 // All other cases require a single operand. 1172 if (Ops.size() != 1) 1173 return nullptr; 1174 1175 unsigned OpNum = Ops[0]; 1176 assert(Size * 8 == 1177 TRI->getRegSizeInBits(*MF.getRegInfo() 1178 .getRegClass(MI.getOperand(OpNum).getReg())) && 1179 "Invalid size combination"); 1180 1181 if ((Opcode == SystemZ::AHI || Opcode == SystemZ::AGHI) && OpNum == 0 && 1182 isInt<8>(MI.getOperand(2).getImm())) { 1183 // A(G)HI %reg, CONST -> A(G)SI %mem, CONST 1184 Opcode = (Opcode == SystemZ::AHI ? SystemZ::ASI : SystemZ::AGSI); 1185 MachineInstr *BuiltMI = 1186 BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode)) 1187 .addFrameIndex(FrameIndex) 1188 .addImm(0) 1189 .addImm(MI.getOperand(2).getImm()); 1190 transferDeadCC(&MI, BuiltMI); 1191 return BuiltMI; 1192 } 1193 1194 if ((Opcode == SystemZ::ALFI && OpNum == 0 && 1195 isInt<8>((int32_t)MI.getOperand(2).getImm())) || 1196 (Opcode == SystemZ::ALGFI && OpNum == 0 && 1197 isInt<8>((int64_t)MI.getOperand(2).getImm()))) { 1198 // AL(G)FI %reg, CONST -> AL(G)SI %mem, CONST 1199 Opcode = (Opcode == SystemZ::ALFI ? SystemZ::ALSI : SystemZ::ALGSI); 1200 MachineInstr *BuiltMI = 1201 BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode)) 1202 .addFrameIndex(FrameIndex) 1203 .addImm(0) 1204 .addImm((int8_t)MI.getOperand(2).getImm()); 1205 transferDeadCC(&MI, BuiltMI); 1206 return BuiltMI; 1207 } 1208 1209 if ((Opcode == SystemZ::SLFI && OpNum == 0 && 1210 isInt<8>((int32_t)-MI.getOperand(2).getImm())) || 1211 (Opcode == SystemZ::SLGFI && OpNum == 0 && 1212 isInt<8>((int64_t)-MI.getOperand(2).getImm()))) { 1213 // SL(G)FI %reg, CONST -> AL(G)SI %mem, -CONST 1214 Opcode = (Opcode == SystemZ::SLFI ? SystemZ::ALSI : SystemZ::ALGSI); 1215 MachineInstr *BuiltMI = 1216 BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode)) 1217 .addFrameIndex(FrameIndex) 1218 .addImm(0) 1219 .addImm((int8_t)-MI.getOperand(2).getImm()); 1220 transferDeadCC(&MI, BuiltMI); 1221 return BuiltMI; 1222 } 1223 1224 if (Opcode == SystemZ::LGDR || Opcode == SystemZ::LDGR) { 1225 bool Op0IsGPR = (Opcode == SystemZ::LGDR); 1226 bool Op1IsGPR = (Opcode == SystemZ::LDGR); 1227 // If we're spilling the destination of an LDGR or LGDR, store the 1228 // source register instead. 1229 if (OpNum == 0) { 1230 unsigned StoreOpcode = Op1IsGPR ? SystemZ::STG : SystemZ::STD; 1231 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), 1232 get(StoreOpcode)) 1233 .add(MI.getOperand(1)) 1234 .addFrameIndex(FrameIndex) 1235 .addImm(0) 1236 .addReg(0); 1237 } 1238 // If we're spilling the source of an LDGR or LGDR, load the 1239 // destination register instead. 1240 if (OpNum == 1) { 1241 unsigned LoadOpcode = Op0IsGPR ? SystemZ::LG : SystemZ::LD; 1242 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), 1243 get(LoadOpcode)) 1244 .add(MI.getOperand(0)) 1245 .addFrameIndex(FrameIndex) 1246 .addImm(0) 1247 .addReg(0); 1248 } 1249 } 1250 1251 // Look for cases where the source of a simple store or the destination 1252 // of a simple load is being spilled. Try to use MVC instead. 1253 // 1254 // Although MVC is in practice a fast choice in these cases, it is still 1255 // logically a bytewise copy. This means that we cannot use it if the 1256 // load or store is volatile. We also wouldn't be able to use MVC if 1257 // the two memories partially overlap, but that case cannot occur here, 1258 // because we know that one of the memories is a full frame index. 1259 // 1260 // For performance reasons, we also want to avoid using MVC if the addresses 1261 // might be equal. We don't worry about that case here, because spill slot 1262 // coloring happens later, and because we have special code to remove 1263 // MVCs that turn out to be redundant. 1264 if (OpNum == 0 && MI.hasOneMemOperand()) { 1265 MachineMemOperand *MMO = *MI.memoperands_begin(); 1266 if (MMO->getSize() == Size && !MMO->isVolatile()) { 1267 // Handle conversion of loads. 1268 if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXLoad)) { 1269 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), 1270 get(SystemZ::MVC)) 1271 .addFrameIndex(FrameIndex) 1272 .addImm(0) 1273 .addImm(Size) 1274 .add(MI.getOperand(1)) 1275 .addImm(MI.getOperand(2).getImm()) 1276 .addMemOperand(MMO); 1277 } 1278 // Handle conversion of stores. 1279 if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXStore)) { 1280 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), 1281 get(SystemZ::MVC)) 1282 .add(MI.getOperand(1)) 1283 .addImm(MI.getOperand(2).getImm()) 1284 .addImm(Size) 1285 .addFrameIndex(FrameIndex) 1286 .addImm(0) 1287 .addMemOperand(MMO); 1288 } 1289 } 1290 } 1291 1292 // If the spilled operand is the final one, try to change <INSN>R 1293 // into <INSN>. 1294 int MemOpcode = SystemZ::getMemOpcode(Opcode); 1295 if (MemOpcode >= 0) { 1296 unsigned NumOps = MI.getNumExplicitOperands(); 1297 if (OpNum == NumOps - 1) { 1298 const MCInstrDesc &MemDesc = get(MemOpcode); 1299 uint64_t AccessBytes = SystemZII::getAccessSize(MemDesc.TSFlags); 1300 assert(AccessBytes != 0 && "Size of access should be known"); 1301 assert(AccessBytes <= Size && "Access outside the frame index"); 1302 uint64_t Offset = Size - AccessBytes; 1303 MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt, 1304 MI.getDebugLoc(), get(MemOpcode)); 1305 for (unsigned I = 0; I < OpNum; ++I) 1306 MIB.add(MI.getOperand(I)); 1307 MIB.addFrameIndex(FrameIndex).addImm(Offset); 1308 if (MemDesc.TSFlags & SystemZII::HasIndex) 1309 MIB.addReg(0); 1310 transferDeadCC(&MI, MIB); 1311 return MIB; 1312 } 1313 } 1314 1315 return nullptr; 1316 } 1317 1318 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl( 1319 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops, 1320 MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI, 1321 LiveIntervals *LIS) const { 1322 return nullptr; 1323 } 1324 1325 bool SystemZInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 1326 switch (MI.getOpcode()) { 1327 case SystemZ::L128: 1328 splitMove(MI, SystemZ::LG); 1329 return true; 1330 1331 case SystemZ::ST128: 1332 splitMove(MI, SystemZ::STG); 1333 return true; 1334 1335 case SystemZ::LX: 1336 splitMove(MI, SystemZ::LD); 1337 return true; 1338 1339 case SystemZ::STX: 1340 splitMove(MI, SystemZ::STD); 1341 return true; 1342 1343 case SystemZ::LBMux: 1344 expandRXYPseudo(MI, SystemZ::LB, SystemZ::LBH); 1345 return true; 1346 1347 case SystemZ::LHMux: 1348 expandRXYPseudo(MI, SystemZ::LH, SystemZ::LHH); 1349 return true; 1350 1351 case SystemZ::LLCRMux: 1352 expandZExtPseudo(MI, SystemZ::LLCR, 8); 1353 return true; 1354 1355 case SystemZ::LLHRMux: 1356 expandZExtPseudo(MI, SystemZ::LLHR, 16); 1357 return true; 1358 1359 case SystemZ::LLCMux: 1360 expandRXYPseudo(MI, SystemZ::LLC, SystemZ::LLCH); 1361 return true; 1362 1363 case SystemZ::LLHMux: 1364 expandRXYPseudo(MI, SystemZ::LLH, SystemZ::LLHH); 1365 return true; 1366 1367 case SystemZ::LMux: 1368 expandRXYPseudo(MI, SystemZ::L, SystemZ::LFH); 1369 return true; 1370 1371 case SystemZ::LOCMux: 1372 expandLOCPseudo(MI, SystemZ::LOC, SystemZ::LOCFH); 1373 return true; 1374 1375 case SystemZ::LOCHIMux: 1376 expandLOCPseudo(MI, SystemZ::LOCHI, SystemZ::LOCHHI); 1377 return true; 1378 1379 case SystemZ::LOCRMux: 1380 expandLOCRPseudo(MI, SystemZ::LOCR, SystemZ::LOCFHR); 1381 return true; 1382 1383 case SystemZ::STCMux: 1384 expandRXYPseudo(MI, SystemZ::STC, SystemZ::STCH); 1385 return true; 1386 1387 case SystemZ::STHMux: 1388 expandRXYPseudo(MI, SystemZ::STH, SystemZ::STHH); 1389 return true; 1390 1391 case SystemZ::STMux: 1392 expandRXYPseudo(MI, SystemZ::ST, SystemZ::STFH); 1393 return true; 1394 1395 case SystemZ::STOCMux: 1396 expandLOCPseudo(MI, SystemZ::STOC, SystemZ::STOCFH); 1397 return true; 1398 1399 case SystemZ::LHIMux: 1400 expandRIPseudo(MI, SystemZ::LHI, SystemZ::IIHF, true); 1401 return true; 1402 1403 case SystemZ::IIFMux: 1404 expandRIPseudo(MI, SystemZ::IILF, SystemZ::IIHF, false); 1405 return true; 1406 1407 case SystemZ::IILMux: 1408 expandRIPseudo(MI, SystemZ::IILL, SystemZ::IIHL, false); 1409 return true; 1410 1411 case SystemZ::IIHMux: 1412 expandRIPseudo(MI, SystemZ::IILH, SystemZ::IIHH, false); 1413 return true; 1414 1415 case SystemZ::NIFMux: 1416 expandRIPseudo(MI, SystemZ::NILF, SystemZ::NIHF, false); 1417 return true; 1418 1419 case SystemZ::NILMux: 1420 expandRIPseudo(MI, SystemZ::NILL, SystemZ::NIHL, false); 1421 return true; 1422 1423 case SystemZ::NIHMux: 1424 expandRIPseudo(MI, SystemZ::NILH, SystemZ::NIHH, false); 1425 return true; 1426 1427 case SystemZ::OIFMux: 1428 expandRIPseudo(MI, SystemZ::OILF, SystemZ::OIHF, false); 1429 return true; 1430 1431 case SystemZ::OILMux: 1432 expandRIPseudo(MI, SystemZ::OILL, SystemZ::OIHL, false); 1433 return true; 1434 1435 case SystemZ::OIHMux: 1436 expandRIPseudo(MI, SystemZ::OILH, SystemZ::OIHH, false); 1437 return true; 1438 1439 case SystemZ::XIFMux: 1440 expandRIPseudo(MI, SystemZ::XILF, SystemZ::XIHF, false); 1441 return true; 1442 1443 case SystemZ::TMLMux: 1444 expandRIPseudo(MI, SystemZ::TMLL, SystemZ::TMHL, false); 1445 return true; 1446 1447 case SystemZ::TMHMux: 1448 expandRIPseudo(MI, SystemZ::TMLH, SystemZ::TMHH, false); 1449 return true; 1450 1451 case SystemZ::AHIMux: 1452 expandRIPseudo(MI, SystemZ::AHI, SystemZ::AIH, false); 1453 return true; 1454 1455 case SystemZ::AHIMuxK: 1456 expandRIEPseudo(MI, SystemZ::AHI, SystemZ::AHIK, SystemZ::AIH); 1457 return true; 1458 1459 case SystemZ::AFIMux: 1460 expandRIPseudo(MI, SystemZ::AFI, SystemZ::AIH, false); 1461 return true; 1462 1463 case SystemZ::CHIMux: 1464 expandRIPseudo(MI, SystemZ::CHI, SystemZ::CIH, false); 1465 return true; 1466 1467 case SystemZ::CFIMux: 1468 expandRIPseudo(MI, SystemZ::CFI, SystemZ::CIH, false); 1469 return true; 1470 1471 case SystemZ::CLFIMux: 1472 expandRIPseudo(MI, SystemZ::CLFI, SystemZ::CLIH, false); 1473 return true; 1474 1475 case SystemZ::CMux: 1476 expandRXYPseudo(MI, SystemZ::C, SystemZ::CHF); 1477 return true; 1478 1479 case SystemZ::CLMux: 1480 expandRXYPseudo(MI, SystemZ::CL, SystemZ::CLHF); 1481 return true; 1482 1483 case SystemZ::RISBMux: { 1484 bool DestIsHigh = isHighReg(MI.getOperand(0).getReg()); 1485 bool SrcIsHigh = isHighReg(MI.getOperand(2).getReg()); 1486 if (SrcIsHigh == DestIsHigh) 1487 MI.setDesc(get(DestIsHigh ? SystemZ::RISBHH : SystemZ::RISBLL)); 1488 else { 1489 MI.setDesc(get(DestIsHigh ? SystemZ::RISBHL : SystemZ::RISBLH)); 1490 MI.getOperand(5).setImm(MI.getOperand(5).getImm() ^ 32); 1491 } 1492 return true; 1493 } 1494 1495 case SystemZ::ADJDYNALLOC: 1496 splitAdjDynAlloc(MI); 1497 return true; 1498 1499 case TargetOpcode::LOAD_STACK_GUARD: 1500 expandLoadStackGuard(&MI); 1501 return true; 1502 1503 default: 1504 return false; 1505 } 1506 } 1507 1508 unsigned SystemZInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 1509 if (MI.getOpcode() == TargetOpcode::INLINEASM) { 1510 const MachineFunction *MF = MI.getParent()->getParent(); 1511 const char *AsmStr = MI.getOperand(0).getSymbolName(); 1512 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 1513 } 1514 return MI.getDesc().getSize(); 1515 } 1516 1517 SystemZII::Branch 1518 SystemZInstrInfo::getBranchInfo(const MachineInstr &MI) const { 1519 switch (MI.getOpcode()) { 1520 case SystemZ::BR: 1521 case SystemZ::BI: 1522 case SystemZ::J: 1523 case SystemZ::JG: 1524 return SystemZII::Branch(SystemZII::BranchNormal, SystemZ::CCMASK_ANY, 1525 SystemZ::CCMASK_ANY, &MI.getOperand(0)); 1526 1527 case SystemZ::BRC: 1528 case SystemZ::BRCL: 1529 return SystemZII::Branch(SystemZII::BranchNormal, MI.getOperand(0).getImm(), 1530 MI.getOperand(1).getImm(), &MI.getOperand(2)); 1531 1532 case SystemZ::BRCT: 1533 case SystemZ::BRCTH: 1534 return SystemZII::Branch(SystemZII::BranchCT, SystemZ::CCMASK_ICMP, 1535 SystemZ::CCMASK_CMP_NE, &MI.getOperand(2)); 1536 1537 case SystemZ::BRCTG: 1538 return SystemZII::Branch(SystemZII::BranchCTG, SystemZ::CCMASK_ICMP, 1539 SystemZ::CCMASK_CMP_NE, &MI.getOperand(2)); 1540 1541 case SystemZ::CIJ: 1542 case SystemZ::CRJ: 1543 return SystemZII::Branch(SystemZII::BranchC, SystemZ::CCMASK_ICMP, 1544 MI.getOperand(2).getImm(), &MI.getOperand(3)); 1545 1546 case SystemZ::CLIJ: 1547 case SystemZ::CLRJ: 1548 return SystemZII::Branch(SystemZII::BranchCL, SystemZ::CCMASK_ICMP, 1549 MI.getOperand(2).getImm(), &MI.getOperand(3)); 1550 1551 case SystemZ::CGIJ: 1552 case SystemZ::CGRJ: 1553 return SystemZII::Branch(SystemZII::BranchCG, SystemZ::CCMASK_ICMP, 1554 MI.getOperand(2).getImm(), &MI.getOperand(3)); 1555 1556 case SystemZ::CLGIJ: 1557 case SystemZ::CLGRJ: 1558 return SystemZII::Branch(SystemZII::BranchCLG, SystemZ::CCMASK_ICMP, 1559 MI.getOperand(2).getImm(), &MI.getOperand(3)); 1560 1561 default: 1562 llvm_unreachable("Unrecognized branch opcode"); 1563 } 1564 } 1565 1566 void SystemZInstrInfo::getLoadStoreOpcodes(const TargetRegisterClass *RC, 1567 unsigned &LoadOpcode, 1568 unsigned &StoreOpcode) const { 1569 if (RC == &SystemZ::GR32BitRegClass || RC == &SystemZ::ADDR32BitRegClass) { 1570 LoadOpcode = SystemZ::L; 1571 StoreOpcode = SystemZ::ST; 1572 } else if (RC == &SystemZ::GRH32BitRegClass) { 1573 LoadOpcode = SystemZ::LFH; 1574 StoreOpcode = SystemZ::STFH; 1575 } else if (RC == &SystemZ::GRX32BitRegClass) { 1576 LoadOpcode = SystemZ::LMux; 1577 StoreOpcode = SystemZ::STMux; 1578 } else if (RC == &SystemZ::GR64BitRegClass || 1579 RC == &SystemZ::ADDR64BitRegClass) { 1580 LoadOpcode = SystemZ::LG; 1581 StoreOpcode = SystemZ::STG; 1582 } else if (RC == &SystemZ::GR128BitRegClass || 1583 RC == &SystemZ::ADDR128BitRegClass) { 1584 LoadOpcode = SystemZ::L128; 1585 StoreOpcode = SystemZ::ST128; 1586 } else if (RC == &SystemZ::FP32BitRegClass) { 1587 LoadOpcode = SystemZ::LE; 1588 StoreOpcode = SystemZ::STE; 1589 } else if (RC == &SystemZ::FP64BitRegClass) { 1590 LoadOpcode = SystemZ::LD; 1591 StoreOpcode = SystemZ::STD; 1592 } else if (RC == &SystemZ::FP128BitRegClass) { 1593 LoadOpcode = SystemZ::LX; 1594 StoreOpcode = SystemZ::STX; 1595 } else if (RC == &SystemZ::VR32BitRegClass) { 1596 LoadOpcode = SystemZ::VL32; 1597 StoreOpcode = SystemZ::VST32; 1598 } else if (RC == &SystemZ::VR64BitRegClass) { 1599 LoadOpcode = SystemZ::VL64; 1600 StoreOpcode = SystemZ::VST64; 1601 } else if (RC == &SystemZ::VF128BitRegClass || 1602 RC == &SystemZ::VR128BitRegClass) { 1603 LoadOpcode = SystemZ::VL; 1604 StoreOpcode = SystemZ::VST; 1605 } else 1606 llvm_unreachable("Unsupported regclass to load or store"); 1607 } 1608 1609 unsigned SystemZInstrInfo::getOpcodeForOffset(unsigned Opcode, 1610 int64_t Offset) const { 1611 const MCInstrDesc &MCID = get(Opcode); 1612 int64_t Offset2 = (MCID.TSFlags & SystemZII::Is128Bit ? Offset + 8 : Offset); 1613 if (isUInt<12>(Offset) && isUInt<12>(Offset2)) { 1614 // Get the instruction to use for unsigned 12-bit displacements. 1615 int Disp12Opcode = SystemZ::getDisp12Opcode(Opcode); 1616 if (Disp12Opcode >= 0) 1617 return Disp12Opcode; 1618 1619 // All address-related instructions can use unsigned 12-bit 1620 // displacements. 1621 return Opcode; 1622 } 1623 if (isInt<20>(Offset) && isInt<20>(Offset2)) { 1624 // Get the instruction to use for signed 20-bit displacements. 1625 int Disp20Opcode = SystemZ::getDisp20Opcode(Opcode); 1626 if (Disp20Opcode >= 0) 1627 return Disp20Opcode; 1628 1629 // Check whether Opcode allows signed 20-bit displacements. 1630 if (MCID.TSFlags & SystemZII::Has20BitOffset) 1631 return Opcode; 1632 } 1633 return 0; 1634 } 1635 1636 unsigned SystemZInstrInfo::getLoadAndTest(unsigned Opcode) const { 1637 switch (Opcode) { 1638 case SystemZ::L: return SystemZ::LT; 1639 case SystemZ::LY: return SystemZ::LT; 1640 case SystemZ::LG: return SystemZ::LTG; 1641 case SystemZ::LGF: return SystemZ::LTGF; 1642 case SystemZ::LR: return SystemZ::LTR; 1643 case SystemZ::LGFR: return SystemZ::LTGFR; 1644 case SystemZ::LGR: return SystemZ::LTGR; 1645 case SystemZ::LER: return SystemZ::LTEBR; 1646 case SystemZ::LDR: return SystemZ::LTDBR; 1647 case SystemZ::LXR: return SystemZ::LTXBR; 1648 case SystemZ::LCDFR: return SystemZ::LCDBR; 1649 case SystemZ::LPDFR: return SystemZ::LPDBR; 1650 case SystemZ::LNDFR: return SystemZ::LNDBR; 1651 case SystemZ::LCDFR_32: return SystemZ::LCEBR; 1652 case SystemZ::LPDFR_32: return SystemZ::LPEBR; 1653 case SystemZ::LNDFR_32: return SystemZ::LNEBR; 1654 // On zEC12 we prefer to use RISBGN. But if there is a chance to 1655 // actually use the condition code, we may turn it back into RISGB. 1656 // Note that RISBG is not really a "load-and-test" instruction, 1657 // but sets the same condition code values, so is OK to use here. 1658 case SystemZ::RISBGN: return SystemZ::RISBG; 1659 default: return 0; 1660 } 1661 } 1662 1663 // Return true if Mask matches the regexp 0*1+0*, given that zero masks 1664 // have already been filtered out. Store the first set bit in LSB and 1665 // the number of set bits in Length if so. 1666 static bool isStringOfOnes(uint64_t Mask, unsigned &LSB, unsigned &Length) { 1667 unsigned First = findFirstSet(Mask); 1668 uint64_t Top = (Mask >> First) + 1; 1669 if ((Top & -Top) == Top) { 1670 LSB = First; 1671 Length = findFirstSet(Top); 1672 return true; 1673 } 1674 return false; 1675 } 1676 1677 bool SystemZInstrInfo::isRxSBGMask(uint64_t Mask, unsigned BitSize, 1678 unsigned &Start, unsigned &End) const { 1679 // Reject trivial all-zero masks. 1680 Mask &= allOnes(BitSize); 1681 if (Mask == 0) 1682 return false; 1683 1684 // Handle the 1+0+ or 0+1+0* cases. Start then specifies the index of 1685 // the msb and End specifies the index of the lsb. 1686 unsigned LSB, Length; 1687 if (isStringOfOnes(Mask, LSB, Length)) { 1688 Start = 63 - (LSB + Length - 1); 1689 End = 63 - LSB; 1690 return true; 1691 } 1692 1693 // Handle the wrap-around 1+0+1+ cases. Start then specifies the msb 1694 // of the low 1s and End specifies the lsb of the high 1s. 1695 if (isStringOfOnes(Mask ^ allOnes(BitSize), LSB, Length)) { 1696 assert(LSB > 0 && "Bottom bit must be set"); 1697 assert(LSB + Length < BitSize && "Top bit must be set"); 1698 Start = 63 - (LSB - 1); 1699 End = 63 - (LSB + Length); 1700 return true; 1701 } 1702 1703 return false; 1704 } 1705 1706 unsigned SystemZInstrInfo::getFusedCompare(unsigned Opcode, 1707 SystemZII::FusedCompareType Type, 1708 const MachineInstr *MI) const { 1709 switch (Opcode) { 1710 case SystemZ::CHI: 1711 case SystemZ::CGHI: 1712 if (!(MI && isInt<8>(MI->getOperand(1).getImm()))) 1713 return 0; 1714 break; 1715 case SystemZ::CLFI: 1716 case SystemZ::CLGFI: 1717 if (!(MI && isUInt<8>(MI->getOperand(1).getImm()))) 1718 return 0; 1719 break; 1720 case SystemZ::CL: 1721 case SystemZ::CLG: 1722 if (!STI.hasMiscellaneousExtensions()) 1723 return 0; 1724 if (!(MI && MI->getOperand(3).getReg() == 0)) 1725 return 0; 1726 break; 1727 } 1728 switch (Type) { 1729 case SystemZII::CompareAndBranch: 1730 switch (Opcode) { 1731 case SystemZ::CR: 1732 return SystemZ::CRJ; 1733 case SystemZ::CGR: 1734 return SystemZ::CGRJ; 1735 case SystemZ::CHI: 1736 return SystemZ::CIJ; 1737 case SystemZ::CGHI: 1738 return SystemZ::CGIJ; 1739 case SystemZ::CLR: 1740 return SystemZ::CLRJ; 1741 case SystemZ::CLGR: 1742 return SystemZ::CLGRJ; 1743 case SystemZ::CLFI: 1744 return SystemZ::CLIJ; 1745 case SystemZ::CLGFI: 1746 return SystemZ::CLGIJ; 1747 default: 1748 return 0; 1749 } 1750 case SystemZII::CompareAndReturn: 1751 switch (Opcode) { 1752 case SystemZ::CR: 1753 return SystemZ::CRBReturn; 1754 case SystemZ::CGR: 1755 return SystemZ::CGRBReturn; 1756 case SystemZ::CHI: 1757 return SystemZ::CIBReturn; 1758 case SystemZ::CGHI: 1759 return SystemZ::CGIBReturn; 1760 case SystemZ::CLR: 1761 return SystemZ::CLRBReturn; 1762 case SystemZ::CLGR: 1763 return SystemZ::CLGRBReturn; 1764 case SystemZ::CLFI: 1765 return SystemZ::CLIBReturn; 1766 case SystemZ::CLGFI: 1767 return SystemZ::CLGIBReturn; 1768 default: 1769 return 0; 1770 } 1771 case SystemZII::CompareAndSibcall: 1772 switch (Opcode) { 1773 case SystemZ::CR: 1774 return SystemZ::CRBCall; 1775 case SystemZ::CGR: 1776 return SystemZ::CGRBCall; 1777 case SystemZ::CHI: 1778 return SystemZ::CIBCall; 1779 case SystemZ::CGHI: 1780 return SystemZ::CGIBCall; 1781 case SystemZ::CLR: 1782 return SystemZ::CLRBCall; 1783 case SystemZ::CLGR: 1784 return SystemZ::CLGRBCall; 1785 case SystemZ::CLFI: 1786 return SystemZ::CLIBCall; 1787 case SystemZ::CLGFI: 1788 return SystemZ::CLGIBCall; 1789 default: 1790 return 0; 1791 } 1792 case SystemZII::CompareAndTrap: 1793 switch (Opcode) { 1794 case SystemZ::CR: 1795 return SystemZ::CRT; 1796 case SystemZ::CGR: 1797 return SystemZ::CGRT; 1798 case SystemZ::CHI: 1799 return SystemZ::CIT; 1800 case SystemZ::CGHI: 1801 return SystemZ::CGIT; 1802 case SystemZ::CLR: 1803 return SystemZ::CLRT; 1804 case SystemZ::CLGR: 1805 return SystemZ::CLGRT; 1806 case SystemZ::CLFI: 1807 return SystemZ::CLFIT; 1808 case SystemZ::CLGFI: 1809 return SystemZ::CLGIT; 1810 case SystemZ::CL: 1811 return SystemZ::CLT; 1812 case SystemZ::CLG: 1813 return SystemZ::CLGT; 1814 default: 1815 return 0; 1816 } 1817 } 1818 return 0; 1819 } 1820 1821 unsigned SystemZInstrInfo::getLoadAndTrap(unsigned Opcode) const { 1822 if (!STI.hasLoadAndTrap()) 1823 return 0; 1824 switch (Opcode) { 1825 case SystemZ::L: 1826 case SystemZ::LY: 1827 return SystemZ::LAT; 1828 case SystemZ::LG: 1829 return SystemZ::LGAT; 1830 case SystemZ::LFH: 1831 return SystemZ::LFHAT; 1832 case SystemZ::LLGF: 1833 return SystemZ::LLGFAT; 1834 case SystemZ::LLGT: 1835 return SystemZ::LLGTAT; 1836 } 1837 return 0; 1838 } 1839 1840 void SystemZInstrInfo::loadImmediate(MachineBasicBlock &MBB, 1841 MachineBasicBlock::iterator MBBI, 1842 unsigned Reg, uint64_t Value) const { 1843 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 1844 unsigned Opcode; 1845 if (isInt<16>(Value)) 1846 Opcode = SystemZ::LGHI; 1847 else if (SystemZ::isImmLL(Value)) 1848 Opcode = SystemZ::LLILL; 1849 else if (SystemZ::isImmLH(Value)) { 1850 Opcode = SystemZ::LLILH; 1851 Value >>= 16; 1852 } else { 1853 assert(isInt<32>(Value) && "Huge values not handled yet"); 1854 Opcode = SystemZ::LGFI; 1855 } 1856 BuildMI(MBB, MBBI, DL, get(Opcode), Reg).addImm(Value); 1857 } 1858 1859 bool SystemZInstrInfo:: 1860 areMemAccessesTriviallyDisjoint(MachineInstr &MIa, MachineInstr &MIb, 1861 AliasAnalysis *AA) const { 1862 1863 if (!MIa.hasOneMemOperand() || !MIb.hasOneMemOperand()) 1864 return false; 1865 1866 // If mem-operands show that the same address Value is used by both 1867 // instructions, check for non-overlapping offsets and widths. Not 1868 // sure if a register based analysis would be an improvement... 1869 1870 MachineMemOperand *MMOa = *MIa.memoperands_begin(); 1871 MachineMemOperand *MMOb = *MIb.memoperands_begin(); 1872 const Value *VALa = MMOa->getValue(); 1873 const Value *VALb = MMOb->getValue(); 1874 bool SameVal = (VALa && VALb && (VALa == VALb)); 1875 if (!SameVal) { 1876 const PseudoSourceValue *PSVa = MMOa->getPseudoValue(); 1877 const PseudoSourceValue *PSVb = MMOb->getPseudoValue(); 1878 if (PSVa && PSVb && (PSVa == PSVb)) 1879 SameVal = true; 1880 } 1881 if (SameVal) { 1882 int OffsetA = MMOa->getOffset(), OffsetB = MMOb->getOffset(); 1883 int WidthA = MMOa->getSize(), WidthB = MMOb->getSize(); 1884 int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB; 1885 int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA; 1886 int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB; 1887 if (LowOffset + LowWidth <= HighOffset) 1888 return true; 1889 } 1890 1891 return false; 1892 } 1893